
bubblesort

Laurence R Taylor

2020/06/24

Abstract

This package is a LATEX port of the sorting function bubble sort. Bubble
sort is usually coded using arrays but it can be done without them and
since LATEX does not support arrays natively, bubble sort seemed like a good
routine to port. It’s lack of speed is not really a problem with the data sizes
likely to be encountered in most LATEX applications.

The objects to be sorted are either a stack or a list. A stack is a sequence
of legal TEX code items enclosed in brace pairs,

{item 1}{item 2}. . . {item n}

while a list is a macro which expands to a stack. Fragile commands in an
item may not work as expected. To sort the items one needs a notion of
when one item is “less than” another.

The macro \bubblesort does the bubble sort. It takes three arguments:
\bubblesort[#1]{#2}{#3}. The optional argument is a comparator macro
telling when one item is smaller than another. If empty it assumes the
stack is a stack of integers or real numbers and sorts it using the usual <.
Argument #2 is the stack or list to be sorted and argument #3 a macro which
will contain the sorted list in increasing order.

The only dependency is etoolbox.sty.

1 Introduction

There are two macros provided which implement the standard bubble sort algo-
rithms on stacks or lists. See section 2 for a discussion of stacks or lists.

1.1 bubblesort

\bubblesort[#1]{#2}{#3}: Argument #2 is the stack or list to be sorted. Argu-
ment #3 contains the sorted list after evaluation. Argument #2 can be the same
as argument #3. Argument #3 can also be blank in which case the output string
is inserted into the input stream. Optional argument #1 is a comparator macro.

1

https://en.wikipedia.org/wiki/Bubble_sort


1.1.1 Comparator macros

A comparator macro can have any legal TEX name. It must have two argu-
ments. When in use the comparator macro is evaluated on consecutive pairs of
elements in the stack. If argument #2 is “smaller” than argument #1 the macro sets
\bubblesortflag to 1 and sets it to -1 otherwise. Two examples are supplied:
\realSort on line 28 of the code below and \alphSort on line 30.

1.2 doublebubblesort

\doublebubblesort[#1]{#2}{#3}{#4}{#5}:
The macro \doublebubblesort sorts two stack/lists. Arguments #1, #2 and

#3 are identical to the corresponding arguments for \bubblesort. Argument #4

is another stack or list of the same length or longer than stack/list #2. When ex-
panded \doublebubblesort sorts #2 just the same as \bubblesort would. How-
ever, every move made on stack #2 is also done on stack #4. Argument #5 is the
name for the output of the result of this “sort” on #4. As usual #5 can be blank
or #4 and #5 can be the same macro. #3 and #5 can also be the same macro, in
which case it contains the result of the sort on argument #4, except if both #3 and
#5 are blank, #3 is put into the input stream followed by #5.

An example to keep in mind is the following. One way to mimic a hash in
LATEX is to have a list of keys and a second list of values with the value associated
to a key being determined by position in the values list. If the key list is sorted
it will be necessary to do the same interchanges on the values list to maintain the
correspondence. See subsection 3.3 for another example using \doublebubblsort.

2 Stacks and lists

The lists here closely resemble Knuth’s lists in the TEXbook, page 378, Appendix
D, except they lack Knuth’s initial \\ prepended to each item. As discussed by
Knuth, the \\ can be used to process each item in the list. Sort algorithms require
knowledge of pairs of items from the list so macros which only know about one
item are not needed.

Other implementations of lists use a reserved character as a separator. Sep-
arators like commas or semicolons or whatever have the drawback that then the
separator can not be used in the item text without additional coding.

TEX’s brace-pair mechanism is quite robust. It handles nested brace pairs
just fine. One word of warning: an empty brace pair {} is used as an end of
list indicator. They are added to the stack/list arguments when needed and are
not present at the end of lists produced by macros in this package so they rarely
trouble the user. It does mean that there can be no empty (or even white space)
brace pairs in the input list. Given how TEX discards white space, {white space}

is probably not what is wanted anyway. Using {{white space}} will probably
yield results closer to what was intended and this works.

2

http://www.ctex.org/documents/shredder/src/texbook.pdf


3 Examples

Here are a few examples if things that can be done with sorts.

3.1 refs

Given a stack of references defined from \label such as {ref 1}{ref 2}. . . {ref n}

which expand to integers or real numbers try to define

\def\refs#1{\bubblesort[\refSort]{#1}{\answers}}

where \refSort#1#2{\realSort{\ref{#1}}{\ref{#2}}}.

The above does not work because \ref is protected and does not expand to just
the number. Instead, the package refcount.sty supplies \getrefnumber which
is expandable and does what is needed. Add \usepackage{refcount} to the
preamble and define

\def\refSort#1#2{%

\edef\aa{\getrefnumber{#1} pt}\edef\bb{\getrefnumber{#2} pt}%

\ifdimless{\bb}{\aa}{\bubblesortflag=1}{\bubblesortflag=-1}%

}

Then\def\refs#1{\bubblesort[\refSort]{#1}{\ans}} sorts the numbers in
increasing order and puts the answer in \ans.

3.2 Use refs twice

Since \bubblesort is a stable sorting algorithm, it can be usefully used more than
once on the same data. Suppose \refSort is defined as above and there is a list
\def\LL{{ref 1}{ref 2}. . . {ref n}}. Then \bubblesort[\refSort]{\LL}{\LL}

sorts the numbers in increasing order.
But some of them may be from definitions, others from theorems, or lem-

mas, etc. Suppose \refName#1 is a macro such that \refName{ref k} returns
Definition, Theorem, Lemma, etc.. Then

\bubblesort[\refSort]{\LL}{\LL} \bubblesort[\alphSort]{\LL}{\LL}

returns \def\LL{{ref k_1}{ref k_2}. . . {ref k_n}} where the first set of ref-
erences are Definition’s, the second set of references are Lemma’s and the
third set of references are Theorem’s. The set of numbers for the Definition’s
are increasing, the set of numbers for the Lemma’s are increasing and the set
of numbers for the Theorem’s are increasing. With more complicated cod-
ing, the names can be added and the lists compactified to get something line
Theorems 1-3 and 5, Lemma 9 and Definitions 6, 8 and 12.

3



3.3 permute

Use \doublebubblesort to apply a permutation to a stack/list. A permutation is
an ordered stack/list of symbols which also has a natural order. Popular symbol
sets are positive integers and lowercase letters. The comparator macro needs to
sort a list of symbols with no repetitions back to its natural order. A permutation
π can be given by listing the values of π when applied to the symbols in their nat-
ural order. For example π={{5}{1}{2}{3}{4}} means π(1)=5, π(2)=1, π(3)=2,
π(4)=3, π(5)=4.

At the end of line 2 of the displayed code below, \ott contains the symbols in
their natural order so \permute does not need to be told the symbols in advance.
At the end of line 3, \ott contains the inverse to the original permutation. At the
end of line 4, #4 contains the permuted version of #3.

\newcommand{\permute}[4][\realSort]{%

\bubblesort[#1]{#2}{\ott}%

\doublebubblesort[#1]{#2}{\ott}{\ott}{\ott}%

\doublebubblesort[#1]{\ott}{\ott}{#3}{#4}%

}

If \def\LL{{${a_1}$}{${a_2}$}{${a_3}$}{${a_4}$}{${a_5}$}} then
\permute{{5}{1}{2}{3}{4}}{\LL}{} yields

a5 a1 a2 a3 a4 , which is aπ(1) aπ(2) aπ(3) aπ(4) aπ(5) as desired.

\permute can also be used to multiply permutations:

• \permute{\pi_1}{\pi_2}{\ans} yields \pi_2◦\pi_1

• \permute{\pi_2}{\pi_1}{\ans} yields \pi_1◦\pi_2.

4 Implementation

Line numbers refer to the line numbers printed next to the code beginning with
\NeedsTeXFormat here. There are only four public macros, \bubblesort on line
32 and \doublebubblesort on line 71 and comparator macros \realSort on
line 28 and \alphSort on line 30. Private macros begin with \@bubblesort@ to
minimize the chance of name conflicts with other packages. This makes reading
the code somewhat tedious so in the descriptions of the code below, the initial
\@bubblesort@ will be replaced by *.

4.1 bubblesort

\bubblesort[#1]{#2}{#3}: The implementation of \bubblesort begins by defin-
ing an empty *rightList and putting the stack/list to be sorted, #2, into
*workingList. Note #2 is now safe - unless #2 equals #3, #2 will never change.

4



Then \bubblesort removes the leftmost item in *workingList and saves it in
*testItem. Then it moves on to \@bubblesort@S which does the recursion.

First, \bubblesort@S (line 39) sets an etoolbox boolean, did a flip, to false
and sets *leftList to empty. Then the macro removes the leftmost element in
*workingList and saves it in *nextItem. Then it enters the while loop (line
43). The exit condition is that *nextItem is empty. Then the comparator macro
is evaluated on the ordered pair

(
*testItem , *nextItem

)
. The smaller of the

pair is append to *leftList on the right and the larger is set to *testItem. The
loop continues until *workingList is empty. At this point *testItem contains
the largest element in the original *workingList and it is added to *rightList at
the left end. Hence *leftList followed by *rightList is the original list. Next
*leftList is put into *workingList and then the leftmost element is removed
and put into *testItem. Finally the while loop is reentered.

After k iterations of the while loop, *rightList has k elements which
are the k largest elements in the original list in increasing order. When the
boolean did a flip is false, *leftList is also ordered so *leftList followed
by *rightList is the original list sorted and the while loop exits. The sorted list
and macro #3 from \bubblesort are passed on to \@bubblesort@output which
outputs the list as requested and \bubblesort is finished.
Remark: The reader who has worked through the discussion above will have
noticed that this implementation of bubble sort uses about four times the storage
as the C version which sorts the array in place. Stacks used in LATEX, are probably
small enough that this is not a problem.

Sorting a thousand item list of integers in reverse order (which is the worse
case scenario) took less than sixty-five seconds running TexShop 4.44 on a Mac
2013 Powerbook using timing code from tex.stackexchange. It put no strain on
TEX’s memory allocations.

4.2 doublebubblesort

\doublebubblesort[#1]{#2}{#3}{#4}{#5}: The \doublebubblesort (line 71),
\@doublebubblesort@S (line 82), macros work much like \bubblesort, \@bubblesort@S.
The code in the double’d version contains the identical code from \bubblesort,
\@bubblesort@S except that A is added to the end of each of the internal macros.
There is also a parallel copy of macros with B added and everything done with the
A variables is mimicked with the B variables.

4.3 The remaining macros

The macro \@bubblesort@output#1#2 (line 67) is just to shorten the code since
there are three places a stack or a list is output (lines 65, 129 and 130).

The macro \@bubblesort@EoS is the End-of-Stack indicator.
The remaining macros do the removing items from a list and inserting items

at either end of a list. The shift macro is

5

https://tex.stackexchange.com/questions/456316/what-is-the-latex-equivalent-of-context-testfeatureonce-to-benchmark-performanc/456322#456322


\@bubblesort@shift#1#2\@bubblesort@EoS#3#4 (line 133)
which is used as
\expandafter\@bubblesort@shift{stack/list}\@bubblesort@EoS{\itemA}{\itemB}

which puts the leftmost item in the stack/list into \itemA and the rest of the
stack/list into \itemB.

The macros \@bubblesort@rightappendItem (line 139)
and \@bubblesort@lefttappendItem (line 141) are identical to Knuth’s \rightappenditem
and \leftappenditem except that there are no prepended \\’s.

blank Start of code: The rest of the file from the end of this paragraph onward is
a copy of the file generated by TEXing the bubblesort.ins file except that the
standard set of comments at the start of an ins generated file are omitted. And of
course the line numbers on the left here are not present in the \bubblesort.sty

file. The comments portion takes 15 lines. Most editors show line numbers and
allow line number navigation so it has been arranged that the line numbers in the
typeset bubblesort.dtx file below match the line numbers in the ins-generated
bubblesort.sty file.

16 \NeedsTeXFormat{LaTeX2e}[2005/12/01]

17 \ProvidesPackage{bubblesort}

18 [2020/07/01 v1.0 implements a bubble sort]

19

20 \RequirePackage{etoolbox}

21

22 \makeatletter

23

24 \newcount\bubblesortflag

25 \newbool{did a flip}

26 \def\@bubblesort@EoS{}% End-of-Stack indicator

27

28 \def\realSort#1#2{%

29 \ifdimless{#2 pt}{#1 pt}{\bubblesortflag=1}{\bubblesortflag=-1}}

30 \def\alphSort#1#2{\ifnumequal{\pdfstrcmp{#1}{#2}}{1}%

31 {\bubblesortflag=1}{\bubblesortflag=-1}}

32 \newcommand{\bubblesort}[3][\realSort]{%

33 %% #1 comparator macro, #2 input stack/list, #3 answer list: #2=#3 OK

34 \def\@bubblesort@rightList{}%

35 \expandafter\@bubblesort@shiftOne#2{}{}{}\@bubblesort@EoS{%

36 \@bubblesort@testItem}{\@bubblesort@workingList}%

37 \expandafter\@bubblesort@S{#3}{#1}%

38 }

39 \def\@bubblesort@S#1#2{% #1 is name for answer --- #2 is comparator macro

40 \boolfalse{did a flip}\def\@bubblesort@leftList{}%

41 \expandafter\@bubblesort@shiftOne\@bubblesort@workingList{}{}\@bubblesort@EoS{%

42 \@bubblesort@nextItem}{\@bubblesort@workingList}%

43 \whileboolexpr{not test{\ifdefvoid{\@bubblesort@nextItem}}}{%

44 #2{\@bubblesort@testItem}{\@bubblesort@nextItem}\relax%

45 \ifnumequal{\bubblesortflag}{1}{% flip

46 \booltrue{did a flip}%

6



47 \expandafter\@bubblesort@rightappendItem\expandafter{\@bubblesort@nextItem}%

48 \to\@bubblesort@leftList%

49 }{%

50 \expandafter\@bubblesort@rightappendItem\expandafter{\@bubblesort@testItem}%

51 \to\@bubblesort@leftList%

52 \expandafter\def\expandafter\@bubblesort@testItem\expandafter{\@bubblesort@nextItem}%

53 }%

54 \expandafter\@bubblesort@shiftOne\@bubblesort@workingList\@bubblesort@EoS{%

55 \@bubblesort@nextItem}{\@bubblesort@workingList}%

56 }%

57 \expandafter\leftappendItem\expandafter{\@bubblesort@testItem}\to\@bubblesort@rightList%

58 \ifbool{did a flip}{%

59 \expandafter\def\expandafter\@bubblesort@workingList\expandafter%

60 {\@bubblesort@leftList{}{}{}}%

61 \expandafter\@bubblesort@shiftOne\@bubblesort@workingList\@bubblesort@EoS{%

62 \@bubblesort@testItem}{\@bubblesort@workingList}%

63 \def\@bubblesort@leftList{}%

64 \@bubblesort@S{#1}{#2}}%

65 {\@bubblesort@output{#1}{\@bubblesort@leftList\@bubblesort@rightList}%

66 }}

67 \def\@bubblesort@output#1#2{% #1 name of output list or empty --- #2 sorted stack

68 \ifstrempty{#1}%

69 {#2}{\expandafter\edef\expandafter#1\expandafter{#2}}%

70 }

71 \newcommand{\doublebubblesort}[5][\realSort]{%

72 %% #1 comparator macro

73 %% #2 input stack/list --- #3 output for #2 stack/list; #2=#3 OK

74 %% #4 second stack/list --- #5 answer list for #4; #4=#5 OK

75 \def\@bubblesort@rightListA{}\def\@bubblesort@rightListB{}%

76 \expandafter\@bubblesort@shiftOne#2{}{}{}\@bubblesort@EoS{%

77 \@bubblesort@testItemA}{\@bubblesort@workingListA}%

78 \expandafter\@bubblesort@shiftOne#4{}{}{}\@bubblesort@EoS{%

79 \@bubblesort@testItemB}{\@bubblesort@workingListB}%

80 \expandafter\@doublebubblesort@S{#3}{#5}{#1}%

81 }

82 \def\@doublebubblesort@S#1#2#3{%

83 %% #1 output for sorted stack/list --- #2 output for ‘‘sorted’’ stack/list

84 %% #3 comparator macro

85 \boolfalse{did a flip}\def\@bubblesort@leftListA{}\def\@bubblesort@leftListB{}%

86 \expandafter\@bubblesort@shiftOne\@bubblesort@workingListA{}{}%

87 \@bubblesort@EoS{\@bubblesort@nextItemA}{\@bubblesort@workingListA}%

88 \expandafter\@bubblesort@shiftOne\@bubblesort@workingListB{}{}%

89 \@bubblesort@EoS{\@bubblesort@nextItemB}{\@bubblesort@workingListB}%

90 \whileboolexpr{not test{\ifdefvoid{\@bubblesort@nextItemA}}}{%

91 #3{\@bubblesort@testItemA}{\@bubblesort@nextItemA}\relax%

92 \ifnumequal{\bubblesortflag}{1}{% flip

93 \booltrue{did a flip}%

94 \expandafter\@bubblesort@rightappendItem\expandafter{%

95 \@bubblesort@nextItemA}\to\@bubblesort@leftListA%

96 \expandafter\@bubblesort@rightappendItem\expandafter{%

7



97 \@bubblesort@nextItemB}\to\@bubblesort@leftListB%

98 }{%

99 \expandafter\@bubblesort@rightappendItem\expandafter{%

100 \@bubblesort@testItemA}\to\@bubblesort@leftListA%

101 \expandafter\@bubblesort@rightappendItem\expandafter{%

102 \@bubblesort@testItemB}\to\@bubblesort@leftListB%

103 \expandafter\def\expandafter\@bubblesort@testItemA\expandafter{%

104 \@bubblesort@nextItemA}%

105 \expandafter\def\expandafter\@bubblesort@testItemB\expandafter{%

106 \@bubblesort@nextItemB}%

107 }%

108 \expandafter\@bubblesort@shiftOne\@bubblesort@workingListA\@bubblesort@EoS{%

109 \@bubblesort@nextItemA}{\@bubblesort@workingListA}%

110 \expandafter\@bubblesort@shiftOne\@bubblesort@workingListB\@bubblesort@EoS{%

111 \@bubblesort@nextItemB}{\@bubblesort@workingListB}%

112 }%

113 \expandafter\leftappendItem\expandafter{\@bubblesort@testItemA}\to%

114 \@bubblesort@rightListA%

115 \expandafter\leftappendItem\expandafter{\@bubblesort@testItemB}\to%

116 \@bubblesort@rightListB%

117 \ifbool{did a flip}{%

118 \expandafter\def\expandafter\@bubblesort@workingListA\expandafter{%

119 \@bubblesort@leftListA{}{}{}}%

120 \expandafter\def\expandafter\@bubblesort@workingListB\expandafter{%

121 \@bubblesort@leftListB{}{}{}}%

122 \expandafter\@bubblesort@shiftOne\@bubblesort@workingListA\@bubblesort@EoS{%

123 \@bubblesort@testItemA}{\@bubblesort@workingListA}%

124 \expandafter\@bubblesort@shiftOne\@bubblesort@workingListB\@bubblesort@EoS{%

125 \@bubblesort@testItemB}{\@bubblesort@workingListB}%

126 \def\@bubblesort@leftListA{}%

127 \def\@bubblesort@leftListB{}%

128 \expandafter\@doublebubblesort@S{#1}{#2}{#3}}%

129 {\@bubblesort@output{#1}{\@bubblesort@leftListA\@bubblesort@rightListA}%

130 \@bubblesort@output{#2}{\@bubblesort@leftListB\@bubblesort@rightListB}}%

131 }

132

133 \def\@bubblesort@shiftOne#1#2\@bubblesort@EoS#3#4{%

134 \expandafter\gdef\expandafter#3\expandafter{#1}%

135 \expandafter\gdef\expandafter#4\expandafter{#2}%

136 }

137

138 \newtoks\ta\newtoks\tb

139 \long\def\@bubblesort@rightappendItem#1\to#2{\ta={{#1}}\tb=\expandafter{#2}%

140 \edef#2{\the\tb\the\ta}}

141 \long\def\leftappendItem#1\to#2{\ta={{#1}}\tb=\expandafter{#2}%

142 \edef#2{\the\ta\the\tb}}

143 \makeatother

144 \endinput

8


	Introduction
	bubblesort
	Comparator macros

	bubblesort

	Stacks and lists
	Examples
	refs
	Use refs twice
	permute

	Implementation
	bubblesort
	doublebubblesort
	The remaining macros


