teubner”
An extension for Greek philology
User manual

Claudio Beccari®

August 2023

Contents 8 Ligatures 13
1 Introduction 1|9 Upper case initials and capi-

3 Usage) talised text 15
3 Package options 3 10 Other Greek symbols 19
4 The CB Greek fonts 4 11 Milesian and Attic numerals 19
5 Font installation 9 | 12 New commands 20
6 TgX font metric files 10 | 13 Metrics 22
7 Greek text and Latin keys 10 | 14 Poetry environments 23

1 Introduction

This package teubner.sty is a module that extends the greek option of the babel
package intended to typeset classical Greek with a philological approach. This
version 4.x cannot yet typeset the critical apparatus as the philologists are used to,
but may be this work will continue and include also that facility. Apparently it is
not incompatible with eledmac, but it may be considered a complement.

This document does not substitute the official package documentation
teubner.dtx and its typeset version teubner.pdf; it extends the information
contained into those files.

This package is supposed to work with my CB fonts available on the Compre-
hensive TgX Archive Network (ctan); one of the actions of this package consists
in adding to the default “italic” Greek shape another one called “Lispiakos” in

“This paper documents teubner version v.5.8.3 of 2023/08/25.
fclaudio dot beccari at gmail dot com

Greece; this name derives from the high quality of the fonts used in the printers’
shops in the city of Lipsia in the past 100 years or so; one of the printer shops
that continues printing books for philologists (since 1849) is the B.G. Teubner
Verlagsgesellschaft, that publishes the collection called “Bibliotheca Scriptorum
Graecorum et Latinorum Teubneriana”. The name given to this package is in
homage to that printing company and to its high quality tradition in printing Greek
texts.

This package is generally loaded by default with any complete distribution of
the TgX system; in basic distributions it might not be there, but in general it is
sufficient to use the distribution facilities for loading it; with MiKTeX, for example
one uses the MiKTeX settings and the Package tab. With TgXlive it is sufficient to
operate with the program timgr; and so on.

The problem, if there is one, is to have the full collection of the CB fonts; in
partial distributions the scalable PostScript CB fonts are in one size, 10pt, and it is
necessary to use the /0pt option in order to have the various enlarged or reduced
sizes. For professional work, if the user has a partial TgX system installation, it
is necessary to load the cbgreek-full font collection and be sure that the map
files are duly upgraded. In case, read your distribution instructions to see how to
control and, possibly, how to provide for this upgrade. Please, notice that this very
document has been typeset with the /0pt option in force, so that if you want to
typeset it again from source, you need the minimum amount of vector fonts needed
by pdflatex to do its job.

In any case this teubner package makes the CB font collection (full or reduced)
directly compatible by construction with both the CM fonts (OT1 and T1 encoded;
the latter ones are often referred to as the EC fonts) and with the LM fonts; it also
contains adequate hooks in order to make them compatible and usable with other
font collections; this very file has been successfully typeset using the CM and LM
fonts, and also resorting to the Times and Palatino eXtended collections requested
with the packages txfonts' and pxfonts respectively.

This additional documentation will start by briefly recalling some peculiarities
of the CB fonts and their mapping to the Latin keyboard; afterwards it will list the
new commands and their syntax.

2 Usage

The teubner package is loaded in the usual way, but there are some simple rules to
follow:

\usepackage [{(options)] {teubner}

Since teubner is a module that adds to the |greek.ldf] support for babel package
the functionalities needed by the Hellenists, it must be loaded after the latter. If you
load it before and/or if you load it after, but you invoked the babel package without

! Antonis Tsolomitis wrote package txfontsb for using a different Greek font collection together
with the TX fonts so that the Latin and Greek glyph styles directly match each other; see the txfontsb
package documentation for more information.

Option Meaning

or obsolete option kept for backwards compatibility

10pt for using only one real font size and geometrically enlarg-
ing or reducing the other sizes from the original single
10pt one

boldLipsian to be selected in order to use a moderately blacker Lipsian
font

NoGlyphNames to be selected in order to avoid the definition of accented
glyphs (default)

GlyphNames to be selected in order to have available also the set of
macros that directly address the accented glyphs

Table 1: Options for the teubner package

specifying the (greek) language (with or without the ancient Greek language
attribute?) teubner refuses to completely load and outputs a message very clear
on this subject, so that you know what you should do in order to use the facilities
offered by this module.

Warning: Some people like the Lipsian font shape and want to load it also
for writing mathematics with it. No problem, but they shouldn’t do this with
teubner, which is useful only to typeset Greek text. For using other alphabets in
mathematics there are more suitable ways that rely on the commands described
in the fntguide.pdf distributed with every TgX system in $TEXMFDIST/doc/
latex/base/.

3 Package options

The options available to teubner are collected in table 1 with their meaning and
usefulness.

You should never need (and therefore never use) the or option for two reasons:
(a) glyph name macros are not needed for the first letter of any word since there are
no kerning problems with a preceding letter; (b) glyph name macros are insensitive
to uppercasing.
Warning: You might need to use the /0pt option because your Greek font collection
is the minimal one. But if you are using teubner, you are likely to seek the best
possible typeset text; therefore you should download and install the full collection
of the Greek CB fonts. This full collection is generally already available with any
complete distribution of the TEX system.

If you are using Latin fonts different from the CM, CM-Super, EC, or LM
collections, you have to control what you get with or without the option boldLipsian;
generally speaking, this option is best used with darker normal fonts; I have tried

21t is sufficient to specify the language greek to babel, and teubner provides to set the ancient
attribute. If you specify also the ancient attribute to babel, this sends a message informing you
that this attribute has been specified a second time.

the Times, the Palatino, and the Fourier ones, and actually this option is desirable.
This might not be true with other vector fonts.

With the inclusion of the extended accent macros in the teubner package (see
below), the named accented glyphs should not be needed anymore; these accented
glyph name macros are not defined by default, but for backwards compatibility
they are available if the GlyphNames option is specified; with the 2013 new Greek
support for the babel package, the extended accent macros are defined in a more
efficient way and you should not need them any more; therefore, unless you
specify this option, you avoid overloading the internal TgX memory areas, thus
leaving extra space for more useful packages. I suggest you to let the default
option NoGlyphNames act as its name implies, and make use of the extended
accent macros, should the need arise (see below). Moreover, if your keyboard
has facilities for entering polytonic Greek, or if you install a keyboard driver that
allows you to do so, you can directly input Greek text with the Greek alphabet,
without using the transliteration provided by the Greek support for babel.

4 The CB Greek fonts

The CB Greek fonts (full collection) come in all shapes, sizes and series as the
European Modern fonts that conform with the T1 encoding introduced after the
Cork Conference of the TgX Users Group Society in 19913. The CB fonts conform
to the encoding that is still being called LGR, since up to now there is no established
encoding name for the Greek alphabet among the TgX users, not yet, at least. For
several reasons I suggest to use the Latin Modern fonts, instead of the CM or EC
(CM-Super) ones, because the former are piecewise continuously scalable, while
the latter offer only fixed font sizes. Recently also the CM-Super fonts may be
continuously scaled as the Latin Modern ones, but it is necessary to use a specific
extra package without any option.

The regular shape has capital letters with serifs that are in the same style as the
Latin capital ones, while the lower case letters derive from the design by Didot and
are very common in all texts. This shape comes also in boldface, together with the
corresponding oblique (or slanted) versions. The CB fonts contain also the upright
and slanted, medium and boldface small caps alphabets.

The “italic” shape was designed in order to imitate the Olga font designed so
as to have a contrasting style compared with the slanted Didot shape, in order to
play the same role as the italic letters play with the Latin roman ones. The Olga
alphabets come in medium and boldface series, and in oblique and upright shapes.

The CB fonts are completed with the sans serif fonts, the monospaced typewriter
fonts and the fonts for slides, besides an outline family that shows the regular shapes
and series just with their contours; there is also a shape with serifed lower case
letters.

The CB Lipsian fonts imitate the beautiful shapes used in Lipsia; they come
in medium, bold, and extra-bold series, without an upright version, and they are

3If you want to or you have to use the single 10pt size fonts, you certainly produce smaller PDF
files, at the expense of a slightly poorer typographical quality.

meant to replace the corresponding Olga shapes. Their ‘simple bold’ series is good
for mixing with PostScript fonts, whose medium series is slightly blacker than the
corresponding EC and LM fonts normally used with IXTEX; this is easily achieved
by passing the boldLipsian option when invoking this teubner file. Notice that
the Lipsian font produces an alternative to the ordinary ‘italic’ Olga shape, that is
not any more the default ‘italic’ shape as it used to be with previous versions of
this package; now, in the same document, you can use both shapes and produce
both versions: BayuvAides and BayvAibes. With the availability of the upright Olga
font and the serifed lowercase alphabet, you can use also the \textui and the
\textrs commands so as to obtain Bay0A\deg and Bayuhibec; also in extended
boldface: Bay0Aideg and Bayvhibec,.

But if you really want to permanently change the “italic” Greek font shape to
the Lipsian one, without keeping the alternative, then in your preamble add the
following statements after you have loaded the teubner package:

\addto\extrasgreek{\def\itdefault{1i}}%
\addto\noextrasgreek{\def\itdefault{it}}%

With these settings, \textit and \textli become equivalent and both use the
Lipsian shape while typesetting Greek text. Reverting to Latin script the \textli
text command uses the italic shape by default and there is no need to add anything
else to the \noextrasgreek macro.

Technical information

Typesetting documents with different scripts sets forth some problems. The greek
option to the babel package, besides setting up the typographical rules for Greek,
as it does for any other language, provides the script change; it defines also the
\textlatin macro in order to typeset something with the Latin script while
the default script is Greek, as well as the \textgreek macro to typeset some-
thing with the Greek script when typesetting with a Latin one. Of course the
usual \selectlanguage and \foreinglanguage commands, as well as the
otherlanguage environment, provide for a global change of the typesetting char-
acteristics or an environment where the settings are reset to Greek.

With standard babel the CB fonts used to work only in conjunction with the
CM fonts with either the OT1 (real CM fonts) or T1 (EC fonts) encoding. Since
the 2008 distribution of standard babel, the CB fonts work fine also with the Latin
Modern fonts. This feubner module tries to work seamlessly also with other font
families, but it is not that simple. Some technical explanations are necessary.

When EKTEX needs to use a specific font in a certain encoding and belonging
to a particular family, series and shape, available in such and such sizes, it gets
this information by reading a font description file; this file’s name is composed
with the encoding and the family names glued together and has the extension . fd;
for OT1 encoded Computer Modern CM regular (serifed) fonts this file would be
otlcmr. fd. Any other package that is requested for using different fonts defines
possibly a different encoding and certainly different family names. For using the
Times eXtended TX fonts with T1 encoding, the txfonts. sty package defines

the family name txr (for serifed fonts) so that IfIEX reads the font description
file t1txr. fd that contains the relevant information for all the series, shapes, and
sizes available.

The CB fonts are encoded according to the LGR encoding but have the same
family names as the CM ones; since 2008, also the family names of the Latin
Modern LM collection are recognised; therefore the relevant font description files
for the regular* families are 1grcmr. £fd and 1grlmr. £d respectively. The two
collections of description files are not equivalent with one another, and they are not
equivalent to the OT1 or T1 encoded CM or LM fonts, in the sense that the series
and shapes available for these sets of fonts are not identical, even if most of them
are.

In this way with CM and LM fonts the script switching for the same (existing)
series and shapes amounts to switching the encoding name. At the same time
there might exist some font switching commands that refer to a series or shape that
does not exist in the other script families; one important example in our case is
the Lipsian shape that is available only with the CB fonts. There is no problem
in declaring the Lipsian shape switching commands that behave in a proper way
together with the CM and LM fonts, but even if I did my best for working with
other font families, I am not 100% confident that my macros restore correctly the
other font characteristics when declaring a different series or shape.

Going more technical, the default family settings are stored into the three
macros \rmdefault, \sfdefault, \ttdefault; the series and the shape sym-
bols are stored in similar macros; these default macros are accessed every time a
font characteristic switching declaration or command is used. In the background
the \selectfont macro is executed and during the whole process the current font
characteristic macros are updated. Such macros are \f@encoding, \f@family,
\f@series, and \ f@shape; therefore when just one characteristic is modified, the
new value is stored in the relevant current value macro and used in order to create
the association with the actual font to be used.

If the font switching macros are used within a group, upon exiting that group
the previous values are restored; but if declarations are used without a delimiting
scope, there is no simple (universal) way to use another ready-made declaration
that resets valid font characteristics.

An example where the necessity of delimiting scopes is shown: suppose we are
typesetting with T1 encoded LM roman medium normal (upright) fonts; then the
current font characteristics codes are stored in the relevant macros as T1, 1mr, m, n.
We switch to Greek with a language setting declaration, and the current encoding
is changed to LGR, but the other characteristics remain the same, therefore we
would be typesetting with LGR encoded, CB Didot (upright) medium normal font.
While typesetting in Greek we switch to Lipsian shape with a declaration such
as \1lishape®, and this declaration changes only the current shape characteristic,

“The regular lower case Greek alphabet does not have serifs; serifs are present in the font shape
called ‘serifed’ that corresponds to the\textrs font command.

>Notice that the \1lishape declaration and the corresponding text command \textli are
defined in such a way that they switch to the Lipsian shape only when the Greek encoding LGR
is in force; with other encodings they behave as the corresponding italic font commands. In spite

so that the four ones would be LGR, 1mr, m, 1i. Up to this point everything runs
smoothly because every characteristic that was set is present in the specific font
family in use. At this point we revert to typesetting with the Latin script by means
of a language switching declaration; the only change that takes place is on the
encoding and the four characteristics would become T1, 1lmr, m, 11, but... The
Latin Modern fonts do not contain a Lipsian shape, therefore there is no actual font
that meets the requirements and I£TEX selects the error font, the T1 encoded LM
roman medium normal one, that in this case is the correct one, and apparently the
font switching process achieved the correct result. This is only apparent: remember
that the error font was selected, not the right font. If the Latin family and the
Greek family hadn’t been the same, there would have been other difficulties and the
error font would have been selected; this is why, if the user does not pay attention,
when the default font should be, say, the TX font, after a switch to Greek, upon
reverting to the Latin script the wrong font series or shape might be used. In the
next paragraphs some indications are given in order to overcome this feature.

All these technicalities are really too technical, but it’s necessary to have some
clues in order to find out why sometimes the font switching commands don’t
work as expected. In some cases the font description file might provide a smart
substitution for missing fonts, but it is not always the case.

In this package I tried to forecast most situations, but I am not sure I coped
with every font characteristic combination.

In particular I hooked the language changing declarations with suitable default
family names; for example, when using the Times or the Palatino eXtended TX
or PX fonts, three new family description files are created so as to connect the
LGR encoding and the names of the above scalable fonts to the corresponding CB
fonts®.

If you use different scalable fonts you can specify yourself the font associations
you want to use; simply, after loading a package that sets other default font family
or families, open the package file and take notice of the new family names; for
each (latin) family (serifed, sans serif, monospace) create a connection with the
corresponding (greek) family by means of the following command:

\1ifFamily{(latin)} {(greek)}

right after the \usepackage command with which you call that package.

Example: suppose you want to use the regular Fourier fonts to replace the
default roman normal serifed fonts; then you should load the package fourier
after the teubner module and specify:

\usepackage{fourier}
\Lipsiantrue
\ifFamily{futs}{cmr}

of this the example being carried on is valid, because the \1ishape declaration is supposed to be
issued while the Greek encoding was in force.

6T chose the CM Greek families, instead of the LM ones, because only the former are described
by means of macros that cope with the /0pt option to the teubner package; just in case... The
actual used fonts are the same in any case, except possibly for the visual sizes; the CM fonts come
in fixed sizes, while the LM fonts are continuously scalable by enlarging or reducing a smaller
number of base visual sizes.

You can see that the family name futs, corresponding to the regular Fourier font
family, has been matched to the CB Greek cmr font family; the name futs has
been deduced by reading the fourier. sty file from which one can see that the
family declaration for the regular Fourier font family is futs. This sort of coding
does not take place with all fonts: if the Iwona fonts had to be chosen, for example,
then the font family name would coincide with the font name, making it difficult to
distinguish between the font name and the font family name.

Notice the \Lipsiantrue command before issuing the matching command
\ifFamily}. This command is optional and is used only if the composer wishes
to use the Lipsian fonts; in this case the 1i shape is also defined, so that the
\textli and \1lishape commands do not issue any error message. At the end of
the execution of the \ifFamily command, the boolean switch is automatically
reset to \Lipsianfalse.

Warning: According to several maintainers of the language support packages, the
procedure used with \1fFamily, that produces in the local working directory a
real, permanent . fd file, is not the best approach to create such pairing of fonts.
Giinter Milde, for example, produced a substitutefontfamily package that defines
the command \subtitutefontfamily which creates a similar association, but
does not write anything to the disk; simply the created association declarations are
stored in the TEX working memory, so that when the typesetting job is over, no
traces remain on disk; this certainly avoids clogging the disk with the same files
scattered all over in different directories that were the working ones for different
typesetting jobs.

A small caveat: when you issue for the first time the \ifFamily command you
might not see the expected result (while with Milde’s package you immediately
obtain the expected result), and your Greek text might be typeset with the default
“Greek error font”. But the second time you typeset your document the expected
result is obtained with the correct fonts. This is because with the very first run
a new font description file is generated, and this file will be available only in
subsequent typesetting runs.

Another warning: this teubner package sometimes uses the “bold not extended”
series, typical with the Lipsian fonts, so as to better match their medium blackness
with darker fonts such as, for example, the Times extend ones. Sometimes the
Lipsian shape is in force, but the metric symbols (see below) are also used, but such
fonts lack the Lipsian shape. It might happen that you use some math symbols; the
math symbols with pdf XTEX do not have anything similar to the Lipsian shape.In
such cases the typesetting program issues a warning and at the end of the job you
might read in the . log file a message such as Some font shapes were not available,
defaults substituted. No worry; the message is correct, but no errors are actually
visible in the output PDF file. See below what you can do if you find such warning
messages as ‘“‘annoying’’ ones.

Nevertheless this does not imply that the correct fonts are used if the font
switching macros are used without scoping groups or environments. Sometimes,
when you use declarations instead of commands, it might be necessary to issue
an apparently redundant \rmfamily or \selectfont command in order to re-
establish the correct defaults.

In order to insert short texts in Greek, either in Didot upright or in Lipsian
inclined shape, the text commands \textDidot and \textLipsias may be used,
as well as a redefined \textlatin fext command for typesetting a short Latin
script text while typesetting in Greek; these macros should already select the correct
encoding, family, series and shape in most circumstances.

The text commands, contrary to the corresponding fext declarations, typeset
their argument within a group, so that the font characteristics are also correctly
restored after the command execution is completed.

Therefore we suggest you to either use the text commands or to use the declara-
tions as environment names (without the initial backslash), so that they provide the
necessary group delimiters; it is syntactically correct and useful to input something
such as:

\begin{Lipsiakostext}
(Greek text to be typeset with the Lipsian font)
\end{Lipsiakostext}

Some authors have defined themselves the environments GRD and GRL to
typeset longer texts with Didot or, respectively, Lipsian fonts, and such definitions
are now included in the teubner package; see the documentation of the code in the
teubner.pdf file to see the details. Il any case the syntax is the following:

\begin{GRD}
(Text to be typeset with the Greek Didot like font)
\end{GRD}

\begin{GRL}
(Text to be typeset with the Lipsiakos font, if available, or italics)
\end{GRL}

Such environments have been tested with the Latin Modern, extended Times
and extended Palatino fonts and with the standard classes besides the memoir and
scrbook ones. No kludges were necessary with the Latin Modern fonts and the
standard classes; some kludges were necessary in order to get the expected results
with the other tested fonts and classes; such kludges are described in the above
code documentation file. They are not complicated, but users that use different
fonts and/or different classes might need to apply similar kludges to their software.

5 Font installation

In order to use the Greek CB fonts and the facilities provided by this package,
you need to install them, if they are not already installed by default when you
install your preferred TgX system complete distribution. You can freely download
those fonts from ctan, where you can find both the PostScript scalable ones and
the driver files for generating their bitmapped versions with METAFONT; since

9

nowadays it’s very unlikely that IS[iEX users limit themselves to a final DVI file, but
typeset their documents in PDF (or PS formats), the pixel files are very unlikely
needed to produce their final documents; the METAFONT pixel files just allow
the DVI previewer (should one be used) to run METAFONT in the background in
order to produce the necessary pixel files so as to display on the screen the typeset
documents’. These days there are other solutions to preview directly the typeset
output file in PDF format and to use the previewer for direct and inverse search,
so that the DVI format becomes really necessary only in very special and rare
occasions. In the future it’s very likely that the choice among such PDF previewers
is much greater than today: there are certainly the multiplatform shell editors
TeXworks, TeXstudio, and Texmaker that incorporate a PDF previewer capable of
direct and inverse search; for modern Windows platforms there is the SumatraPDF
previewer that may be configured to work with various shell editors in order to
perform in the same way. For Mac platforms, besides the default shell editor and
previewer TeXShop, and the multi-platform program TeXworks, the Mac specific
TeXnicle and Texpad, the user can proceed with Aquamacs as a shell editor and
Skim as PDF previewer that work together so as to allow direct and inverse search.

6 TgX font metric files

The teubner package requires the updated TgX font metric files . tfm for all
sizes and series of the Lipsian fonts. With your file system explorer go to the
folder $TEXMFDIST/fonts/tfm/public/cbfonts/ and read the date of, say,
grml1000. tfm; if this date precedes the year 2010, then this . tfm file is “old”
and must be replaced, and you should update your Greek CB font collection (may
be you should update your whole TgX system installation).

The updated .tfm files add some ligature and kerning information that is
missing from the “old” ones. The Type 1 p£fb font files have not been modified at
all.

7 Greek text and Latin keys

In order to input Greek text with a Latin keyboard® some simple and mostly obvious
key substitutions are performed according to the correspondence shown in table 2.

Notice that there is the possibility of inputting c in order to get the final sigma
¢, but the CB fonts are conceived with the non-Greek user in mind, so that it is even
possible to input s at the end of words, because the whole software is smart enough

"I mean documents that have been typeset with latex, not with pdflatex.

8 Although tables 2 and 3 display only Latin ASCII characters in the second line, there are
some national keyboards where some of these ASCII symbols can’t be typeset by striking a single,
possibly shifted, keyboard key or a simple key combination; an example is the Italian keyboard,
where both the ‘back tick’ and the ‘tilde’ can be input only in one of these two ways: (a) open the
Character Map accessory [some shell editors can open their internal character map, where to select
the desired characters] and select the required glyph(s), or (b) while pressing the key, input
the numerical glyph code from the numeric pad. Very uncomfortable!

10

tx A pgviéionpcotTuoydo
ik Il mnxoprcstufqyw

Table 2: Keyboard correspondence between Latin and Greek letters

> e . ’ \ ~

Greek diacritics
Latin keys > < ~
extended accent macros \> \< \" \’ \‘ \~

Table 3: Correspondence between the Latin keyboard symbols and Greek diacritical
marks; extended accent macros are also shown; notice that a couple of “high”
diacritical marks may be joined in one macro (in any order) to produce the same
result as with two separate macros; in other words, \>\'", \’\>, \>’ and \’> are
equivalent with one another. For what concerns \~, see remarks below table 4

to detect the word boundary and to use the correct shape of the letter sigma within
or at the word end. This mechanism is so “sticky” that it becomes difficult to type
an isolated initial or middle sigma; the CB fonts contain an invisible character, v,
that may be used for several purposes, one of which is to hide the word boundary
after a sigma; therefore if you type sv, you get o without any effort.

The invisible character v may be used also as a support for (apparently) isolated
accents, especially when macros have to be used; if you type \M{v} you get —,
while if you omit the invisible v you get - .

In LICR (ISIEX Internal Character Representation), that is being used by the
modern (2013) Greek support for babel, the v character is represented by the macro
\textcompwordmark whose name recalls a compound word separator; actually it
may play also this role; but it is a special character, not simply an invisible strut; it
has the same category code as the other alphabetic characters, it has a very small
width but its height is equal to the other lower case letters without ascenders; it’s a
real character even if in practice it is invisible; in particular it does not impeach
hyphenation as an equally sized normal strut would do. But its usefulness is (a)
to hide the word boundary; (b) to support an accent that would drop to the base
line if this character was absent; (c) to break ligatures in those rare cases where it’s
necessary to do so.

Accents, spirits and dieresis may be input before each letter (prefix notation)
without using any particular control sequence, that is resorting to the ligature
mechanism that is part of the font characteristics; but since with certain fonts
this mechanism may break kernings, it’s better to use the proper accent macros;
the correspondence between the Latin symbols and the Greek diacritical marks
is shown in table 3; all “upper” diacritical marks must be prefixed (in any order),
while the iota subscript must be postfixed. Therefore if you input >’a|, you get 4.

Macrons and breves are just single glyphs and do not appear in combination
with any letter, due to the limitation of 256 glyphs per font; but they may be
input by means of commands \M and \B respectively when typesetting in Greek in
order to use them as single diacritics; for more than one diacritic superimposed

11

to one another, when macrons and breves are involved, some other commands are
available as shown in table 4. f The new (2013) Greek support for babel contains
now the LICR encoded accent macros that allow to use any encoding input method,
including direct input of Greek characters. The internal representation of accent
macros resorts to the same symbols shown in table 3; simply they are prefixed by a
backslash and/or the accent sequence is prefixed with one backslash; therefore &
may be obtained with >’ a|, or \>\"a|, or \>’a|. The last form is to be preferred
with some shapes as discussed in the following paragraphs. But the LICR (ITEX
Internal Character Representation) is much more than this; it separates the input
encoding from the output font encoding, so that direct literal greek input is possible
(of course with the [(utf8)] encoding) and the output is useful for both LGR
encoded 8-bit fonts and the UNICODE encoded OpentType fonts; this way babel
and the Greek support for babel, provided by the new greek.1df, may be used
also with XgI4TEX and Lual&TEX. Moreover now (October 2014) file greek. 1df
can select the ancient Greek hyphenation when typesetting with pdfIATEX?; with
polyglossia this possibility was available from the very beginning of the Greek
support by this package. The 2020 version of the greek.1ldf file introduces
some new coding incompatible with the extension provided by this module (up to
version 48) to get Greek Milesian and Attic numerals. From teubner version 5.0,
the LICR codes used by the new greek. 1df file are extended in oder to get Greek
numerals that use the ancient glyphs, and therefore some macros are redefined. On
the occasion of this update, the necessary macros for the Greek numerals have been
redefined by means of the IXTEX 3 language through the interface macros previously
defined by the xparse package and now (2020) integral part of the ISIEX kernel;
see below for further details.

Together with the macros for inserting such symbols, a complete set is available
for inserting any combination of diacritical marks over or under any letter, not only
vowels: see table 4.

Of course the results may not be comparable with the ones one can obtain
with the regular ligature mechanism or by using the LICR macros; the advantage
of the redefined accent macros is twofold: (a) it is connected to the possibility
of inserting macrons and breves and/or to set the various combinations over or
under any letter, even if it is a consonant; (b) for all accent vowel combinations
that have a specific glyph in the font, the actual accented symbol is used so that
kernings and ligatures are maintained; this result is achieved also by using the
extended accent macros shown in the third line of table 3; as shown elsewhere
there is a noticeable difference between avtdc and avrdc or avrdc or avrdc. In
this example the first word is typed in as a>ut’os, while the other words may be
typed in as a\s{u}t\’os, or a\us._t\oa._s, or a\>ut’os, or even in mixed form
a\us.t’os, thanks to the fact that there is no kerning between ‘tau’ and ‘omicron
with or without acute’.

The attentive readers might have noticed that some accent macros use the
control symbols that are available for other standard IIEX environments or even
defined in the ISIEX kernel. Accent macros \ ‘, \’ and \= are already taken care

This is why with this release of the teubner package, the default language attribute is set to
ancient.

12

by the ISTEX kernel that uses a particular trick to use them as control macros in the
tabbing environment; therefore there should not be any conflict.

On the opposite some conflicts may arise with \< and \>, as reported by David
Kastrup. We have examined these conflict occurrences and we noticed that actually
\> is defined as a ‘math wide space’ command; an alias \: is defined immediately
after the definition, and the I£IEX handbook by Leslie Lamport does not even
mention \>; therefore \> may be considered a leftover from the beginnings of
ITEX, and it would be surprising if anybody used it; nevertheless. .. The control
symbol \< has been reported as being used as a macro with a delimited argument
\<(arg)> in the documentation of package calc. We immagine that it is very
unlikely that this teubner module functionalities might be used in another package
documentation, but. . .

These conflicts are avoided if Giinter Milde package textalpha is loaded;
we did not find out any conflict in any testing run we made, but such conflicts
may arise; therefore we decided to have teubner load the textalpha package at
\begin{document} execution time, so as to avoid any possible conflicts.

8 Ligatures

It should be clear from the previous section that the ligature mechanism is the
one that offers good results with most accented vowels, while speeding up the
keying-in of the text to be typeset; nevertheless there are situations where you
might be unsatisfied.

For example compare avtdc with avtog. The small spacing difference, if any,
between tau and the accented omicron is not noticeable, but the spacing difference
between alpha and the marked upsilon is remarkable. Where does that difference
come from? It comes from the fact that the smooth spirit marker inhibits kerning
between the previous alpha and the resulting ligature from the spirit marker and the
upsilon!®. In other words, by inputting a>ut’ os, as it is suggested in the previous
section, the spirit marker and the acute accent inhibit the kerning mechanism with
the previous letter. In most instances the lack of such kerning is hardly noticeable,
but in others it strikes your attention.

For this reason two mechanisms are implemented in this package.

1. The extended accent macros created by Giinter Milde are now the default
setting in the Greek support for babel, and
2. The character names have been defined with macros that access directly their

own glyphs.

The first solution has been described in the previous section and the extended
accent macros are shown in table 3. At the expense of one slash, these macros

10The CB fonts may be used also with monotoniko spelling; in this case AYAOX comes out well
even with ligatures A"ULOS, because a special kludge has been devised; with the extended accent
macros it would not be too boring to typeset A\"ULOS and do away with that kludge; without it
and without such extended macros that word would be set as A YAOX with a much larger space
between the capital alpha and the marked capital upsilon.

13

Example Syntax Example Syntax

o \G{(letter)}' o \ut{(letters)}
& \A{(letter)}' & \Ab{(letter)}
o \C{(letter)}' & \Gb{{letter)}
T \D{(letter)}! & \Arb{(letter)}
a \B{(letter)}* a \Grb{(letter)}
o \U{(diphthong)} & \Asb{(letter)}
a \M{(letter)}* a \Gsb{(letter)}
& \>{(letter)}> & \Am{(letter)}
& \<{(letter)}> x \Gm{{letter)}
& \r{(letter)} a \Cm{(letter)}
a \s{{letter)} & \Arm{{letter)}
t \Ad{(letter)} o] \Grm{(letter)}
i \Gd{(letter)} & \Crm{(letter)}
1 \Cd{{letter)} & \Asm{{letter)}
& \Ar{(letter)} a \Gsm{{letter)}
a \Gr{(letter)} & \Csm{{letter)}
& \Cr{{letter)} & \Sm{{letter)}
& \As{(letter)} a \Rm{(letter)}
i \Sb{(letter)} a \Rb{(letter)}
a \Gs{{letter)} o \iS{{letter)}
& \Cs{{letter)} T \d{(letter)}

L \c{(letter)} T \bd{(letter)}
u \semiv{{letter)}> a \ring{(letter)}>

Table 4: Accent macros

REMARKS

These four commands superimpose the corresponding accent over the (letter) belonging to the
Greek alphabet; the corresponding commands \ ‘, \’, \~, and \" play the same role also with non
Greek letters; this allows the stacking of several accents on the same base (letter).

*Most commands may be used also with latin letters.

3While typesetting in Greek within a tabbing environment, both commands \> and \< play
a different role as tab shifters; in this case either \s and \r are used for the spirit macros, or the
standard ligature mechanism is used, especially if the spirit diacritics fall on the very first vowel of
a word. Suggestion; never use the tabbing environment; there are more effective ways to align
chunks of text, for example the tabular environment.

“In teubner versions preceding 4.0 macros for typesetting macrons and breves in Greek had the
same name as the corresponding macros used when typesetting with Latin script, that is \= and \u.
With the new Greek support for the babel package that was implemented during year 2013, the
Latin macros were not functional any more in the proper way, and were updated in teubner version
4.0 with new names.

create a chain of commands that deeply exploit the KTEX 2¢ kernel commands
and allow to fetch directly each accented character; notice that there is no need
to treat the | sign this way, because its postfixed position does not break the
kerning/ligature mechanism. The spirit macros \> and \< work also with the

14

consonant ‘r’ to produce g, ¢9. The extended accent macros work correctly also
with capital letters (where, in all caps, accents should not be typeset, except the
dieresis, while in normal initial capitalising the upper diacritics must be written
at the left of the initial letter); for example'! "Aukoc, AYAOY was typeset with
\>’Aulos, A\"ULOS. Notice also that the initial capital vowel has a spirit and
possibly an accent, or is not preceded by anything, since the possible spirit with
or without accent falls on the second element of a descending diphthong: a0toc,
Adtéc, and AYTOY; etvan, Elvon, EINAL If you really want to show an example
of how accents should not be used in all caps words, you can type ATTOY. but
you have to use the macros of table 4 as such: A\>UT\A{0}S.

Another solution is available if the GlyphNames option is specified to the
teubner package: a set of macros has been defined such that it is possible to input
the accented characters directly, without resorting to the ligature mechanism. Such
macros have a common structure; they are formed with the letters that make up the
complex glyph in a certain order, precisely every macro is made up as follows

1. the first character, obviously, is the backslash character \.

2. The next character is the name of the base character, one of the vowels a, e,
h, 1, 0, u, w, or the consonant r, or one of the capitalised vowels I or U.

3. The next optional character is the code for dieresis, or smooth, or rough
spirit, with one of the letters d, s, r.

4. The next character is the code for the circumflex, acute, or grave accent with
one of the letters c, a, or g.

5. The last optional character indicates iota subscript with the presence of an i.

6. There are no glyph names for upper case letters, since they should never be
marked with diacritics, except for the diaeresis over I and T and for these
glyphs adequate names are provided.

This means that, for instance, \asai stands for & For your convenience such
macros are collected in table 5. Of course one can always resort to the accent—
vowel combination as exemplified at the end of the previous section; the above
example & may be obtained also with \>"a| or \As{a}| 12

What I suggest is to typeset your paper with the regular accent vowel ligatures
and to substitute them in the final revision with the extended accent macros or the
glyph name macros only in those instances where the lack of kerning is disturbing.
The extended accent macros should set forth less conflicts with other packages and
should be the first choice when cleaning up the final revision. The glyph names
will be kept in future releases of this package just for backwards compatibility.
Up to now these glyph name macros are disabled by default but, if the option

"In the capitalised word the spirit and accent at the left of A imply a hiatus between the A and
the v; in the all caps word this hiatus is marked with the “dialytika” (dieresis) over the Y. This is an
unusual example, but it shows also why the \uppercase and the \MakeUppercase require some
attention in polytonic and ancient Greek.

12Postfixed markings do not pose any problem with kernings and ligatures; this is why the
postfixed ligature for the iota subscript may still be used also when the accent—vowel combinations
are used.

15

\aa d \ag a \ac a \ai ¢ \ar a \as d
\asa d \asg 4 \asc d \asi ¢ \aai a
\ara d \arg a4 \arc a \ari ¢ \agi ¢ \aci a
\arai ¢ \argi ¢ \arci ¢ \asai ¢ \asgi ¢ \asci ¢
\ha 7 \hg 7 \hc 7 \hi n \hr 7 \hs 7
\hsa 7 \hsg 7 \hsc 7 \hsi 7 \hai 0
\hra 7 \hrg 7 \hrc 7 \hri 7 \hgi 7 \hci 7
\hrai 7 \hrgi % \hrci 7 \hsai % \hsgi 7 \hsci g
\wa o \wg o \WwcC o \wi @ \Wr o \Ws 1)
\wsa & \wsg & \wsc @& \wsi ¢ \wai ¢
\wra @ \wrg o \wrc @ \wri @ \wgi @ \wci @
\wrai ¢ \wrgi ¢ \wrci @ \wsai ¢ \wsgi ¢ \wsci @
\ia { \ig { \ic I \ir [\is [
\isa i \isg i \isc { \ida ¢ \idg v
\ira { \irg { \irc I \idc I \id r \Id I
\ua ¥ \ug v \uc ¥ \ur v \us 0]
\usa 7 \usg 9 \usc v \uda 4 \udg b
\ura ¥ \urg ¥ \urc 9 \udc 7 \ud i \Uud Y
\ea ¢ \eg & \er & \es é
\esa £ \esg & \era £ \erg &
\oa 6 \‘o"? o0 \<o*® 6 \os é
\osa 6 \osg 6 \ora 6 \org O
\rs 0 \rr 0
Table 5: Glyph name macros
REMARKS

'Some users remarked that with previous teubner versions \og macro conflicted with the
homonymous command available when typesetting French texts with the french option to babel
in force; for this reason it’s necessary to use \ ‘o in its place.

2As mentioned in the body of this text the command \or is incompatible with the primitive TgX
command with the same name, therefore it is necessary to use \<o in its place.

3In both cases macros are unnecessary, specifically for \<o, since an initial accented letter has
no preceding letter whith whom some kerning might be necessary; therefore at the start of a word
use ’o or <o, and use \’ o in a word internal position, should some kerning be necessary; actually
the shape of the omicron seldom requires any kerning.

GlyphNames is specified in the call statement to the teubner. sty package, they
are turned on and become available.

9 Upper case initials and capitalised text
As we have seen in the previous sections the ligature and kerning mechanisms

are strictly connected and the extended accent macros may be useful in solving
certain situations. The suggestion at the end of the previous section holds true, but

16

some remarks must be underlined in order to use at its best the coexistence of both
methods for using the accented glyphs.

The remarks concern the use of capital letters and, to a certain extent also the
caps and small caps font shape. As mentioned before in Greek typography words
with capital initials starting with a vowel require their diacritics in front and at the
left of the initial capital vowel (for example: Apiorotédns) provided the vowel is
not the first element of a Greek diphthong; in the latter case the diacritics go on
top of the diphthong lower case second element (for example: Aioyvlog). On the
opposite, all-caps words, such as in book titles or, with certain IfIEX classes, in the
headings, are typeset without any diacritic, except the diaeresis.

I have already shown the unusual example of the word dvioc where the first
two vowels do not form a diphthong, but a hiatus; and this is why the diacritics
fall on top of the alpha, not on the second element of the diphthong, for the very
reason that there is no diphthong. In order to stress this unusual situation the word
is most often spelled as diidog, where the dieresis is sort of redundant, because
the diacritics over the alpha already denote the hiatus. Similarly diinvia is spelled
with the redundant dieresis, although the soft spirit on the alpha already marks
the hiatus. When these words require a capital initial, they become “Aidoc and
Adinvia.

Notice that an initial single vowel may receive only a spirit marker with or
without an accompanying accent, never a dieresis or a single accent'?. I tried hard
to set up all the ligatures and extended accent macros so as to do the right things
when capitalising or uppercasing, and if you follow the suggestions given in this
section you should not meet any particular inconvenience.

Assume these words have to go in an all-caps header that is made up (behind
the scenes) by making use of the \MakeUppercase command; they have to be
spelled AYAOX, and AYIINIA, even if in the sectioning command argument they
were spelled in lowercase with all the necessary diacritics.

This is where the ligature and/or the extended accent macros may show their
different behaviour. With the teubner generated secondary LGRaccents-glyphs
.def file, that contains all the extended accent macros, such macros do not
disappear in uppercasing, i.e. in transforming the mixed case argument of the
\MakeUppercase command into an all-caps letter string. On the opposite the
ligature sequences completely loose any reference to diacritics.

In other words we have:

1) \MakeUppercase{>’aulos} yields AYAOX;

2) \MakeUppercase{>’a"ulos} yields AYAOX;

3) \MakeUppercase{>’a\"ulos} yields AYAOX;
4) \MakeUppercase{\>’a\"ulos} yields AYAOX;
5) \MakeUppercase{\>\’a"ulos} yields AYAOX;
6) \MakeUppercase{\asa\ud.los} yields diA0OX
7) \MakeUppercase{e>uzw"’ia} yields EYZQIA;

B3Of course we are talking of the ancient spelling, since this package teubner sets this spelling
as the default one; nobody forbids to spell in monotonic even when the ancient spelling is assumed,
but in some rare instances there might be some inconsistencies.

17

8) \MakeUppercase{e>uzw’"ia} yields EYZQIA;
9) \MakeUppercase{e>uzw\"\’ia} yields EYZQIA;
10) \MakeUppercase{e>uzw\"ia} yields EYZQIA.

and it’s easily seen that: 1) corresponds to a non redundant lowercase correct
spelling but misses the required dieresis in upper case; 2) is correct but it relies on
a special kludge on which it’s better not to rely on, because in future releases of
the fonts it may be eliminated; meanwhile it is usable; 3) is correct; 4) is correct
because \MakeUppercase does not act on macros, but \>’ is a macro, precisely
an accent macro, that acts on the following letter before uppercasing, and the
uppercase of an alpha with diacritics si simply the capital alpha; 5) is correct, but
relies in the same kludge as case 2, so the same warnings apply; case 6) displays
the result of using the accented glyph names which are not subject to capitalisation
since they are given by means of macros; therefore they can never be used for
words that are possibly subject to all-caps transformation.

Let’s examine another case where the lower case word has both the dieresis and
an accent over the same vowel: evlwia. Case 7) shows the effect of uppercasing
when using ligatures, and the result is not correct because the dieresis does not
fall over the capital iota, but between the capital omega end the capital iota; 8) by
simply inverting the sequence of the dieresis and the acute accent a correct result is
obtained, but kerning problems might take place because of the invisible presence
of the lower cased acute accent; notice that the same result would be obtained if
instead of the dieresis-vowel ligature the extended dieresis macro had been used;
case 9) displays the situation when both extended accent macros are used so that
the result does not suffer of any kerning problem; finally, case 10) displays a correct
upper case result but the lower case counterpart would miss the acute accent.

When using small caps or caps and small caps, in other words, when using the
\scshape declaration or the \textsc command you should pay attention to other
details; for example:

11) \textDidot{\scshape >Arqim’hdhs} yields APXIMHAHE

12) \textDidot{\scshape \>Arqim’hdhs} yields APXIMHAHS

13) \textDidot{\scshape \>Arqim\’hdhs} yields APXIMHAHS

14) \textDidot{\scshape >Arqim\’hdhs} yields APXIMHAHSZ

15) \textDidot{\scshape \>Arqgim\ha dhs} yields APXIMHAHS
16) \textDidot{\scshape \>{v}Arqim\’hdhs} yields APXIMHAHS

With caps and small caps a spirit, or a spirit-accent combination prefixed to
a capital letter does not produce any mark; this is the usual modern Greek habit
of avoiding accents with capital letters and the \scshape specification to Greek
fonts excludes all the ligatures and kernings with such signs; the same holds true
also with small caps. The extended accent macros explicitly avoid any mark over
capital letters, but even in front they are “silenced” by the very characteristics
of the specific font shape. With small caps there is a similar situation, and the
extended accent macros produce the expected result. But accents are apparently
used in French also when proper names are typeset in caps and small caps, contrary
to Greek, so that in French the spelling of case 16 is correct; for the initial spirit,

18

»’ T« «) »

\GEodq , \GEcdg “oo :
\GEoq , \GEcq £ ;
\ENodq “ \ENcdq . :
\stigma ¢ \varstigma ¢ \Stigma a
\coppa ? \koppa L \Koppa Q
\sampi 2 \Sampi A \permill %o
\textdigamma [\Digamma F \euro €
\f F \F F \shwa 8

Table 6: Greek and other symbols

therefore it is necessary to resort to the invisible character obtained with the Latin
letter ‘v’, that is uppercased to itself and is suitable for supporting any diacritic
mark at the proper height. Julien Browaeys pointed out this specific typesetting
French tradition; I thank him very much for his feedback on this point.
Conclusion: when writing the input code for a sectioning command, the argu-
ment of which has to be transformed to upper case, use \" (in the proper sequence
with other accents) for the internal diereses, as in cases 3), 4), 8), and 9) above.
With the extended accent macros there are really few problems; the remaining ones
take place in complete uppercasing remain with French traditions in caps and small
caps that can be easily handled through the use of the v special invisible glyph. If
you want to avoid also this possibility, then either avoid classes that typeset their
headings in all-caps, or use any external package that defines sectioning commands
with two optional arguments, one for the heading contents and the other for the
table of contents; or use equivalent tricks: for example the memoir class has a
specific command \nouppercaseheads that eliminates any heading uppercasing.

10 Other Greek symbols

Other Greek symbols may be obtained with ligatures or explicit commands; table 6
contains such ligatures and symbols; notice that some of these are specific additions
introduced with this module.

Please notice the necessity of using the ligature ’’ for producing the simple
apostrophe, which, by the way, in Greek typography must always be followed by a
space. The single tick mark ’ produces an acute accent, not an apostrophe, this
is why it is necessary to use the double tick mark ligature. Actually also a double
quote mark " followed by a space produces an apostrophe followed by a space.

11 Milesian and Attic numerals
The Milesian numerals should not worry anybody, because they are seldom used

as isolated symbols; the greek or greek.ancient language option or the ancient
attribute of the Greek language with the babel package offer the commands

19

\greeknumeral and \Greeknumeral, that convert common Arabic positive num-
bers in the Milesian counterparts within a Greek section of the document; but
the 2020 version of the greek.1df file has been modified in such a way that it
performs very well with modern Greek, but is missing some features when the real
ancient Greek has to be typeset. Since its first version teubner had to redefine the
above macros so as to use the ancient Milesian symbols ¢, g, 2, with the possibility
of using f in place of ¢.

Therefore version 5.0 of teubner redefines those two \greeknumeral and
\Greeknumeral in order to restore the ancient features for the philologist benefit.'*

if you type \greeknumeral{1996} you get an¢s’

if you type \Greeknumeral{1996} you get AN?U"

if you type \greeknumeral®*1996 you get aaes’

if you type \Greeknumeral®*1996 you get AMN?d"

if you type \greeknumeral{123456} you get 0, yuvs’

This was typeset on xe” Abyolotou [Bxy’, i.e. 25 August 2023.

The teubner package offers also the possibility of typesetting the Attic numerals,
without the need of loading Apostolos Syropoulos’ athnum package; the functional-
ity is the same, although the code is different; in order to avoid clashes, the teubner
command for transforming Arabic numerals into Attic ones is \AtticNumeral.
As for the original macro, the maximum value that can be transformed is 99999,
while, of course, no vanishing or negative numbers can be transformed:

if you type \AtticNumeral{2015} you get XXAIIl
if you type \AtticNumeral{1999} you get XHIHHHHRAIAAAAIIIIT
if you type \AtticNumeral{55555} you get MIXIHIAIL]

12 New commands

This package introduces many new commands for typesetting Greek in a philologi-
cal way. Most such commands are collected in table 7.

A short remark on the command \ap: this useful command inserts anything
as a superscript of anything else; it works both in text mode and in math mode'>.
In particular while typesetting a philological text in different languages and with
different alphabets, \ap typesets the superscript with the current language and
alphabet; if any change is required, the \ap’s argument can contain any language

4Notice, though, that this document is typeset with the txfonts and the Greek txfontsb fonts;
the latter have only the raised digamma glyph which is not suited for “ancient” Greek numerals; in
this display example we switched to the usual Latin Modern fonts.

ISNumerical superscripts or apices do not require math mode; numerical footnote labels are
automatically inserted by IXIEX’s \footnote command; non numerical footnote labels are eas-
ily inserted with IXIEX’s \footnotemark and \footnotetext commands with their optional
arguments.

20

Example
Bayidlibeg
BaydMibeg
BoryOldeg
text
(Bagdhibeg)
(
)
@)

[afy]
[apy]l
lapy)
Kapyy
aBydeln
AB
ap
aqf
afp
hV

N ¢le

~

»t 0O \\N T

Syntax

(declaration)
\textLipsias{{texr)}
\textDidot{{rext)}
\textlatin{(texr)}
\frapar{{rext)}
\lpar

\rpar

\gmark

\Dots [{number)]
\DOTS [{number)]
\Dashes [{(number)]
\DASHES [{number)]
\slzeugm{{two letters)}
\ap{(rext)}
\sinafia

\:

\;

\?

\antilabe

\ |

\dBar

\tBar

\1lbrk

\rbrk
\ladd{{rext)}
\1ladd{{text)}
\Ladd{{rext)}
\LLadd{{text)}
\nexus{{text)}
\Utie{(2 letters)}
\yod

\q

\f

\skewstack{(base)}{{apex)}

\Ud{{letter)}
\UO{(letter)}
\nasal{{letter)}

\dracma
\stater
\hemiobelion
\splus

Example
abcde
{apy}

1l
Tl
0123456789
Kk
ahp

aaf
AFB

w0 [T X Qe <ol -0 =

Syntax

(declaration)
\lesp{(text)}
\LitNil
\cap{(letter)}®
\Coronis
\1mgi

\rmgi
\mqi{(zexr)}
\1lmgs

\rmgs
\mqgs{(zext)}
\zeugma{{text)}
\rszeugma{{two letters)}
\siniz{{text)}
\paragr
\dparagr
\FinisCarmen
\crux
\apici{{text)}
\apex
\responsio
\Int

\star

\dstar

\tstar

\,

\!
\OSN{(digits)}
\kclick

\h

\shwa

\F
\semiv{{letter)}
\md {{letter)}
\mO{{letter)}
\Open{{letter)}
\cut{(bld|g)}

\denarius
\etos
\tetartemorion
\stimes

@ Ansten Mgrch Klev spotted a conflict with the homonymous math command; this is now
resolved. Thank you Ansten.

Table 7: Extended commands

21

or alphabet specific declaration. You can typeset something such as BayvAidec”
by switching language and alphabet as required; the specific declarations and the
commands contained in table 7 come handy also in these cases.

Please, read the teubner.pdf file for what concerns command \LLadd; it
accepts two optional kerning values in order to adapt the internal spaces in accor-
dance with the nature of the (text) argument; with capital letters and/or sloping
fonts, such kerning values may come handy for a perfect final result. Nevertheless
a lot of attention was used to cope with such situations so as to avoid the above
described corrections. Its new syntax is the following:

\LLadd [{left kerning)]{{text)} [{right kerning)]

where both kerning values imply a reduction of space if they are specified as
positive values; therefore if you specify negative values, the space is increased.
Using of font size units, such as ex or em is recommended, since xuch units assure
the automatic correct value even when changing font size.

13 Metrics

Philological writings often require the description of metrics; for this purpose a
new font has been developed that contains most of the frequent metric signs; the
corresponding macros have been defined so as to set the metric glyphs as if they
were text; but, most important, a new definition command has been introduced so
as to enable to declare new control sequences to represent complete metric feet or
even complete verse metrics.

The metric glyph names are collected in table 8, while the declaration command
is described hereafter.

The syntax for that definition command is similar to that of \newcommand;

\newmetrics{(name)} {{(definition)}

where (name) is a control sequence name made up of letters (as usual with ITEX)
with the exception that it may start with one of the digits 2, or 3, or 4. Of course
the (definition) must reflect the replication by 2, or 3, or 4 times; moreover if the
(name) starts with a digit, when it is used it must be followed by a space. Some
examples follow:
\newmetrics{\iam}{\barbrevis\longa\brevis\longa}
\newmetrics{\2iam}{\iam\iam}
\newmetrics{\4MACRO}{\longa\longa\longa\longa}
The above definitions produce the following results (notice the space before the
colon):
\iam: S_u_

\2iam.: S_u_

a
|
C
I

22

Command Metric symbol Command Metric symbol

\longa \brevis

—_ ()
\bbrevis w \barbrevis S
\ubarbrevis v \ubarbbrevis
\ubarsbrevis iy \coronainv w
\corona ~ \ElemInd ~
\catal ~ \lipercatal *
\anceps X \banceps X
\ancepsdbrevis ¥ \hiatus! H
\Ii.:':ll‘lfl2 O_u_ \ChOI‘ —uu—_
\enopl U_uu_uu_ \4MACRO —_——
\3601ChOI'SOI' _®uu® \hexam UV UV
\2tr _u_X _u_X \pentam veiiveil IRV VIRV
\ubrevislonga \aeolichii oo
\aeolicbiii ooo \anliCbiV 00003

Table 8: Metric symbols

REMARKS

I A similar command \Hiatus produces the same visible result as \hiatus, except for the fact

that it does not occupy horizontal space; it is useful in the definitions of full verse metrics where a
hiatus needs to be inserted between two consecutive metric symbols; for example: .

2 This module predefines some examples of metric feet and complete verses.

3 Sometimes it might be convenient to use a shortcut for inserting the Aeolic bases by inputting I
or IT or ITI, while the \metricsfont declaration is in force, in order to get oo Or ooo Or oooo.

The definitions may contain also some symbols collected in table 7, such as ||, for
example, and other symbols from the other tables.
Another important metric command is the following:

\metricstack{(base)}{{superscript)}

which is meant for superimposing some superscript (generally a number) over
some metric symbol, which may be a single symbol or a metric foot, such as oy,
since the superscript gets printed in math mode, the superscript hiatus ¥ may be
obtained with \Hiatus when it falls between two metric symbols, but must be
well described as a math roman element when it is superscripted over something
else; similarly any other superscript which is not a math symbol must be suitably
set as a math roman object.

The environment for setting metric sequences grouped with braces is described
in the next section, since it is generally used within the composition of verses.

14 Poetry environments

In order to set poetry it is always possible to use the standard I£TEX verse en-
vironment; nevertheless such simple environment is not suited for philological
purposes, except perhaps for very short citations. This module contains three new

23

environments with various levels of complexity. Due to their relative complexity an
example will be given for each one with both the input code and the corresponding
result. All three environments require that any language change be declared before
their opening statement, otherwise the language change lasts only to the end of
the verse. It’s worth noting that if you feel uncomfortable with Italian names for
verses, you can use the Latin aliases, versus, Versus, and VERSUS.

versi This environment does not actually set each verse on a separate line; it
rather resembles an in-line list; it resorts to a command \verso that inserts
a small vertical separator with a progressive number over it. Both the
environment opening and the command \verso accept arguments according
to the following syntax:

\begin{versi}{(label)}
{verses)
\end{versi}

\verso [{number)]

where (label) is a short text (let’s say not more than 15 characters) indicating
for example the poem title and the stanza number; the whole set of verses
will be typeset with a left margin wide enough to contain (label); the optional
argument (number) indicates the starting value for the verse enumeration;
the default value is 1, but if it is specified, it is required only with the
first occurrence of \verso or when the enumeration is restarted. In this
environment the standard If[|EX command \\ behaves normally as in regular
text.

\begin{versi}{Meropis fr. 3}

>’enj’’ <o m‘en e\ladd{>isplh} \verso[68] j‘un
Mer’opwn k’ien. <h \ladd{d‘e dia} \verso pr‘o\\
a>igem\hc i sj~htos \ladd{>’elassen.}

\verso <‘o d’’ >»ex’equt’’; o>u

g‘ar \ladd{<omo~iail}\\

\ladd{>a} \verso j’anatai jnhta~isi bol\ladd{a‘i kat‘a}
\verso ga~ian >’asin.\\

prh\lladd{m}n\ladd{~hs d\dots} \verso thse. m’elas d‘e
perie.\ladd{\dots}\verso rw

\end{versi}

68

Meropis fr. 3 &v$’ 6 uév elionin] T v Meodmwy xiev. §) [8¢ Sa] § mpo
ajyeuii odijrog [Elacoer.| ' 8 8 éEéyvt’™ 0¥ ydo [duoia]
[d] ") ddvarar Svmraiow folai xard] yaiay dow.
mon[ulp7ic 6...1 7 wnoe. uélag 8¢ megee.]...] " ow

Since each verse in this environment is not on a single line, unless it’s
deliberately specified, this environment may be used also for prose whose
sentences are numbered as, for example, biblical versicles:

24

Mt: 6,8-6,13 | u1) oty Suotwdijte adroic: oidev ydo 6 marnp Hudv v yoetay
&yete mpo To Yudc afrfioar avtdy. | oBrwe oty mpooetyeode
Vueis:

Ildrep Tuay 6 év toic ovpavoic:

apodftw o dvoud oov-

Y éA¥érw 1) Paoilela oov

yeynintw to Jednqud oov,

w¢ v ovpavd xal émi yiic

' 1oy dorov udy tov émodotov 8oc iy oruepoy:
P xal dpec Huiv ta dpaiifuara fudv,

WG xal Muec dpnoapey Tolc OPELAETALS TUDY"

Y wal um eloevéyxmic fudc eic melpaoudy,

dAda ¢voar Mudc dmo tov movnEoT,

ott oov oty 1) Paotdela xai 1 Svvauc xai 1) 8oka
&1 ToVg al@vac: duny.

Versi This environment is very similar to the standard IXTEX environment verse;
the difference is that Versi automatically enumerates the verses (displaying
only verse numbers that are multiples of 5) with a number in the left margin.
The syntax is as follows:

\begin{Versi} [{(number)]
(verses)
\end{Versi}

where (number) is the starting value of the verse enumeration; of course each
verse is separated from the next one with the usual command \\, which has
been redefined so that it just divides the verses and provides to the possible
display of the verse number; it accepts the optional information that the
standard KTEX command usually accepts, both the asterisk and the vertical
space amount.

\begin{Versi}[45]

ta; pr’osje geir~wn b’ian\\

\paragr de\ladd{’i}xomen;

t‘a d" >epi’onta da\ladd{’imo}n srine~i.---\\

t’os" e>’ipen >ar’etaikmos <’hrws;\\

t{\rbrk}’afon d‘e naub’atail\\

f{\rbrk}wt ‘os <uper’afanon\\[lex]

j{\rbrk}’arsos; <Al’iou te gambr~wi q’olwsen >~htor
\end{Versi}

45 Q- mpoole yepdv Play
_ Se[fouev ta 8’ émbvra Saliuoly opver.—
100’ gimey doéranuos Nows:
t|dpov 8¢ vavfdrai
@ |wtdc vmepdpavoy

25

50 Fldooog Alov e yaufodr ydlwoey frop

VERSI This third poetry environment behaves similarly to Versi but it displays a
double verse enumeration in the left margin. The principal verse enumeration
is displayed when the value is a multiple of 5; the second enumeration, just
to the left of the verses, may be turned on and off; when the secondary
enumeration is on, the verses are flush left, while when it is off the verses
are suitably indented. The turning on and off of the secondary enumeration
is achieved by means of the commands \SubVerso and \NoSubVerso; the
syntax is as follows:

\begin{VERSI} [{outer number)]
(verses)
\end{VERSI}

\SubVerso [{inner number)]
\NoSubVerso

where (outer number) is the starting value of the primary verse enumeration,
while (inner number) is the starting value of the secondary enumeration.
The commands \SubVerso and \NoSubVerso must be input at the very
beginning of the verse they should be applicable to. The command \\
behaves as in IIEX, and accepts the usual optional arguments.

With the environments Versi and VERSI, when typesetting in two column
format, you have the possibility of specifying \BreakVersitrue (and of
course \BreakVersifalse) for allowing (or disallowing) line breaks of
verses; broken verses are continued on the next line with a generous indenta-
tion so as to recognize them as belonging to the same verse; the verse counter
is not incremented when breaking verses across lines.

\begin{VERSI}[40]

k’elomai poll\ua stonon\\

\SubVerso[18]

>er’uken <’ub\apex rin; o>u g‘ar >‘an j’eloi-\\
\NoSubVerso

m’’ >’ambroton >erann‘on >Ao\lbrk ~us\\
\SubVerso

>ide~in f’aos, >»epe’i tin’’ >h"ij\siniz{’e\lbrk w}n\\
s‘u dam’aseias >a’ekon-\\

\NoSubVerso

ta; pr’osje qeir~wn b’ian\\

\SubVerso

\paragr de\ladd{’il}xomen;

t‘a d’’ >epi’onta da\ladd{’imw}n krine~i.\GEcdg\\
\SubVerso[1]

t’os’’ e>~ipen >ar’etaiqmos <’hrws;\\

26

t\rbrk ’afon d‘e nal\ua batail\\
f\rbrk wt‘os <uper’afanon\\
j\rbrk ’arsos;\Dots[4]
\end{VERSI}

40 xédopar oAvoTovoy
18 Eovxey TP o 0V ydp dv Fédoi-
u’ dupootov éparvoy Aol vg
20 (Belv pdog, émel Ty’ NidE[wy
21 0V Saudoeag déxoy- -
45 Ta- mpootde yepdv Play
23 Oel(|Eouev: ta 8’ émdvra Saliuwly xowel
1 160’ glmey dpétalyuos fows:
> t]dpoy 8¢ vavfara
3 @lwtos vmepdparoy
50 4+ Wldeoos .

bracedmetrics This environment is different from the preceding ones, although
it always deals with verses. Its purpose is to set the verse metric lines grouped
with a right brace, so as to show the variants of a certain metric scheme.

In order to align the metric variants and in order to place the right brace in
the proper place it is necessary to fix specific lengths in terms of a unit that
is compatible with the metric symbols; therefore the syntax of such spacing
command and of the environment itself is the following

\begin{bracedmetrics}{(length)}
(metric lines)
\end{bracedmetrics}

\verseskip{{number)}

where (number) specifies the number of metric symbols the \verseskip
should be equivalent to. Approximately the \verseskip will be as long as
a sequence of (number) long syllables; the (length) specified as the width
of the environment should equal the longest metric line contained in the
block, and should be specified by means of the \verseskip command with
its argument; but since the metric symbols are not all of the same length, it
is wise to count the symbols of the longest metric line and to add a couple
of units; after producing the first draft it is possible to review the number
specified as the argument of \verseskip. Of course the same \verseskip
command may be used to align the various fragments of metric lines within
the environment. Examine the following example of input code:

\begin{verse}

\brevis\svert\longa\brevis\brevis\longa
\brevis\brevis\longa\svert\longa\\

27

\begin{bracedmetrics}{\verseskip{13}}
\Hfill \brevis\svert\longa\brevis\longa
\svert\longa\\
\longa\brevis\brevis\longa\brevis\brevis
\zeugma{\longa\svert\longa}\\
\Hfill\longa\brevis\longa\svert\longa
\verseskip{2}\\
\Hfill\longa\brevis\longa\dBar
\end{bracedmetrics}\\
\begin{bracedmetrics}{\longa\brevis\brevis\longa
\brevis\brevis\longa\svert\longa}
\longa\brevis\brevis\longa\brevis\brevis
\longa\svert\longa\\
\longa\brevis\brevis\longa\brevis\brevis\longa
\end{bracedmetrics}\\
\verseskip{7}\brevis\brevis\longa\svert\ubarbrevis\tBar
\end{verse}

which produces:

U |
U\ —|—
—~
—Uu_uu_|—
_ =

—ll

—Uu—_uu
o]

_uu_uu__}

Acknowledgements

This project was initially carried on with the help of Mr Paolo Ciacchi when he was
writing his ancient Greek philology master thesis. After he got his master’s degree

at the University of Trieste, I continued by myself, but I remain really indebted to
Mr Ciacchi.

28

