
Babel

User guide

Version 24.10

2024/09/18

Javier Bezos
Current maintainer

Johannes L. Braams
Original author

Localization and

internationalization

Unicode

TEX

pdfTEX

LuaTEX

XeTEX

Contents

1 The user interface 3

1.1 Monolingual documents . 3

1.2 Multilingual documents . 5

1.3 Mostly monolingual documents . 7

1.4 Languages supported by babel with ldf files 7

1.5 Modifiers . 9

1.6 Troubleshooting . 9

1.7 Plain . 10

1.8 Basic language selectors . 10

1.9 Auxiliary language selectors . 11

1.10 More on selection . 12

1.11 Shorthands . 13

1.12 Package options . 16

1.13 The base option . 18

1.14 ini files . 19

1.15 List of locales available in \babelprovide 21

1.16 Selecting fonts . 25

1.17 Modifying a language . 28

1.18 Creating a language . 29

1.19 Digits and counters . 34

1.20 Dates . 35

1.21 Accessing language info . 36

1.22 Hyphenation and line breaking . 38

1.23 Transforms . 41

1.24 Support for xetex interchar . 44

1.25 Selection based on BCP 47 tags . 45

1.26 Selecting scripts . 47

1.27 Selecting directions . 47

1.28 Language attributes . 51

1.29 Hooks . 52

1.30 Unicode character properties in luatex . 53

1.31 Tweaking some features . 54

1.32 Tips, workarounds, known issues and notes 54

1.33 Tentative and experimental code . 55

2 Loading languages with language.dat 55

2.1 Format . 56

3 The interface between the core of babel and the language definition files 56

3.1 Guidelines for contributed languages . 57

3.2 Basic macros . 58

3.3 Skeleton . 59

3.4 Support for active characters . 60

3.5 Support for saving macro definitions . 60

3.6 Support for extending macros . 61

3.7 Macros common to a number of languages 61

3.8 Encoding-dependent strings . 61

3.9 Executing code based on the selector . 64

4 Acknowledgements 64

Troubleshoooting

Paragraph ended before \UTFviii@three@octets was complete 4

No hyphenation patterns were preloaded for (babel) the language ‘LANG’ into the

format . 5

1

You are loading directly a language style . 9

Unknown language ‘LANG’ . 9

Argument of \language@active@arg” has an extra } 13

Package fontspec Info: Language ’<lang>’ not explicitly supported within font

’’ with script ’<script>’. 27

Package babel Info: The following fonts are not babel standard families 27

2

What is this document about? This user guide focuses on internationalization and

localization with LATEX and pdftex, xetex and luatex with the babel package. There are

also some notes on its use with e-Plain and pdf-Plain TEX.

I only need learn the most basic features. The first subsections (1.1-1.3) describe the

traditional way of loading a language (with ldf files), which is usually all you need. The

alternative way based on ini files, which complements the previous one (it does not

replace it, although it is still necessary in some languages), is described below; go to

1.14.

I don’t like manuals. I prefer sample files. This manual contains lots of examples and

tips, but in GitHub there are many sample files.

What if I’m interested only in the latest changes? Changes and new features with

relation to version 3.8 are highlighted with New X.XX (⊕ is a link to the babel site), and

there are some notes for the latest versions in the babel site. The most recent features

can be still unstable. Remember version 24.1 follows 3.99, because of a new numbering

scheme.

Can I help? Sure! If you are interested in the TEX multilingual support, please join the

kadingira mail list. You can follow the development of babel in GitHub and make

suggestions; feel free to fork it and make pull requests. If you are the author of a

package, send to me a few test files which I’ll add to mine, so that possible issues can be

caught in the development phase.

It doesn’t work for me! You can ask for help in some forums like tex.stackexchange, but if

you have found a bug, I strongly beg you to report it in GitHub, which is much better

than just complaining on an e-mail list or a web forum. Remember warnings are not

errors by themselves, they just warn about possible problems or incompatibilities.

Hyphenation rules are maintained separately here.

How can I contribute a new language? See section 3.1 for contributing a language.

Where is the code? Run

lualatex --jobname=babel-code \let\babelcode\relax\input{babel.dtx}.

1 The user interface

1.1 Monolingual documents

In most cases, a single language is required, and then all you need in LATEX is to load the

package using its standard mechanism for this purpose, namely, passing that language as

an optional argument. In addition, you may want to set the font and input encodings.

Another approach is making the language a global option in order to let other packages

detect and use it. This is the standard way in LATEX for an option – in this case a language –

to be recognized by several packages.

Many languages are compatible with xetex and luatex. With them you can use babel to

localize the documents. When these engines are used, the Latin script is covered by default

in current LATEX (provided the document encoding is UTF-8), because the font loader is

preloaded and the font is switched to lmroman. Other scripts require loading fontspec. You

may want to set the font attributes with fontspec, too.

EXAMPLE Here is a simple full example for “traditional” TEX engines (see below for xetex

and luatex). The packages fontenc and inputenc do not belong to babel, but they are

included in the example because typically you will need them. It assumes UTF-8, the

default encoding:

3

https://github.com/latex3/babel/tree/master/samples
https://latex3.github.io/babel/
http://tug.org/mailman/listinfo/kadingira
https://github.com/latex3/babel
https://github.com/latex3/babel/issues
https://github.com/hyphenation/tex-hyphen

pdftex
\documentclass{article}

\usepackage[T1]{fontenc}

\usepackage[french]{babel}

\begin{document}

Plus ça change, plus c'est la même chose!

\end{document}

Now consider something like:

\documentclass[french]{article}

\usepackage{babel}

\usepackage{varioref}

With this setting, the package varioref will also see the option french and will be able

to use it.

EXAMPLE And now a simple monolingual document in Russian (text from the Wikipedia)

with xetex or luatex. Note neither fontenc nor inputenc are necessary, but the document

should be encoded in UTF-8 and a so-called Unicode font must be loaded (in this

example \babelfont is used, described below).

luatex/xetex
\documentclass[russian]{article}

\usepackage{babel}

\babelfont{rm}{DejaVu Serif}

\begin{document}

Россия, находящаяся на пересечении множества культур, а также

с учётом многонационального характера её населения, — отличается

высокой степенью этнокультурного многообразия и способностью к

межкультурному диалогу.

\end{document}

TROUBLESHOOTING A common source of trouble is a wrong setting of the input encoding.

Depending on the LATEX version you can get the following somewhat cryptic error:

! Paragraph ended before \UTFviii@three@octets was complete.

Or the more explanatory:

! Package inputenc Error: Invalid UTF-8 byte ...

Make sure you set the encoding actually used by your editor.

NOTE Because of the way babel has evolved, “language” can refer to (1) a set of

hyphenation patterns as preloaded into the format, (2) a package option, (3) an ldf file,

and (4) a name used in the document to select a language or dialect. So, a package

4

option refers to a language in a generic way – sometimes it is the actual language name

used to select it, sometimes it is a file name loading a language with a different name,

sometimes it is a file name loading several languages. Please, read the documentation

for specific languages for further info.

TROUBLESHOOTING The following warning is about hyphenation patterns, which are not

under the direct control of babel:

Package babel Warning: No hyphenation patterns were preloaded for

(babel) the language `LANG' into the format.

(babel) Please, configure your TeX system to add them and

(babel) rebuild the format. Now I will use the patterns

(babel) preloaded for \language=0 instead on input line 57.

The document will be typeset, but very likely the text will not be correctly hyphenated.

Some languages in some system may be raising this warning wrongly (because they are

not hyphenated) – just ignore it. See the manual of your distribution (MacTEX, MikTEX,

TEXLive, etc.) for further info about how to configure it.

NOTE With hyperref you may want to set the document language with something like:

\usepackage[pdflang=es-MX]{hyperref}

This is not currently done by babel and you must set it by hand. The document language

can be also set with \DocumentMetadata, before \documentclass; for example:

\DocumentMetadata{lang=es-MX}

NOTE Although it has been customary to recommend placing \title, \author and other

elements printed by \maketitle after \begin{document}, mainly because of

shorthands, it is advisable to keep them in the preamble. Currently there is no real need

to use shorthands in those macros.

NOTE Babel does not make any readjustments by default in font size, vertical positioning

or line height by default. This is on purpose because the optimal solution depends on

the document layout and the font, and very likely the most appropriate one is a

combination of these settings.

1.2 Multilingual documents

In multilingual documents, just use a list of the required languages as package or class

options. The last language is considered the main one, activated by default. Sometimes, the

main language changes the document layout (eg, spanish and french).

EXAMPLE In LATEX, the preamble of the document:

\documentclass{article}

\usepackage[dutch,english]{babel}

would tell LATEX that the document would be written in two languages, Dutch and

English, and that English would be the first language in use, and the main one.

You can also set the main language explicitly, but it is discouraged except if there is a real

reason to do so:

5

\documentclass{article}

\usepackage[main=english,dutch]{babel}

Examples of cases where main is useful are the following.

EXAMPLE Some classes load babel with a hardcoded language option. Sometimes, the

main language can be overridden with something like that before \documentclass:

\PassOptionsToPackage{main=english}{babel}

NOTE Languages may be set as global and as package option at the same time, but in such

a case you should set explicitly the main language with the package option main:

\documentclass[italian]{book}

\usepackage[ngerman,main=italian]{babel}

WARNING In the preamble the main language has not been selected, except hyphenation

patterns and the name assigned to \languagename (in particular, shorthands, captions

and date are not activated). If you need to define boxes and the like in the preamble,

you might want to use some of the language selectors described below.

To switch the language there are two basic macros, described below in detail:

\selectlanguage is used for blocks of text, while \foreignlanguage is for chunks of text

inside paragraphs.

EXAMPLE A full bilingual document with pdftex follows. The main language is french,

which is activated when the document begins. It assumes UTF-8:

pdftex
\documentclass{article}

\usepackage[T1]{fontenc}

\usepackage[english,french]{babel}

\begin{document}

Plus ça change, plus c'est la même chose!

\selectlanguage{english}

And an English paragraph, with a short text in

\foreignlanguage{french}{français}.

\end{document}

EXAMPLE With xetex and luatex, the following bilingual, single script document in UTF-8

encoding just prints a couple of ‘captions’ and \today in Danish and Vietnamese. No

additional packages are required, because the default font supports both languages.

luatex/xetex
\documentclass{article}

\usepackage[vietnamese,danish]{babel}

\begin{document}

\prefacename, \alsoname, \today.

6

\selectlanguage{vietnamese}

\prefacename, \alsoname, \today.

\end{document}

NOTE Once loaded a language, you can select it with the corresponding BCP47 tag. See

section 1.25 for further details.

NOTE Documents with several input encodings are not frequent, but sometimes are useful.

You can set different encodings for different languages as the following example shows:

\addto\extrasfrench{\inputencoding{latin1}}

\addto\extrasrussian{\inputencoding{koi8-r}}

1.3 Mostly monolingual documents

New 3.39⊕ Very often, multilingual documents consist of a main language with small

pieces of text in another languages (words, idioms, short sentences). Typically, all you need

is to set the line breaking rules and, perhaps, the font. In such a case, babel now does not

require declaring these secondary languages explicitly, because the basic settings are

loaded on the fly when the language is selected (and also when provided in the optional

argument of \babelfont, if used).

This is particularly useful, too, when there are short texts of this kind coming from an

external source whose contents are not known on beforehand (for example, titles in a

bibliography). At this regard, it is worth remembering that \babelfont does not load any

font until required, so that it can be used just in case.

New 3.84⊕ With pdftex, when a language is loaded on the fly (actually, with

\babelprovide, because this is the macro used internally to load it) selectors now set the

font encoding based on the list provided when loading fontenc. Not all scripts have an

associated encoding, so this feature works only with Latin, Cyrillic, Greek, Arabic, Hebrew,

Cherokee, Armenian, and Georgian, provided a suitable font is found.

EXAMPLE A trivial document with the default font in English and Spanish, and FreeSerif

in Russian is:

luatex/xetex
\documentclass[english]{article}

\usepackage{babel}

\babelfont[russian]{rm}{FreeSerif}

\begin{document}

English. \foreignlanguage{russian}{Русский}.

\foreignlanguage{spanish}{Español}.

\end{document}

NOTE Instead of its name, you may prefer to select the language with the corresponding

BCP47 tag. This alternative, however, must be activated explicitly, because a two- or

tree-letter word is a valid name for a language (eg, lu can be the locale name with tag

khb or the tag for lubakatanga). See section 1.25 for further details.

1.4 Languages supported by babel with ldf files

(To be updated.) In the following table most of the languages supported by babel with and

.ldf file are listed, together with the names of the option which you can load babel with

7

https://latex3.github.io/babel/news/whats-new-in-babel-3.39.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.84.html

for each language. Note this list is open and the current options may be different. It does

not include ini files (see below). Except in a few cases (eg, ngerman, serbianc, acadian)

names are those of the Unicode CLDR (or based on them).

Afrikaans afrikaans

Azerbaijani azerbaijani

Basque basque

Breton breton

Bulgarian bulgarian

Catalan catalan

Croatian croatian

Czech czech

Danish danish

Dutch dutch

English english, american (preferred to USenglish), british (preferred to UKenglish),

canadian, australian, newzealand

Esperanto esperanto

Estonian estonian

Finnish finnish

French french, acadian

Galician galician

German ngerman, naustrian, german, austrian

Greek greek, polutonikogreek

Hebrew hebrew

Icelandic icelandic

Indonesian indonesian

Interlingua interlingua

Irish Gaelic irish

Italian italian

Latin latin

Lower Sorbian lowersorbian

Malay malay (preferred to melayu)

Northern Sami northernsami

Norwegian norsk, nynorsk

Polish polish

Portuguese portuguese, brazilian

Romanian romanian

Russian russian

Scottish Gaelic scottishgaelic (preferred to scottish)

Spanish spanish

Slovakian slovak

Slovenian slovene

Swedish swedish

Serbian serbian

Turkish turkish

Ukrainian ukrainian

Upper Sorbian uppersorbian

Welsh welsh

There are more languages not listed above, including hindi, thai, thaicjk, latvian, turkmen,

magyar, mongolian, romansh, lithuanian, spanglish, vietnamese, japanese, pinyin, arabic,

farsi, ibygreek, bgreek, serbianc, frenchle, ethiop and friulan.

NOTE There are also some deprecated names (a few has been even removed): frenchb or

francais, as well as canadien (french), germanb (german), bahasa, indon or bahasai

(indonesian), lsorbian (lowersorbian), bahasam (malay), portuges (portuguese), brazil

(brazilian), russianb (russian), usorbian (uppersorbian), vietnam (vietnamese), samin

(northernsami), ukraineb (ukrainian). Deprecated names come in many cases from the

times when they had to be shortened to 8 characters.

8

Most of them work out of the box, but some may require extra fonts, encoding files, a

preprocessor or even a complete framework (like CJK or luatexja). For example, if you have

got the velthuis/devnag package, you can create a file with extension .dn:

\documentclass{article}

\usepackage[hindi]{babel}

\begin{document}

{\dn devaanaa.m priya.h}

\end{document}

Then you preprocess it with devnag 〈file〉, which creates 〈file〉.tex; you can then typeset

the latter with LATEX.

1.5 Modifiers

New 3.9c The basic behavior of some languages can be modified when loading babel by

means ofmodifiers. They are set after the language name, and are prefixed with a dot (only

when the language is set as package option – neither global options nor the main key

accepts them). An example is (spaces are not significant and they can be added or

removed):1

\usepackage[latin.medieval, spanish.notilde.lcroman, danish]{babel}

Attributes (described below) are considered modifiers, ie, you can set an attribute by

including it in the list of modifiers.

New 3.89⊕ Alternatively, modifiers can be set with a separate option, with the keyword

modifiers followed by a dot and the language name (note the language is not selected or

loaded with this option). It is useful to activate some feature when the language is declared

as a class option:

\documentclass[spanish]{report}

\usepackage[modifiers.spanish = notilde.lcroman]{babel}

1.6 Troubleshooting

• Loading directly sty files in LATEX (ie, \usepackage{〈language〉}) is deprecated and you

will get the error:2

! Package babel Error: You are loading directly a language style.

(babel) This syntax is deprecated and you must use

(babel) \usepackage[language]{babel}.

• Another typical error when using babel is the following:3

! Package babel Error: Unknown language `#1'. Either you have

(babel) misspelled its name, it has not been installed,

(babel) or you requested it in a previous run. Fix its name,

(babel) install it or just rerun the file, respectively. In

(babel) some cases, you may need to remove the aux file

The most frequent reason is, by far, the latest (for example, you included spanish, but

you realized this language is not used after all, and therefore you removed it from the

option list). In most cases, the error vanishes when the document is typeset again, but

in more severe ones you will need to remove the aux file.

1No predefined “axis” formodifiers are provided because languages and their scripts have quite different needs.
2In old versions the error read “You have used an old interface to call babel”, not very helpful.
3In old versions the error read “You haven’t loaded the language LANG yet”.

9

https://latex3.github.io/babel/news/whats-new-in-babel-3.89.html

1.7 Plain

In e-Plain and pdf-Plain, load languages styles with \input and then use \begindocument

(the latter is defined by babel):

\input estonian.sty

\begindocument

WARNING Not all languages provide a sty file and some of them are not compatible with

those formats. Please, refer to Using babel with Plain for further details.

1.8 Basic language selectors

This section describes the commands to be used in the document to switch the language in

multilingual documents. In most cases, only the two basic macros \selectlanguage and

\foreignlanguage are necessary. The environments otherlanguage, otherlanguage*

and hyphenrules are auxiliary, and described in the next section.

The main language is selected automatically when the document environment begins.

{〈language〉}\selectlanguage

When a user wants to switch from one language to another he can do so using the macro

\selectlanguage. This macro takes the language, defined previously by a language

definition file, as its argument. It calls several macros that should be defined in the

language definition files to activate the special definitions for the language chosen:

\selectlanguage{german}

This command can be used as environment, too, in case there are relatively short texts and

you do not want to reset the language with a hardcode value.

NOTE For “historical reasons”, a macro name is converted to a language name without the

leading \; in other words, \selectlanguage{\german} is equivalent to

\selectlanguage{german}. Using a macro instead of a “real” name is deprecated.

New 3.43⊕ However, if the macro name does not match any language, it will get

expanded as expected.

NOTE Bear in mind \selectlanguage can be automatically executed, in some cases, in the

auxiliary files, at heads and foots, and after the environment otherlanguage*.

WARNING If used inside braces there might be some non-local changes, as this would be

roughly equivalent to:

{\selectlanguage{<inner-language>} ...}\selectlanguage{<outer-language>}

If you want a change which is really local, you must enclose this code with an

additional grouping level.

WARNING There are a couple of issues related to the way the language information is

written to the auxiliary files:

• \selectlanguage should not be used inside some boxed environments (like floats or

minipage) to switch the language if you need the information written to the aux be

correctly synchronized. This rarely happens, but if it were the case, you must use

otherlanguage instead.

10

https://latex3.github.io/babel/guides/using-babel-with-plain.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.43.html

• In addition, this macro inserts a \write in vertical mode, which may break the

vertical spacing in some cases (for example, between lists or at the beginning of a

table cell). New 3.64⊕ The behavior can be adjusted with

\babeladjust{select.write=〈mode〉}, where 〈mode〉 is shift (which shifts the

skips down and adds a \penalty); keep (the default – with it the \write and the

skips are kept in the order they are written), and omit (which may seem a too drastic

solution, because nothing is written, but more often than not this command is

applied to more or less shorts texts with no sectioning or similar commands, and

therefore no language synchronization is necessary). In a table cell, a \leavevmode

just before the selector may be enough.

[〈option-list〉]{〈language〉}{〈text〉}\foreignlanguage

The command \foreignlanguage takes two arguments; the second argument is a phrase

to be typeset according to the rules of the language named in its first one.

This command (1) only switches the extra definitions and the hyphenation rules for the

language, not the names and dates, (2) does not send information about the language to

auxiliary files (i.e., the surrounding language is still in force), and (3) it works even if the

language has not been set as package option (but in such a case it only sets the

hyphenation patterns and a warning is shown). With the bidi option, it also enters in

horizontal mode (this is not done always for backwards compatibility), and since it is

meant for phrases only the text direction (and not the paragraph one) is set.

New 3.44⊕ As already said, captions and dates are not switched. However, with the

optional argument you can switch them, too. So, you can write:

\foreignlanguage[date]{polish}{\today}

In addition, captions can be switched with captions (or both, of course, with date,

captions). Until 3.43 you had to write something like {\selectlanguage{..} ..}, which

was not always the most convenient way.

NOTE \bibitem is out of sync with \selectlanguage in the .aux file. The reason is

\bibitem uses \immediate (and others, in fact), while \selectlanguage doesn’t. There

is a similar issue with floats, too. There is no known workaround.

1.9 Auxiliary language selectors

{〈language〉} … \end{otherlanguage}\begin{otherlanguage}

The environment otherlanguage does basically the same as \selectlanguage, except that

language change is (mostly) local to the environment.

Actually, there might be some non-local changes, as this environment is roughly equivalent

to:

\begingroup

\selectlanguage{<inner-language>}

...

\endgroup

\selectlanguage{<outer-language>}

If you want a change which is really local, you must enclose this environment with an

additional grouping, like braces {}.

Spaces after the environment are ignored.4 If this behavior is not desired, you may use the

environment selectlanguage.

4Very likely, and because of the limitations ofmany old editorswith bidi text, the ideawas \end{otherlanguage}

had to be a line by itself.

11

https://latex3.github.io/babel/news/whats-new-in-babel-3.64.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.44.html

WARNING Being similar to \selectlanguage, the warning above about the internal

\write also applies here. The current mode (vertical or horizontal) is also not changed.

[〈option-list〉]{〈language〉} … \end{otherlanguage*}\begin{otherlanguage*}

Same as \foreignlanguage but as environment. Spaces after the environment are not

ignored.

This environment was originally intended for intermixing left-to-right typesetting with

right-to-left typesetting in engines not supporting a change in the writing direction inside a

line. However, by default it never complied with the documented behavior and it is just a

version as environment of \foreignlanguage, except when the option bidi is set – in this

case, \foreignlanguage emits a \leavevmode, while otherlanguage* does not.

1.10 More on selection

{〈tag1〉 = 〈language1〉, 〈tag2〉 = 〈language2〉, …}\babeltags

New 3.9i In multilingual documents with many language-switches the commands above

can be cumbersome. With this tool shorter names can be defined. It adds nothing really

new – it is just syntactical sugar.

It defines \text〈tag1〉{〈text〉} to be \foreignlanguage{〈language1〉}{〈text〉}, and
\begin{〈tag1〉} to be \begin{otherlanguage*}{〈language1〉}, and so on. Note \〈tag1〉 is
also allowed, but remember to set it locally inside a group.

WARNING There is a clear drawback to this feature, namely, the ‘prefix’ \text... is

heavily overloaded in LATEX and conflicts with existing macros may arise (\textlatin,

\textbar, \textit, \textcolor and many others). The same applies to environments,

because arabic conflicts with \arabic. Furthermore, and because of this overloading,

detecting the language of a chunk of text by external tools can become unfeasible (is

\textga the locale for the African language Gã or something else?). Except if there is a

reason for this ‘syntactical sugar’, the best option is to stick to the default selectors or

even to define your own alternatives.

EXAMPLE With

\babeltags{de = german}

you can write

text \textde{German text} text

and

text

\begin{de}

German text

\end{de}

text

NOTE Something like \babeltags{finnish = finnish} is legitimate – it defines

\textfinnish and \finnish (and, of course, \begin{finnish}).

12

[include=〈commands〉,exclude=〈commands〉,fontenc=〈encoding〉]{〈language〉}\babelensure

New 3.9i Except in a few languages, like russian, captions and dates are just strings, and

do not switch the language. That means you should set it explicitly if you want to use them,

or hyphenation (and in some cases the text itself) will be wrong. For example:

\foreignlanguage{russian}{text \foreignlanguage{polish}{\seename} text}

Of course, TEX can do it for you. To avoid switching the language all the while,

\babelensure redefines the captions for a given language to wrap them with a selector:

\babelensure{polish}

By default only the basic captions and \today are redefined, but you can add further

macros with the key include in the optional argument (without commas). Macros not to

be modified are listed in exclude. You can also enforce a font encoding with the option

fontenc.5 A couple of examples:

\babelensure[include=\Today]{spanish}

\babelensure[fontenc=T5]{vietnamese}

They are activated when the language is selected (at the afterextras event), and it makes

some assumptions which could not be fulfilled in some languages. Note also you should

include only macros defined by the language, not global macros (eg, \TeX of \dag).

With ini files (see below), captions are ensured by default.

1.11 Shorthands

A shorthand is a sequence of one or two characters that expands to arbitrary TEX code.

Shorthands can be used for different kinds of things; for example: (1) in some languages

shorthands such as "a are defined to be able to hyphenate the word if the encoding is OT1;

(2) in some languages shorthands such as ! are used to insert the right amount of white

space; (3) several kinds of discretionaries and breaks can be inserted easily with "-, "=, etc.

The package inputenc as well as xetex and luatex have alleviated entering non-ASCII

characters, but minority languages and some kinds of text can still require characters not

directly available on the keyboards (and sometimes not even as separated or precomposed

Unicode characters). As to the point 2, now pdfTeX provides \knbccode, and luatex can

manipulate the glyph list. Tools for point 3 can be still very useful in general.

There are four levels of shorthands: user, language, system, and language user (by order of

precedence). In most cases, you will use only shorthands provided by languages.

NOTE Keep in mind the following:

1. Activated chars used for two-char shorthands cannot be followed by a closing brace

} and the spaces following are gobbled. With one-char shorthands (eg, :), they are

preserved.

2. If on a certain level (system, language, user, language user) there is a one-char

shorthand, two-char ones starting with that char and on the same level are ignored.

3. Since they are active, a shorthand cannot contain the same character in its definition

(except if deactivated with, eg, \string).

TROUBLESHOOTING A typical error when using shorthands is the following:

5With it, encoded strings may not work as expected.

13

! Argument of \language@active@arg" has an extra }.

It means there is a closing brace just after a shorthand, which is not allowed (eg, "}).

Just add {} after (eg, "{}}).

{〈shorthands-list〉}\shorthandon

* {〈shorthands-list〉}\shorthandoff

It is sometimes necessary to switch a shorthand character off temporarily, because it must

be used in an entirely different way. For this purpose, the user commands \shorthandoff

and \shorthandon are provided. They each take a list of characters as their arguments.

The command \shorthandoff sets the \catcode for each of the characters in its argument

to other (12); the command \shorthandon sets the \catcode to active (13). Both commands

only work on ‘known’ shorthand characters, and an error will be raised otherwise. You can

check if a character is a shorthand with \ifbabelshorthand (see below).

New 3.9a However, \shorthandoff does not behave as you would expect with

characters like ~ or ^, because they usually are not “other”. For them \shorthandoff* is

provided, so that with

\shorthandoff*{~^}

~ is still active, very likely with the meaning of a non-breaking space, and ^ is the

superscript character. The catcodes used are those when the shorthands are defined,

usually when language files are loaded.

If you do not need shorthands, or prefer an alternative approach of your own, you may

want to switch them off with the package option shorthands=off, as described below.

WARNING It is worth emphasizing these macros are meant for temporary changes.

Whenever possible and if there are not conflicts with other packages, shorthands must

be always enabled (or disabled).

* {〈char〉}\useshorthands

The command \useshorthands initiates the definition of user-defined shorthand

sequences. It has one argument, the character that starts these personal shorthands.

New 3.9a User shorthands are not always alive, as they may be deactivated by languages

(for example, if you use " for your user shorthands and switch from german to french, they

stop working). Therefore, a starred version \useshorthands*{〈char〉} is provided, which

makes sure shorthands are always activated.

If the package option shorthands is used, you must include any character to be activated

with \useshorthands.

[〈language〉,〈language〉,...]{〈shorthand〉}{〈code〉}\defineshorthand

The command \defineshorthand takes two arguments: the first is a one- or two-character

shorthand sequence, and the second is the code the shorthand should expand to.

New 3.9a An optional argument allows to (re)define language and system shorthands

(some languages do not activate shorthands, so you may want to add

\languageshorthands{〈language〉} to the corresponding \extras〈language〉, as explained
below). By default, user shorthands are (re)defined.

User shorthands override language ones, which in turn override system shorthands.

Language-dependent user shorthands (new in 3.9) take precedence over “normal” user

shorthands.

EXAMPLE Let’s assume you want a unified set of shorthand for discretionaries (languages

do not define shorthands consistently, and "-, \-, "= have different meanings). You can

start with, say:

14

\useshorthands*{"}

\defineshorthand{"*}{\babelhyphen{soft}}

\defineshorthand{"-}{\babelhyphen{hard}}

However, the behavior of hyphens is language-dependent. For example, in languages

like Polish and Portuguese, a hard hyphen inside compound words are repeated at the

beginning of the next line. You can then set:

\defineshorthand[*polish,*portuguese]{"-}{\babelhyphen{repeat}}

Here, options with * set a language-dependent user shorthand, which means the

generic one above only applies for the rest of languages; without * they would

(re)define the language shorthands instead, which are overridden by user ones.

Now, you have a single unified shorthand ("-), with a content-based meaning

(‘compound word hyphen’) whose visual behavior is that expected in each context.

{〈language〉}\languageshorthands

The command \languageshorthands can be used to switch the shorthands on the

language level. It takes one argument, the name of a language or none (the latter does what

its name suggests).6 Note that for this to work the language should have been specified as

an option when loading the babel package. For example, you can use in english the

shorthands defined by ngerman with

\addto\extrasenglish{\languageshorthands{ngerman}}

(You may also need to activate them as user shorthands in the preamble with, for example,

\useshorthands or \useshorthands*.)

EXAMPLE Very often, this is a more convenient way to deactivate shorthands than

\shorthandoff, for example if you want to define a macro to easy typing phonetic

characters with tipa:

\newcommand{\myipa}[1]{{\languageshorthands{none}\tipaencoding#1}}

{〈shorthand〉}\babelshorthand

With this command you can use a shorthand even if (1) not activated in shorthands (in

this case only shorthands for the current language are taken into account, ie, not user

shorthands), (2) turned off with \shorthandoff or (3) deactivated with the internal

\bbl@deactivate; for example, \babelshorthand{"u} or \babelshorthand{:}. (You can

conveniently define your own macros, or even your own user shorthands provided they

do not overlap.)

EXAMPLE Since by default shorthands are not activated until \begin{document}, you may

use this macro when defining the \title in the preamble:

\title{Documento científico\babelshorthand{"-}técnico}

For your records, here is a list of shorthands, but you must double check them, as they may

change:7

6Actually, any name not corresponding to a language group does the same as none. However, follow this conven-

tion because it might be enforced in future releases of babel to catch possible errors.
7Thanks to Enrico Gregorio

15

Languages with no shorthands Croatian, English (any variety), Indonesian, Hebrew,

Interlingua, Irish, Lower Sorbian, Malaysian, North Sami, Romanian, Scottish, Welsh

Languages with only " as defined shorthand character Albanian, Bulgarian, Danish,

Dutch, Finnish, German (old and new orthography, also Austrian), Icelandic, Italian,

Norwegian, Polish, Portuguese (also Brazilian), Russian, Serbian (with Latin script),

Slovene, Swedish, Ukrainian, Upper Sorbian

Basque " ' ~

Breton : ; ? !

Catalan " ' `

Czech " -

Esperanto ^

Estonian " ~

French (all varieties) : ; ? !

Galician " . ' ~ 〈 〉
Greek (ancient, polutoniko, only 8-bit TEX) ~, (optional, see the manual for Greek) ;

Hungarian `

Kurmanji ^

Latin " ^ =

Slovak " ^ ' -

Spanish " . 〈 〉 ' ~

Turkish : ! =

In addition, the babel core declares ~ as a one-char shorthand which is let, like the

standard ~, to a non breaking space.8

{〈character〉}{〈true〉}{〈false〉}\ifbabelshorthand

New 3.23 Tests if a character has been made a shorthand.

NOTE Both ltxdoc and babel use \AtBeginDocument to change some catcodes, and babel

reloads hhline to make sure : has the right one, so if you want to change the catcode of

| it has to be done using the same method at the proper place, with

\AtBeginDocument{\DeleteShortVerb{\|}}

before loading babel. This way, when the document begins the sequence is (1) make |

active (ltxdoc); (2) make it inactive (your settings); (3) make babel shorthands active

(babel); (4) reload hhline (babel, now with the correct catcodes for | and :).

1.12 Package options

New 3.9a These package options are processed before language options, so that they are

taken into account irrespective of its order. The first three options have been available in

previous versions.

Tells babel not to deactivate shorthands after loading a language file, so that they are alsoKeepShorthandsActive

available in the preamble.

For some languages babel supports this options to set ' as a shorthand in case it is not doneactiveacute

by default.

Same for `.activegrave

〈char〉〈char〉... | offshorthands=

The only language shorthands activated are those given, like, eg:

8This declaration serves to nothing, but it is preserved for backward compatibility.

16

\usepackage[esperanto,french,shorthands=:;!?]{babel}

If ' is included, activeacute is set; if ` is included, activegrave is set. Active characters

(like ~) should be preceded by \string (otherwise they will be expanded by LATEX before

they are passed to the package and therefore they will not be recognized); however, t is

provided for the common case of ~ (as well as c for not so common case of the comma).

With shorthands=off no language shorthands are defined, As some languages use this

mechanism for tools not available otherwise, a macro \babelshorthand is defined, which

allows using them; see above.

none | ref | bibsafe=

Some LATEX macros are redefined so that using shorthands is safe. With safe=bib only

\nocite, \bibcite and \bibitem are redefined. With safe=ref only \newlabel, \ref and

\pageref are redefined (as well as a few macros from varioref and ifthen).

With safe=none no macro is redefined. This option is strongly recommended, because a

good deal of incompatibilities and errors are related to these redefinitions. As of

New 3.34 , in εTEX based engines (ie, almost every engine except the oldest ones)

shorthands can be used in these macros (formerly you could not).

active | normalmath=

Shorthands are mainly intended for text, not for math. By setting this option with the value

normal they are deactivated in math mode (default is active) and things like ${a'}$ (a

closing brace after a shorthand) are not a source of trouble anymore.

〈file〉config=

Load 〈file〉.cfg instead of the default config file bblopts.cfg (the file is loaded even with

noconfigs).

〈language〉main=

Sets the main language, as explained above, ie, this language is always loaded last. If it is

not given as package or global option, it is added to the list of requested languages.

〈language〉headfoot=

By default, headlines and footlines are not touched (only marks), and if they contain

language-dependent macros (which is not usual) there may be unexpected results. With

this option you may set the language in heads and foots. An alternative is to set the

language explicitly when heads and foots are redefined.

Global and language default config files are not loaded, so you can make sure yournoconfigs

document is not spoilt by an unexpected .cfg file. However, if the key config is set, this

file is loaded.

Prints to the log the list of languages loaded when the format was created: numbershowlanguages

(remember dialects can share it), name, hyphenation file and exceptions file.

New 3.9l No warnings and no infos are written to the log file.9silent

off | first | select | other | other*hyphenmap=

New 3.9g Sets the behavior of case mapping for hyphenation, provided the language

defines it.10 It can take the following values:

9You can use alternatively the package silence.
10Turned off in plain.

17

off deactivates this feature and no case mapping is applied;

first sets it at the first switching commands in the current or parent scope (typically,

when the aux file is first read and at \begin{document}, but also the first

\selectlanguage in the preamble), and it’s the default if a single language option has

been stated;11

select sets it only at \selectlanguage;

other also sets it at otherlanguage;

other* also sets it at otherlanguage* as well as in heads and foots (if the option headfoot

is used) and in auxiliary files (ie, at \select@language), and it’s the default if several

language options have been stated. The option first can be regarded as an optimized

version of other* for monolingual documents.12

default | basic | basic-r | bidi-l | bidi-rbidi=

New 3.14 Selects the bidi algorithm to be used in luatex and xetex. See sec. 1.27.

layout=

New 3.16 Selects which layout elements are adapted in bidi documents. See sec. 1.27.

*provide=

New 3.49⊕ An alternative to \babelprovide for languages passed as options. See

section 1.14, which describes also the variants provide+= and provide*=.

1.13 The base option

With this package option babel just loads some basic macros (mainly the selectors), defines

\AfterBabelLanguage and exits. It also selects the hyphenation patterns for the last

language passed as option (by its name in language.dat). There are two main uses: classes

and packages, and as a last resort in case there are, for some reason, incompatible

languages. It can be used if you just want to select the hyphenation patterns of a single

language, too.

{〈option-name〉}{〈code〉}\AfterBabelLanguage

This command is currently the only provided by base. Executes 〈code〉when the file loaded

by the corresponding package option is finished (at \ldf@finish). The setting is global. So

\AfterBabelLanguage{french}{...}

does ... at the end of french.ldf. It can be used in ldf files, too, but in such a case the code

is executed only if 〈option-name〉 is the same as \CurrentOption (which could not be the

same as the option name as set in \usepackage!).

EXAMPLE Consider two languages foo and bar defining the same \macro with

\newcommand. An error is raised if you attempt to load both. Here is a way to overcome

this problem:

\usepackage[base]{babel}

\AfterBabelLanguage{foo}{%

\let\macroFoo\macro

\let\macro\relax}

\usepackage[foo,bar]{babel}

11Duplicated options count as several ones.
12Providing foreign is pointless, because the case mapping applied is that at the end of the paragraph, but if

either xetex or luatex change this behavior it might be added. On the other hand, other is provided even if I [JBL]

think it isn’t really useful, but who knows.

18

https://latex3.github.io/babel/news/whats-new-in-babel-3.49.html

NOTE With a recent version of LATEX, an alternative method to execute some code just after

an ldf file is loaded is with \AddToHook and the hook file/〈language〉.ldf/after.
Babel does not predeclare it, and you have to do it yourself with

\ActivateGenericHook.

WARNING Currently this option is not compatible with languages loaded on the fly.

1.14 ini files

An alternative approach to define a language (or, more precisely, a locale) is by means of

an ini file. Currently babel provides about 380 of these files containing the basic data

required for a locale, covering about 300 languages, plus basic templates for about 400

locales.

ini files are not meant only for babel, and they has been devised as a resource for other

packages. To easy interoperability between TEX and other systems, they are identified with

the BCP 47 codes as preferred by the Unicode Common Locale Data Repository, which was

used as source for most of the data provided by these files, too (the main exception being

the \...name strings).

Most of them set the date, and many also the captions (Unicode and LICR). They will be

evolving with the time to add more features (something to keep in mind if backward

compatibility is important). The following section shows how to make use of them by

means of \babelprovide. In other words, \babelprovide is mainly meant as alternative

when the ldf does not exists or does not work as expected, and for secondary tasks.

EXAMPLE Although Georgian has its own ldf file, here is how to declare this language

with an ini file in Unicode engines.

luatex/xetex
\documentclass{book}

\usepackage{babel}

\babelprovide[import, main]{georgian}

\babelfont{rm}[Renderer=Harfbuzz]{DejaVu Sans}

\begin{document}

\tableofcontents

\chapter{სამზარეულო და სუფრის ტრადიციები}

ქართული ტრადიციული სამზარეულო ერთ-ერთი უმდიდრესია მთელ მსოფლიოში.

\end{document}

MORE There is an example of how to use an ini template file here, for Phoenician

(although currently this locale is bundled with babel).

New 3.49⊕ Alternatively, you can tell babel to load all or some languages passed as

options with \babelprovide and not from the ldf file in a few few typical cases. Thus,

provide=*means ‘load the main language with the \babelprovidemechanism instead of

the ldf file’ applying the basic features, which in this case means import, main. There are

(currently) three options:

• provide=* is the option just explained, for the main language;

• provide+=* is the same for additional languages (the main language is still the ldf file);

• provide*=* is the same for all languages, ie, main and additional.

EXAMPLE The preamble in the previous example can be more compactly written as:

19

https://github.com/latex3/babel/issues/176#issuecomment-1080846575
https://latex3.github.io/babel/news/whats-new-in-babel-3.49.html

\documentclass{book}

\usepackage[georgian, provide=*]{babel}

\babelfont{rm}[Renderer=Harfbuzz]{DejaVu Sans}

Or also:

\documentclass[georgian]{book}

\usepackage[provide=*]{babel}

\babelfont{rm}[Renderer=Harfbuzz]{DejaVu Sans}

NOTE The ini files just define and set some parameters, but the corresponding behavior is

not always implemented. Also, there are some limitations in the engines. A few remarks

follow (which could no longer be valid when you read this manual, if the packages

involved have been updated). The Harfbuzz renderer still has some issues, so as a rule

of thumb prefer the default renderer, and resort to Harfbuzz only if the former does not

work for you. Fortunately, fonts can be loaded twice with different renderers; for

example:

\babelfont[spanish]{rm}{FreeSerif}

\babelfont[hindi]{rm}[Renderer=Harfbuzz]{FreeSerif}

Arabic Monolingual documents mostly work in luatex, but it must be fine tuned,

particularly math and graphical elements like picture. In xetex babel resorts to the

bidi package, which seems to work.

Hebrew Niqqud marks seem to work in both engines, but depending on the font

cantillation marks might be misplaced (xetex or luatex with Harfbuzz seems better).

Devanagari In luatex and the default renderer many fonts work, but some others do

not, the main issue being the ‘ra’. You may need to set explicitly the script to either

deva or dev2, eg:

\newfontscript{Devanagari}{deva}

Other Indic scripts are still under development in the default luatex renderer, but

should work with Renderer=Harfbuzz. They also work with xetex, although unlike

with luatex fine tuning the font behavior is not always possible.

Southeast scripts Thai works in both luatex and xetex, but line breaking differs (rules

are hard-coded in xetex, but they can be modified in luatex). Lao seems to work, too,

but there are no patterns for the latter in luatex. Khemer clusters are rendered

wrongly with the default renderer. The comment about Indic scripts and lualatex

also applies here. Some quick patterns can help, with something similar to:

\babelprovide[import, hyphenrules=+]{lao}

\babelpatterns[lao]{1ດ 1ມ 1ອ 1ງ 1ກ 1າ} % Random

East Asia scripts Settings for either Simplified of Traditional should work out of the

box, with basic line breaking with any renderer. Although for a few words and

shorts texts the ini files should be fine, CJK texts are best set with a dedicated

framework (CJK, luatexja, kotex, CTeX, etc.). This is what the class ltjbook does with

luatex, which can be used in conjunction with the ldf for japanese, because the

following piece of code loads luatexja:

\documentclass[japanese]{ltjbook}

\usepackage{babel}

20

Latin, Greek, Cyrillic Combining chars with the default luatex font renderer might be

wrong; on then other hand, with the Harfbuzz renderer diacritics are stacked

correctly, but many hyphenations points are discarded (this bug is related to

kerning, so it depends on the font). With xetex both combining characters and

hyphenation work as expected (not quite, but in most cases it works; the problem

here are font clusters).

NOTE Wikipedia defines a locale as follows: “In computing, a locale is a set of parameters

that defines the user’s language, region and any special variant preferences that the

user wants to see in their user interface. Usually a locale identifier consists of at least a

language code and a country/region code.” Babel is moving gradually from the old and

fuzzy concept of language to the more modern of locale. Note each locale is by itself a

separate “language”, which explains why there are so many files. This is on purpose, so

that possible variants can be created and/or redefined easily.

Modifying and adding values to ini files

New 3.39⊕ There is a way to modify the values of ini files when they get loaded with

\babelprovide and import. To set, say, digits.native in the numbers section, use

something like numbers/digits.native=abcdefghij. Keys may be added, too. Without

import you may modify the identification keys.

This can be used to create private variants easily. All you need is to import the same ini

file with a different locale name and different parameters.

1.15 List of locales available in \babelprovide

Here is the list of the names currently supported with ini locale files, with \babelprovide

(or provide=). With these languages, \babelfont loads (if not done before) the language

and script names (even if the language is defined as a package option with an ldf file).

These are also the names recognized by \babelprovide with a valueless import, which

will load the ini file with the tag given in parenthesis.

Many locale are quite usable, provided captions and dates are not required (which is a

very frequent case, particularly in ancient languages). So, they are included in the default

babel distribution. This can serve to encourage contributions, too. A warning will

remember they are ‘bare minimum locales’. They are set in gray in the following list.

NOTE Although the names of the corresponding lfd files match those in this list, there are

some exceptions, particularly in German and Serbian. So, ngerman is called here

german, which is the name in the CLDR and, actually, the most logical.

Recommended names are set in red.

In variants with the region or the script name (which are not highlighted), prefer the full forms.

Bare minimum locales are set in gray.

Discouraged and deprecated names are not included.
u means Unicode captions; l means LICR captions.

There are some notes in a few locales.

abkhazian (ab)

afar (aa)

afrikaans
ul

(af)

aghem (agq)

akan (ak)

akkadian (akk)

albanian
ul

(sq)

amharic
ul

(am)

ancientegyptian (egy)

ancientgreek
ul

(grc)

It’s a different language from greek.

arabic
u
(ar)

arabic-algeria
u
(ar-DZ)

arabic-dz
u
(ar-DZ)

arabic-egypt
u
(ar-EG)

arabic-eg
u
(ar-EG)

arabic-iraq
u
(ar-IQ)

arabic-iq
u
(ar-IQ)

arabic-jordan
u
(ar-JO)

arabic-jo
u
(ar-JO)

arabic-lebanon
u
(ar-LB)

arabic-lb
u
(ar-LB)

21

https://latex3.github.io/babel/news/whats-new-in-babel-3.39.html

arabic-morocco
u
(ar-MA)

arabic-ma
u
(ar-MA)

arabic-palestinianterritories
u
(ar-PS)

arabic-ps
u
(ar-PS)

arabic-saudiarabia
u
(ar-SA)

arabic-sa
u
(ar-SA)

arabic-syria
u
(ar-SY)

arabic-sy
u
(ar-SY)

arabic-tunisia
u
(ar-TN)

arabic-tn
u
(ar-TN)

aramaic (arc)

aramaic-nabataean (arc-nbat)

aramaic-nbat (arc-nbat)

aramaic-palmyrene (arc-palm)

aramaic-palm (arc-palm)

armenian
ul

(hy)

assamese
u
(as)

asturian
ul

(ast)

asu (asa)

atsam (cch)

avestan (ae)

awadhi (awa)

aymara (ay)

azerbaijani
ul

(az)

azerbaijani-cyrillic (az-Cyrl)

azerbaijani-cyrl (az-Cyrl)

azerbaijani-latin (az-Latn)

azerbaijani-latn (az-Latn)

bafia (ksf)

balinese (ban)

baluchi (bal)

bambara (bm)

bangla
u
(bn)

basaa (bas)

bashkir (ba)

basque
ul

(eu)

bataktoba (bbc)

bavarian (bar)

belarusian
ul

(be)

bemba (bem)

bena (bez)

bengali
u
(bn)

bhojpuri (bho)

blin (byn)

bodo (brx)

bosnian
ul

(bs)

bosnian-cyrillic (bs-Cyrl)

bosnian-cyrl (bs-Cyrl)

bosnian-latin
ul

(bs-Latn)

bosnian-latn
ul

(bs-Latn)

breton
ul

(br)

bulgarian
ul

(bg)

buriat
ul

(bua)

burmese (my)

cantonese (yue)

catalan
ul

(ca)

cebuano (ceb)

centralatlastamazight (tzm)

centralkurdish
u
(ckb)

centralkurdish-latin
u
(ckb-Latn)

centralkurdish-latn
u
(ckb-Latn)

chakma (ccp)

chechen (ce)

cherokee (chr)

chiga (cgg)

chinese
u
(zh)

chinese-simplified
u
(zh-Hans)

chinese-hans
u
(zh-Hans)

chinese-traditional
u
(zh-Hant)

chinese-hant
u
(zh-Hant)

chinese-simplified-

hongkongsarchina (zh-Hans-HK)

chinese-hans-hk (zh-Hans-HK)

chinese-simplified-

macausarchina (zh-Hans-MO)

chinese-hans-mo (zh-Hans-MO)

chinese-simplified-singapore (zh-Hans-SG)

chinese-hans-sg (zh-Hans-SG)

chinese-hant-hk (zh-Hant-HK)

chinese-traditional-

hongkongsarchina (zh-Hant-HK)

chinese-hant-mo (zh-Hant-MO)

chinese-traditional-

macausarchina (zh-Hant-MO)

churchslavic
u
(cu)

churchslavic-cyrs
u
(cu-Cyrs)

churchslavic-glag (cu-Glag)

churchslavic-glagolitic (cu-Glag)

churchslavic-oldcyrillic
u
(cu-Cyrs)

chuvash (cv)

classicalmandaic (myz)

colognian (ksh)

coptic (cop)

cornish (kw)

corsican (co)

croatian
ul

(hr)

czech
ul

(cs)

danish
ul

(da)

divehi (dv)

dogri (doi)

duala (dua)

dutch
ul

(nl)

dzongkha (dz)

egyptianarabic (arz)

Masri or Colloquial Egyptian, with tag arz,

different from Standard Arabic as spoken in

Egypt, with tag ar-EG.

embu (ebu)

english
ul

(en)

american
ul

(en-US)

americanenglish
ul

(en-US)

australian
ul

(en-AU)

australianenglish
ul

(en-AU)

british
ul

(en-GB)

britishenglish
ul

(en-GB)

canadian
ul

(en-CA)

canadianenglish
ul

(en-CA)

english-australia
ul

(en-AU)

english-au
ul

(en-AU)

english-canada
ul

(en-CA)

english-ca
ul

(en-CA)

english-unitedkingdom
ul

(en-GB)

english-gb
ul

(en-GB)

english-newzealand
ul

(en-NZ)

english-unitedstates
ul

(en-US)

english-nz
ul

(en-NZ)

22

english-us
ul

(en-US)

erzya (myv)

esperanto
ul

(eo)

estonian
ul

(et)

ewe (ee)

ewondo (ewo)

faroese (fo)

farsi
u
(fa)

filipino (fil)

finnish
ul

(fi)

french
ul

(fr)

acadian
ul

(fr-x-acadian)

canadianfrench
ul

(fr-CA)

swissfrench
ul

(fr-CH)

french-belgium
ul

(fr-BE)

french-be
ul

(fr-BE)

french-canada
ul

(fr-CA)

french-ca
ul

(fr-CA)

french-luxembourg
ul

(fr-LU)

french-lu
ul

(fr-LU)

french-switzerland
ul

(fr-CH)

french-ch
ul

(fr-CH)

friulian
ul

(fur)

fulah (ff)

ga (gaa)

galician
ul

(gl)

ganda (lg)

geez (gez)

georgian
u
(ka)

german
ul

(de)

Note the ldf names differ. See note above.

german-traditional
ul

(de-1901)

austrian
ul

(de-AT)

german-austria
ul

(de-AT)

german-at
ul

(de-AT)

german-austria-traditional
ul

(de-AT-1901)

swisshighgerman
ul

(de-CH)

swissgerman, with tag gsw is a different language.

german-switzerland
ul

(de-CH)

german-ch
ul

(de-CH)

german-switzerland-

traditional
ul

(de-CH-1901)

gothic (got)

greek
ul

(el)

monotonicgreek
ul

(el)

polytonicgreek
ul

(el-polyton)

guarani (gn)

gujarati
u
(gu)

gusii (guz)

haryanvi (bgc)

hausa
ul

(ha)

hausa-ghana (ha-GH)

hausa-gh (ha-GH)

hausa-niger (ha-NE)

hausa-ne (ha-NE)

hawaiian (haw)

hebrew
ul

(he)

hindi
u
(hi)

hmongnjua (hnj)

hungarian
ulll

(hu)

icelandic
ul

(is)

igbo (ig)

inarisami (smn)

indonesian
ul

(id)

ingush (inh)

interlingua
ul

(ia)

inuktitut (iu)

irish
ul

(ga)

italian
ul

(it)

japanese
u
(ja)

javanese (jv)

jju (kaj)

jolafonyi (dyo)

kabuverdianu (kea)

kabyle (kab)

kaingang (kgp)

kako (kkj)

kalaallisut (kl)

kalenjin (kln)

kamba (kam)

kannada
u
(kn)

kashmiri (ks)

kazakh (kk)

khmer
u
(km)

kikuyu (ki)

kinyarwanda (rw)

komi (kv)

konkani (kok)

korean
u
(ko)

korean-han
u
(ko-Hani)

korean-hani
u
(ko-Hani)

koyraborosenni (ses)

koyrachiini (khq)

kurmanji
ul

(kmr)

kwasio (nmg)

kyrgyz (ky)

ladino (lad)

lakota (lkt)

langi (lag)

lao
u
(lo)

latin
ul

(la)

ecclesiasticallatin
ul

(la-x-ecclesia)

classicallatin
ul

(la-x-classic)

medievallatin
ul

(la-x-medieval)

latvian
ul

(lv)

lepcha (lep)

ligurian (lij)

limbu (lif)

limbu-limb (lif-limb)

limbu-limbu (lif-limb)

lineara (lab)

lingala (ln)

lithuanian
ulll

(lt)

lombard (lmo)

lowersorbian
ul

(dsb)

lowgerman (nds)

lu (khb)

lubakatanga (lu)

luo (luo)

luxembourgish
ul

(lb)

luyia (luy)

macedonian
ul

(mk)

machame (jmc)

magyar
ulll

(hu)

maithili (mai)

makasar (mak)

23

makasar-bugi (mak-Bugi)

makasar-buginese (mak-Bugi)

makhuwameetto (mgh)

makonde (kde)

malagasy (mg)

malay
ul

(ms)

malay-brunei (ms-BN)

malay-bn (ms-BN)

malay-singapore (ms-SG)

malay-sg (ms-SG)

malayalam
u
(ml)

maltese (mt)

manipuri (mni)

manx (gv)

maori (mi)

marathi
u
(mr)

masai (mas)

mazanderani (mzn)

meru (mer)

meta (mgo)

mongolian (mn)

monotonicgreek
ul

(el)

morisyen (mfe)

mundang (mua)

muscogee (mus)

nama (naq)

navajo (nv)

nepali (ne)

newari (new)

newzealand
ul

(en-NZ)

ngiemboon (nnh)

ngomba (jgo)

nheengatu (yrl)

nigerianpidgin (pcm)

nko (nqo)

northernfrisian (frr)

northernkurdish
ul

(kmr)

northernkurdish-arab
u
(kmr-Arab)

northernkurdish-arabic
u
(kmr-Arab)

northernluri (lrc)

northernsami
ul

(se)

northernsotho (nso)

northndebele (nd)

norwegian
ul

(no)

norsk
ul

(no)

In the CLDR, norwegianbokmal (nb) just inherites

from norwegian, so use the latter.

nswissgerman
ul

(de-CH)

nuer (nus)

nyanja (ny)

nyankole (nyn)

nynorsk
ul

(nn)

norwegiannynorsk
ul

(nn)

occitan
ul

(oc)

odia
u
(or)

oldnorse (non)

oromo (om)

ossetic (os)

papiamento (pap)

pashto (ps)

persian
u
(fa)

farsi
u
(fa)

phoenician (phn)

piedmontese
ul

(pms)

polish
ul

(pl)

portuguese
ul

(pt)

brazilian
ul

(pt-BR)

brazilianportuguese
ul

(pt-BR)

portuguese-brazil
ul

(pt-BR)

portuguese-br
ul

(pt-BR)

europeanportuguese
ul

(pt-PT)

portuguese-portugal
ul

(pt-PT)

portuguese-pt
ul

(pt-PT)

prussian (prg)

punjabi
u
(pa)

punjabi-arabic (pa-Arab)

punjabi-arab (pa-Arab)

punjabi-gurmukhi
u
(pa-Guru)

punjabi-guru
u
(pa-Guru)

quechua (qu)

rajasthani (raj)

romanian
ul

(ro)

moldavian
ul

(ro-MD)

romanian-moldova
ul

(ro-MD)

romanian-md
ul

(ro-MD)

romansh
ul

(rm)

rombo (rof)

rundi (rn)

russian
ul

(ru)

rwa (rwk)

saho (ssy)

sakha (sah)

samaritan (smp)

samburu (saq)

samin
ul

(se)

sango (sg)

sangu (sbp)

sanskrit (sa)

sanskrit-bangla (sa-Beng)

sanskrit-beng (sa-Beng)

sanskrit-devanagari (sa-Deva)

sanskrit-deva (sa-Deva)

sanskrit-gujarati (sa-Gujr)

sanskrit-gujr (sa-Gujr)

sanskrit-kannada (sa-Knda)

sanskrit-knda (sa-Knda)

sanskrit-malayalam (sa-Mlym)

sanskrit-mlym (sa-Mlym)

sanskrit-telugu (sa-Telu)

sanskrit-telu (sa-Telu)

santali (sat)

saraiki (skr)

sardinian (sc)

scottishgaelic
ul

(gd)

sena (seh)

serbian
ul

(sr)

Note the ldf names differ. See note above.

serbian-cyrillic
ul

(sr-Cyrl)

serbian-cyrl
ul

(sr-Cyrl)

serbian-cyrillic-

bosniaherzegovina
ul

(sr-Cyrl-BA)

serbian-cyrl-ba
ul

(sr-Cyrl-BA)

serbian-cyrillic-kosovo
ul

(sr-Cyrl-XK)

serbian-cyrl-xk
ul

(sr-Cyrl-XK)

serbian-cyrillic-montenegro
ul

(sr-Cyrl-ME)

serbian-cyrl-me
ul

(sr-Cyrl-ME)

24

serbian-latin
ul

(sr-Latn)

serbian-latn
ul

(sr-Latn)

serbian-latin-

bosniaherzegovina
ul

(sr-Latn-BA)

serbian-latn-ba
ul

(sr-Latn-BA)

serbian-latin-kosovo
ul

(sr-Latn-XK)

serbian-latn-xk
ul

(sr-Latn-XK)

serbian-latin-montenegro
ul

(sr-Latn-ME)

serbian-latn-me
ul

(sr-Latn-ME)

serbian-ijekavsk
ul

(sr-ijekavsk)

serbian-latn-ijekavsk
ul

(sr-Latn-ijekavsk)

shambala (ksb)

shona (sn)

sichuanyi (ii)

sicilian (scn)

silesian (szl)

sindhi (sd)

sindhi-devanagari (sd-deva)

sindhi-deva (sd-deva)

sindhi-khojki (sd-khoj)

sindhi-khoj (sd-khoj)

sindhi-khudawadi (sd-sind)

sindhi-sind (sd-sind)

sinhala
u
(si)

sinteromani (rmo)

slovak
ul

(sk)

slovene
ul

(sl)

slovenian
ul

(sl)

soga (xog)

somali (so)

sorani
u
(ckb)

southernaltai (alt)

southernsotho (st)

southndebele (nr)

spanish
ul

(es)

mexican
ul

(es-MX)

mexicanspanish
ul

(es-MX)

spanish-mexico
ul

(es-MX)

spanish-mx
ul

(es-MX)

standardmoroccantamazight (zgh)

sundanese (su)

swahili (sw)

swati (ss)

swedish
ul

(sv)

swissgerman (gsw)

Different from swisshighgerman (de-CH), which is

German as spoken in Switzerland.

syriac (syr)

tachelhit (shi)

tachelhit-latin (shi-Latn)

tachelhit-latn (shi-Latn)

tachelhit-tifinagh (shi-Tfng)

tachelhit-tfng (shi-Tfng)

tainua (tdd)

taita (dav)

tajik (tg)

tamil
u
(ta)

tangut (txg)

taroko (trv)

tasawaq (twq)

tatar (tt)

telugu
u
(te)

teso (teo)

thai
ul

(th)

tibetan
u
(bo)

tigre (tig)

tigrinya (ti)

tokpisin (tpi)

tongan (to)

tsonga (ts)

tswana (tn)

turkish
ul

(tr)

turkmen
ul

(tk)

tyap (kcg)

ukenglish
ul

(en-GB)

ukrainian
ul

(uk)

uppersorbian
ul

(hsb)

urdu
u
(ur)

usenglish
ul

(en-US)

usorbian
ul

(hsb)

uyghur
u
(ug)

uzbek (uz)

uzbek-arabic (uz-Arab)

uzbek-arab (uz-Arab)

uzbek-cyrillic (uz-Cyrl)

uzbek-cyrl (uz-Cyrl)

uzbek-latin (uz-Latn)

uzbek-latn (uz-Latn)

vai (vai)

vai-latin (vai-Latn)

vai-latn (vai-Latn)

vai-vai (vai-Vaii)

vai-vaii (vai-Vaii)

venda (ve)

vietnamese
ul

(vi)

volapuk (vo)

vunjo (vun)

walser (wae)

waray (war)

welsh
ul

(cy)

westernfrisian (fy)

wolaytta (wal)

wolof (wo)

xhosa (xh)

yangben (yav)

yiddish (yi)

yoruba (yo)

zarma (dje)

zulu (zu)

1.16 Selecting fonts

New 3.15 Babel provides a high level interface on top of fontspec to select fonts. There

is no need to load fontspec explicitly – babel does it for you with the first \babelfont.13

13See also the package combofont for a complementary approach.

25

[〈language-list〉]{〈font-family〉}[〈font-options〉]{〈font-name〉}\babelfont

NOTE See the note in the previous section about some issues in specific languages.

The main purpose of \babelfont is to define at once in a multilingual document the fonts

required by the different languages, with their corresponding language systems (script and

language). So, if you load, say, 4 languages, \babelfont{rm}{FreeSerif} defines 4 fonts

(with their variants, of course), which are switched with the language by babel. It is a tool

to make things easier and transparent to the user.

Here font-family is rm, sf or tt (or newly defined ones, as explained below), and font-name

is the same as in fontspec and the like.

If no language is given, then it is considered the default font for the family, activated when

a language is selected.

On the other hand, if there is one or more languages in the optional argument, the font will

be assigned to them, overriding the default one. Alternatively, you may set a font for a

script – just precede its name (lowercase) with a star (eg, *devanagari). With this optional

argument, the font is not yet defined, but just predeclared. This means you may define as

many fonts as you want ‘just in case’, because if the language is never selected, the

corresponding \babelfont declaration is just ignored.

Babel takes care of the font language and the font script when languages are selected (as

well as the writing direction); see the recognized languages above. In most cases, you will

not need font-options, which is the same as in fontspec, but you may add further key/value

pairs if necessary.

EXAMPLE Usage in most cases is very simple. Let us assume you are setting up a document

in Swedish, with some words in Hebrew, with a font suited for both languages.

luatex/xetex
\documentclass{article}

\usepackage[swedish, bidi=default]{babel}

\babelprovide[import]{hebrew}

\babelfont{rm}{FreeSerif}

\begin{document}

Svenska \foreignlanguage{hebrew}{ תירְִבעִ } svenska.

\end{document}

If on the other hand you have to resort to different fonts, you can replace the red line

above with, say:

luatex/xetex
\babelfont{rm}{Iwona}

\babelfont[hebrew]{rm}{FreeSerif}

\babelfont can be used to implicitly define a new font family. Just write its name instead

of rm, sf or tt. This is the preferred way to select fonts in addition to the three basic

families.

EXAMPLE Here is how to do it:

luatex/xetex
\babelfont{kai}{FandolKai}

Now, \kaifamily and \kaidefault, as well as \textkai are at your disposal.

NOTE You may load fontspec explicitly. For example:

26

luatex/xetex
\usepackage{fontspec}

\newfontscript{Devanagari}{deva}

\babelfont[hindi]{rm}{Shobhika}

This makes sure the OpenType script for Devanagari is deva and not dev2, in case it is

not detected correctly.

NOTE \fontspec is not touched at all, only the preset font families (rm, sf, tt, and the

like). If a language is switched when an ad hoc font is active, or you select the font with

this command, neither the script nor the language is passed. You must add them by

hand. This is by design, for several reasons —for example, each font has its own set of

features and a generic setting for several of them can be problematic, and also

preserving a “lower-level” font selection is useful.

NOTE Directionality is a property affecting margins, indentation, column order, etc., not

just text. Therefore, it is under the direct control of the language, which applies both the

script and the direction to the text. As a consequence, there is no need to set Script

when declaring a font with \babelfont (nor Language). In fact, it is even discouraged.

NOTE The keys Language and Script just pass these values to the font, and do not set the

script for the language (and therefore the writing direction). In other words, the ini file

or \babelprovide provides default values for \babelfont if omitted, but the opposite

is not true. See the note above for the reasons of this behavior.

WARNING Using \setxxxxfont and \babelfont at the same time is discouraged, but very

often works as expected. However, be aware with \setxxxxfont the language system

will not be set by babel and should be set with fontspec if necessary.

TROUBLESHOOTING Package fontspec Info: Language ’<lang>’ not explicitly supported

within font ’’ with script ’<script>’..

This is not and error. This info is shown by fontspec, not by babel. If everything is okay

in your document (and almost always it is), the best thing you can do is just to ignore it

altogether.

In some forums you can find the advice to set, more or less mechanically,

Language=Default. Do not follow it, because font features for the language will not be

applied, which can be relevant for many languages, like Urdu and Turkish. Set the

Language explicitly only if there is a reason to do it. If you really want to conceal this

message, use instead:

\PassOptionsToPackage{silent}{fontspec}

TROUBLESHOOTING Package babel Info: The following fonts are not babel standard

families.

This is not an error. babel assumes that if you are using \babelfont for a family, very

likely you want to define the rest of them. If you don’t, you can find some

inconsistencies between families. This checking is done at the beginning of the

document, at a point where we cannot know which families will be used.

Actually, there is no real need to use \babelfont in a monolingual document, if you set

the language system in \setmainfont (or not, depending on what you want).

As the message explains, there is nothing intrinsically wrong with not defining all the

families. In fact, there is nothing intrinsically wrong with not using \babelfont at all.

But you must be aware that this may lead to some problems.

NOTE \babelfont is a high level interface to fontspec, and therefore in xetex you can

apply Mappings. For example, there is a set of transliterations for Brahmic scripts by

Davis M. Jones. After installing them in you distribution, just set the map as you would

do with fontspec.

27

https://github.com/davidmjones/brahmic-maps

1.17 Modifying a language

Modifying the behavior of a language (say, the chapter “caption”), is sometimes necessary,

but not always trivial. In the case of caption names a specific macro is provided, because

this is perhaps the most frequent change:

{〈language-name〉}{〈caption-name〉}{〈string〉}\setlocalecaption

New 3.51⊕ Here caption-name is the name as string without the trailing name. An

example, which also shows caption names are often a stylistic choice, is:

\setlocalecaption{english}{contents}{Table of Contents}

This works not only with existing caption names, because it also serves to define new ones

by setting the caption-name to the name of your choice (name will be postpended). Captions

so defined or redefined behave with the ‘new way’ described in the following note.

NOTE There are a few alternative methods:

• With data import’ed from ini files, you can modify the values of specific keys, like:

\babelprovide[import, captions/listtable = Lista de tablas]{spanish}

(In this particular case, instead of the captions group you may need to modify the

captions.licr one.)

• The ‘old way’, still valid for many languages, to redefine a caption is the following:

\addto\captionsenglish{%

\renewcommand\contentsname{Foo}%

}

As of 3.15, there is no need to hide spaces with % (babel removes them), but it is

advisable to do so. This redefinition is not activated until the language is selected.

• The ‘new way’, which is found in bulgarian, azerbaijani, spanish, french,

turkish, icelandic, vietnamese and a few more, as well as in languages created

with \babelprovide and its key import, is:

\renewcommand\spanishchaptername{Foo}

This redefinition is immediate.

NOTE Do not redefine a caption in the following way:

\AtBeginDocument{\renewcommand\contentsname{Foo}}

The changes may be discarded with a language selector, and the original value restored.

Macros to be run when a language is selected can be add to \extras〈language〉:

\addto\extrasrussian{\mymacro}

There is a counterpart for code to be run when a language is unselected:

\noextras〈language〉.

28

https://latex3.github.io/babel/news/whats-new-in-babel-3.51.html

NOTE These macros (\captions〈language〉, \extras〈language〉) may be redefined, but

must not be used as such – they just pass information to babel, which executes them in

the proper context.

Another way to modify a language loaded as a package or class option is by means of

\babelprovide, described below in depth. So, something like:

\usepackage[danish]{babel}

\babelprovide[captions=da, hyphenrules=nohyphenation]{danish}

first loads danish.ldf, and then redefines the captions for danish (as provided by the ini

file) and prevents hyphenation. The rest of the language definitions are not touched.

Without the optional argument it just loads some additional tools if provided by the ini

file, like extra counters.

{〈locale-name〉}{〈codepoint〉}{〈output〉}\BabelUppercaseMapping

{〈locale-name〉}{〈codepoint〉}{〈output〉}\BabelLowercaseMapping

{〈locale-name〉}{〈codepoint〉}{〈output〉}\BabelTitlecaseMapping

New 3.90⊕ These macros are devised as a high level interface for declaring case

mappings, based on the locale name as declared by or with babel. They are the equivalent

of \DeclareUppercaseMapping, \DeclareLowercaseMapping, and

\DeclareTitlecaseMapping (see usrguide.pdf). The purpose is twofold: (1) a user-friendly

way to declare them, because often BCP 47 tags are not known (and sometimes can be

complex); (2) if for some reason the tag changes (eg, you decide to tag english as en-001

instead of en-US), the new mappings will be still assigned to that language.

EXAMPLE For Classical Latin (no need to know the tag is la-x-classic):

\BabelUppercaseMapping{classicallatin}{`u}{V}

NOTE There are still some rough edges when declaring a mapping with the x extension, or

when two babel languages share the same BCP 47 tag. These issues are expected be

sorted out in future releases.

1.18 Creating a language

New 3.10 And what if there is no style for your language or none fits your needs? You

may then define quickly a language with the help of the following macro in the preamble

(which may be used to modify an existing language, too, as explained in the previous

subsection).

[〈options〉]{〈language-name〉}\babelprovide

If the language 〈language-name〉 has not been loaded as class or package option and there

are no 〈options〉, it creates an “empty” one with some defaults in its internal structure: the

hyphen rules, if not available, are set to the current ones, left and right hyphen mins are

set to 2 and 3. In either case, caption, date and language system are not defined.

If no ini file is imported with import, 〈language-name〉 is still relevant because in such a

case the hyphenation and like breaking rules (including those for South East Asian and

CJK) are based on it as provided in the ini file corresponding to that name; the same

applies to OpenType language and script.

Conveniently, some options allow to fill the language, and babel warns you about what to

do if there is a missing string. Very likely you will find alerts like that in the log file:

29

https://latex3.github.io/babel/news/whats-new-in-babel-3.90.html

Package babel Warning: \chaptername not set for 'mylang'. Please,

(babel) define it after the language has been loaded

(babel) (typically in the preamble) with:

(babel) \setlocalecaption{mylang}{chapter}{..}

(babel) Reported on input line 26.

In most cases, you will only need to define a few macros. Note languages loaded on the fly

are not yet available in the preamble.

EXAMPLE If you need a language named arhinish:

\usepackage[danish]{babel}

\babelprovide{arhinish}

\setlocalecaption{arhinish}{chapter}{Chapitula}

\setlocalecaption{arhinish}{refname}{Refirenke}

\renewcommand\arhinishhyphenmins{22}

EXAMPLE Sometimes treating the IPA as a language makes sense:

\documentclass{article}

\usepackage[english]{babel}

\babelprovide{ipa}

\babelfont[ipa]{rm}{DejaVu Sans}

\begin{document}

Blah \foreignlanguage{ipa}{ɔːlˈðəʊ} Blah.

\end{document}

Then you can define shorthands, transforms (with luatex), and so on.

EXAMPLE Locales with names based on BCP 47 codes can be created with something like:

\babelprovide[import=en-US]{enUS}

Note, however, mixing ways to identify locales can lead to problems. For example, is yi

the name of the language spoken by the Yi people or is it the code for Yiddish?

The main language is not changed (danish in this example). So, you must add

\selectlanguage{arhinish} or other selectors where necessary.

If the language has been loaded as an argument in \documentclass or \usepackage, then

\babelprovide redefines the requested data.

〈language-tag〉import=

New 3.13 Imports data from an ini file, including captions and date (also line breaking

rules in newly defined languages). For example:

\babelprovide[import=hu]{hungarian}

Unicode engines load the UTF-8 variants, while 8-bit engines load the LICR (ie, with macros

like \' or \ss) ones.

New 3.23 It may be used without a value, and that is often the recommended option. In

such a case, the ini file set in the corresponding babel-〈language〉.tex (where 〈language〉
is the last argument in \babelprovide) is imported. See the list of recognized languages

above. So, the previous example is best written as:

30

\babelprovide[import]{hungarian}

There are 380 ini files for about 300 languages, with data taken from the ldf files and the

CLDR provided by Unicode. Not all languages in the latter are complete, and therefore

neither are the ini files. A few languages may show a warning about the current lack of

suitability of some features.

Besides \today, this option defines an additional command for dates: \〈language〉date,
which takes three arguments, namely, year, month and day numbers. In fact, \today calls

\〈language〉today, which in turn calls

\〈language〉date{\the\year}{\the\month}{\the\day}. New 3.44⊕ More convenient is

usually \localedate, with prints the date for the current locale.

〈language-tag〉captions=

Loads only the strings. For example:

\babelprovide[captions=hu]{hungarian}

〈language-list〉hyphenrules=

With this option, with a space-separated list of hyphenation rules, babel assigns to the

language the first valid hyphenation rules in the list. For example:

\babelprovide[hyphenrules=chavacano spanish italian]{chavacano}

If none of the listed hyphenrules exist, the default behavior applies. Note in this example

we set chavacano as first option, which can seem redundant, but without it, it would select

spanish even if chavacano exists.

A special value is +, which allocates a new language (in the TEX sense). It only makes sense

as the last value (or the only one; the subsequent ones are silently ignored). It is mostly

useful with luatex, because you can add some patterns with \babelpatterns, as for

example:

\babelprovide[hyphenrules=+]{neo}

\babelpatterns[neo]{a1 e1 i1 o1 u1}

In other engines it just suppresses hyphenation (because the pattern list is empty).

New 3.58⊕ Another special value is unhyphenated, which is an alternative to

justification=unhyphenated.

This valueless option makes the language the main one (thus overriding that set whenmain

babel is loaded). Only in newly defined languages.

EXAMPLE Let’s assume your document (xetex or luatex) is mainly in Polytonic Greek with

but with some sections in Italian. Then, the first attempt should be:

\usepackage[italian, greek.polutoniko]{babel}

But if, say, accents in Greek are not shown correctly, you can try

\usepackage[italian, polytonicgreek, provide=*]{babel}

Remerber there is an alternative syntax for the latter:

31

https://latex3.github.io/babel/news/whats-new-in-babel-3.44.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.58.html

\usepackage[italian]{babel}

\babelprovide[import, main]{polytonicgreek}

Finally, also remember you might not need to load italian at all if there are only a few

word in this language (see 1.3).

〈script-name〉script=

New 3.15 Sets the script name to be used by fontspec (eg, Devanagari). Overrides the

value in the ini file. If fontspec does not define it, then babel sets its tag to that provided by

the ini file. This value is particularly important because it sets the writing direction, so

you must use it if for some reason the default value is wrong.

〈language-name〉language=

New 3.15 Sets the language name to be used by fontspec (eg, Hindi). Overrides the value

in the ini file. If fontspec does not define it, then babel sets its tag to that provided by the

ini file. Not so important, but sometimes still relevant.

〈counter-name〉alph=

Assigns to \alph that counter. See the next section.

〈counter-name〉Alph=

Same for \Alph.

〈rules〉casing

New 3.90⊕ Selects the casing rules in a few languages. The first ones are predefined by

LATEX (see interface3.pdf), while the following are defined by babel:

Armenian yiwnmaps U+0587 to capital ech and yiwn on uppercasing.

German eszettmaps the lowercase Eszett to a großes Eszett.

Greek iota converts the ypogegrammeni (subscript muted iota) to capital iota when

uppercasing.

Latin nouv in classicallatin and medievallatin reverts the default rules, which maps

u � V; uv in ecclesianticallatin and the basic latin locale applies the map u � V (by

default it’s u � U and v � V).

EXAMPLE For the latter:

\usepackage[greek]{babel}

\babelprovide[casing=iota]{greek}

* * *

A few options (only luatex) set some properties of the writing system used by the language.

These properties are always applied to the script, no matter which language is active.

Although somewhat inconsistent, this makes setting a language up easier in most typical

cases.

32

https://latex3.github.io/babel/news/whats-new-in-babel-3.90.html

ids | fonts | lettersonchar=

New 3.38⊕ This option is much like an ‘event’ called when a character belonging to the

script of this locale is found (as its name implies, it acts on characters, not on spaces). There

are currently two ‘actions’, which can be used at the same time (separated by a space):

with ids the \language and the \localeid are set to the values of this locale; with fonts,

the fonts are changed to those of this locale (as set with \babelfont). Characters can be

added or modified with \babelcharproperty.

New 3.81⊕ Option letters restricts the ‘actions’ to letters, in the TEX sense (i. e., with

catcode 11). Digits and punctuation are then considered part of current locale (as set by a

selector). This option is useful when the main script in non-Latin and there is a secondary

one whose script is Latin.

NOTE An alternative approach with luatex and Harfbuzz is the font option

RawFeature={multiscript=auto}. It does not switch the babel language and therefore

the line breaking rules, but in many cases it can be enough.

NOTE There is no general rule to set the font for a punctuation mark, because it is a

semantic decision and not a typographical one. Consider the following sentence: “ کی , ود ,
and هس are Persian numbers”. In this case the punctuation font must be the English one,

even if the commas are surrounded by non-Latin letters. Quotation marks, parenthesis,

etc., are even more complex. Several criteria are possible, like the main language (the

default in babel), the first letter in the paragraph, or the surrounding letters, among

others, but even so manual switching can be still necessary.

〈base〉 〈shrink〉 〈stretch〉intraspace=

Sets the interword space for the writing system of the language, in em units (so, 0 .1 0 is

0em plus .1em). Like \spaceskip, the em unit applied is that of the current text (more

precisely, the previous glyph). Currently used only in Southeast Asian scripts, like Thai, and

CJK.

〈penalty〉intrapenalty=

Sets the interword penalty for the writing system of this language. Currently used only in

Southeast Asian scripts, like Thai. Ignored if 0 (which is the default value).

〈transform-list〉transforms=

See section 1.23.

unhyphenated | kashida | elongated | paddingjustification=

New 3.59⊕ There are currently 4 options. Note they are language dependent, so that

they will not be applied to other languages.

The first one (unhyphenated) activates a line breaking mode that allows spaces to be

stretched to arbitrary amounts. Although for European standards the result may look odd,

in some writing systems, like Malayalam and other Indic scripts, this has been the

customary (although not always the desired) practice. Because of that, no locale sets

currently this mode by default (Amharic is an exception). Unlike \sloppy, the \hfuzz and

the \vfuzz are not changed, because this line breaking mode is not really ‘sloppy’ (in other

words, overfull boxes are reported as usual).

The second and the third are for the Arabic script. It sets the linebreaking and justification

method, which can be based on the arabic tatweel character or in the ‘justification

alternatives’ OpenType table (jalt). For an explanation see the babel site.

New 3.81⊕ The option padding has been devised primarily for Tibetan. It’s still

somewhat experimental. Again, there is an explanation in the babel site.

33

https://latex3.github.io/babel/news/whats-new-in-babel-3.38.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.81.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.59.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.59.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.81.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.81.html

New 3.59⊕ Just a synonymous for justification. Depending on the language, thislinebreaking=

name can make more sense.

NOTE (1) If you need shorthands, you can define them with \useshorthands and

\defineshorthand as described above. (2) Captions and \today are “ensured” with

\babelensure (this is the default in ini-based languages).

1.19 Digits and counters

New 3.20 About thirty ini files define a field named digits.native. When it is present,

two macros are created: \〈language〉digits and \〈language〉counter (only xetex and

luatex). With the first, a string of ‘Latin’ digits are converted to the native digits of that

language; the second takes a counter name as argument. With the option maparabic in

\babelprovide, \arabic is redefined to produce the native digits (this is done globally, to

avoid inconsistencies in, for example, page numbering, and note as well dates do not rely

on \arabic.)

For example:

\babelprovide[import]{telugu}

% Or also, if you want:

% \babelprovide[import, maparabic]{telugu}

\babelfont{rm}{Gautami} % With luatex, better with Harfbuzz

\begin{document}

\telugudigits{1234}

\telugucounter{section}

\end{document}

Languages providing native digits in all or some variants are:

Arabic

Assamese

Bangla

Bhojpuri

Bodo

Burmese

Cantonese

Central Kurdish

Chinese

Dogri

Dzongkha

Gujarati

Haryanvi

Hindi

Hmong Njua

Kannada

Kashmiri

Khmer

Konkani

Korean

Lao

Maithili

Malayalam

Manipuri

Marathi

Mazanderani

Nepali

Northern

Kurdish

Northern Luri

Odia

Pashto

Persian

Punjabi

Rajasthani

Sanskrit

Santali

Sindhi

Tamil

Telugu

Thai

Tibetan

Urdu

Uyghur

Uzbek

Vai

New 3.30 With luatex there is an alternative approach for mapping digits, namely,

mapdigits. Conversion is based on the language and it is applied to the typeset text (not

math, PDF bookmarks, etc.) before bidi and fonts are processed (ie, to the node list as

generated by the TEX code). This means the local digits have the correct bidirectional

behavior (unlike Numbers=Arabic in fontspec, which is deprecated).

NOTE With xetex you can use the option Mapping when defining a font.

{〈style〉}{〈number〉}\localenumeral

{〈style〉}{〈counter〉}\localecounter

New 3.41⊕ Many ‘ini‘ locale files provide information about non-positional numerical

systems, based on those predefined in CSS. They only work with xetex and luatex and are

fully expandable (even inside an unprotected \edef). Currently, they are limited to

numbers below 10000.

There are several ways to use them (for the available styles in each language, see the list

below):

• \localenumeral{〈style〉}{〈number〉}, like \localenumeral{abjad}{15}

34

https://latex3.github.io/babel/news/whats-new-in-babel-3.59.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.41.html

• \localecounter{〈style〉}{〈counter〉}, like \localecounter{lower}{section}

• In \babelprovide, as an argument to the keys alph and Alph, which redefine what

\alph and \Alph print. For example:

\babelprovide[alph=alphabetic]{thai}

The styles are:

Ancient Greek lower.ancient, upper.ancient

Amharic afar, agaw, ari, blin, dizi, gedeo, gumuz, hadiyya, harari, kaffa, kebena,

kembata, konso, kunama, meen, oromo, saho, sidama, silti, tigre, wolaita, yemsa

Arabic abjad, maghrebi.abjad

Armenian lower.letter, upper.letter

Belarusan, Bulgarian, Church Slavic, Macedonian, Serbian lower, upper

Bangla alphabetic

Central Kurdish alphabetic

Chinese cjk-earthly-branch, cjk-heavenly-stem, circled.ideograph,

parenthesized.ideograph, fullwidth.lower.alpha, fullwidth.upper.alpha

Church Slavic (Glagolitic) letters

Coptic epact, lower.letters

French date.day (mainly for internal use).

Georgian letters

Greek lower.modern, upper.modern, lower.ancient, upper.ancient (all with keraia)

Hebrew letters (New 3.93⊕ if the language is loaded explicitly, also letters.plain,

letters.gershayim, letters.final)

Hindi alphabetic

Italian lower.legal, upper.legal

Japanese hiragana, hiragana.iroha, katakana, katakana.iroha, circled.katakana,

informal, formal, cjk-earthly-branch, cjk-heavenly-stem, circled.ideograph,

parenthesized.ideograph, fullwidth.lower.alpha, fullwidth.upper.alpha

Khmer consonant

Korean consonant, syllable, hanja.informal, hanja.formal, hangul.formal,

cjk-earthly-branch, cjk-heavenly-stem, circled.ideograph,

parenthesized.ideograph, fullwidth.lower.alpha, fullwidth.upper.alpha

Marathi alphabetic

Persian abjad, alphabetic

Russian lower, lower.full, upper, upper.full

Syriac letters

Tamil ancient

Thai alphabetic

Ukrainian lower , lower.full, upper , upper.full

New 3.45⊕ In addition, native digits (in languages defining them) may be printed with

the numeral style digits.

1.20 Dates

New 3.45⊕ When the data is taken from an ini file, you may print the date

corresponding to the Gregorian calendar and other lunisolar systems with the following

command.

[〈calendar=.., variant=.., convert〉]{〈year〉}{〈month〉}{〈day〉}\localedate

By default the calendar is the Gregorian, but an ini file may define strings for other

calendars: am (ethiopic), ar and ar-* (islamic), cop (coptic), fa (islamic, persian), he

(hebrew), hi (indian), th (buddhist). In the latter case, the three arguments are the year,

the month, and the day in those in the corresponding calendar. They are not the Gregorian

data to be converted (which means, say, 13 is a valid month number with

35

https://latex3.github.io/babel/news/whats-new-in-babel-3.93.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.45.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.45.html

calendar=hebrew and calendar=coptic). However, with the option convert it’s converted

(using internally the following command).

Even with a certain calendar there may be variants. In Kurmanji the default variant prints

something like 30. Çileya Pêşîn 2019, but with variant=izafa it prints 31’ê Çileya Pêşînê

2019.

The default calendar for a language can be set in \babelprovide, with the key calendar

(an empty value is the same as gregorian). In this case, \today always converts the date.

Variants are preceded by a dot, so that calendar = .genitive in serbian \today selects

the date in this variant (more explicitly is gregorian.genitive).

EXAMPLE By default, thai prints the date with \today in the Buddhist calendar, but if you

need a date in the Gregorian one, write:

\localedate[calendar=gregorian]{\year}{\month}{\day}

(Remember \year, \month and \day is the current Gregorian date, so no conversion is

necessary.)

EXAMPLE On the other hand (and following the CLDR), the preferred calendar in most

locales for Arabic is gregorian (in ar-SA is islamic-umalqura), so to set

islamic-civil as the default one:

\babelprovide[import, calendar=islamic-civil]{arabic}

[〈date〉]{〈calendar〉}{〈year-macro〉}〈month-macro〉〈day-macro〉\babelcalendar

New 3.76⊕ Although calendars aren’t the primary concern of babel, the package should

be able to, at least, generate correctly the current date in the way users would expect in

their own culture. Currently, \localedate can print dates in a few calendars (provided the

ini locale file has been imported), but year, month and day had to be entered by hand,

which is inconvenient. With this macro, the current date is converted and stored in the

three last arguments, which must be macros. Allowed calendars are:

buddhist

chinese

New 3.94⊕

coptic

ethiopic

hebrew

islamic-civil

islamic-umalqura

persian

The optional argument converts the given date, in the form ‘〈year〉-〈month〉-〈day〉’,
although for practical reasons most calendars accept only a restricted range of years.

Please, refer to the page on the news for 3.76 in the babel site for further details.

1.21 Accessing language info

\localename

\mainlocalename 1
\vskip

exenglish New 29.10⊕ The control sequence \localename contains the name of the

current locale. This is now the recommended way to retrieve the current language. In

addtion, \mainlocalename contains the main language.

\languagename is still used internally, but it is now discouraged at the user level.

WARNING Due to a bug, which lead to some internal inconsistencies in catcodes,

\languagename should not be used to test which is the current language. Rely on

\localename or, if you still need \languagename for some reason, on iflang, by Heiko

Oberdiek.

36

https://latex3.github.io/babel/news/whats-new-in-babel-3.76.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.94.html
https://latex3.github.io/babel/news/whats-new-in-babel-29.10.html

{〈language〉}{〈true〉}{〈false〉}\iflanguage

Here “language” is used in the TEX sense, as a set of hyphenation patterns, and not as its

babel name. The first argument is the name of a language.

* {〈field〉}\localeinfo

New 3.38⊕ If an ini file has been loaded for the current language, you may access the

information stored in it. This macro is fully expandable, and the available fields are:

name.english as provided by the Unicode CLDR.

tag.ini is the tag of the ini file (the way this file is identified in its name).

tag.bcp47 is the full BCP 47 tag (see the warning below). This is the value to be used for

the ‘real’ provided tag (babelmay fill other fields if they are considered necessary).

language.tag.bcp47 is the BCP 47 language tag.

tag.opentype is the tag used by OpenType (usually, but not always, the same as BCP 47).

script.name , as provided by the Unicode CLDR.

script.tag.bcp47 is the BCP 47 tag of the script used by this locale. This is a required

field for the fonts to be correctly set up, and therefore it should be always defined.

script.tag.opentype is the tag used by OpenType (usually, but not always, the same as

BCP 47).

region.tag.bcp47 is the BCP 47 tag of the region or territory. Defined only if the locale

loaded actually contains it (eg, es-MX does, but es doesn’t), which is how locales behave

in the CLDR. New 3.75⊕
variant.tag.bcp47 is the BCP 47 tag of the variant (in the BCP 47 sense, like 1901 for

German). New 3.75⊕
extension.〈s〉.tag.bcp47 is the BCP 47 value of the extension whose singleton is 〈s〉

(currently the recognized singletons are x, t and u). The internal syntax can be

somewhat complex, and this feature is still somewhat tentative. An example is

classicallatin which sets extension.x.tag.bcp47 to classic. New 3.75⊕

NOTE Currently, x is used for two separate functions, namely, identifying a babel locale

without a BCP47 tag and setting an alternative set of rules for casing.

WARNING New 3.46⊕ As of version 3.46 tag.bcp47 returns the full BCP 47 tag.

Formerly it returned just the language subtag, which was clearly counterintuitive.

New 3.75⊕ Sometimes, it comes in handy to be able to use \localeinfo in an

expandable way even if something went wrong (for example, the locale currently active is

undefined). For these cases, localeinfo* just returns an empty string instead of raising an

error. Bear in mind that babel, following the CLDR, may leave the region unset, which

means \getlocaleproperty*, described below, is the preferred command, so that the

existence of a field can be checked before. This also means building a string with the

language and the region with \localeinfo*{language.tab.bcp47}-

\localeinfo*{region.tab.bcp47} is not usually a good idea (because of the hyphen).

* {〈macro〉}{〈locale〉}{〈property〉}\getlocaleproperty

New 3.42⊕ The value of any locale property as set by the ini files (or added/modified

with \babelprovide) can be retrieved and stored in a macro with this command. For

example, after:

\getlocaleproperty\hechap{hebrew}{captions/chapter}

the macro \hechap will contain the string קרפ .

If the key does not exist, the macro is set to \relax and an error is raised.

New 3.47⊕ With the starred version no error is raised, so that you can take your own

actions with undefined properties.

37

https://latex3.github.io/babel/news/whats-new-in-babel-3.38.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.75.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.75.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.75.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.46.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.75.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.42.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.47.html

Each language in the babel sense has its own unique numeric identifier, which can be\localeid

retrieved with \localeid.

The \localeid is not the same as the \language identifier, which refers to a set of

hyphenation patterns (which, in turn, is just a component of the line breaking algorithm

described in the next section). The data about preloaded patterns are store in an internal

macro named \bbl@languages (see the code for further details), but note several locales

may share a single \language, so they are separated concepts. In luatex, the \localeid is

saved in each node (when it makes sense) as an attribute, too.

{〈language〉}\ShowLocaleProperties

New 3.98⊕ Prints to the log file all the loaded key/value pairs from the ini locale file for

〈language〉.

{〈code〉}\LocaleForEach

Babel remembers which ini files have been loaded. There is a loop named

\LocaleForEach to traverse the list, where #1 is the name of the current item, so that

\LocaleForEach{\message{ **#1** }} just shows the loaded ini’s.

New 3.75⊕ Previously, ini files were loaded only with \babelprovide and also whenensureinfo=off

languages are selected if there is a \babelfont or they have not been explicitly declared.

Now the ini files are loaded (and therefore the corresponding data) even if these two

conditions are not met (in previous versions you had to enable it with \BabelEnsureInfo

in the preamble). Because of the way this feature works, problems are very unlikely, but

there is switch as a package option to turn the new behavior off (ensureinfo=off).

1.22 Hyphenation and line breaking

Babel deals with three kinds of line breaking rules: Western, typically the LGC group,

South East Asian, like Thai, and CJK, but support depends on the engine: pdftex only deals

with the former, xetex also with the second one (although in a limited way), while luatex

provides basic rules for the latter, too. With luatex there are also tools for non-standard

hyphenation rules, explained in the next section.

* {〈type〉}\babelhyphen

* {〈text〉}\babelhyphen

New 3.9a It is customary to classify hyphens in two types: (1) explicit or hard hyphens,

which in TEX are entered as -, and (2) optional or soft hyphens, which are entered as \-.

Strictly, a soft hyphen is not a hyphen, but just a breaking opportunity or, in TEX terms, a

“discretionary”; a hard hyphen is a hyphen with a breaking opportunity after it. A further

type is a non-breaking hyphen, a hyphen without a breaking opportunity.

In TEX, - and \- forbid further breaking opportunities in the word. This is the desired

behavior very often, but not always, and therefore many languages provide shorthands for

these cases. Unfortunately, this has not been done consistently: for example, "- in Dutch,

Portuguese, Catalan or Danish is a hard hyphen, while in German, Spanish, Norwegian,

Slovak or Russian is a soft hyphen. Furthermore, some of them even redefine \-, so that

you cannot insert a soft hyphen without breaking opportunities in the rest of the word.

Therefore, some macros are provided with a set of basic “hyphens” which can be used by

themselves, to define a user shorthand, or even in language files.

• \babelhyphen{soft} and \babelhyphen{hard} are self explanatory.

• \babelhyphen{repeat} inserts a hard hyphen which is repeated at the beginning of the

next line, as done in languages like Polish, Portuguese and Spanish.

• \babelhyphen{nobreak} inserts a hard hyphen without a break after it (even if a space

follows).

38

https://latex3.github.io/babel/news/whats-new-in-babel-3.98.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.75.html

• \babelhyphen{empty} inserts a break opportunity without a hyphen at all.

• \babelhyphen{〈text〉} is a hard “hyphen” using 〈text〉 instead. A typical case is

\babelhyphen{/}.

With all of them, hyphenation in the rest of the word is enabled. If you don’t want to

enable it, there is a starred counterpart: \babelhyphen*{soft} (which in most cases is

equivalent to the original \-), \babelhyphen*{hard}, etc.

Note hard is also good for isolated prefixes (eg, anti-) and nobreak for isolated suffixes (eg,

-ism), but in both cases \babelhyphen*{nobreak} is usually better.

There are also some differences with LATEX: (1) the character used is that set for the current

font, while in LATEX it is hardwired to - (a typical value); (2) the hyphen to be used in fonts

with a negative \hyphenchar is -, like in LATEX, but it can be changed to another value by

redefining \babelnullhyphen; (3) a break after the hyphen is forbidden if preceded by a

glue>0 pt (at the beginning of a word, provided it is not immediately preceded by, say, a

parenthesis).

[〈language〉,〈language〉,...]{〈exceptions〉}\babelhyphenation

New 3.9a Sets hyphenation exceptions for the languages given or, without the optional

argument, for all languages (eg, proper nouns or common loan words, and of course

monolingual documents). Multiple declarations work much like \hyphenation (last wins),

but language exceptions take precedence over global ones.

It can be used only in the preamble, and exceptions are set when the language is first

selected, thus taking into account changes of \lccodes’s done in \extras〈language〉 as
well as the language-specific encoding (not set in the preamble by default). Multiple

\babelhyphenation’s are allowed. For example:

\babelhyphenation{Wal-hal-la Dar-bhan-ga}

Listed words are saved expanded and therefore it relies on the LICR. Of course, it also

works without the LICR if the input and the font encodings are the same, like in Unicode

based engines.

NOTE Using \babelhyphenation with Southeast Asian scripts is mostly pointless. But with

\babelpatterns (below) you may fine-tune line breaking (only luatex). For example:

\babelpatterns[thai]{ศึก2ษา}

Even if there are no patterns for the language, you can add at least some typical cases.

NOTE Use \babelhyphenation instead of \hyphenation to set hyphenation exceptions in

the preamble before any language is explicitly set with a selector. In the preamble the

hyphenation rules are not always fully set up and an error can be raised.

[〈language〉,〈language〉,...]{〈patterns〉}\babelpatterns

New 3.9m In luatex only,14 adds or replaces patterns for the languages given or, without

the optional argument, for all languages. If a pattern for a certain combination already

exists, it gets replaced by the new one.

It can be used only in the preamble, and patterns are added when the language is first

selected, thus taking into account changes of \lccodes’s done in \extras〈language〉 as
well as the language-specific encoding (not set in the preamble by default). Multiple

\babelpatterns’s are allowed.

14With luatex exceptions and patterns can be modified almost freely. However, this is very likely a task for a

separate package and babel only provides the most basic tools.

39

Listed patterns are saved expanded and therefore it relies on the LICR. Of course, it also

works without the LICR if the input and the font encodings are the same, like in Unicode

based engines.

New 3.31 (Only luatex.) With \babelprovide and imported CJK languages, a simple

generic line breaking algorithm (push-out-first) is applied, based on a selection of the

Unicode rules (New 3.32 it is disabled in verbatim mode, or more precisely when the

hyphenrules are set to nohyphenation). It can be activated alternatively by setting

explicitly the intraspace.

New 3.27 Interword spacing for Thai, Lao and Khemer is activated automatically if a

language with one of those scripts are loaded with \babelprovide. See the sample on the

babel repository. With both Unicode engines, spacing is based on the “current” em unit (the

size of the previous char in luatex, and the font size set by the last \selectfont in xetex).

NOTE With Unicode engines, a line break can happen just before an explicit combining

char (eg, g,̃ used in Guarani and Filipino, is not included as a combined char and it’s

represented in Unicode as U+0067 U+0303. This issue is not directly related to babel, but

to the hyphenation patterns and/or the font renderer. However, at least with luatex

there is a workaround (change the language name to what you are using):

\babelposthyphenation{guarani}{ | [{0300}-{036F}] }{ remove, {} }

The Lua pattern means ‘a discretionary followed by a character in the range

U+0300–U+0367 (which contains combining chars)’. An alternative to a transform is

\babelpatterns.

* [〈language〉,〈language〉,...]{〈left〉}{〈right〉}[〈hyphenationmin〉]\babelhyphenmins

New 24.10⊕ See the news page for the rationale for this commands. It sets the

corresponding values for the given languages (all languages without the optional

argument). With the star, the values are also applied immediately (the optional argument

and the star are currently incompatible). The optional argument is available only in luatex.

EXAMPLE You are typesetting a book with wide lines and want to limit the number of

hyphens in all languages:

\babelhyphenmins{3}{4}

But there are also some 3-column text and you want to be more flexible:

\begin{multicols}{3}

\babelhyphenmins*{2}{3}

...

\end{multicols}

{〈language〉} … \end{hyphenrules}\begin{hyphenrules}

The environment hyphenrules can be used to select only the hyphenation rules to be used

(it can be used as command, too). This can for instance be used to select ‘nohyphenation’,

provided that in language.dat the ‘language’ nohyphenation is defined by loading

zerohyph.tex. It deactivates language shorthands, too (but not user shorthands).

Except for these simple uses, hyphenrules is deprecated and otherlanguage* (the starred

version) is preferred, because the former does not take into account possible changes in

encodings of characters like, say, ' done by some languages (eg, italian, french, ukrainian).

40

https://latex3.github.io/babel/news/whats-new-in-babel-24.10.html

1.23 Transforms

Transforms (only luatex) provide a way to process the text on the typesetting level in

several language-dependent ways, like non-standard hyphenation, special line breaking

rules, script to script conversion, spacing conventions and so on.15

It currently embraces \babelprehyphenation and \babelposthyphenation.

New 3.57⊕ Several ini files predefine some transforms. They are activated with the key

transforms in \babelprovide, either if the locale is being defined with this macro or the

languages has been previously loaded as a class or package option, as the following

example illustrates:

\usepackage[hungarian]{babel}

\babelprovide[transforms = digraphs.hyphen]{hungarian}

New 3.67⊕ Transforms predefined in the ini locale files can be made

attribute-dependent, too. When an attribute between parenthesis is inserted subsequent

transforms will be assigned to it (up to the list end or another attribute). For example, and

provided an attribute called \withsigmafinal has been declared:

transforms = transliteration.omega (\withsigmafinal) sigma.final

This applies transliteration.omega always, but sigma.final only when

\withsigmafinal is set.

Here are the transforms currently predefined. (A few may still require some fine-tuning.

More to follow in future releases.)

digits.native New 24.9⊕ An alternative to mapdigits,

available in the same locales. This transform

is applied before the first prehyphen-

ation, while mapdigits is applied after

the last posthyphenation. Another differ-

ence is mapdigits cannot be disabled in

the middle of a paragraph. (This trans-

form is not declared explicitly in ini files.

Instead, it’s defined by babel if the key

numbers/digits.native exists.)

Arabic transliteration.dad Applies the transliteration system devised by

Yannis Haralambous for dad (simple and TEX-

friendly). Not yet complete, but sufficient for

most texts.

Croatian digraphs.ligatures Ligatures DŽ, Dž, dž, LJ, Lj, lj, NJ, Nj, nj. It

assumes they exist. This is not the recom-

mended way to make these transformations

(the best way is with OTF features), but it can

get you out of a hurry.

Croatian,

Czech, Polish,

Portuguese,

Slovak,

Spanish

hyphen.repeat Explicit hyphens behave like \babelhyphen

{repeat}.

Czech, Polish,

Slovak

oneletter.nobreak Converts a space after a non-syllabic prepo-

sition or conjunction into a non-breaking

space.

15They are similar in concept, but not the same, as those in Unicode. The main inspiration for this feature is the

Omega transformation processes.

41

https://latex3.github.io/babel/news/whats-new-in-babel-3.57.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.67.html
https://latex3.github.io/babel/news/whats-new-in-babel-24.9.html

Finnish prehyphen.nobreak Line breaks just after hyphens prepended to

words are prevented, like in “pakastekaapit

ja -arkut”.

French punctuation.space Rules for proper spacing with characters

;:!?«» are applied.

Greek diaeresis.hyphen Removes the diaeresis above iota and upsilon

if hyphenated just before. It works with the

three variants.

Greek transliteration.omega Although the provided combinations are not

the full set, this transform follows the syn-

tax of Omega: = for the circumflex, v for

digamma, and so on. For better compatibility

with Levy’s system, ~ (as ‘string’) is an alter-

native to =. ' is tonos inMonotonic Greek, but

oxia in Polytonic and Ancient Greek.

Greek sigma.final The transliteration system above does not

convert the sigma at the end of a word (on

purpose). This transforms does it. To prevent

the conversion (an abbreviation, for exam-

ple), write "s.

Hebrew,

Yiddish

transliteration.cj A transliteration system based on that de-

vised by Christian Justen for ‘cjhebrew‘. Fi-

nal letters are not converted, and the furtive

patah is not shifted.

Hindi, Sanskrit transliteration.hk The Harvard-Kyoto system to romanize De-

vanagari.

Hindi, Sanskrit punctuation.space Inserts a space before the following four

characters: !?:; .

Hungarian digraphs.hyphen Hyphenates the long digraphs ccs, ddz, ggy,

lly, nny, ssz, tty and zzs as cs-cs, dz-dz, etc.

Indic scripts danda.nobreak Prevents a line break before a danda or

double danda if there is a space. For As-

samese, Bengali, Gujarati, Hindi, Kannada,

Malayalam, Marathi, Odia, Tamil, Telugu.

Latin digraphs.ligatures Replaces the groups ae, AE, oe, OE with æ,Æ,

œ,Œ.

Latin letters.noj Replaces j, J with i, I.

Latin letters.uv Replaces v, U with u, V.

Sanskrit transliteration.iast The IAST system to romanize Devanagari.16

Serbian transliteration.gajica (Note serbian with ini files refers to the

Cyrillic script, which is here the target.) The

standard system devised by Ljudevit Gaj.

Arabic,

Persian

kashida.plain Experimental. A very simple and basic trans-

form for ‘plain’ Arabic fonts, which attempts

to distribute the tatwil as evenly as possible

(starting at the end of the line). See the news

for version 3.59.

Arabic,

Persian

kashida.base Experimental New 3.94⊕ . Much like the

previous one, but with diacritics stacked in

the actual base character and not the kashida

extension. With evenly inserted tatweels re-

sults are better.

42

https://latex3.github.io/babel/news/whats-new-in-babel-3.94.html

[〈options〉]{〈hyphenrules-name〉}{〈lua-pattern〉}{〈replacement〉}\babelposthyphenation

New 3.37-3.39⊕ With luatex it is possible to define non-standard hyphenation rules, like

f-f→ ff-f, repeated hyphens, ranked ruled (or more precisely, ‘penalized’ hyphenation

points), and so on. A few rules are currently provided (see above), but they can be defined

as shown in the following example, where {1} is the first captured char (between () in the

pattern):

\babelposthyphenation{german}{([fmtrp]) | {1}}

{

{ no = {1}, pre = {1}{1}- }, % Replace first char with disc

remove, % Remove automatic disc (2nd node)

{} % Keep last char, untouched

}

In the replacements, a captured char may be mapped to another, too. For example, if the

first capture reads ([ΐΰ]), the replacement could be {1|ΐΰ|ίύ}, which maps ΐ to ί, and ΰ

to ύ, so that the diaeresis is removed.

This feature is activated with the first \babelposthyphenation or \babelprehyphenation.

New 3.85⊕ Another option is label, which takes a value similar to those in

\babelprovide key transforms (in fact, the latter just applies this option). This label can

be used to turn on and off transforms with a higher level interface, by means of

\enablelocaletransform and \disablelocaletransform (see below).

New 3.85⊕ When used in conjunction with label, this key makes a transform font

dependent. As an example, the rules for Arabic kashida can differ depending on the font

design. The value consists in a list of space-separated font tags:

\babelprehyphenation[label=transform.name, fonts=rm sf]{..}{..}

Tags can adopt two forms: a family, such as rm or tt, or the set family/series/shape. If a font

matches one of these conditions, the transform is enabled. The second tag in rm rm/n/it is

redundant. There are no wildcards; so, for italics you may want to write something like

sf/m/it sf/b/it.

Transforms set for specific fonts (at least once in any language) are always reset with a font

selector.

In \babelprovide, transform labels can be tagged before its name, with a list separated

with colons, like:

transforms = rm:sf:transform.name

New 3.67⊕ With the optional argument you can associate a user defined transform to an

attribute, so that it’s active only when it’s set (currently its attribute value is ignored). With

this mechanism transforms can be set or unset even in the middle of paragraphs, and

applied to single words. To define, set and unset the attribute, the LaTeX kernel provides

the macros \newattribute, \setattribute and \unsetattribute. The following example

shows how to use it, provided an attribute named \latinnoj has been declared:

\babelprehyphenation[attribute=\latinnoj]{latin}{ J }{ string = I }

See the babel site for a more detailed description and some examples. It also describes a

few additional replacement types (string, penalty).

Although the main purpose of this command is non-standard hyphenation, it may actually

be used for other transformations (after hyphenation is applied, so you must take

discretionaries into account).

You are limited to substitutions as done by lua, although a future implementation may

alternatively accept lpeg.

43

https://latex3.github.io/babel/news/whats-new-in-babel-3.37.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.85.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.85.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.67.html
https://latex3.github.io/babel/guides/non-standard-hyphenation-with-luatex.html

[〈options〉]{〈locale-name〉}{〈lua-pattern〉}{〈replacement〉}\babelprehyphenation

New 3.44-3-52⊕ It is similar to the latter, but (as its name implies) applied before

hyphenation, which is particularly useful in transliterations. There are other differences:

(1) the first argument is the locale instead of the name of the hyphenation patterns; (2) in

the search patterns = has no special meaning, while | stands for an ordinary space; (3) in

the replacement, discretionaries are not accepted.

See the description above for the optional argument.

This feature is activated with the first \babelposthyphenation or \babelprehyphenation.

EXAMPLE You can replace a character (or series of them) by another character (or series

of them). Thus, to enter ž as zh and š as sh in a newly created locale for transliterated

Russian:

\babelprovide[hyphenrules=+]{russian-latin} % Create locale

\babelprehyphenation{russian-latin}{([sz])h} % Create rule

{

string = {1|sz|šž},

remove

}

EXAMPLE The following rule prevent the word “a” from being at the end of a line:

\babelprehyphenation{english}{|a|}

{}, {}, % Keep first space and a

{ insert, penalty = 10000 }, % Insert penalty

{} % Keep last space

}

NOTE With luatex there is another approach to make text transformations, with the

function fonts.handlers.otf.addfeature, which adds new features to an OTF font

(substitution and positioning). These features can be made language-dependent, and

babel by default recognizes this setting if the font has been declared with \babelfont.

The transformsmechanism supplements rather than replaces OTF features.

With xetex, where transforms are not available, there is still another approach, with

font mappings, mainly meant to perform encoding conversions and transliterations.

Mappings, however, are linked to fonts, not to languages.

{〈label〉}\enablelocaletransform

{〈label〉}\disablelocaletransform

New 3.85⊕ Enables and disables the transform with the given label in the current

language.

1.24 Support for xetex interchar

New 3.97⊕ A few macros are provided to deal with locale dependent inter-character

rules (aka ‘interchar’).

{〈locale〉}{〈name〉}{〈char-list〉}\babelcharclass

Declares a new character class, which is assigned to the characters in {〈char-list〉}, entered
either as characters or in macro form (eg, \}). If you need to enter them by their numeric

value, use the TEX ^-notation (eg, ^^^^1fa0). Ranges are allowed, with a hyphen

(eg, .,;a-zA-Z). If you need the hyphen to be assigned a class, write it at the very

beginning of the list.

There are several predefined ‘global’ classes, namely default, cjkideogram,

cjkleftpunctuation, cjkrightpunctuation, boundary, and ignore, which are described

in the xetexmanual. These classes are used by the linebreak.basic, described below.

44

https://latex3.github.io/babel/news/whats-new-in-babel-3.44.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.85.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.97.html

[〈options〉]{〈locale〉} {〈class-first〉}{〈class-second〉}{〈code〉}\babelinterchar

{〈class-first〉} and {〈class-second〉} can be comma separated lists of char classes, and all

combinations are defined (so that 2 first classes with 2 second classes, define 4

combinations). In the 〈options〉 field a key named label is available, which allows to

enable or to disable the rule with the following two commands. Like prehyphenation

transforms in luatex, interchars are not applied if the current hyphenation rules are

nohyphenation.

{〈label〉}\enablelocaleinterchar

{〈label〉}\disablelocaleinterchar

Enable or disable the interchar rules with the given label for the current language.

EXAMPLE Not very useful, but illustrative (taken from the unfortunately obsolete interchar

package, by Zou Ho), to colorize the letters ‘x’ and ‘y’ (this way to group text is usually

not a good idea, however).

\usepackage{color}

\babelcharclass{english}{colored}{xy}

\babelinterchar{english}{default, boundary}{colored}{\bgroup\color{red}}

\babelinterchar{english}{colored}{default, boundary}{\egroup}

A more realistic example follows, which inserts a thin space between a digit and a

percent sign. Note the former is entered as a range, and the latter in command form:

\babelcharclass{english}{digit}{0-9}

\babelcharclass{english}{percent}{\%}

\babelinterchar[label=percent]{english}{digit}{percent}{\,}

WARNING Keep in mind two points: (1) a character can be assigned a single class; this is a

limitation in the interchar mechanisms that often leads to incompatibilities; (2) since

the character classes set with \babelcharclass are saved (so that they can be

restored), there is a limit in the number of characters in the {〈char-list〉} (which,

however, must be large enough for many uses).

〈interchar-list〉interchar=

New 24.1⊕ This key in \babelprovide activates predefined rules for the ‘provided’

locale. Currently the following interchar’s are defined:

Cantonese,

Chinese,

Japanese,

Korean

linebreak.basic New 24.4⊕ Basic settings for CJKdefined in

(plain) xetex. See the linked news page for de-

tails.

French punctuation.space Rules for proper spacing with characters

;:!?«» are applied.

WARNING This feature requires import.

NOTE You can use transforms and interchar at the same time. Only the relevant key for

the current engine is taken into account.

1.25 Selection based on BCP 47 tags

New 3.43⊕ The recommended way to select languages is that described at the beginning

of this document. However, BCP 47 tags are becoming customary, particularly in

45

https://latex3.github.io/babel/news/whats-new-in-babel-24.1.html
https://latex3.github.io/babel/news/whats-new-in-babel-24.4.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.43.html

documents (or parts of documents) generated by external sources, and therefore babelwill

provide a set of tools to select the locales in different situations, adapted to the particular

needs of each case. Currently, babel provides autoloading of locales as described in this

section. In these contexts autoloading is particularly important because we may not know

on beforehand which languages will be requested.

It must be activated explicitly, because it is primarily meant for special tasks. Mapping

from BCP 47 codes to locale names are not hardcoded in babel. Instead the data is taken

from the ini files, which means currently about 250 tags are already recognized. Babel

performs a simple lookup in the following way: fr-Latn-FR→ fr-Latn→ fr-FR→ fr.

Languages with the same resolved name are considered the same. Case is normalized

before, so that fr-latn-fr→ fr-Latn-FR. If a tag and a name overlap, the tag takes

precedence.

Here is a minimal example:

\documentclass{article}

\usepackage[danish]{babel}

\babeladjust{

autoload.bcp47 = on,

autoload.bcp47.options = import

}

\begin{document}

Chapter in Danish: \chaptername.

\selectlanguage{de-AT}

\localedate{2020}{1}{30}

\end{document}

Currently the locales loaded are based on the ini files and decoupled from the main ldf

files. This is by design, to ensure code generated externally produces the same result

regardless of the languages requested in the document, but an option to use the ldf

instead will be added in a future release, because both options make sense depending on

the particular needs of each document (there will be some restrictions, however).

The behaviour is adjusted with \babeladjust with the following parameters:

autoload.bcp47 with values on and off.

autoload.bcp47.options, which are passed to \babelprovide; empty by default, but

you may add import (features defined in the corresponding babel-...tex file might

not be available).

autoload.bcp47.prefix. Although the public name used in selectors is the tag, the

internal name will be different and generated by prepending a prefix, which by default

is bcp47-. You may change it with this key.

New 3.46⊕ If an ldf file has been loaded, you can enable the corresponding language

tags as selector names with:

\babeladjust{ bcp47.toname = on }

(You can deactivate it with off.) So, if dutch is one of the package (or class) options, you

can write \selectlanguage{nl}. Note the language name does not change (in this

example is still dutch), but you can get it with \localeinfo or \getlocaleproperty. It

must be turned on explicitly for similar reasons to those explained above.

46

https://latex3.github.io/babel/news/whats-new-in-babel-3.46.html

1.26 Selecting scripts

Currently babel provides no standard interface to select scripts, because they are best

selected with either \fontencoding (low-level) or a language name (high-level). Even the

Latin script may require different encodings (ie, sets of glyphs) depending on the language,

and therefore such a switch would be in a sense incomplete.17

Some languages sharing the same script define macros to switch it (eg, \textcyrillic),

but be aware they may also set the language to a certain default. Even the babel core

defined \textlatin, but is was somewhat buggy because in some cases it messed up

encodings and fonts (for example, if the main Latin encoding was LY1), and therefore it has

been deprecated.18

{〈text〉}\ensureascii

New 3.9i This macro makes sure 〈text〉 is typeset with a LICR-savvy encoding in the

ASCII range. It is used to redefine \TeX and \LaTeX so that they are correctly typeset even

with LGR or X2 (the complete list is stored in \BabelNonASCII, which by default is LGR, LGI,

X2, OT2, OT3, OT6, LHE, LWN, LMA, LMC, LMS, LMU, but you can modify it). So, in some sense it

fixes the bug described in the previous paragraph.

If non-ASCII encodings are not loaded (or no encoding at all), it is no-op (also \TeX and

\LaTeX are not redefined); otherwise, \ensureascii switches to the encoding at the

beginning of the document if ASCII-savvy, or else the last ASCII-savvy encoding loaded. For

example, if you load LY1,LGR, then it is set to LY1, but if you load LY1,T2A it is set to T2A.

The symbol encodings TS1, T3, and TS3 are not taken into account, since they are not used

for “ordinary” text (they are stored in \BabelNonText, used in some special cases when no

Latin encoding is explicitly set).

The foregoing rules (which are applied “at begin document”) cover most of the cases. No

assumption is made on characters above 127, which may not follow the LICR conventions –

the goal is just to ensure most of the ASCII letters and symbols are the right ones.

1.27 Selecting directions

No macros to select the writing direction are provided, either – writing direction is

intrinsic to each script and therefore it is best set by the language (which can be a dummy

one). Furthermore, there are in fact two right-to-left modes, depending on the language,

which differ in the way ‘weak’ numeric characters are ordered (eg, Arabic %123 vs Hebrew

123%).

WARNING The current code for text in luatex should be considered essentially stable, but,

of course, it is not bug-free and there can be improvements in the future, because

setting bidi text has many subtleties (see for example

<https://www.w3.org/TR/html-bidi/>). A basic stable version for other engines must wait.

This applies to text; there is a basic support for graphical elements, including the

picture environment (with pict2e) and pfg/tikz. Also, indexes and the like are under

study, as well as math (there are progresses in the latter, including amsmath and

mathtools too, but for example gatheredmay fail).

An effort is being made to avoid incompatibilities in the future (this one of the reason

currently bidi must be explicitly requested as a package option, with a certain bidi

model, and also the layout options described below).

WARNING If characters to be mirrored are shown without changes with luatex, try with

the following line:

17The so-called Unicode fonts do not improve the situation either. So, a font suited for Vietnamese is not neces-

sarily suited for, say, the romanization of Indic languages, and the fact it contains glyphs for Modern Greek does

not mean it includes them for Classic Greek.
18But still defined for backwards compatibility.

47

\babeladjust{bidi.mirroring=off}

There are some package options controlling bidi writing.

default | basic | basic-r | bidi-l | bidi-rbidi=

New 3.14 Selects the bidi algorithm to be used.

With default the bidi mechanism is just activated (by default it is not), but every change

must be marked up. In pdftex this is the only option. If the RL text only consists of letters

and punctuation, it will be fine in most cases, but numbers, for example, will be rendered

in the wrong order.

In luatex, the preferred method is basic, which supports both L and R text. basic-r was a

first attempt to create a bidi algorithm and provides a simple and fast method for R text in

some typical cases. (They are named basicmainly because they only consider the intrinsic

direction of scripts and weak directionality.)

In xetex, bidi-r and bidi-l resort to the package bidi (by Vafa Khalighi). For RL

documents use the former, and for LR ones use the latter.

WARNING This package patches heavily lots of macros and packages even if the RL script

is not the main one, which can lead to some surprising results, so for short and simple

texts (letters and punctuation) the defaultmethod is more often than not much

preferable.

There are samples on GitHub, under /required/babel/samples. See particularly

lua-bidibasic.tex and lua-secenum.tex.

EXAMPLE The following text comes from the Arabic Wikipedia (article about Arabia).

Copy-pasting some text from the Wikipedia is a good way to test this feature. Remember

basic is available in luatex only.

\documentclass{article}

\usepackage[bidi=basic]{babel}

\babelprovide[import, main]{arabic}

\babelfont{rm}{FreeSerif}

\begin{document}

ـب)يقيرغلاا(ينيليهلارصعلاةليطبرعلاةريزجهبشتفرعدقو

ArabiaوأAravia)ةيقيرغلاابΑραβία(،ثلاثنامورلامدختسا

اهنألاإ،ةيبرعلاةريزجلاهبشنمقطانمثلاثىلع”Arabia“ـبتائداب

.مويلاهيلعفرعتاممربكأتناكًةقيقح

\end{document}

EXAMPLE With bidi=basic both L and R text can be mixed without explicit markup (the

latter will be only necessary in some special cases where the Unicode algorithm fails). It

is used much like bidi=basic-r, but with R text inside L text you may want to map the

font so that the correct features are in force. This is accomplished with an option in

\babelprovide, as illustrated:

\documentclass{book}

\usepackage[english, bidi=basic]{babel}

48

\babelprovide[onchar=ids fonts]{arabic}

\babelfont{rm}{Crimson}

\babelfont[*arabic]{rm}{FreeSerif}

\begin{document}

Most Arabic speakers consider the two varieties to be two registers

of one language, although the two registers can be referred to in

Arabic as رصعلاىحصف \textit{fuṣḥā l-ʻaṣr} (MSA) and

ثارتلاىحصف \textit{fuṣḥā t-turāth} (CA).

\end{document}

In this example, and thanks to onchar=ids fonts, any Arabic letter (because the

language is arabic) changes its font to that set for this language (here defined via

*arabic, because Crimson does not provide Arabic letters).

NOTE Boxes are “black boxes”. Numbers inside an \hbox (for example in a \ref) do not

know anything about the surrounding chars. So, \ref{A}-\ref{B} are not rendered in

the visual order A-B, but in the wrong one B-A (because the hyphen does not “see” the

digits inside the \hbox’es). If you need \ref ranges, the best option is to define a

dedicated macro like this (to avoid explicit direction changes in the body; here \texthe

must be defined to select the main language):

\newcommand\refrange[2]{\babelsublr{\texthe{\ref{#1}}-\texthe{\ref{#2}}}}

In the future a more complete method, reading recursively boxed text, may be added.

sectioning | counters | lists | contents | footnotes | captions | columns | graphics |layout=

extras

New 3.16 To be expanded. Selects which layout elements are adapted in bidi documents,

including some text elements (except with options loading the bidi package, which

provides its own mechanism to control these elements). You may use several options with

a space-separated list, like layout=counters contents sectioning (in

New 3.85⊕ spaces are to be preferred over dots, which was the former syntax). This list

will be expanded in future releases. Note not all options are required by all engines.

sectioning makes sure the sectioning macros are typeset in the main language, but with

the title text in the current language (see below \BabelPatchSection for further

details).

counters required in all engines (except luatex with bidi=basic) to reorder section

numbers and the like (eg, 〈subsection〉.〈section〉); required in xetex and pdftex for

counters in general, as well as in luatex with bidi=default; required in luatex for

numeric footnote marks>9 with bidi=basic-r (but not with bidi=basic); note,

however, it can depend on the counter format.

With counters, \arabic is not only considered L text always (with \babelsublr, see

below), but also an “isolated” block which does not interact with the surrounding chars.

So, while 1.2 in R text is rendered in that order with bidi=basic (as a decimal

number), in \arabic{c1}.\arabic{c2} the visual order is c2.c1. Of course, you may

always adjust the order by changing the language, if necessary.

New 3.84⊕ Since \thepage is (indirectly) redefined, makeindex will reject many

entries as invalid. With counters* babel attempts to remove the conflicting macros.

lists required in xetex and pdftex, but only in bidirectional (with both R and L

paragraphs) documents in luatex.

49

https://latex3.github.io/babel/news/whats-new-in-babel-3.85.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.84.html

WARNING As of April 2019 there is a bug with \parshape in luatex (a TEX primitive)

which makes lists to be horizontally misplaced if they are inside a \vbox (like

minipage) and the current direction is different from the main one. A workaround

is to restore the main language before the box and then set the local one inside.

contents required in xetex and pdftex; in luatex toc entries are R by default if the main

language is R.

columns required in xetex and pdftex to reverse the column order (currently only the

standard two-column mode); in luatex they are R by default if the main language is R

(includingmulticol).

footnotes not required in monolingual documents, but it may be useful in bidirectional

documents (with both R and L paragraphs) in all engines; you may use alternatively

\BabelFootnote described below (what this option does exactly is also explained

there).

captions is similar to sectioning, but for \caption; not required in monolingual

documents with luatex, but may be required in xetex and pdftex in some styles (support

for the latter two engines is still experimental) New 3.18 .

tabular required in luatex for R tabular, so that the first column is the right one (it has

been tested only with simple tables, so expect some readjustments in the future);

ignored in pdftex or xetex (which will not support a similar option in the short term). It

patches an internal command, so it might be ignored by some packages and classes (or

even raise an error). New 3.18 .

graphics modifies the picture environment so that the whole figure is L but the text is R.

It does not work with the standard picture, and pict2e is required. It attempts to do the

same for pgf/tikz. Somewhat experimental. New 3.32 .

extras is used for miscellaneous readjustments which do not fit into the previous groups.

Currently redefines in luatex \underline and \LaTeX2e New 3.19 .

EXAMPLE Typically, in an Arabic document you would need:

\usepackage[bidi=basic,

layout=counters tabular]{babel}

{〈lr-text〉}\babelsublr

Digits in pdftexmust be marked up explicitly (unlike luatex with bidi=basic or

bidi=basic-r and, usually, xetex). This command is provided to set {〈lr-text〉} in L mode if

necessary. It’s intended for what Unicode calls weak characters, because words are best set

with the corresponding language. For this reason, there is no rl counterpart.

Any \babelsublr in explicit L mode is ignored. However, with bidi=basic and implicit L,

it first returns to R and then switches to explicit L. To clarify this point, consider, in an R

context:

RTL A ltr text \thechapter{} and still ltr RTL B

There are three R blocks and two L blocks, and the order is RTL B and still ltr 1 ltr text RTL

A. This is by design to provide the proper behavior in the most usual cases — but if you

need to use \ref in an L text inside R, the L text must be marked up explicitly; for example:

RTL A \foreignlanguage{english}{ltr text \thechapter{} and still ltr} RTL B

\localerestoredirs

New 3.86⊕ LuaTeX. This command resets the internal text, paragraph and body

directions to those of the current locale (if different). Sometimes changing directly these

values can be useful for some hacks, and this command helps in restoring the directions to

the correct ones. It can be used in > arguments of array, too.

50

https://latex3.github.io/babel/news/whats-new-in-babel-3.86.html

{〈section-name〉}\BabelPatchSection

Mainly for bidi text, but it can be useful in other cases. \BabelPatchSection and the

corresponding option layout=sectioning takes a more logical approach (at least in many

cases) because it applies the global language to the section format (including the

\chaptername in \chapter), while the section text is still the current language. The latter is

passed to tocs and marks, too, and with sectioning in layout they both reset the “global”

language to the main one, while the text uses the “local” language.

With layout=sectioning all the standard sectioning commands are redefined (it also

“isolates” the page number in heads, for a proper bidi behavior), but with this command

you can set them individually if necessary (but note then tocs and marks are not touched).

{〈cmd〉}{〈local-language〉}{〈before〉}{〈after〉}\BabelFootnote

New 3.17 Something like:

\BabelFootnote{\parsfootnote}{\languagename}{(}{)}

defines \parsfootnote so that \parsfootnote{note} is equivalent to:

\footnote{(\foreignlanguage{\languagename}{note})}

but the footnote itself is typeset in the main language (to unify its direction). In addition,

\parsfootnotetext is defined. The option footnotes just does the following:

\BabelFootnote{\footnote}{\languagename}{}{}%

\BabelFootnote{\localfootnote}{\languagename}{}{}%

\BabelFootnote{\mainfootnote}{}{}{}

(which also redefine \footnotetext and define \localfootnotetext and

\mainfootnotetext). If the language argument is empty, then no language is selected

inside the argument of the footnote. Note this command is available always in bidi

documents, even without layout=footnotes.

EXAMPLE If you want to preserve directionality in footnotes and there are many footnotes

entirely in English, you can define:

\BabelFootnote{\enfootnote}{english}{}{.}

It adds a period outside the English part, so that it is placed at the left in the last line.

This means the dot the end of the footnote text should be omitted.

1.28 Language attributes

\languageattribute

This is a user-level command, to be used in the preamble of a document (after

\usepackage[...]{babel}), that declares which attributes are to be used for a given

language. It takes two arguments: the first is the name of the language; the second, a (list

of) attribute(s) to be used. Attributes must be set in the preamble and only once – they

cannot be turned on and off. The command checks whether the language is known in this

document and whether the attribute(s) are known for this language.

Very often, using amodifier in a package option is better.

Several language definition files use their own methods to set options. For example, french

uses \frenchsetup,magyar (1.5) uses \magyarOptions; modifiers provided by spanish

have no attribute counterparts. Macros setting options are also used (eg,

\ProsodicMarksOn in latin).

51

1.29 Hooks

New 3.9a A hook is a piece of code to be executed at certain events. Some hooks are

predefined when luatex and xetex are used.

New 3.64⊕ This is not the only way to inject code at those points. The events listed below

can be used as a hook name in \AddToHook in the form

babel/〈language-name〉/〈event-name〉 (with * it’s applied to all languages), but there is a

limitation, because the parameters passed with the babelmechanism are not allowed. The

\AddToHookmechanism does not replace the current one in ‘babel‘. Its main advantage is

you can reconfigure ‘babel‘ even before loading it. See the example below.

[〈language〉]{〈name〉}{〈event〉}{〈code〉}\AddBabelHook

The same name can be applied to several events. Hooks with a certain {〈name〉}may be

enabled and disabled for all defined events with \EnableBabelHook{〈name〉},
\DisableBabelHook{〈name〉}. Names containing the string babel are reserved (they are

used, for example, by \useshortands* to add a hook for the event afterextras).

New 3.33 They may be also applied to a specific language with the optional argument;

language-specific settings are executed after global ones.

Current events are the following; in some of them you can use one to three TEX parameters

(#1, #2, #3), with the meaning given:

adddialect (language name, dialect name) Used by luababel.def to load the patterns if

not preloaded.

patterns (language name, language with encoding) Executed just after the \language has

been set. The second argument has the patterns name actually selected (in the form of

either lang:ENC or lang).

hyphenation (language name, language with encoding) Executed locally just before

exceptions given in \babelhyphenation are actually set.

defaultcommands Used (locally) in \StartBabelCommands.

encodedcommands (input, font encodings) Used (locally) in \StartBabelCommands. Both

xetex and luatexmake sure the encoded text is read correctly.

stopcommands Used to reset the above, if necessary.

write This event comes just after the switching commands are written to the aux file.

beforeextras Just before executing \extras〈language〉. This event and the next one

should not contain language-dependent code (for that, add it to \extras〈language〉).
afterextras Just after executing \extras〈language〉. For example, the following

deactivates shorthands in all languages:

\AddBabelHook{noshort}{afterextras}{\languageshorthands{none}}

stringprocess Instead of a parameter, you can manipulate the macro \BabelString

containing the string to be defined with \SetString. For example, to use an expanded

version of the string in the definition, write:

\AddBabelHook{myhook}{stringprocess}{%

\protected@edef\BabelString{\BabelString}}

initiateactive (char as active, char as other, original char) New 3.9i Executed just

after a shorthand has been ‘initiated’. The three parameters are the same character

with different catcodes: active, other (\string’ed) and the original one.

afterreset New 3.9i Executed when selecting a language just after \originalTeX is

run and reset to its base value, before executing \captions〈language〉 and
\date〈language〉.

begindocument New 3.88⊕ Executed before the code written by ldf files with

\AtBeginDocument. The optional argument with the language in this particular case is

the language that wrote the code. The special value /means ‘return to the core babel

definitions’ (in other words, what follows hasn’t been written by any language).

52

https://latex3.github.io/babel/news/whats-new-in-babel-3.64.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.88.html

foreign New 24.8⊕ Executed by \foreignlanguage after the language has been set up

and just before typesetting the text from the second argument. Its main purpose it to

wrap the text with some code, with the help of \BabelWrapText. For example, with:

\AddBabelHook{one}{foreign}{\BabelWrapText{\textit{##1}}

\AddBabelHook{two}{foreign}{\BabelWrapText{\parse{##1}}

the text becomes \textit{\parse{〈text〉}}.

Four events are used in hyphen.cfg, which are handled in a quite different way for

efficiency reasons – unlike the precedent ones, they only have a single hook and replace a

default definition.

everylanguage (language) Executed before every language patterns are loaded.

loadkernel (file) By default just defines a few basic commands. It can be used to define

different versions of them or to load a file.

loadpatterns (patterns file) Loads the patterns file. Used by luababel.def.

loadexceptions (exceptions file) Loads the exceptions file. Used by luababel.def.

EXAMPLE The generic unlocalized LATEX hooks are predefined, so that you can write:

\AddToHook{babel/*/afterextras}{\frenchspacing}

which is executed always after the extras for the language being selected (and just

before the non-localized hooks defined with \AddBabelHook).

In addition, locale-specific hooks in the form babel/〈language-name〉/〈event-name〉 are
recognized (executed just before the localized babel hooks), but they are not predefined.

You have to do it yourself. For example, to set \frenchspacing only in bengali:

\ActivateGenericHook{babel/bengali/afterextras}

\AddToHook{babel/bengali/afterextras}{\frenchspacing}

New 3.9a This macro contains a list of “toc” types requiring a command to switch the\BabelContentsFiles

language. Its default value is toc,lof,lot, but you may redefine it with \renewcommand

(it’s up to you to make sure no toc type is duplicated).

1.30 Unicode character properties in luatex

New 3.32 Part of the babel job is to apply Unicode rules to some script-specific features

based on some properties. Currently, they are 3, namely, direction (ie, bidi class), mirroring

glyphs, and line breaking for CJK scripts. These properties are stored in lua tables, which

you can modify with the following macro (for example, to set them for glyphs in the PUA).

{〈char-code〉}[〈to-char-code〉]{〈property〉}{〈value〉}\babelcharproperty

New 3.32 Here, {〈char-code〉} is a number (with TEX syntax). With the optional

argument, you can set a range of values. There are three properties (with a short name,

taken from Unicode): direction (bc), mirror (bmg), linebreak (lb). The settings are global,

and this command is allowed only in vertical mode (the preamble or between paragraphs).

For example:

\babelcharproperty{`¿}{mirror}{`?}

\babelcharproperty{`-}{direction}{l} % or al, r, en, an, on, et, cs

\babelcharproperty{`)}{linebreak}{cl} % or id, op, cl, ns, ex, in, hy

53

https://latex3.github.io/babel/news/whats-new-in-babel-24.8.html

Please, refer to the Unicode standard (Annex #9 and Annex #14) for the meaning of the

available codes. For example, en is ‘European number’ and id is ‘ideographic’.

New 3.39⊕ Another property is locale, which adds characters to the list used by onchar

in \babelprovide, or, if the last argument is empty, removes them. The last argument is

the locale name:

\babelcharproperty{`,}{locale}{english}

1.31 Tweaking some features

{〈key-value-list〉}\babeladjust

New 3.36⊕ Sometimes you might need to disable some babel features. Currently this

macro understands the following keys, with values on or off:

autoload.bcp47

bcp47.toname

bidi.mirroring

bidi.text

bidi.math

linebreak.sea

linebreak.cjk

justify.arabic

layout.tabular

layout.lists

The first four are documented elsewhere. The following are by default on, but with off can

disable some features: bidi.math (only preamble) changes for math or amsmath,

linebreak.sea, linebreak.cjk and justify.arabic the corresponding algorithms,

layout.tabular and layout.lists changes for tabular and lists. Some of the are reverted

only to some extent.

Other keys are:

autoload.options

autoload.bcp47.prefix

autoload.bcp47.options

prehyphenation.disable

interchar.disable

select.write

select.encoding

Most of them are documented elsewhere. With select.encoding=off, the encoding is not

set when loading a language on the fly with pdftex (only off). prehyphenation.disable is

by default nohyphenation, which means luatex prehyphenation transforms are not applied

if the current hyphenation rules are nohyphenation; with off they are never disabled.

interchar.disable takes the same values, but for the xetex interchar mechanism.

For example, you can set \babeladjust{bidi.text=off} if you are using an alternative

algorithm or with large sections not requiring it. Use with care, because these options do

not deactivate other related options (like paragraph direction with bidi.text).

1.32 Tips, workarounds, known issues and notes

• For the hyphenation to work correctly, lccodes cannot change, because TEX only takes

into account the values when the paragraph is hyphenated, i.e., when it has been

finished.19 So, if you write a chunk of French text with \foreignlanguage, the

apostrophes might not be taken into account. This is a limitation of TEX, not of babel.

Alternatively, you may use \useshorthands to activate ' and \defineshorthand, or

redefine \textquoteright (the latter is called by the non-ASCII right quote).

• Babel does not take into account \normalsfcodes and (non-)French spacing is not

always properly (un)set by languages. However, problems are unlikely to happen and

therefore this part remains untouched (but it is in the ‘to do’ list).

19This explains why LATEX assumes the lowercase mapping of T1 and does not provide a tool for multiple map-

pings. Unfortunately, \savinghyphcodes is not a solution either, because lccodes for hyphenation are frozen in the

format and cannot be changed.

54

https://latex3.github.io/babel/news/whats-new-in-babel-3.39.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.36.html

• Using a character mathematically active (ie, with math code "8000) as a shorthand can

make TEX enter in an infinite loop in some rare cases. (Another issue in the ‘to do’ list,

although there is a partial solution.)

The following packages can be useful, too (the list is still far from complete):

csquotes Logical markup for quotes.

iflang Tests correctly the current language.

hyphsubst Selects a different set of patterns for a language.

translator An open platform for packages that need to be localized.

siunitx Typesetting of numbers and physical quantities.

biblatex Programmable bibliographies and citations.

bicaption Bilingual captions.

babelbib Multilingual bibliographies.

microtype Adjusts the typesetting according to some languages (kerning and spacing).

Ligatures can be disabled.

substitutefont Combines fonts in several encodings.

mkpattern Generates hyphenation patterns.

tracklang Tracks which languages have been requested.

ucharclasses (xetex) Switches fonts when you switch from one Unicode block to another.

zhspacing Spacing for CJK documents in xetex.

1.33 Tentative and experimental code

See the code section for \foreignlanguage* (a new starred version of \foreignlanguage).

For old an deprecated functions, see the babel site.

Options for locales loaded on the fly

New 3.51⊕ \babeladjust{ autoload.options = ... } sets the options when a

language is loaded on the fly (by default, no options). A typical value would be import,

which defines captions, date, numerals, etc., but ignores the code in the tex file (for

example, extended numerals in Greek).

Labels

New 3.48⊕ There is some work in progress for babel to deal with labels, both with the

relation to captions (chapters, part), and how counters are used to define them. It is still

somewhat tentative because it is far from trivial – see the babel site for further details.

2 Loading languages with language.dat

TEX and most engines based on it (pdfTEX, xetex, ε-TEX, the main exception being luatex)

require hyphenation patterns to be preloaded when a format is created (eg, LATEX, XeLATEX,

pdfLATEX). babel provides a tool which has become standard in many distributions and

based on a “configuration file” named language.dat. The exact way this file is used

depends on the distribution, so please, read the documentation for the latter (note also

some distributions generate the file with some tool).

New 3.9q With luatex, however, patterns are loaded on the fly when requested by the

language (except the “0th” language, typically english, which is preloaded always).20 Until

3.9n, this task was delegated to the package luatex-hyphen, by Khaled Hosny, Élie Roux,

and Manuel Pégourié-Gonnard, and required an extra file named language.dat.lua, but

now a new mechanism has been devised based solely on language.dat. You must rebuild

the formats if upgrading from a previous version. You may want to have a local

language.dat for a particular project (for example, a book on Chemistry).21

20This feature was added to 3.9o, but it was buggy. Both 3.9o and 3.9p are deprecated.
21The loader for lua(e)tex is slightly different as it’s not based on babel but on etex.src. Until 3.9p it just didn’t

work, but thanks to the new code it works by reloading the data in the babel way, i.e., with language.dat.

55

https://latex3.github.io/babel/news/whats-new-in-babel-3.51.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.48.html

2.1 Format

In that file the person who maintains a TEX environment has to record for which languages

he has hyphenation patterns and in which files these are stored22. When hyphenation

exceptions are stored in a separate file this can be indicated by naming that file after the

file with the hyphenation patterns.

The file can contain empty lines and comments, as well as lines which start with an equals

(=) sign. Such a line will instruct LATEX that the hyphenation patterns just processed have to

be known under an alternative name. Here is an example:

% File : language.dat

% Purpose : tell iniTeX what files with patterns to load.

english english.hyphenations

=british

dutch hyphen.dutch exceptions.dutch % Nederlands

german hyphen.ger

You may also set the font encoding the patterns are intended for by following the language

name by a colon and the encoding code.23 For example:

german:T1 hyphenT1.ger

german hyphen.ger

With the previous settings, if the encoding when the language is selected is T1 then the

patterns in hyphenT1.ger are used, but otherwise use those in hyphen.ger (note the

encoding can be set in \extras〈language〉).
A typical error when using babel is the following:

No hyphenation patterns were preloaded for

the language `<lang>' into the format.

Please, configure your TeX system to add them and

rebuild the format. Now I will use the patterns

preloaded for english instead}}

It simply means you must reconfigure language.dat, either by hand or with the tools

provided by your distribution.

3 The interface between the core of babel and the

language definition files

The language definition files (ldf) must conform to a number of conventions, because these

files have to fill in the gaps left by the common code in babel.def, i. e., the definitions of

the macros that produce texts. Also the language-switching possibility which has been

built into the babel system has its implications.

The following assumptions are made:

• Some of the language-specific definitions might be used by plain TEX users, so the files

have to be coded so that they can be read by both LATEX and plain TEX. The current

format can be checked by looking at the value of the macro \fmtname.

• The common part of the babel system redefines a number of macros and environments

(defined previously in the document style) to put in the names of macros that replace

the previously hard-wired texts. These macros have to be defined in the language

definition files.

22This is because different operating systems sometimes use very different file-naming conventions.
23This is not a new feature, but in former versions it didn’t work correctly.

56

• The language definition files must define five macros, used to activate and deactivate

the language-specific definitions. These macros are \〈language〉hyphenmins,
\captions〈language〉, \date〈language〉, \extras〈language〉 and
\noextras〈language〉(the last two may be left empty); where 〈language〉 is either the
name of the language definition file or the name of the LATEX option that is to be used.

These macros and their functions are discussed below. You must define all or none for a

language (or a dialect); defining, say, \date〈language〉 but not \captions〈language〉
does not raise an error but can lead to unexpected results.

• When a language definition file is loaded, it can define \l@〈language〉 to be a dialect of
\language0 when \l@〈language〉 is undefined.

• Language names must be all lowercase. If an unknown language is selected, babel will

attempt setting it after lowercasing its name.

• The semantics of modifiers is not defined (on purpose). In most cases, they will just be

simple separated options (eg, spanish), but a language might require, say, a set of

options organized as a tree with suboptions (in such a case, the recommended

separator is /). How modifiers (saved in \BabelModifiers) are handled are left to

language styles; they can use \in@, loop them with \@for or load keyval, for example.

Some recommendations:

• The preferred shorthand is ", which is not used in LATEX (quotes are entered as `` and

''). Other good choices are characters which are not used in a certain context (eg, = in

an ancient language). Note however =, <, >, : and the like can be dangerous, because

they may be used as part of the syntax of some elements (numeric expressions,

key/value pairs, etc.).

• Captions should not contain shorthands or encoding-dependent commands (the latter is

not always possible, but should be clearly documented). They should be defined using

the LICR. You may also use the new tools for encoded strings, described below.

• Avoid adding things to \noextras〈language〉 except for umlauthigh and friends,

\bbl@deactivate, \bbl@(non)frenchspacing, and language-specific macros. Use

always, wherever possible, \babel@save and \babel@savevariable (except if you still

want to have access to the previous value). Do not reset a macro or a setting to a

hardcoded value. Never. Instead save its value in \extras〈language〉.

• Do not switch scripts. If you want to make sure a set of glyphs is used, switch either the

font encoding (low-level) or the language (high-level, which in turn may switch the font

encoding). Usage of things like \latintext is deprecated.24

• Please, for “private” internal macros do not use the \bbl@ prefix. It is used by babel and

it can lead to incompatibilities.

There are no special requirements for documenting your language files. Just provide a

standalone document suited to your needs, as well as other files you think can be useful. A

PDF and a “readme” are strongly recommended.

3.1 Guidelines for contributed languages

Currently, the easiest way to contribute a new language is by taking one of the 500 or so

ini templates available on GitHub as a basis. Just make a pull request or download it, and

then, after filling out the fields, sent it to me. Feel free to ask for help or to make features

requests.

As to ldf files, now language files are “outsourced” and are located in a separate directory

(/macros/latex/contrib/babel-contrib), so that they are contributed directly to CTAN

(please, do not send to me language styles just to upload them to CTAN).

Of course, placing your style files in this directory is not mandatory, but if you want to do

it, here are a few guidelines.

24But not removed, for backward compatibility.

57

• Do not hesitate stating on the file heads you are the author and the maintainer, if you

actually are. There is no need to state the babelmaintainer(s) as author(s) if they have

not contributed significantly to your language files.

• Fonts are not strictly part of a language, so they are best placed in the corresponding

TeX tree. This includes not only tfm, vf, ps1, otf, mf files and the like, but also fd ones.

• Font and input encodings are usually best placed in the corresponding tree, too, but

sometimes they belong more naturally to the babel style. Note you may also need to

define a LICR (TLC3, I, 757f.).

• Babel ldf files may just interface a framework, as it happens often with Oriental

languages/scripts. This framework is best placed in its own directory.

The following page provides a starting point for ldf files:

http://www.texnia.com/incubator.html. See also

https://latex3.github.io/babel/guides/list-of-locale-templates.html.

If you need further assistance and technical advice in the development of language styles, I

will be happy to help you. And of course, you can make any suggestion you like.

3.2 Basic macros

In the core of the babel system, several macros are defined for use in language definition

files. Their purpose is to make a new language known. The first two are related to

hyphenation patterns.

The macro \addlanguage is a non-outer version of the macro \newlanguage, defined in\addlanguage

plain.tex version 3.x. Here “language” is used in the TEX sense of set of hyphenation

patterns.

The macro \adddialect can be used when two languages can (or must) use the same\adddialect

hyphenation patterns. This can also be useful for languages for which no patterns are

preloaded in the format. In such cases the default behavior of the babel system is to define

this language as a ‘dialect’ of the language for which the patterns were loaded as

\language0. Here “language” is used in the TEX sense of set of hyphenation patterns.

The macro \〈language〉hyphenmins is used to store the values of the \lefthyphenmin and\<lang>hyphenmins

\righthyphenmin. Redefine this macro to set your own values, with two numbers

corresponding to these two parameters. For example:

\renewcommand\spanishhyphenmins{34}

(Assigning \lefthyphenmin and \righthyphenmin directly in \extras〈language〉 has no
effect.)

The macro \providehyphenmins should be used in the language definition files to set\providehyphenmins

\lefthyphenmin and \righthyphenmin. This macro will check whether these parameters

were provided by the hyphenation file before it takes any action. If these values have been

already set, this command is ignored (currently, default pattern files do not set them).

The macro \captions〈language〉 defines the macros that hold the texts to replace the\captions〈language〉
original hard-wired texts.

The macro \date〈language〉 defines \today.\date〈language〉
The macro \extras〈language〉 contains all the extra definitions needed for a specific\extras〈language〉
language. This macro, like the following, is a hook – you can add things to it, but it must not

be used directly.

Because we want to let the user switch between languages, but we do not know what state\noextras〈language〉
TEX might be in after the execution of \extras〈language〉, a macro that brings TEX into a

predefined state is needed. It will be no surprise that the name of this macro is

\noextras〈language〉.
This is a command to be used in the language definition files for declaring a language\bbl@declare@ttribute

attribute. It takes three arguments: the name of the language, the attribute to be defined,

and the code to be executed when the attribute is to be used.

To postpone the activation of the definitions needed for a language until the beginning of a\main@language

58

document, all language definition files should use \main@language instead of

\selectlanguage. This will just store the name of the language, and the proper language

will be activated at the start of the document.

The macro \ProvidesLanguage should be used to identify the language definition files. Its\ProvidesLanguage

syntax is similar to the syntax of the LATEX command \ProvidesPackage.

The macro \LdfInit performs a couple of standard checks that must be made at the\LdfInit

beginning of a language definition file, such as checking the category code of the @-sign,

preventing the .ldf file from being processed twice, etc.

The macro \ldf@quit does work needed if a .ldf file was processed earlier. This includes\ldf@quit

resetting the category code of the @-sign, preparing the language to be activated at

\begin{document} time, and ending the input stream.

The macro \ldf@finish does work needed at the end of each .ldf file. This includes\ldf@finish

resetting the category code of the @-sign, loading a local configuration file, and preparing

the language to be activated at \begin{document} time.

After processing a language definition file, LATEX can be instructed to load a local\loadlocalcfg

configuration file. This file can, for instance, be used to add strings to \captions〈language〉
to support local document classes. The user will be informed that this configuration file

has been loaded. This macro is called by \ldf@finish.

3.3 Skeleton

Here is the basic structure of an ldf file, with a language, a dialect and an attribute. Strings

are best defined using the method explained in sec. 3.8 (babel 3.9 and later).

\ProvidesLanguage{<language>}

[2016/04/23 v0.0 <Language> support from the babel system]

\LdfInit{<language>}{captions<language>}

\ifx\undefined\l@<language>

\@nopatterns{<Language>}

\adddialect\l@<language>0

\fi

\adddialect\l@<dialect>\l@<language>

\bbl@declare@ttribute{<language>}{<attrib>}{%

\expandafter\addto\expandafter\extras<language>

\expandafter{\extras<attrib><language>}%

\let\captions<language>\captions<attrib><language>}

\providehyphenmins{<language>}{\tw@\thr@@}

\StartBabelCommands*{<language>}{captions}

\SetString\chaptername{<chapter name>}

% More strings

\StartBabelCommands*{<language>}{date}

\SetString\monthiname{<name of first month>}

% More strings

\StartBabelCommands*{<dialect>}{captions}

\SetString\chaptername{<chapter name>}

% More strings

\StartBabelCommands*{<dialect>}{date}

\SetString\monthiname{<name of first month>}

% More strings

\EndBabelCommands

59

\addto\extras<language>{}

\addto\noextras<language>{}

\let\extras<dialect>\extras<language>

\let\noextras<dialect>\noextras<language>

\ldf@finish{<language>}

NOTE If for some reason you want to load a package in your style, you should be aware it

cannot be done directly in the ldf file, but it can be delayed with \AtEndOfPackage.

Macros from external packages can be used inside definitions in the ldf itself (for

example, \extras〈language〉), but if executed directly, the code must be placed inside

\AtEndOfPackage. A trivial example illustrating these points is:

\AtEndOfPackage{%

\RequirePackage{dingbat}% Delay package

\savebox{\myeye}{\eye}}% And direct usage

\newsavebox{\myeye}

\newcommand\myanchor{\anchor}% But OK inside command

3.4 Support for active characters

In quite a number of language definition files, active characters are introduced. To

facilitate this, some support macros are provided.

The internal macro \initiate@active@char is used in language definition files to instruct\initiate@active@char

LATEX to give a character the category code ‘active’. When a character has been made active

it will remain that way until the end of the document. Its definition may vary.

The command \bbl@activate is used to change the way an active character expands.\bbl@activate

\bbl@deactivate \bbl@activate ‘switches on’ the active behavior of the character. \bbl@deactivate lets

the active character expand to its former (mostly) non-active self.

The macro \declare@shorthand is used to define the various shorthands. It takes three\declare@shorthand

arguments: the name for the collection of shorthands this definition belongs to; the

character (sequence) that makes up the shorthand, i.e. ~ or "a; and the code to be executed

when the shorthand is encountered. (It does not raise an error if the shorthand character

has not been “initiated”.)

The TEXbook states: “Plain TEX includes a macro called \dospecials that is essentially a set\bbl@add@special

\bbl@remove@special macro, representing the set of all characters that have a special category code.” [4, p. 380]

It is used to set text ‘verbatim’. To make this work if more characters get a special category

code, you have to add this character to the macro \dospecials. LATEX adds another macro

called \@sanitize representing the same character set, but without the curly braces. The

macros \bbl@add@special〈char〉 and \bbl@remove@special〈char〉 add and remove the

character 〈char〉 to these two sets.

Enables and disables the “safe” mode. It is a tool for package and class authors. See the\@safe@activestrue

\@safe@activesfalse description below.

3.5 Support for saving macro definitions

Language definition files may want to redefine macros that already exist. Therefore a

mechanism for saving (and restoring) the original definition of those macros is provided.

We provide two macros for this25.

To save the current meaning of any control sequence, the macro \babel@save is provided.\babel@save

It takes one argument, 〈csname〉, the control sequence for which the meaning has to be

saved.

A second macro is provided to save the current value of a variable. In this context,\babel@savevariable

anything that is allowed after the \the primitive is considered to be a variable. The macro

takes one argument, the 〈variable〉.
25This mechanism was introduced by Bernd Raichle.

60

The effect of the preceding macros is to append a piece of code to the current definition of

\originalTeX. When \originalTeX is expanded, this code restores the previous definition

of the control sequence or the previous value of the variable.

3.6 Support for extending macros

The macro \addto{〈control sequence〉}{〈TEX code〉} can be used to extend the definition of\addto

a macro. The macro need not be defined (ie, it can be undefined or \relax). This macro

can, for instance, be used in adding instructions to a macro like \extrasenglish.

Be careful when using this macro, because depending on the case the assignment can be

either global (usually) or local (sometimes). That does not seem very consistent, but this

behavior is preserved for backward compatibility. If you are using etoolbox, by Philipp

Lehman, consider using the tools provided by this package instead of \addto.

3.7 Macros common to a number of languages

In several languages compound words are used. This means that when TEX has to\bbl@allowhyphens

hyphenate such a compound word, it only does so at the ‘-’ that is used in such words. To

allow hyphenation in the rest of such a compound word, the macro \bbl@allowhyphens

can be used.

Same as \bbl@allowhyphens, but does nothing if the encoding is T1. It is intended mainly\allowhyphens

for characters provided as real glyphs by this encoding but constructed with \accent in

OT1.

Note the previous command (\bbl@allowhyphens) has different applications (hyphens

and discretionaries) than this one (composite chars). Note also prior to version 3.7,

\allowhyphens had the behavior of \bbl@allowhyphens.

For some languages, quotes need to be lowered to the baseline. For this purpose the macro\set@low@box

\set@low@box is available. It takes one argument and puts that argument in an \hbox, at

the baseline. The result is available in \box0 for further processing.

Sometimes it is necessary to preserve the \spacefactor. For this purpose the macro\save@sf@q

\save@sf@q is available. It takes one argument, saves the current spacefactor, executes the

argument, and restores the spacefactor.

The commands \bbl@frenchspacing and \bbl@nonfrenchspacing can be used to\bbl@frenchspacing

\bbl@nonfrenchspacing properly switch French spacing on and off.

3.8 Encoding-dependent strings

New 3.9a Babel 3.9 provides a way of defining strings in several encodings, intended

mainly for luatex and xetex, although the old way of defining/switching strings still works

and it’s used by default.

It consist is a series of blocks started with \StartBabelCommands. The last block is closed

with \EndBabelCommands. Each block is a single group (ie, local declarations apply until

the next \StartBabelCommands or \EndBabelCommands). An ldfmay contain several series

of this kind.

Thanks to this new feature, string values and string language switching are not mixed any

more. Furthermore, strings do no need to be wrapped with formatting commands (eg, to

select the writing direction) because babel takes care of it automatically. (See also

\setlocalecaption.)

{〈language-list〉}{〈category〉}[〈selector〉]\StartBabelCommands

The 〈language-list〉 specifies which languages the block is intended for. A block is taken

into account only if the \CurrentOption is listed here. Alternatively, you can define

\BabelLanguages to a comma-separated list of languages to be defined (if undefined,

\StartBabelCommands sets it to \CurrentOption). You may write \CurrentOption as the

language, but this is discouraged – a explicit name (or names) is much better and clearer.

A “selector” selects a group of definition are to be used, optionally followed by extra info

about the encodings to be used. The name unicodemust be used for xetex and luatex.

61

Without a selector, the LICR representation (ie, with macros like \~{n} instead of ñ) is

assumed.

If a string is set several times (because several blocks are read), the first one takes

precedence (ie, it works much like \providecommand).

Encoding info is charset= followed by a charset, which if given sets how the strings should

be translated to the internal representation used by the engine, typically utf8, which is the

only value supported currently (default is no translations). Note charset is applied by

luatex and xetex when reading the file, not when the macro or string is used in the

document.

A list of font encodings which the strings are expected to work with can be given after

fontenc= (separated with spaces, if two or more) – recommended, but not mandatory,

although blocks without this key are not taken into account if you have requested

strings=encoded.

Blocks without a selector are read always. They provide fallback values, and therefore they

must be the last ones; they should be provided always if possible and all strings should be

defined somehow inside it; they can be the only blocks (mainly LGC scripts using the LICR).

The 〈category〉 is either captions, date or extras. You must stick to these three categories,

even if no error is raised when using other names.26 It may be empty, too, but in such a

case using \SetString is an error.

\StartBabelCommands{language}{captions}

[unicode, fontenc=TU EU1 EU2, charset=utf8]

\SetString{\chaptername}{utf8-string}

\StartBabelCommands{language}{captions}

\SetString{\chaptername}{ascii-maybe-LICR-string}

\EndBabelCommands

A real example can be:

\StartBabelCommands{austrian}{date}

[unicode, fontenc=TU, charset=utf8]

\SetString\monthiname{Jänner}

\StartBabelCommands{german,austrian}{date}

[unicode, fontenc=TU, charset=utf8]

\SetString\monthiiiname{März}

\StartBabelCommands{austrian}{date}

\SetString\monthiname{J\"{a}nner}

\StartBabelCommands{german}{date}

\SetString\monthiname{Januar}

\StartBabelCommands{german,austrian}{date}

\SetString\monthiiname{Februar}

\SetString\monthiiiname{M\"{a}rz}

\SetString\monthivname{April}

\SetString\monthvname{Mai}

\SetString\monthviname{Juni}

\SetString\monthviiname{Juli}

\SetString\monthviiiname{August}

\SetString\monthixname{September}

\SetString\monthxname{Oktober}

\SetString\monthxiname{November}

\SetString\monthxiiname{Dezenber}

\SetString\today{\number\day.~%

26In future releases further categories may be added.

62

\csname month\romannumeral\month name\endcsname\space

\number\year}

\StartBabelCommands{german,austrian}{captions}

\SetString\prefacename{Vorwort}

[etc.]

\EndBabelCommands

When used in ldf files, previous values of \〈category〉〈language〉 are overridden, which

means the old way to define strings still works and used by default (to be precise, is first set

to undefined and then strings are added). However, when used in the preamble or in a

package, new settings are added to the previous ones, if the language exists (in the babel

sense, ie, if \date〈language〉 exists).

NOTE The package option strings introduced in version 3.9 (around 2013) when Unicode

engines were still of marginal use, is now deprecated.

NOTE Captions and other strings defined in ini files (in other words, when a locale is

loaded with \babelprovide) are internally set with the help of these macros.

* {〈language-list〉}{〈category〉}[〈selector〉]\StartBabelCommands

The starred version just forces strings to take a value – if not set as package option (which

is now deprecated), then the default for the engine is used. This is not done by default to

prevent backward incompatibilities, but if you are creating a new language this version is

better. It’s up to the maintainers of the current languages to decide if using it is

appropriate.27

Marks the end of the series of blocks.\EndBabelCommands

{〈code〉}\AfterBabelCommands

The code is delayed and executed at the global scope just after \EndBabelCommands.

{〈macro-name〉}{〈string〉}\SetString

Adds 〈macro-name〉 to the current category, and defines globally 〈lang-macro-name〉 to
〈code〉 (after applying the transformation corresponding to the current charset or defined

with the hook stringprocess).

Use this command to define strings, without including any “logic” if possible, which should

be a separated macro. See the example above for the date.

{〈macro-name〉}{〈string-list〉}\SetStringLoop

A convenient way to define several ordered names at once. For example, to define

\abmoniname, \abmoniiname, etc. (and similarly with abday):

\SetStringLoop{abmon#1name}{en,fb,mr,ab,my,jn,jl,ag,sp,oc,nv,dc}

\SetStringLoop{abday#1name}{lu,ma,mi,ju,vi,sa,do}

#1 is replaced by the roman numeral.

{〈to-lower-macros〉}\SetHyphenMap

New 3.9g Case mapping for hyphenation is handled with \SetHyphenMap and controlled

with the package option hyphenmap.

There are three helper macros to be used inside \SetHyphenMap:

27This replaces in 3.9g a short-lived \UseStrings which has been removed because it did not work.

63

• \BabelLower{〈uccode〉}{〈lccode〉} is similar to \lccode but it’s ignored if the char has

been set and saves the original lccode to restore it when switching the language (except

with hyphenmap=first).

• \BabelLowerMM{〈uccode-from〉}{〈uccode-to〉}{〈step〉}{〈lccode-from〉} loops though the

given uppercase codes, using the step, and assigns them the lccode, which is also

increased (MM stands formany-to-many).

• \BabelLowerMO{〈uccode-from〉}{〈uccode-to〉}{〈step〉}{〈lccode〉} loops though the given

uppercase codes, using the step, and assigns them the lccode, which is fixed (MO stands

formany-to-one).

An example is (which is redundant, because these assignments are done by both luatex

and xetex):

\SetHyphenMap{\BabelLowerMM{"100}{"11F}{2}{"101}}

NOTE This macro is not intended to fix wrong mappings done by Unicode (which are the

default in both xetex and luatex) – if an assignment is wrong, fix it directly.

3.9 Executing code based on the selector

{〈selectors〉}{〈true〉}{〈false〉}\IfBabelSelectorTF

New 3.67⊕ Sometimes a different setup is desired depending on the selector used.

Values allowed in 〈selectors〉 are select, other, foreign, other* (and also foreign* for

the tentative starred version), and it can consist of a comma-separated list. For example:

\IfBabelSelectorTF{other, other*}{A}{B}

is true with any of these two environment selectors.

Its natural place of use is in hooks or in \extras〈language〉.

4 Acknowledgements

In the initial stages of the development of babel, Bernd Raichle provided many helpful

suggestions and Michel Goossens supplied contributions for many languages. Ideas from

Nico Poppelier, Piet van Oostrum and many others have been used. Paul Wackers and

Werenfried Spit helped find and repair bugs.

More recently, there are significant contributions by Salim Bou, Ulrike Fischer and Udi

Fogiel.

There are also many contributors for specific languages, which are mentioned in the

respective files. Without them, babel just wouldn’t exist.

References

[1] Huda Smitshuijzen Abifares, Arabic Typography, Saqi, 2001.

[2] Johannes Braams, Victor Eijkhout and Nico Poppelier, The development of national LATEX

styles, TUGboat 10 (1989) #3, p. 401–406.

[3] Yannis Haralambous, Fonts & Encodings, O’Reilly, 2007.

[4] Donald E. Knuth, The TEXbook, Addison-Wesley, 1986.

[5] Jukka K. Korpela, Unicode Explained, O’Reilly, 2006.

64

https://latex3.github.io/babel/news/whats-new-in-babel-3.67.html

[6] Leslie Lamport, LATEX, A document preparation System, Addison-Wesley, 1986.

[7] Leslie Lamport, in: TEXhax Digest, Volume 89, #13, 17 February 1989.

[8] Ken Lunde, CJKV Information Processing, O’Reilly, 2nd ed., 2009.

[9] Edward M. Reingold and Nachum Dershowitz, Calendrical Calculations: The Ultimate

Edition, Cambridge University Press, 2018

[10] Hubert Partl, German TEX, TUGboat 9 (1988) #1, p. 70–72.

[11] Joachim Schrod, International LATEX is ready to use, TUGboat 11 (1990) #1, p. 87–90.

[12] Apostolos Syropoulos, Antonis Tsolomitis and Nick Sofroniu, Digital typography using

LATEX, Springer, 2002, p. 301–373.

[13] K.F. Treebus. Tekstwijzer, een gids voor het grafisch verwerken van tekst, SDU

Uitgeverij (’s-Gravenhage, 1988).

65

	Contents
	1 The user interface
	1.1 Monolingual documents
	1.2 Multilingual documents
	1.3 Mostly monolingual documents
	1.4 Languages supported by babel with ldf files
	1.5 Modifiers
	1.6 Troubleshooting
	1.7 Plain
	1.8 Basic language selectors
	1.9 Auxiliary language selectors
	1.10 More on selection
	1.11 Shorthands
	1.12 Package options
	1.13 The base option
	1.14 ini files
	1.15 List of locales available in \babelprovide
	1.16 Selecting fonts
	1.17 Modifying a language
	1.18 Creating a language
	1.19 Digits and counters
	1.20 Dates
	1.21 Accessing language info
	1.22 Hyphenation and line breaking
	1.23 Transforms
	1.24 Support for xetex interchar
	1.25 Selection based on BCP 47 tags
	1.26 Selecting scripts
	1.27 Selecting directions
	1.28 Language attributes
	1.29 Hooks
	1.30 Unicode character properties in luatex
	1.31 Tweaking some features
	1.32 Tips, workarounds, known issues and notes
	1.33 Tentative and experimental code

	2 Loading languages with language.dat
	2.1 Format

	3 The interface between the core of babel and the language definition files
	3.1 Guidelines for contributed languages
	3.2 Basic macros
	3.3 Skeleton
	3.4 Support for active characters
	3.5 Support for saving macro definitions
	3.6 Support for extending macros
	3.7 Macros common to a number of languages
	3.8 Encoding-dependent strings
	3.9 Executing code based on the selector

	4 Acknowledgements
	References

