The adjustbox Package

Martin Scharrer
martin.scharrer@web.de

CTAN: http://www.ctan.org/pkg/adjustbox
VC: https://github.com/MartinScharrer/adjustbox/
Version vl.3a-2022/10/17

Abstract

This package allows to adjust general (1) TgX material in several ways using a
key=value interface. It got inspired by the interface of \includegraphics from
the graphicx package. This package also loads the trimclip package which
code was once included in this package.

mailto:martin.scharrer@web.de
http://www.ctan.org/pkg/adjustbox
https://github.com/MartinScharrer/adjustbox/

Contents

1 Introduction 3
1.1 Dependencies v v it i it e 3
1.2 Verbatim Support 3
2 Package Options 4
3 Main Macros 5
3.1 AdjustBoxContentttt 5
3.2 AdjustImages 6
3.3 Defining custom environments and macros 7
3.4 Settingkeysglobally 10
3.5 ArgumentValues 11
4 Adjustbox Keys 13
4.1 TrimmingandClipping 13
4.2 Margins and Vertical Spacing 15
4.3 Minimum and Maximum Size 17
44 Scaling 20
45 Frame e 21
4.6 Vertical Alignment 24
4.7 Horizontal Alignment, 26
4.8 Supportfor graphicxkeys o oL 36
49 Colors. e 37
4.10 Background and Forground Imagesand Text 39
4.11 Density / Pixelsize e 43
4.12 Minipage or other inner environments which change the processing of
thecontent. 44
4.13 Floats and non-floatreplacements 48
4.14 Adding own Code or Environments 50
4.15 Changeordiscardcontent. 52
4.16 Storeboxcontent L Lo 53
4.17 Processcontent o e e 54
4.18 Experimental Keys 55
5 Defining own Keys 56

1 Introduction

The standard BIgX package graphicx (the extended version of graphics) provides
the macro \includegraphics [{options)]{(file name)} which can be used to in-
clude graphic files. Several options can be used to scale, resize, rotate, trim and/or
clip the graphic. The macros \scalebox, \resizebox and \rotatebox are also
provided to apply the corresponding operation on () TgX material, which is subse-
quently placed inside a \hbox. However no macros are provided to trim or clip (B TgX
material, most likely because this operations are not done by TgX but by the output
format, i.e. using PostScript (PS) or PDF operations.

This package started by providing the missing macros \clipbox and \trimbox.
Then a general \ad justbox macro which allows to combine many operations using
a key=value syntax was added and further extended until it represented the main fea-
ture of this package. Newly added keys are also provided as dedicated macros and cor-
responding environments. The \clipbox and \trimbox macros were then moved
together with the required output driver code to a dedicated package trimclip. This
allows documents and other packages to use these basic features without loading the
full adjustbox package.

1.1 Dependencies

The adjustbox package and its trimclip sub-package require the author’s other
packages adjcalc (bundled with adjustbox) and collectbox, as well as the pack-
ages xkeyval, graphicx and ifpdf. The varwidth package is automatically loaded
ifinstalled, otherwise the varwidth and stack keys are disables as well as \stackbox
and the stackbox environment. The ifoddpage package is automatically loaded if
installed, otherwise the outer and inner keys are disables as well as \outersidebox
and \innersidebox macros and corresponding environments. For features which
use colors the xcolor package must also be loaded manually (the color pack-
age is fine, too). The experimental split and pagebreak features also require the
storebox package to be loaded manually.

1.2 Verbatim Support

The macros provided by adjustbox and trimclip read the content as a horizon-
tal TgX box and not as an macro argument in order to support verbatim content.
This means that the braces around the content can also be written as \bgroup and
\egroup:

\adjustbox{key=value, .. .}\bgroup (content)\egroup

Special care is taken to allow the (content) to be a single macro (except \bgroup)
without any braces:

\adjustbox{key=value, ...}\somemacro

This is to support the habit of some BIEX users to drop the braces for single token
arguments. All environments support verbatim content. Note that the plainTgX
syntax for environments (\adjustbox ... \endadjustbox) can not be used because
it will trigger \adjustbox as a macro. However, the braces around the content can
be replaced by \bgroup and \egroup.

2 Package Options
This package accepts the following options:

export Exports the keys of \adjustbox to \includegraphics so that they can be
used with this macro as well. Note that not all keys will works properly with
\includegraphics as its internal code does not support all features. If prob-
lems occur the option Export should be used. For new documents it is recom-
mended to use the macro \adjustimage{(keys)}{(filename)} instead.

Export Sets \includegraphics to be identical to \adjincludegraphics, which
also allows the usage of all \adjustbox keys.

pgf This option is passed to trimclip and makes it to use the pgf package for all
clip operations. This overrides all automatically detected drivers.

PGF This option will pass the pgf to trimclip and enable the pgfmath option of
adjcalc, i.e. the pgf package is used for clip operations and the pgfmath
pacakge is used to parse length arguments.

minimal Onlyload a minimal set of code, i.e. trimclipand \adjustbox/adjustbox
but no additional keys and macros.

The following options define the way length values are processed by the provided
macros. They are passed to the \adjcalcset macro of the adjcalc package and load
any required packages. These options can also be used as local keys on \ad justbox.
See the adjcalc manual for more details on them.

etex Uses the e-TgX primitive \glueexpr to parse length values.
calc Uses the calc package to parse length values.
pgfmath Uses the pgfmath package of the pgf bundle to parse length values.

defaultunit=(unit) This sets the default unit used for values which accept length
without units, e.g. trim.

In addition, all driver options of the trimclip package are also accepted and passed
to it. All unknown options are passed to the graphicx package, which might pass
them down to the graphics package.

3 Main Macros

The following macros and environments represent the main functionality of this
package. Special care is taken so that the macros and the environments can have the
same name. For starred environments the star can be either part of the name or an
optional argument.

3.1 Adjust Box Content

\adjustbox{(key=value, ...)}{(content)}

The \adjustbox macro allows the modification of general () TgX content using a
key=value syntax. This can be seen as an extension of the \includegraphics macro
from images to any () TgX material. The macro supports the all \includegraphics
keys and many more. However, they are provided as a mandatory not as an optional
argument, because an \adjustbox without options would not make sense and can
be replaced by a simple \mbox. As already stated the content is read as a box, not as a
macro argument, therefore verbatim or other special content is supported and the
braces can also be replaced by \bgroup and \egroup. There is no starred version of
this macro.

\begin{adjustbox}{(key=value, ...)}
(content)
\end{adjustbox}

The environment version of \ad justbox. A difference to the macro is that it includes
\noindent to suppress paragraph indention.

3.2 Adjust Images

\adjustimage{(key=value, ...)}{(image filename)}

This macro can be used as an extension of \includegraphics. While \adjustbox is
based on the same interface as \includegraphics it provides more keys and allows
global keys set by \ad justboxset. Mostkeys can be exported to \includegraphics
using the export option, but there is no support for global keys'. Therefore it can make
sense to use \ad justbox{(key/value pairs)}{\includegraphics{(filename)}}, which
is the definition of \ad justimage. However, it does not use \includegraphics di-
rectly, but an internal macro, to allow the redefinition of \includegraphics. This
macro does not require the export option and therefore helps to avoid option clashes

if adjustbox is loaded at several places.

\adjincludegraphics [(key/value pairs)]1{(image filename)}

Like \adjustimage but in the same format as \includegraphics, i.e. with an
optional argument. This macro allows to use all features of \adjustbox on im-
ages, however special care must be taken if the values include ‘[1. In this case
either the whole value or the while optional argument must be wrapped in ‘{ }’:
\adjincludegraphics[key={[..]},...]J{..}or
\adjincludegraphics[{key=[..],...}]1{..}.

It is possible to redefine \includegraphics to \adjincludegraphics and this is
done by the Export option (not to be confused with the export option).

1However some keys, but not all, can be set globally using \setkeys{Gin}{(includegraphic key=value
pairs)}

3.3 Defining custom environments and macros

After ad justbox is used to define custom environments to format specific content.
If an environment contains other environments these are often written in the plain
form \foo ...\endfoo to avoid the overhead of \begin and \end and to keep the
outer environment name for meaningful error messages. As mentioned, the dual
nature of \adjustbox which will detect if it is used as environment of macro does
not permit this plain form, which can be a pitfall for custom environment definitions.
Instead the macro form \adjustbox{(key=value)}\bgroup ... \egroup should be
used. To simplify custom environment definitions based on \ad justbox/ad justbox
the following macros are provided.

\newadjustboxenv{(name)} [(num)] [{default)]{{key=value,...)}

This declaration defines an environment and macro with the given name which will
apply the given adjustbox keys to its content. The environment/macro can also
posses arguments, including one leading optional argument, which can be used
inside the key=value pairs. It is recommended to wrap the arguments into braces,
e.g. use ‘{#1} instead of ‘#1’ etc., to avoid issues with potentially included commas
and equal signs. The number and type of arguments are defined using two optional
arguments in the same way as for \newcommand and \newenvironment.

\newadjustboxenv*{(name)} [(numy] [{default)]{{key=value,...)}

This declaration works similar to the unstarred version but only defines an environ-
ment. This environment can therefore be used like any other normal BIgX environ-
ment, including in its plain form \(name) ...\end(name).

\renewadjustboxenv{(name)} [(num)] [(default)] {{key=value,...)}
\renewadjustboxenv*{(name)} [(num)] [{default)]{{key=value,...)}

Like \newad justboxenv and \newadjustboxenv* but will redefine an existing macro/en-
vironment and cause an error if it was not yet defined.

\provideadjustboxenv{(name)} [(num)] [{default)]{(key=value,...)}
\provideadjustboxenv+{(name)} [(num)] [(default)]{{key=value,...)}

Like \newadjustboxenv and \newadjustboxenv* but will define a macro/environ-
ment only if it does not exists yet.

\declareadjustboxenv{(name)} [(num)] [{default)]{(key=value,...)}
\declareadjustboxenv+{(name)} [(num)] [(default)]{{key=value,...)}

Like \newad justboxenv and \newadjustboxenv* but will always define a macro/en-
vironment even if it does already exist.

\newadjustboxcmd{(\macro)} [(numy] [{default)]{{key=value,...)}

This declaration defines a macro which applies the given adjustbox keys to its
content. As with \ad justbox the content is read as box, not as macro argument. The
macro arguments (if any) are defined in the same way as with \newcommand. The
arguments can then be used inside the key=value pairs. The number of arguments
does not include the content. This declaration is intended if no environment form is
required and is more efficient than the dual declaration.

Example:

\newadjustboxcmd{\frotate}[1]{rotate={#1},fbox1}%

P
\frotate{30}{Text} <@

\renewadjustboxcmd{(\macro)} [(numy)] [{default)]{{key=value,...)}

Like \newadjustboxcmd but will redefine an existing macro and cause an error if it
was not yet defined.

\provideadjustboxcmd{(\macro)} [{num)] [(default)]{{key=value,...)}

Like \newadjustboxcmd but will define the macro only if it does not exist yet.

\declareadjustboxcmd{(\macro)} [{(num)] [(default)]{{key=value,...)}

Like \newad justboxcmd but will define the macro in any case even if it does exist
yet.

\newadjustimage{(\macro)} [(numy)] [{default)]{{key=value,...)}
\renewadjustimage{(\macro)} [(num)] [(default)] {({key=value,...)}
\provideadjustimage{(\macro)} [(num)] [{default)]{{key=value,...)}

These macros allow to define new versions of \ad justimage with predefined key
lists. The new define image macros can also have arguments which can be used in
the predefined key list to substitude values or one or multiple keys.

They work like \newcommand, \renewcommand and \providecommand, respec-
tively, where (num) is the number of arguments and (default) provides a default
value for the then optional first argument. However, instead of a macro content a
(key=value) list must be present, which can contain the arguments (#1, #2, etc). If
arguments are used as values they should be wrapped in braces. If there are only
part of a value the whole value should be wrapped in braces. This is to avoid causes
commas inside the arguments to cause issues with the key=value list.

Example:

\newadjustimage{\myimage}[2] [red]{width={#2}, cfbox={#1}1}7
\myimage{2cm}{example-imagel}
\myimage [blue]{2cm}{example-image}

Image Image

\declareadjustimage{(\macro)} [(num)] [{default)]{{key=value,...)}

Like \newadjustimage but will not cause an error if the macro is already defined.

\NewAdjustImage{(\macro)}{ (xparse argument specification)}{(key=value,...)}
\RenewAd justImage{(\macro)}{(xparse argument specification) }{(key=value,...)}
\ProvideAdjustImage{(\macro)}{(xparse argument specification)}{{key=value,...)}
\DeclareAdjustImage{(\macro)}{(xparse argument specification)}{{key=value,...)}

These macros also allow to define new versions of \ad justimage with predefined key
lists, but use the xparse package (which must be loaded separately!) and its macros
\NewDocumentCommand, \RenewDocumentCommand, \ProvideDocumentCommand and
\DeclareDocumentCommand instead of the standard BIEX macro creation macros.

This allows a larger variety of optional and mandatory arguments. Please see the
xparse manual for more details.

Example:

\NewAdjustImage{\myimage}{0{red}m}{width={#2}, cfbox={#1}1})
\myimage{2cm}{example-imagel}
\myimage [blue]{2cm}{example-image}

Image Image

3.4 Setting keys globally

\adjustboxset{(global keys to be executed before local keys)}
\adjustboxset*{(global keys to be executed after local keys)}

Using these two macros all keys can be set globally; i.e. for all future \adjustbox
macros and adjustbox environments. Note that these settings are actually local
to the current TgX group and only really global if used in the preamble or outside
any group. The normal macro will place all given keys before the keys used in first
argument of \adjustbox / adjustbox, while the starred version will place them
afterwards.

If these macros are used several times there keys are accumulated. This happens
in the given order for the normal version and in reversed order for the starred version,
i.e. the keys of further \adjustboxset or \adjustboxset* are always added so they
face inwards. If used without any keys but an empty argument, all keys previously
set with the same macro are removed (from the current TgX scope). This means
\adjustboxset{} clears all keys set be previously usages of \ad justboxset{(keys)}
and \adjustboxset*{} clears all set by \adjustboxset*{(keys)}. Such resets are
again local to the current TgX group.

Examples:

The macros:

\adjustboxset{keya=1}

\adjustboxset*{keyc=3}

\adjustbox{keyb=2}{content}
are effectively the same as:

\adjustbox{keya=1,keyb=2,keyc=3}{content}

The macros:
\adjustboxset{keya=1,keyb=2}
\adjustboxset{keyc=3,keyd=4}
\adjustboxset*{keyg=7,keyh=8}
\adjustboxset*{keyi=9,keyj=10}
\adjustbox{keye=5,keyf=6}{content}

are effectively the same as:
\adjustbox{keya=1,keyb=2,keyc=3,keyd=4,keye=5,keyf=6,
keyi=9,keyj=10,keyg=7,keyh=8}{content}

10

3.5 Argument Values

All length values given in the arguments of all macros and keys provided by this
package are parsed by and advanced version of \setlength (called \ad jsetlength)
which uses either e-TgX expressions (default), the calc package (default fall-back)
or the \pgfmathparse of the pgf package. This allows for arithmetic expressions in
these arguments. See the package options in section 2 to learn how to change the
used length parser. Note that early versions of this package used \pgfmathparse
by default. Older documents therefore might need now use the pgfmath option to
compile correctly.

Note that the four values for \trimbox and \clipbox as well as for the trim and
viewport option of \adjustbox are separated by spaces. If the expression of any
of this values holds a space or ends with a macro (eats trailing spaces!) it must be
wrapped into braces "{ }".

\width \height \depth \totalheight

These BIEX lengths hold the current dimensions of the content and can be used as
part all length arguments. When the size of the content is changed by a key these
lengths will be adjusted to hold the new size for all further keys. The totalheight
is the height plus depth. With the patch option these lengths can also be used for
\includegraphics.

\Width \Height \Depth \Totalheight

These BIEX lengths hold the original dimension of original unchanged content and
are not modified. They are useful if the size of the content is modified by several keys,
but further keys should still work relative to the original content.

\smallestside

This macro expands to either \width or \totalheight whatever is smaller.

\largestside

This macro expands to either \width or \totalheight whatever is larger.

\Smallestside

This macro expands to either \Width or \Totalheight whatever is smaller.

\Largestside

This macro expands to either \Width or \Totalheight whatever is larger.

Default unit

If no unit is provided for of the bounding box coordinates (left, bottom, right, top) in
the trim and clip features then PostScript points (big points, bp, 72bp = 1inch) are

11

used, as it is the default behaviour of the trim and viewport options of graphicx’s
\includegraphics. Note that graphicx converts all values, independent if a unit
is provided or not, internally to bp, because graphics where traditionally stored in
Encapsulated PostScript (EPS) files. The more modern PDF files also use bp instead
of pt. Because the ad justbox package macros target (I TgX material and users will
mostly use pt values this internal conversion to bp got disabled for them to avoid
unnecessary rounding errors. Since v0.5 the default unit can be changed using the
defaultunit=(unit) key (which is also usable as global package option).

12

4 Adjustbox Keys

This packages provides the following \ad justbox keys with matching macros and
environments.

4.1 Trimming and Clipping

The following keys allow content to be trimmed (i.e. the official size is made smaller,
so the remaining material laps over the official boundaries) or clipped (overlap-
ping material is not displayed). These keys come in different variants, where the
lower-case keys represent the behavior of the corresponding \includegraphics
keys. The corresponding macros (\trimbox, \clipbox, etc.) and environments
(trimbox, clipbox, etc.) are included in the accompanying trimclip package and
are explained in its manual.

trim={(all sites)
trim=(left/right) (top/bottom)
trim=(left) (bottom) (right) (top)

This key represents the original trimkey of \includegraphics but accepts its value
in different forms. Unlike most other keys it always acts on the original content
independent in which order it is used with other keys. If only one value is given it will
be used for all four sites. If only two values are given, seperated by a space, the first
one will be used for the left and right side and the second for the bottom and top side.

viewport=(left) (bottom) (right) (top)

This key represents the original viewport key of \includegraphics. It always trims
the original content to the given view port independent from its position.

clip
clip=true|false

This boolean key represents the original c1ip key of \includegraphics. It is in-
tended to be used to make trim or viewport clip the trimmed material. Note that
the material will still be part of the output file but is simply not shown. It might
be exported from the output file using special tools, so using it to censor classified
information is a bad idea.

Trim={all sites)

Trim=(left/right) (top/botton)
Trim=(left) (bottom) (right) (top)
Viewport=(left) (bottom) (right) (top)

The normal trim and viewport keys are applied on the original content before any
resizing or (most) other keys take effect. This is because for \includegraphics the
trimming is done by the internal graphic driver, while the effects can be applied
later (but can also be driver dependent). If the trim and viewport keys are used
multiple times only the last values will be used for the trimming, i.e. the content
is only trimmed once. The upper case variants Trim and Viewport will wrap the

13

content internally in a \trimbox or \trimbox* macro which can be applied multiple
times, e.g. before and after the content is rotated. These two keys awaits the same
format as the original keys. However, the c1ip key has no effect on them.

Clip=(all sites)

Clip=(left/right) (top/bottom)
Clip=(left)y (bottom) (right) (top)
Clipx=(left) (bottom) (right) (top)

The Clip key will clip the given amounts from the current content and can be
used several times if required. The starred version will use the given coordinates as
viewport. These keys work by wrapping the content internally in a \clipbox or
\clipbox* macro.

rndcorners=(radius for all four corners)
rndcorners=(left corners) (right corners)
rndcorners=(upper left) (upper right) (lower left) (lower right)

This key produces round corners by clipping the content. This is done using the
same way as the above clipping keys but instead of a rectangle clipping path one with
quarter circles is used. The radius of the every round corner can be given separately
if wanted. If only one value is given it is used for all four corners. If only two values
are given they will be used for the left and right side, respectively. A value of Opt
will produce a normal rectangular corner. No radius should be larger than half the
smallest side (minimum of \width and \totalheight).

Please see also the related keys rndfbox and rndframe, which allow to add a
rounded frame around the content as well.

14

4.2 Margins and Vertical Spacing

margin=(all sites)
margin=(left/right) (top/bottom)
margin=(left) (bottom) (right) (top)

This key can be used to add a margin (white space) around the content. It can
be seen as the opposite of Trim. The original baseline of the content is preserved
because (bortom) is added to the depth. It is also available under the alternative
name padding, which can be used to more visually distinguish an inner margin from
an outer margin e.g. if a frame is added.

Example:

Before \adjustbox{padding=1ex 2ex 3ex 4ex,frame,margin=lex 2ex 3ex 4ex}{Text} After

Before | Text After

margin*=(all sites)
margin*=(left/right) (top/bottom)
margin*=(left) (bottom) (right) (top)

This starred version is almost identical to the normal margin key, but also raises the
content by the (bottom) amount, so that the original depth is preserved instead of the
original baseline. Note that while margin is basically the opposite of Trim, marginx
is not the opposite of Trim*. Instead it also takes the same values as the unstarred key
and not viewport values like Trim#*. An alternative name of marginx* is paddingx.

Example:

Before \adjustbox{padding*=1lex 2ex 3ex 4ex,frame,margin*=lex 2ex 3ex 4ex}{Textl} Aft

Text

Before After

vspace=(above/below)
vspace=(above) (below)

The vspace key adds a vertical space before and after the content. This is done
by adding paragraph breaks and \vspace macros, which will yield better spacing
between paragraphs then when using the margin key. However vspace forces vertical
mode around the content. Adding further keys after vspace will force restricted

15

horizontal mode again and the vertical space will be ignored. For this situation the
margin key is better suited.

vspacex*=(above/below)
vspace*=(above) (below)

Identical to vspace but uses \vspace* instead. The difference is that the vertical
space is not ignored at page breaks, but its full amount is always forced.

16

4.3 Minimum and Maximum Size

The following keys allow to set a minimum or maximum size. The content will be
scaled down or up if required.

min width=(width)

max width=(width)

min height=(height)

max height=(height)

min totalheight=(fotal height)
max totalheight=(fotal height)

These keys allow to set the minimum and maximum width, height or totalheight of
the content. The current size of the content is measured and the content is resized
if the constraint is not already met, otherwise the content is unchanged. Multiple
usages of these keys are checked one after each other, and therefore it is possible
that a later one is undoing the size changes of an earlier one. A good example is max
width=\textwidth which will limit large content to the text width but will not affect
smaller content.

min size={(width)}{(height)}
max size={(width)}{(height)}
min totalsize={(width)}{(total height)}
max totalsize={(width)}{(total height)}

These keys allow to specify the minimum or maximum width and (total)height of the
content together, which is more efficient than using the width and (total)height keys
described earlier.

\minsizebox{(width)}{{height)}{{content)}
\minsizebox*{(width)}{(totalheight)}{(content)}

This macro is like \resizebox of the graphics/x package, but only resizes the
content if its natural size is smaller than the given (width) or (height). If only one
value should be set the other one can be replaced by " ! ". If required the content is
scaled up so that the width and height is equal or larger than the given values, but
does not change the aspect ratio. The star variant uses the total height instead of
only the height. This macro is used internally for the min width,min height, min
totalheight andmin totalsize keys.

Examples:
\minsizebox{3cm}{2ex}{Some Text} which will be enlarged

Some TeXt which will be enlarged

\minsizebox{!}{4ex}{\fbox{Some Text}} which will be enlarged

Some Text |which will be enlarged

17

\minsizebox*{!}{4ex}{\fbox{Some Textl}} which will be enlarged

which will be enlarged

\minsizebox{3cm}{!}{Some Text} which will be enlarged

SOIIle TeXt which will be enlarged

\minsizebox{lcm}{lex}{Some Textl}, already large enough

Some Text, already large enoughl

\maxsizebox{(width)}{(height)}{(content)}
\maxsizebox*{(width)}{(totalheight)}{{content)}

This macro is like \resizebox of the graphics/x package, but only resizes the
content if its natural size is larger than the given (width) or (height). If only one
value should be set the other one can be replaced by " ! ". If required the content is
scaled down so that the width and height is equal or smaller than the given values,
but does not change the aspect ratio. The star variant uses the total height instead of
only the height. This macro is used internally for the max width, max height, max
totalheight and max totalsize keys.

Examples:
\maxsizebox{lcm}{lex}{Some Text} which will be reduced

some Text Which will be reduced

\maxsizebox{!}{lex}{\fbox{Some Text}} which will be reduced

which will be reduced

\maxsizebox*{!}{lex}{\fbox{Some Textl}} which will be reduced

which will be reduced

\maxsizebox{lcm}{!}{Some Text} which will be reduced

some Text Which will be reduced

\maxsizebox{3cm}{1lcm}{Some Textl}, already small enough

Some Text, already small enoughl

warn width
warn width={(max width)

If this key is used the current width of the content is measured and compared with
the given maximum width (default is \1inewidth). If the content is wider than this
value by more than the TgX length \hfuzz (by default 0.1pt) an Overfull hbox warning

18

is produced. The warning will include the source code position and the information
that it was an ad justbox not a normal paragraph:

Overfull \hbox (X.Ypt too wide) in adjustbox at line N
Overfull \hbox (X.Ypt too wide) in adjustbox at lines N-M

Note that this key is not able to take any horizontal space before the adjustbox
into account. This includes a paragraph indention which might be present with
\adjustbox.

This key is useful to be used before the horizontal alignment keys which change
the official width of the content and prevent the normal Overfull warnings to take
affect.

19

4.4 Scaling

scale=(factor)
scale={(h-factor)}{(v-factor)}

The normal scale key of graphicx only allows for one scale factor which is used for
both the horizontal and vertical scaling. With ad justbox it is also possible to provide
the horizontal and vertical scale factors separately.

Examples:

\adjustbox{scale=2}{Some text!'} Some teXt!
\adjustbox{scale={2}{1}}{Some text!'} Some text!
reflect

This key reflects the content by using \reflectbox internally, which is identical to
\scalebox{-1}[1],i.e. this key is identical to scale={-1}{1}.

Examples:

\adjustbox{reflect}{Some text!} 11x93 911102

\scalebox{(h-factor)} [{v-factor)] {{content)}
\reflectbox{{content)}

These macros is provided by the loaded graphicx package and only mentioned here
for the sake of completeness. See the grfguide for more details.

20

4.5 Frame

The following keys can be used to draw frames around the content.

fbox

fbox=(rule width)

fbox=(rule width) (sep)
foox=(rule width) (sep) (margin)

Draws a framed box around the content like \fbox would do. Using the optional
space separated values the rule width, the separation (inner padding) and the outer
margin can be set. If not they default to the values \fbox uses by default: \fboxrule,
\fboxsep and zero margin.

Examples:

\adjustbox{fbox}{Like \cs{fbox1}} Like \fbox

\adjustbox{fbox=1pt}{With 1pt rule width}

| With 1pt rule width |

\adjustbox{fbox=1pt 2pt}{With 1pt rule width and 2pt separation}

|With 1pt rule width and 2pt separationl

\adjustbox{fbox={\fboxrule} 1pt}{With normal rule width and 1pt separation}

[With normal rule width and 1pt separation|

\adjustbox{fbox=1pt 1pt 1pt}{With 1pt for rule width, separation and outer margin}

[with 1pt for rule width, separation and outer margin|

frame

frame=(rule width)

frame=(rule width) (sep)
frame=(rule width) (sep) (margin)

The frame key has the same effect as the fbox key but is modeled after BIgX's \frame
macro (not the version beamer defines). This means it adds a tight frame with zero
separation around the content by default. Besides that it accepts the same space
separated values. This key is useful to easily add a tight frame around images where
the normal separation wouldn't fit.

Examples:

\adjustbox{frame}{Tight box} Tight box]

21

cfbox=(color)

cfbox=(color) (rule width)

cfbox=(color) (rulewidth) (sep)
cfbox=(color) (rulewidth) (sep) (margin)

Identical to fbox but uses the given color for the frame. The xcolor package must
be loaded manually in order for this key to work.

Example:

\adjustbox{cfbox=blue 1pt}{Like a blue \cs{fbox} with \cs{fboxrulel}=1pt}

Like a blue \fbox with \fboxrule=1pt

cframe={color)

cframe={(color) (rule width)
cframe=(color) (rulewidth) (sep)
cframe=(color) (rulewidth) (sep) (margin)

Identical to frame but uses the given color for the frame. The xcolor package must
be loaded manually in order for this key to work.

Example:

\adjustbox{cframe=blue!50!green}
{Like a blue and green \cs{framel}}

[Like a blue and green \frame|

rndframe=(radius for all four corners)

rndframe=(left corners) (right corners)

rndframe=(upper left) (upperright) (lower left) (lower right)
rndframe={(options)}} (radius for all four corners)}
rndframe={(options)}{{left corners) (right corners)}
rndframe={(options)}{{upper left) (upper right) (lower left) (lower right)}

color={{color)}
color*={{color command)}
width={{rule width)}
sep={(rule separation)}

22

clip
clip=true|false

Example:

\adjustbox{scale=3,bgcolor=gray,rndframe={color=red,width=2\fboxrule,sep=2\fboxsep}
{\Huge XXXX1}%

rndcornersbox

Like rndframe (see argument list there) but only clips the corners without
drawing a frame.

rndfbox

Like rndframe (see argument list there) butwith preset sep=0pt.

\rndcornersbox
\rndframebox
\rndfbox

Standalone macro versions of the corresponding keys. See there for the list of argu-
ments.

23

4.6 Vertical Alignment

The following keys can be used to adjust the vertical alignment and size of the content.

valign=(letter)

This key allows to vertically align the content to the top, middle and bottom. The up-
percase letters T, M and B align to the content top (i.e. all depth, no height), the geomet-
ric, vertical center (equal height and depth) and to the bottom (all height, no depth),
respectively. This allows the alignment of content of different size, but will not result
in good alignment with text. The lowercase letters t, m and b are aligning the content
again to the top, center and bottom but take the current text size in account. The t
letter leaves a certain height given by the macro? \adjboxvtop (by default set to the
height of \strut,i.e. \ht\strutbox, whichis . 7\baselineskip), while b sets a cer-
tain depth given (as negative length) by the macro \ad jboxvbottom (by default equal
to the (negated) \strut depth, i.e. -\dp\strutbox, which is .3\baselineskip).
The m letter will center towards the vertical center of the text line which is determined
by the macro \adjboxvcenter (by default 1ex).

The following table shows the different alignments for three different sized blocks:

T M B Text
Mxy

Mxy

t m b Text

I I Mxy
M

Xy

raise=(amount)
raise={(amount)}{(height)}
raise={(amount)}{(height)}{(depth)}

This key uses \raisebox{(amount)}{. . .} toraise the content upwards for the given
(amount) (length). A negative length moves the content down. The two optional
arguments of \raisebox{(amount)} [{height)] [(depth)]{. ..} are also available
as optional brace arguments. They can be used to set the official height and depth of
the content. This is also possible using the set height and set depth keys.

Examples:

Is \adjustbox{raise=lex}{higher} " higher
S

than the normal text than the normal text

2A macro and not a length is used to allow for font size relative values like 1ex.

24

Is \adjustbox{raise={1lex}{\height}}{higher}
than the normal text but sill has
its original official height

s PI8NET 01 the normal text but sill has its original official height

Is \adjustbox{raise={1ex}{1ex}{0Opt}}{higher and
\rotatebox{-90}{deeper}} but with limited official
height and no depth.

1s higherand . ith Timited official height and no depth.

Iadaap

set height=(height)

This sets the official height of the content without actual changing it. This can be
seen as a form of trimming. It uses the same internal code as
\raisebox{0pt} [(height)]{{content)}.

Example:

\adjustbox{set height=.5\height} Soqxiigﬁked
{\shortstack{some stacked\\contentl}}

set depth=(depth)

This sets the official depth of the content without actual changing it. This can be seen
as a form of trimming. It uses the same internal code as
\raisebox{0Opt} [\height] [{depth)]{{content)}.

Example:

\adjustbox{set depth=0pt}
{\shortstack{some stacked\\content
with \raisebox{-lex}{depthl}}}

some stacked
content with depth

set vsize={(height)}{(depth)}

This sets the official height of depth of the content without actual changing it. This
key is simply the combination of set height and set depth.

Example:
\adjustbox{set vsize={2pt}{1ipt}} SOmeS'[.aCked
{\shortstack{some stacked\\content Contenththdepth

with \raisebox{-lex}{depth}}}

25

4.7 Horizontal Alignment

The following keys can be used to adjust the horizontal alignment and size of the
content.

center
center=(width)

This key places the content in a horizontal box which is by default \1inewidth wide
(i.e. as wide as a normal text paragraph) and centers it in it. The effect is very similar
to \centerline. The original content is unchanged, but simply identical white
space is added as a left and right margin. This is useful if the content is a figure or
table and can be used as a replacement for \centering. One important difference is
that the content will then have the given width which might influence (sub-)caption
placement. If the content is wider than the available width it will stick out on both
sides equally without causing an overfull hbox warning. Note that when \adjustbox
paragraph is used at the beginning of a paragraph the normal paragraph indention is
added, which will push the while box to the right and might cause an overfull line. In
such cases a \noindent must be added beforehand. The ad justbox environment
already uses this macro.

Examples:
\adjustbox{center}{Some content}

Some content

\adjustbox{center=5cm}{Some content}

Some content

right
right=(width)

Like center this key places the content in a box with the given width (by default
\linewidth) but right aligns it. If the content is wider than the available width it will
stick out into the left side without causing an overfull hbox warning.

Examples:
\adjustbox{right}{Some content}

Some content

\adjustbox{right=5cm}{Some content}

Some content

26

left
left=(width)

Like center this key places the content in a box with the given width (by default
\linewidth) but left aligns it. If the content is wider than the available width it will
stick out into the right side without causing an overfull hbox warning.

Examples:
\adjustbox{left}{Some content}

Some content

\adjustbox{left=5cm}{Some content}

Some content

inner
inner=(width)

Like center, left and right this key places the content in a box with the given
width (by default \1inewidth) but aligns it towards the inner margin. If the content
is wider than the available width it will stick into the outer margin without causing
an overfull hbox warning. In twoside mode this key is equal to 1eft for odd pages
and equal to right for even pages. For oneside mode it is equal to 1eft. Note that
the page-is-odd test might not always lead to correct results for some material close
to a page boundary, because TgX might not have decided on which page it will be
placed. This can be improved by loading the changepage package with the strict
option, which uses a reference to determine the correct page number (and requires
the usual additional compiler run).

outer
outer=(width)

Identical to inner but aligns the content towards the outer margin. For oneside
mode it is equal to right. If the content is wider than the available width it will stick
into the outer inner without causing an overfull hbox warning.

pagecenter
pagecenter=(width)

This key centers the content relative to the page and independent from the text area.
Afterwards the content has the same distance to the left and right page borders. It
differs from the center key when the left and right page margins are different which
is the case in twoside documents or in environments which change the margins.

Note that the content will look misalign to the text paragraphs before and after-
wards and is therefore only pleasing for overwide images or similar content.

The optional width defaults to \1inewidth and determines the official width
of the content. If a smaller value is selected following material will be placed on

27

the same line while maybe overlapping the content. Larger values will cause an
Overfull \hbox warning.

pageleftalign
pageleftalign=(width)

Similar to pagecenter (see remarks there) but aligns the content on the left side of
the page instead of centering it.

pagerightalign
pagerightalign=(width)

Similar to pagecenter (see remarks there) but aligns the content on the left side of
the page instead of centering it.

pageinner
pageinner=(width)

Similar to pagecenter (see remarks there) but aligns the content on the inner side
of the page instead of centering it. This assumes that the document is compiled
in twoside mode. In oneside mode the macro is identical to pageleftalign, i.e.
always aligns to the left of the page.

pageouter
pageouter=(width)

Similar to pagecenter (see remarks there) but aligns the content on the outer side
of the page instead of centering it. This assumes that the document is compiled in
twoside mode. In oneside mode the macro is identical to pagerightalign, i.e.
always aligns to the right of the page.

textareacenter
textareacenter=(width)

This key centers the content on the text area (the box with size \textwidth x\textheight
containing the text on a page) even if the box is inside an indending environment
like enumerate. For this it is assumed that the adjusted box is on the start of a line or
paragraph. If this is not the case the content will be overlapping the material on its
left side.

The optional width defaults to \1inewidth and determines the official width
of the content. If a smaller value is selected following material will be placed on
the same line while maybe overlapping the content. Larger values will cause an
Overfull \hbox warning.

textareatalign
textareatalign=(width)

Similar to textareacenter (see remarks there) but aligns the content on the left
side of the text area instead of centering it.

28

textareatalign
textareatalign=(width)

Similar to textareacenter (see remarks there) but aligns the content on the left
side of the text area instead of centering it.

textareainner
textareainner=(width)

Similar to textareacenter (see remarks there) but aligns the content on the inner
side of the text area instead of centering it. This assumes that the document is com-
piled in twoside mode. In oneside mode the macro is identical to pageleftalign,
i.e. always aligns to the left of the text area.

textareaouter
textareaouter=(width)

Similar to textareacenter (seeremarks there) but aligns the content on the outer
side of the text area instead of centering it. This assumes that the document is com-
piled in twoside mode. In oneside mode the macroisidentical to pagerightalign,
i.e. always aligns to the right of the text area.

noindent

This key will issue an \noindent for the \adjustbox to avoid a paragraph indention
if it starts a paragraph. It does not expect a value and will ignore it if provided.

leavevmode

This key will issue an \1eavevmode for the \ad justbox to enter paragraph mode, i.e.
it starts a paragraph. This is usually done automatically by all Keys, but is provided as
a failsafe in case of any bugs.

\centerbox [(width)] {{content)}

\begin{centerbox} [(width)]
(content)
\end{centerbox}

Macro and environment version of the center key. The optional width argument
defaults to \1inewidth. Both include a \noindent to avoid paragraph indention.
If an paragraph indention is wanted it can be created by placing a \mbox{?} or the
identical \null macro before it.

\leftalignbox [(width)]{(content)}

29

\begin{leftalignbox} [(width)]
(content)
\end{leftalignbox}

Macro and environment version of the left key. The optional width argument
defaults to \1inewidth. Both include a \noindent to avoid paragraph indention.
If an paragraph indention is wanted it can be created by placing a \mbox{?} or the
identical \null macro before it.

\rightalignbox [(width)]{{content)}

\begin{rightalignbox} [(width)]
(content)
\end{rightalignbox}

Macro and environment version of the rightalign key. The optional width ar-
gument defaults to \1linewidth. Both include a \noindent to avoid paragraph
indention. If an paragraph indention is wanted it can be created by placing a \mbox{}
or the identical \null macro before it.

\innersidebox [{width)] {{content)}

\begin{innersidebox} [(width)]
(content)
\end{innersidebox}

Macro and environment version of the inner key. The optional width argument
defaults to \1inewidth. Both include a \noindent to avoid paragraph indention.
If an paragraph indention is wanted it can be created by placing a \mbox{} or the
identical \null macro before it.

\outersidebox [{width)] {{content)}

\begin{outersidebox} [(width)]
{(content)
\end{outersidebox}

Macro and environment version of the outer key. The optional width argument
defaults to \1inewidth. Both include a \noindent to avoid paragraph indention.
If an paragraph indention is wanted it can be created by placing a \mbox{?} or the
identical \null macro before it.

\centerpagebox [(width)] {{(content)}

30

\begin{centerpagebox} [(width)]
(content)
\end{centerpagebox}

Macro and environment version of the centerpage key. The optional width ar-
gument defaults to \1inewidth. Both include a \noindent to avoid paragraph
indention. If an paragraph indention is wanted it can be created by placing a \mbox{}
or the identical \null macro before it.

\pagecenterbox [(width)] {{content)}

\begin{pagecenterbox} [(width)]
(content)
\end{pagecenterbox}

Macro and environment version of the pagecenterbox key. The optional width
argument defaults to \1inewidth. Both include a \noindent to avoid paragraph
indention. If an paragraph indention is wanted it can be created by placing a \mbox{}
or the identical \null macro before it.

\pageleftalignbox [(width)]{{content)}

\begin{pageleftalignbox} [(width)]
(content)
\end{pageleftalignbox}

Macro and environment version of the pageleftalignbox key. The optional width
argument defaults to \1inewidth. Both include a \noindent to avoid paragraph
indention. If an paragraph indention is wanted it can be created by placing a \mbox{}
or the identical \null macro before it.

\pagerightalignbox [(width)]{(content)}

\begin{pagerightalignbox} [(width)]
(content)
\end{pagerightalignbox}

Macro and environment version of the pagerightalignbox key. The optional width
argument defaults to \1inewidth. Both include a \noindent to avoid paragraph
indention. If an paragraph indention is wanted it can be created by placing a \mbox{}
or the identical \null macro before it.

\pageinnerbox [(width)]{(content)}

31

\begin{pageinnerbox} [(width)]
(content)
\end{pageinnerbox}

Macro and environment version of the pageinnerbox key. The optional width ar-
gument defaults to \1inewidth. Both include a \noindent to avoid paragraph
indention. If an paragraph indention is wanted it can be created by placing a \mbox{}
or the identical \null macro before it.

\pageouterbox [(width)]{(content)}

\begin{pageouterbox} [(width)]
(content)
\end{pageouterbox}

Macro and environment version of the pageouterbox key. The optional width ar-
gument defaults to \1linewidth. Both include a \noindent to avoid paragraph
indention. If an paragraph indention is wanted it can be created by placing a \mbox{}
or the identical \null macro before it.

\textareacenterbox [{width)] {{content)}

\begin{textareacenterbox} [(width)]
(content)
\end{textareacenterbox}

Macro and environment version of the textareacenterbox key. The optional width
argument defaults to \1inewidth. Both include a \noindent to avoid paragraph
indention. If an paragraph indention is wanted it can be created by placing a \mbox{}
or the identical \null macro before it.

\textareatalignbox [(width)]{(content)}

\begin{textareatalignbox} [(width)]
(content)
\end{textareatalignbox}

Macro and environment version of the textareatalignbox key. The optional width
argument defaults to \1inewidth. Both include a \noindent to avoid paragraph
indention. If an paragraph indention is wanted it can be created by placing a \mbox{}
or the identical \null macro before it.

\textareatalignbox [(width)]{{content)}

32

\begin{textareatalignbox} [(width)]
(content)
\end{textareatalignbox}

Macro and environment version of the textareatalignbox key. The optional width
argument defaults to \1inewidth. Both include a \noindent to avoid paragraph
indention. If an paragraph indention is wanted it can be created by placing a \mbox{}
or the identical \null macro before it.

\textareainnerbox [{width)]{{content)}

\begin{textareainnerbox} [(width)]
(content)
\end{textareainnerbox}

Macro and environment version of the textareainnerbox key. The optional width
argument defaults to \1inewidth. Both include a \noindent to avoid paragraph
indention. If an paragraph indention is wanted it can be created by placing a \mbox{}
or the identical \null macro before it.

\textareaouterbox [{width)] {{content)}

\begin{textareaouterbox} [(width)]
(content)
\end{textareaouterbox}

Macro and environment version of the textareaouterbox key. The optional width
argument defaults to \1inewidth. Both include a \noindent to avoid paragraph
indention. If an paragraph indention is wanted it can be created by placing a \mbox{}
or the identical \null macro before it.

33

Lapping

The following features can be used to make the content lap over its left or right
boundary. This is basically the same as trimming, but provides a different, more
dedicated interface.

lap=(lap amount)
lap={(length)}{(lap amount)}

This key will make the content lap over the surrounding elements to the right or
left by the given amount.. A positive amount will make the content lap over to the
right and a negative one to the left. The optional (/ength) argument allows to set
the final width. If not used the resulting width will be the original width minus the
absolute lap amount. This key internally uses \lapbox{(lap amount)}{. ..} and
\lapbox [(length)]{({lap amount)}{. . .}, respectively.

Examples:

\adjustbox{lap=.5\width}{Some content} Some content
\adjustbox{lap=-.5\width}{Some content} Some content
\adjustbox{lap=\width}{Some content} Some content
\adjustbox{lap=-\width}{Some content} Some content

\adjustbox{lap={\width}{\width}}{Some content}

Some content

\adjustbox{lap={\width}{-\width}}{Some content}

Some content

rlap
1lap
clap

This makes the content to be officially Opt wide and lap over to the right or left,
respectively, like the BIEX macros \rlap, \11lap and \clap do. These are shortcuts
for lap=\width, lap=-\width and lap={0pt}{-0.5\width}, respectively. The
values for these keys are ignored and should not be used.

Examples:

\adjustbox{rlap}{Some content} Some content
\adjustbox{llap}{Some content} Some content
\adjustbox{clap}{Some content} Some content

34

\lapbox [{widthy]{({lap amount)}{{content)}

This macro is a generalisation of the BKIEX core macros \rlap{(content)} and \1lap{(content)}

which lap the text to the right or left without taking any official space. The \lapbox
macro can be used to only partially lap the content to the right (positive amount)
or left (negative amount). As with all macros of this package the original width can
be references using \width. The resulting official width of the box is normally the
original width minus the absolute lap amount. However, it can also be set explicitly
using the option argument. It is also possible to use lap amount which absolute
values are larger than the original width. In this case the resulting official width will
be zero by default and the content will padded with the required white space. Note
that the lap amount always states the distance between the right side of the official
box and the right side of the actual content for positive amounts or the distance
between the left side of the official box and the left side of the actual content for
negative values.

Examples:

General lapping:

\lapbox{lcm}{Some Text} Some Text
\lapbox{-1cm}{Some Text} Some Text
\lapbox [4cm]{1cm}{Some Text} Some Text
\lapbox [3cm]{2cm}{Some Text} Some Text
Like \rlap:

\lapbox [Opt]{\width}{Some Text} Some Text
Like \11lap:

\lapbox [Opt]{-\width}{Some Text} Some Text

A centering \clap macro can be achieved using:

\lapbox [Opt]{-.5\width}{Some Text} Some Text
\lapbox [Opt]{.5\width}{Some Text} Some Text

35

4.8 Support for graphicx keys

bbllx=(length)
bblly=(length)
bburx=(length)
bbury=(length)
decodearray
intent
interpolate
maskarray
natheight=(length)
natwidth=(length)
ocobjnum
ocobjref
page=(page numbers)
pagebox

quiet

resetcolor
resolution
xmpfile

The above graphicx keys are also supported by \ad justbox. This is done by rely-
ing on the original graphicx code, i.e. the key code is copied into the ad justbox
namespace. These keys are therefore mostly for use with images and might not work
well with other content. For more details on these keys see the graphicx manual.

36

4.9 Colors

color={color)
color={(model)y}{{color)}

This key sets the color for all material. Both the content and further material added
by other keys will be affected. The color change is immediate and will occur before
basically every other key takes effect. The order in which this key is used is therefore
meaningless. Using this key several times will cause several color changes with the
last one be used for the remaining material. Note that color will not influence any
fgcolor or bgcolor beside the fact that it changes the current color accessible using
the special name ..

color*={(color macro)

Like color but awaits a full color macro as value. This allows to use other macros as
\colorlike \blendcolors. See the xcolor manual for more details. A \blendcolors
will affect both fgcolor and bgcolor.

fgcolor=(color)
fgcolor={(model)}{{color)}

This key sets the color for the content. The value is passed to an internal \color
macro. This is done using innercode because the color must be set before the
content is boxed. Further material added using keys, e.g. a frame, is not affected by
this key. The xcolor package (or color or xxcolor) needs to be loaded otherwise
an error will be raised.

fgcolor*=(color macro)

Like fgcolor but awaits a full color macro as value. This allows to use other macros
as \color like \blendcolors. See the xcolor manual for more details.

bgcolor={color)
bgcolor={({model)}{{color)}

This key adds a colored background to the content. The xcolor package (or color
or xxcolor) needs to be loaded as well in order for this to work. The value is passed
to an internal \color macro.

Examples:
\adjustbox{bgcolor=blue}{Text with blue background.}

\adjustbox{bgcolor={rgb}{0 0 1}}{Text with blue background in the RGB color model.}

37

\adjustbox{margin=lex,bgcolor=green}{green with a little more margin}

\adjustbox{margin=lex,bgcolor=green,margin=1pt,bgcolor=yellow}{Emulation of colored

Emulation of colored frame

bgcolor*=(color macro)

Like bgcolor but awaits a full color macro as value. This allows to use other macros
as \color like \blendcolors. See the xcolor manual for more details.

Examples:

\color{blue}Blue text
\adjustbox{bgcolor*=\blendcolors{!10!yellow}\color{.}}{with a yellow-bluish backgros

Blue text with a yellow-bluish background

\color{green}Green text
\adjustbox{bgcolor*=\blendcolors{!10!yellow}\color{.}}{with a yellow-greenish backg:

[Green text with a yellow-greenish background

\bgcolorbox [{model)]{{color)}
\bgcolorbox*{({color macro)}

\begin{bgcolorbox} [(model)]{{color)}
(content)
\end{bgcolorbox}

\begin{bgcolorbox*}{(color macro)}
(content)
\end{bgcolorbox*}

Standalone macro and environment versions of the bgcolorbox and bgcolorbox*
keys.

38

4.10 Background and Forground Images and Text

The following keys, macros and environment allow to add background and fore-
ground layers. These layers are placed on the baseline of the original content and are
horizontally centered, but can be adjusted using own \ad justbox or \includegraphics
keys. The following dimension registers can be used to refer to the dimensions of the
original content.

\pwidth \pheight \pdepth \ptotalheight

These dimension registers hold the width, height, depth and total height (height+depth)
of the parent box and can be used to resize a background or foreground layer accor-
dantly. They are only defined inside the key=value arguments of the following keys,
macros and environments.

bgimage=(image filename)
bgimage={(key=value pairs for image)}{(image filename)}

Adds a background image to the content. The image is stretched if required to fit ex-
actly to the content. It is also possible to provide \ad justbox or \includegraphics
keys to modify the image (before the resizing is done).

Examples:

\adjustbox{bgimage=example-grid-100x100bp}{Some text}

bgimage*=(image filename)
bgimage*={(key=value pairs for image) }{(image filename)}

Adds a background image to the content like bgimage but the image is not stretched
to fit the content. Instead it is added in its natural size but can be adjusted using
\adjustbox or \includegraphics keys. The image is placed on the baseline of the
content and horizontally centered. It can be lowered to the lower edge of the content
using raise=-\pdepth and left aligned using 1left=\pwidth etc.

\bgimagebox [(key=value pairs)]{(image filename)}
\bgimagebox* [(key=value pairs)] {(image filename)}

\begin{bgimagebox} [{key=value pairs)] {(image filename)}
(content)
\end{bgimagebox}

39

\begin{bgimagebox*} [(key=value pairs)]{(image filename)}
(content)
\end{bgimagebox*}

Standalone macro and environment versions of the bgimage and bgimage* keys.

fgimage=(image filename)
fgimage={(key=value pairs for image) }{(image filename)}

Adds a foreground image to the content. The image is stretched to fit exactly to
the content. It is also possible to provide \adjustbox or \includegraphics keys
to modify the image (before the resizing is done). The image is assumed to have
transparent elements, otherwise the existing content is fully covered.

fgimagex*=(image filename)
fgimagex={(key=value pairs for image)}{(image filename)}

Adds a foreground image to the content like fgimage but the image is not stretched
to fit the content. Instead it is added in its natural size but can be adjusted using
\adjustbox or \includegraphics keys. The image is placed on the baseline of the
content and horizontally centered.

\fgimagebox [(key=value pairs)] {(image filename)}
\fgimagebox* [(key=value pairs)]{(image filename)}

\begin{fgimagebox} [(key=value pairs)]{{image filename)}
(content)
\end{fgimagebox}

\begin{fgimagebox*} [(key=value pairs)]{(image filename)}
(content)
\end{fgimagebox*}

Standalone macro and environment versions of the fgimage and fgimage* keys.

background=(background content)
background={(key=value pairs for image)}{{(background content)}

Adds the given content as background layer to the main content. The background
content is stretched to fit the size of the main content. It is also possible to provide
\adjustbox or \includegraphics keys to modify the background content (before
the resizing is done).

40

Examples:

\adjustbox{background={\color{red}xxx}}{Some text}

background*=(background content)
background*={(key=value pairs for image)}{{background content)}

Like background but does not resizes the background content. Instead it is added in
its natural size but can be adjusted using \adjustbox or \includegraphics keys.

\backgroundbox [(key=value pairs)] {{background content)}
\backgroundbox* [(key=value pairs)]{{background content)}

\begin{backgroundbox} [{key=value pairs)] {{background content)}
(content)
\end{backgroundbox}

\begin{backgroundbox*} [(key=value pairs)] {{background content)}
(content)
\end{backgroundbox*}

Standalone macro and environment versions of the background and background*
keys.

foreground=(foreground content)
foreground={(key=value pairs for content)}{(foreground content)}

Adds the given content as foreground layer to the main content. The foreground
content is stretched to fit the size of the main content. It is also possible to provide
\adjustbox or \includegraphics keys to modify the foreground content (before
the resizing is done).

Examples:

\adjustbox{foreground={\color{red}xxx}}{Some text}

foreground*=(foreground content)
foreground*={(key=value pairs for content)}{(foreground content)}

Like foreground but does not resizes the foreground content. Instead it is added in
its natural size but can be adjusted using \adjustbox or \includegraphics keys.

41

\foregroundbox [(key=value pairs)] {{foreground content)}
\foregroundbox* [(key=value pairs)]{{foreground content)}

\begin{foregroundbox} [{key=value pairs)]{(foreground content)}
(content)
\end{foregroundbox}

\begin{foregroundbox*} [(key=value pairs)]{(foreground content)}
(content)
\end{foregroundbox*}

Standalone macro and environment versions of the foreground and foreground*
keys.

42

4.11 Density/ Pixel size

The following keys allow to adjust the effective length of pdftex special px (pixel)
unit. This can be required for images which do not have the correct DPI meta-data
included.

dpi=(number (dots per inch))

The dpi key provides a simple interface to set the pixel size to the given DPI (dots
per inch) value. For pdflatex the length unit px can be used to specify pixels.
However, the equivalent dimension (length) of one pixel must be set using the
\pdfpxdimen length register. To set a specific DPI value this length must be set
using \setlength\pdfpxdimen{lin/(dots)}, which is done by the dpi=(dots) key.
Note that the key won't affect the setting for the content but only for the further used
keys. However, it is possible to use \setkeys{adjbox}{dpi=(number)?} inside the
content or anywhere else in the document to set \pdf pxdimen using this interface.

Example:
\adjustbox{dpi=72,trim=10px, frame}{%

\setkeys{adjbox}{dpi=72}Y%
\textcolor{green}{\rule{50px}{50px}}%

pxdim=(length)

Alternatively to the dpi key the \pdfpxdimen length can be set directly to the given
value. Afterwards 1px will stand for the given (length).

Example:

\adjustbox{pxdim=2pt,trim=2px,frame} .
{\textcolor{green}{\rule{20pt}{20pt}}}

43

4.12 Minipage or other inner environments which change the pro-
cessing of the content

The following keys set the way the content is processed before it is stored it in a box.
These keys will overwrite each other and only the latest used key will take effect.
Because they affect the inner content directly their order relative to other, normal
keys is not meaningful. Also they are only defined for ad justbox but do not apply
for \includegraphics. Because they are therefore only used inside a mandatory
argument and never in an optional these keys allow for optional bracket arguments.

minipage=(width)
minipage=[(position)] [{height)] [{inner position)] {{width)}

This key wraps the inner content in a minipage with the given (width) before it is
stored as horizontal box. Its order relative to other keys is not meaningful (except that
future keys of this sub-section will overwrite it). This allows for line breaks and foot-
notes in the adjustbox. All optional arguments of minipage are supported. I only
the width is given it does not have to be enclosed in braces. The (position) argument
must be "t" for top baseline, "b" for bottom baseline and "c" for center alignment
relative to other text, i.e. defines the resulting baseline. If a (height) is defined the
(inner position) defaults to (position) but can also be "s" to stretch the content over
the whole height. This requires the content to include some vertical stretchable
material. Note that all length arguments can include arithmetic expressions like for
other keys.

Examples:

\adjustbox{minipage=5cm,angle=-10}{%
Some example code which will
be automatically broken or can include \\
line breaks\footnote{AND footnotes!!}\\
or verbatim \verb+@J &} _+!'Y%

44

Before \begin{adjustbox}{minipage=[b]l[3cm][s]{5cm}}
Some example code

\vfill
with line breaks\footnote{AND footnotes!'!'}

\vfill
or verbatim \verb+@% &} _+!'Y%
\end{adjustbox} After

Some example code

with line breaks®

or verbatim @% " &3} _!

Before “AND footnotes!! After

varwidth=(width)

Adds a varwidth environment from the varwidth package around the content. This
is similar to the minipage environment but the final width of the content will be
as large as the widest line in the content up to the maximum amount given by the
width argument. This environment key is vert useful if the content produces some
paragraph material which can’t be stored in an horizontal box directly.

tabular=[(position)] {{column specification)}
tabularx=[(position)] {{width)}{(column specification)}
array= [(position)] {{column specification)}

Places the content in a tabular, tabular* or array environment, respectively.
These keys require different implementations for macro (\adjustbox) and environ-
ment mode (adjustbox environment) in order to insert the end code correctly. Note
that the environment mode is more efficient and fully stable, while the macro mode
requires the last row to end with an explicit \\ (which can be followed by \hline or
any other macro which uses \noalign internally). In macro mode the \\ is inter-
nally redefined to check for the closing brace. While this was successful tested for
normal usages it might still cause issues with unusual or complicated cases. Note that
these environments are taken as part of the content and so the usage of arithmetic
expressions for length arguments is not supported.

Examples:

\adjustbox{tabular=1113}{%
\hline

& C \\\hline

& ¢ \\\hline

P
o'|
o0

A & B
a & b

45

\begin{adjustbox}{tabular=111}
A & B & C \\
a &b &c

\end{adjustbox}

B>
o W
o0

stack
stack=(horizontal alignment)
stack={(horizontal alignment)}{(vertical alignment)}

\stackbox [(horizontal alignment)] [{vertical alignment)]{{content)}

\begin{stackbox} [(horizontal alignment)] [{vertical alignment)]
(content)
\end{stackbox}

The stack key and its corresponding macro and environment can be used to stack
multiple lines similar to the \shortstack macro, but both the horizontal and vertical
alignment can be selected by a single letter each. Also a proper baseline skip is
inserted. This is implemented using the varwidth environment which is based
on the minipage environment. Its maximal width arguments is fixed internally to
\linewidth.

Possible horizontal alignments are: "1" (left), "r" (right), "c" (centered, default),
"j" (justified). Possible vertical alignments are the same as for minipage: "t" (top
baseline), "b" (bottom baseline, default), "c" (vertical centered). Because these
arguments are always single letters the "{ }" around them can be skipped, so that
the value can simple be two concatenated letters.

Example:

\adjustbox{stack}{A\\B\\CC}. B

.\adjustbox{stack=r}{A\\B\\CC}. B

.\adjustbox{stack=ct}{A\\B\\CC}. B

innerenv={environment name)
innerenv={(environment name)}{environment options)

Wraps the inner content in the given (environment) before it is stored as horizontal
box. It should be kept in mind that there is some internal code between the begin
of the environment and the content. For this reason a tabular, array or similar
environment will not work here, because that code will be taken as part of the first
cell. Note that such a environment is taken as part of the content and so the usage of
arithmetic expressions for length arguments is not supported.

46

Example:

\newenvironment{myenv}[2] []{Before [#1] (#2)}{After}
\adjustbox{innerenv={myenv}[ex]{amble}}{Content}

Before [ex] (amble) ContentAfter

\adjustbox{innerenv={myenv}{amble}}{Content}

Before [](amble) ContentAfter

innercode={(begin code)}{(end code)}

Places the given code before and after the inner content before it is stored as hori-
zontal box. Note that such code is taken as part of the content and so the usage of
arithmetic expressions for length arguments is not supported.

Example:

\adjustbox{innercode={\color{green}}{!}}{Content}

47

4.13 Floats and non-float replacements

The following keys can be used to turn an adjusted box into a float or a non-floating
replacement which also allows for a caption. These keys must be used last and no
other normal keys must be used afterwards, otherwise an error will occur because
the added floating environment is boxed again.

caption={caption text)
caption=[(short caption)]l{(long caption)’

Defines a caption which will be used by a following figure, float or nofloat key.
The position of the caption defaults to top for a table (non-)float and bottom for
every other type.

captionabove=(caption text)
captionabove=[(short caption)]{{long caption)}

Like the caption key but forces the placement of the caption above the content. The
vertical skip above and below a normal below caption are reversed in this case to
get proper spacing. However, this is not done if the caption package is loaded. It is
recommended to load this package with the tableposition=above option.

captionbelow=(caption text)
captionbelow=[(short caption)]{{long caption)}

Like the caption key but forces the placement of the caption below the content.

label=(label)

Defines a label which will be used by a following figure, f1oat or nofloat key.

figure
figure=(placement)

Turns the adjusted box into a figure. A previously used caption and label will be
added. This is a specialised version of float={figure}.

float=(float type)
float={(float type)} [{position)]

Turns the adjusted box into a float of the given type, i.e. figure, table or any other
custom defined float. A previously used caption and label will be added.

nofloat=(float type)

This will add a non-floating replacement of the given float type (figure, table, etc.).
The will place the content always at the current position which can lead to bad page-
breaking. A caption will be in the same format as for real floats of the same type. A
previously used caption and label will be added.

48

\begin{adjnofloat}{(float type)}
(content)
\end{adjnofloat}

This environment is used internally by nofloat to create a non-floating replacement
of the given float type (figure, table, etc.). It can also be used directly with other
code or be redefined to change the behavior of nofloat. Any redefinition should
include \adjbox@nofloatcaptionsetup{#1} to set the caption type. The environ-
ment will be used in plain form, i.e. \adjnofloat ...\endadjnofloat, so if a group
is required in a redefinition it should be added manually using \begingroup and
\endgroup.

49

4.14 Adding own Code or Environments

env=(environment name)
env={(environment name)}{environment options)

Adds an (environment) around the content and the already existing code around
it which was added by other keys beforehand. Potential (environment options) (or
any other code) can follow the environment name if it was set inside braces. At this
stage the content is already boxed and format macros won't have any effect on any
included text. For this the innerenv key needs to be used instead.

addcode={(code before)}{{code afters)}

Adds some (code before) and some (code after) the content and the already existing
code around it which was added by other keys beforehand. At this stage the content
is already boxed and format macros won’t have any effect on any included text. This
key sets the size of the content before adding the code, i.e. keys like width or scale
are executed on the content beforehand.

Addcode={(code before)}{{code afters)}

Identical to addcode but does not sets the size of the content first.

appcode=(code afterwards)

Appends the given BIEX code after the currently accumulated content. Note that this
is the original content of the adjusted box and all code added by the previous keys.
It is recommended to wrap complex code into braces.

precode={code before)

Prepends the given BIgX code before the currently accumulated content. Note that
this is the original content of the adjusted box and all code added by the previous
keys. The content is wrapped into curly braces, so the given code can use it as a
macro argument. This key sets the size of the content before adding the code, i.e.
keys like width or scale are executed on the content beforehand.

It is recommended to wrap complex code into braces.

Precode={(code before)}

Identical to precode but does not sets the size of the content first.

execute={code)

Simply executes the code immediately. This is done in the key processing phase and
is intended mostly for debugging purposes. Previous (normal) keys won't have an
effect yet.

50

Execute={code)

Simply executes the code immediately. This is done in the key processing phase
for inner environments (see subsection 4.12) and is intended mostly for debugging

purposes. Only previously used special keys for modifying the boxing of the content
will have an effect yet. All other keys are not yet processed.

51

4.15 Change or discard content

phantom
phantom=h
phantom=v

This key replaces the content with an empty phantom box of the same dimension. If
the "h" or "v" value is used the box will only have the same horizontal size or vertical
sizes (height and depth) while using zero for the other dimension(s). For this the
standard BIEX macros \phantom, \hphantom and \vphantom are used internally.

\phantombox{(width)}{(height)}{{depth)}

This macro produces an empty box with the given width, height and depth. It is
equivalent to \phantom{\rule [-(depth)]{(width)}{(height)+(depth)}} but more
efficient and more user friendly.

Example:

Before \fbox{\phantombox{lcm}{2ex}{lex}} After

Before After

gobble
discard

These two keys are aliases and will discard the content after it was fully processed.
Any keys used after one of this keys will operate on an empty content. These keys
can be used in combination of the gstore ... keys to only measure but not typeset
some content.

content={new content)

This key discards the current content completely after it was fully processed and all
earlier keys were applied and sets the content to the given (new content). This can be
used to implement some draft box or censoring features.

Example:

\adjustbox{frame ,rotate=-30,gstore sizes=\somelengtha{}{}\somelengthb,
content={Censored!},rotate=30,totalheight=\somelengtha ,width=\somelengthb , frame
{The real content}

!
050@
()6

52

4.16 Store box content

gstore=(\boxregister)
gstore*=(\boxregister)

These keys globally store the current content into the given box register. With the
normal version the content is still preserved and can be further adjusted. With the
starred version the content will be consumed and further keys will be applied to an
empty content.

gstore width=(\lengthregister)
gstore height=(\lengthregister)
gstore depth=(\lengthregister)
gstore totalheight=(\lengthregister)

These key globally store the width, height, depth and totalheight into a length register,
respectively. The content will not be altered by these keys. There are no starred
versions like for gstore. If the content should only be measured but not typeset the
gobble/discard key can be used afterwards.

gstore sizes=(\lengthregister)(\lengthregister)(\lengthregister)(\lengthregister)

Stores all four size values (width, height, depth and totalheight) of the content in the
given length registers. This key should be used if more than one dimension should be
stored, because it is much more efficient than using multiple of the above keys. If a
dimension is not required it can be replaced by an empty argument, i.e. ‘{}". Trailing
dimensions can be skipped altogether if they are not required.

53

4.17 Process content

process

This key processes the keys and content encountered so far (i.e. all keys to its left) and
sets the dimension macros to the sizes of the result. It is only required for certain key

combinations, mostly the ones taken from graphicx, which are otherwise processed
together.

54

4.18 Experimental Keys

The following features are experimental and may not work correctly yet. At the
moment the storebox package must be loaded manually for this keys.

\splitbox{(split width)}{(split height)}{{content)}

This macro boxes the given content and splits it in multiple fragments of the given
width and height. This is done row by row starting from the upper left corner. The
last column and row can have a smaller size than requested. Every fragment is
placed using \splitboxcmd{(fragment box)} which is empty by default but can be
redefined to e.g. draw a frame around each fragment. After every row except the
last the macro \splitboxnewline is inserted which defaults to \\, but can also be
redefined freely. After the last row the macro \splitboxlastnewline is inserted
which defaults to \splitboxnewline.

The \splitbox content is stored using \storebox from the storebox package
and therefore the whole content should only be stored once in the output file if the
format is supported by that package (currently only PDF).

\begin{splitbox}{(split width)}{(split height)}
(content)
\end{splitbox}

Environment version of \splitbox.

split={(split width)}{(split height)}

The split key can be used with \adjustbox and uses \splitbox internally.

\pagebreakbox{(content)}

The \pagebreakbox macro will split the content into multiple parts so that if fits
on the current page. If it is larger than the rest of the current page and the full
next page it is broken again until the last part fits on a page. This doesn’t take any
baselines into account and text line in the content may be split in two. This might
be compensated manually by redefining the \pagebreakboxoffset macro (default:
‘\ht\strutbox’), which adjust the vertical offset of the first part.

\begin{pagebreakbox}
\end{pagebreakbox}

Environment version of \pagebreakbox.

pagebreak

The key version of \pagebreakbox. There should no be any further keys used after-
wards, because they will interfere with the page breaks.

55

5 Defining own Keys

The following macros can be used to define own keys or redefine existing ones.

\newadjustboxkey{(key)} [(default value)]{{code)}
\newadjustboxkey*{(key)} [(default value)]{(code)}

Defines the new ad justbox key with the given default value if no value is provided.
The value can be accessed inside the code as #1 Without a default value an error is
raised if the value is missing. An error is raised if the key is already defined.

The normal form will add the code to the internal token register just before the
previous content which is wrapped inside braces: (code){{previous content)}. Sub-
sequent keys will receive this as content. The code can therefore read the content
as macro argument. If the dimension of the content need to be accessed it should
be boxed first using \collectbox{(code)}. Then the dimension are available us-
ing the usual macros and the content can be typeset using \BOXCONTENT. See the
collectbox for additional information.

The starred form simply executes the given code in the internal group without
changing the token register. In this case the content is not directly accessible and all
subsequent keys are not yet processed. This form is useful to locally change settings
for the current \ad justbox macro or ad justbox environment.

\renewadjustboxkey{(key)} [(default value)]{(code)}
\renewadjustboxkey*{(key)} [{default value)]{{code)}

Like \newad justboxkey but will redefine an existing key. An error is raised if the key
is not already defined.

\provideadjustboxkey{(key)} [{default value)]{{code)}
\provideadjustboxkey*{(key)} [(default value)]{{code)}

Like \newad justboxkey but will define the key only if it is not already defined.

\defadjustboxkey{(key)} [(default value)]{{code)}
\defadjustboxkey*{(key)} [{default value)]{({code)}

Like \newadjustboxkey but will always define the key independent if it is already
defined or not.

56

	Introduction
	Dependencies
	Verbatim Support

	Package Options
	Main Macros
	Adjust Box Content
	Adjust Images
	Defining custom environments and macros
	Setting keys globally
	Argument Values

	Adjustbox Keys
	Trimming and Clipping
	Margins and Vertical Spacing
	Minimum and Maximum Size
	Scaling
	Frame
	Vertical Alignment
	Horizontal Alignment
	Support for graphicx keys
	Colors
	Background and Forground Images and Text
	Density / Pixel size
	Minipage or other inner environments which change the processing of the content
	Floats and non-float replacements
	Adding own Code or Environments
	Change or discard content
	Store box content
	Process content
	Experimental Keys

	Defining own Keys

