Using theclrscode3e Package inAIEX 2¢

Thomas H. Cormen
thc@cs.dartmouth.edu

January 27, 2010

1 Introduction

This document describes how to use thescode3e package inATEX 2¢ to typeset pseudocode in the
style of Introduction to Algorithms, Third edition, by Cormen, Leiserson, Rivest, and SteinRSL3/e) [1].
You use the commandin the same way we did in writing CLRS 3/e, and your output leitk just like the
pseudocode in the text.

2 Setup

To get theclrscode3e package, download http://www.cs.dartmouth.edloé¢/clrscode/clrscode3e.sty,
and put it where it will be found when you ruiTEX 2. To use the package, include the following line in
your source file:

\usepackage{clrscode3e}

Theclrscode3e package itself includes the line

\RequirePackage{graphics} @ % needed for \scalebox command

This line is necessary in order to get the right spacing fer=th symbol that we use for equality tests.
Therefore, you will need to have tlyegaphics package installed and available on your system.

3 Typesetting names

Pseudocode in CLRS 3/e uses four types of names: identifiexsedures, constants, and fixed functions.
We provide commandsd , \proc , \const , and\func for these names. Each of these commands
takes one argument, which is the name being typeset. Thesmaaonds work both in and out of math mode.
When used in math mode, and when the name given as an arguoméains a dash, the dash is typeset as
a hyphen rather than as a minus sign.

IWe use the term “command” rather than “macro” throughoust tlticument, though “macro” would work just as well.

Identifiers: Use identifiers for variable names of more than one charaétben a variable name is just a
single character, e.g., the identifigrin line 1 of INSERTION-SORT on page 18, we just typeset it in
math mode rather than using thié command3j .

Do not typeset identifiers consisting of two or more chamacte.g., the variabléey in line 2

of INSERTION-SORT, in this way. (See page 51 of Lamport [2].) AlthougligX 2, provides
the \mathit command for typesetting multiletter identifiers, use &k command instead:
\id{key} , rather thanmathit{key} or—horrors!—key . Since thelid command may
be used both in and out of math mode, the source text

Line™5 uses the variable \id{key} in the test $A[i] > \id{key 1$.

will produce
Line 5 uses the variabkey in the testA[i] > key.

To see how a dash turns into a hyphen, consider line 1iwbHMAX-CROSSING SUBARRAY 0N
page 71. It contains the variableft-sum. Typesetting this variable name hig{left-sum}
produces a hyphen in the identifier, but typesetting it\imathit{left-sum} would produce
left — sum, with a minus sign—rather than a hyphen—in the identifier.

Procedures: For procedure names, use fpeoc command. It typesets procedure names in small caps,
and dashes (which occur frequently in our procedure namesypeset as hyphens. Thus, the source
\proc{Insertion-Sort} produces NSERTION-SORT. Since you can use theroc command
both in and out of math mode, the source text

We call \proc{Insertion-Sort} with an array A, so that the
call is $\proc{lnsertion-Sort}(A)$.

will produce
We call INSERTION-SORT with an arrayA4, so that the call iISNSERTION-SORT(A).

Constants: We typeset constants suchmis, TRUE, andRED in small caps with théconst command,
e.g.,\const{nil} , \const{true} , and\const{red} . Thelconst command typesets a
dash within a constant name as a hyphen, so that, as on paged@&{no-such-path} will
produceNO-SUCH-PATH.

Fixed functions: We typeset the names of fixed functions in plain old roman with\func command,
e.g., level and out-degree. By a “fixed function,” we meanrecfion that is a specific, given function.
For example, the sin function is typically typeset in romsin;x looks right, but wouldn'sin x look
strange? Yet, on page 4@(g(n)) looks right, but®(g(n)) would look wrong, since is a variable
that stands for any one of a number of functions.

As with the other commands for names, a dash within a funetame will typeset as a hyphen, so
that\func{out-degree} will produce out-degree rather than ouidegree. Note thatTeX 2¢
provides commands for many fixed functions, such as sin agidTlable 3.9 on page 44 of Lamport
[2] lists these “log-like” functions.

4 Typesetting object attributes

In the first two editions of the book, we used square bracketslfject attributes. For example, we repre-
sented the length of an arralyby length[A4]. Based on requests from readers, we switched to the olilgect-I
dot-notation in the third edition, so that we now denote #regth of arrayd by A.length.

You might think that you could typeset.length by $A\id{length}$, but that would produce
A.length, which has not quite enough space after the dot. Therefoeecreated a set of commands to
typeset object attributes. Each one may be used either int@fonath mode.

Most of the time, we use theattrib command, which takes two arguments: the name of the object
and the name of the attribute. Let’s make a couple of defimstio

e An i-string is a string that you would use in &id command, typically one or more non-Greek
letters, numerals, or dashes.

e An x-stringis a string that you would notuse in 8d command, typically because it has a subscript
or one or more Greek letters.

e As a special, and very common, case, a single non-Greek tettecount as either an i-string or an
X-string.

The\attrib command works well when the object name is an x-string andtthibute name is an i-string.
For example, to produce. length, use\attrib{A}length} . Here, we treat the object namg, as an
x-string. The attribute naméength, is of course an i-string.

If all your objects are x-strings and all your attributes astrings, then théattrib command will
be all you need. We provide several other commands for oiheati®ns that arose when we produced
CLRS 3l/e.

The four basic attribute commands aagtribxi , \attribxx , \attribii , and\attribix
Each takes two arguments: the object name and the attrilame.nThe last two letters of the command
name tell you what type of strings the arguments should be.nExt-to-last letter tells you about the object
name, and the last letter tells you about the attribute namedicates that the argument will be treated as an
\id , in which case the command calls i command and also puts the right amount of space between
the argument and the dot.

e You may us@attribxi precisely when you would udattrib . In fact,\attrib is just a call
to \attribxi

e Use\attribxx when both the object name and attribute names are x-strifgisexample, you
would use\attribxx if the attribute name has a subscript, so that to produeg, you would
use\attribxx{yH{c_i} . Another situation in which you would udattribxx is when the

attribute name is a Greek letter: to produce, use\attribxx{v}{\pi}

¢ If both the object name and attribute name are i-strings) gf@ should uséattribii . For
example \attribii{item}{key} producedtem. key, and\attribii{prev-item}{np}
producesprev-item. np.

¢ If the object name is an i-string and the attribute name is-atrirg, then uséattribix . (We
never had this situation arise in CLRS 3/e.) But if we had wdrb producétem.n, we would have
used\attribix{item}{\pi}

For convenience, thelrscode3e package also contains commands for cascading attribuiel, s
as x.left.size. These commands string together calls to the appropvédiebxi and \attribxx
commands. The number of arguments they take depends on hoyvatiabutes you are stringing together.

e When you have two attributes, usstribb , Which takes an object name and two attribute names:
\attribb{x}left}{size} producest. left. size. This command assumes that the object name
is an x-string and both attribute names are i-strings.

e For three attributes, useattribbb , which takes an object name (an x-string) and three object
names (i-strings): to produogep.left. size, use\attribbb{yH{pHleft}{size}

e For four attributes, us&ttribbbb , Which is like\attribbb but with one additional attribute
tacked on. We never needed to use this command in CLRS 3/e.

e The \attribbxxi command is for one level of cascading where the first attilgiven is an
x-string. For exampléattribbxxi{x{c_i}{n} producesc.c;.n.

If your cascading attributes do not fit any of these desanisti you'll have to roll your own command
from the\attribxx and\attribxi (or\attrib) commands. For example, suppose you want to
producex.left. key;. Because it has a subscrigy; is an x-string, and so you should not uaéribb
Instead, uséattribxx{\attribxi{xHleft}}{\id{key_i}} . (You could replace the call of
\attribxi by a call of\attrib ~ .) Note that this call treatsey; as an attribute of.left, which is correct,
rather than treatintgft . key; as an attribute af, which is not correct.

Edges of a graph can have attributes, too, andthlseode3e package provides two commands for
attributes of edges. These commands assume that the ed@gesthe form(u, v), where the vertices
andv are x-strings. They take three parameters: the two verticedefine the edge and the name of the
attribute.

e When the attribute name is an i-string, uUsdtribe . For example, to produceé, v).c, use
\attribe{u}{v}H{c}

e When the attribute name is an x-string, la#ribex . For example, to produce:, v).c’, use
\attribex{u{v¥c’}

5 Miscellaneous commands

Theclrscode3e package contains three commands that don't really fit angavikse, so let's handle
them here. All three must be used in math mode.

e We denote subarrays with the.” notation, which is produced by théwodots command. Thus,
the source tex$A[1 \twodots j-1]$ will produce A[1 .. —1].

e We use thagets command for the assignment operator. For example, line ASERTION-SORT
on page 18 i&$i \gets j - 1$, producing = j — 1.

e We use thdisequal command to test for equality with the= symbol. For example, line 1 of
FIND-MAXIMUM -SUBARRAY 0N page 72 contains the tdsgh == low, which we get by typesetting
$\id{high} \isequal \id{low}$

You might wonder why we bother with thgets command when we could just typeset an equals sign
directly. The answer is that in the first two editiond mtfoduction to Algorithms, we used a different symbol
(a left arrow) for the assignment operator, and it made sengse a command for that. Many readers told
us that they preferred to use an equals sign for assignmeniraay programming languages use—and so
we made this change for the third edition. But it's a good ittieeontinue using thggets command so
that we can easily change our assignment operator shoul@swedo do so in the future.

Once we decided to use the equals sign for assignment, we ooubnger use it for equality tests. We
created théisequal command for equality tests, and we decided to base it on thieldequals sign used
for equality tests in C, C++, and Java. Typesetting itasn math mode produces=, which is too wide
for our tastes. Oulisequal command calls thgscalebox command from thgraphics package
to narrow the symbol, and it puts a nice amount of space bettteeequals signs:=.

6 Thecodebox environment

We typeset pseudocode by putting it in@ebox environment. Acodebox is a section of code that does
not break across pages.

Contents of acodebox

Each procedure should go in a separatdebox , even if you have multiple procedures appearing consec-
utively. The only possible reason I can think of to put mor@ntlone procedure in a singtedebox is to
ensure that the procedures appear on the same page. If Jyunead your procedures to appear on the
same page, then you should consider using other meafigX2¢, such as theninipage environment.
Moreover, if you have written your procedures so that theyeha appear on the same page, you should
probably be asking yourself whether they are too interdégeen

The typical structure within @aodebox is as follows. Usually, the first line is the name of a proce-
dure, along with a list of parameters. (Not etldebox es include procedure names; for example, see the
pseudocode on page 343 of CLRS 3/e.) After the line contgitiie procedure name come one or more
lines of code, usually numbered. Some of the lines may bembeted, being continuations of previous
lines. Lines are usually numbered starting from 1, but atiene are exceptions, such as the pseudocode on
page 343.

Using \Pr ocnane to name the procedure

The\Prochname command specifies the name of the procedure. It takes as mgiarathe procedure
name and parameters, typically all in math motfegrocname makes its argument flush left against the
margin, and it leaves a little bit of extra space below the.lifror example, here is how we typeset the
INSERTION-SORT procedure on page 18:

\begin{codebox}
\Procname{$\proc{Insertion-Sort}(A)$}
\li \For $j \gets 2% \To $\attrib{A{length}$

\li \Do
$\id{key} \gets A[j]$
\li \Comment Insert $A[j]$ into the sorted sequence
$A[1 \twodots j-1]$.
\li $i \gets j-1$
\li \While $i > 0% and $A[i] > \id{key}$
\li \Do
$A[i+1] \gets A[i]$
\li $i \gets i-1$
\End
\li $A[i+1] \gets \id{key}$
\End
\end{codebox}

Using\l i and\zi to start new lines

To start a new, numbered line, use tlie command. To start a newnnumbered line, use thei
command. Note that sincecadebox is not like theverbatim environment, the line breaks within the
source text do not correspond to the line breaks in the typesput.

Tabs

| find that it is best to set the tab stops in the text editor &rgv characters when typing in and displaying
pseudocode source with terscode3e package. | use emacs, and to get the tabs set up the way | want
them, mytex-mode.el file includes the lindsetq tab-width 4)

A codebox environment has #éabbing environment within it. Each tab stop gives one level of
indentation. We designed the indentation so that the bodynefseclause starts at just the right indentation.
For the most part, you won't need to be concerned with tabg. prtmary exception is when you want to
include a comment at the end of a line of pseudocode, andiafipechen you want to include comments
after several lines and you want the comments to verticéiliypa

If you used theclrscode package from the second edition of the book, you might natifferent
tabbing behavior when you port your pseudocode toctrecode3e package. Where thelrscode
package used two tab stops for each level of loop indentatietirscode3e package uses just one tab
stop. We made this change in tblescode3e package because the third edition eliminates the keyword
then and left-alignselsewith its correspondingf.

Note that th@abbing environment within a codebox has nothing to do with tabsybatenter in your
source code; when you press the TAB key, that's the same asipgehe space bar in the eyesATEX 2;.

Commands for keywords

As you can see from the source fotdERTION-SORT, the command$For and\While produce the
keywordsfor andwhile in boldface within acodebox .

Sometimes you want to include a keyword in the main text, agvetdone in several places in this
document. Use th&kw command to do so. For example, to produce the previous @phagrtyped in the
following:

As you can see from the source for \proc{lnsertion-Sort}, th e commands
\verb‘\For* and \verb\While' produce the keywords \kw{fo r} and
\kw{while} in boldface within a \texttt{codebox}.

The following commands simply produce their correspondiagwords, typeset in boldfacaFor |,
\To , \Downto , \By , \While ,\If ,\Return ,\Goto (which does not appear in CLRS 3/e, but you
might wish to use)\Error , \Spawn , \Sync , and\Parfor (which produces the compound keyword
parallel for). Although you could achieve the same effect with tke command (e.g.\kw{for} in-
stead of\For), you will find it easier and more readable to use the aboventanas in pseudocode. The
\Comment command simply produces the comment symiglfollowed by a space. To get the com-
ment symbol without a following space, ugg¢ommentSymbol . None of the above commands affects
indentation.

Loops

The INSERTION-SORT example above shows typical ways to typdeetandwhile loops. In these loops,
the important commands atBo and\End . \Do increments the indentation level to start the body. Put
\Do on a line starting withli , but don’t put eithekli or\zi between th&Do command and the first
statement of the loop body. U¥é or\zi in front of all loop-body statements after the first ohEénd
simply decrements the indentation level, and you use it tbegryfor or while loop, or otherwise decrement
the indentation level.

In the first two editions of the book, the body offer or while loop began with the keywordo.
Responding to requests from readers to make pseudocoddikeof® C++, and Java, we eliminated this
keyword in the third edition.

As you can see from the above example, | like to place #&ohand\End on its own line. You can
format your source text any way you like, but | find that the wiyrmat pseudocode makes it easy to match
up\Do -\End pairs.

If you want yourfor loop to decrease the loop variable in each iteration,\Dgevnto rather than
\To . If you want the stride to be a value other thenuse the\By command. For example, line 6 of
ITERATIVE-FFT on page 917 is typeset as

\For $k \gets 0% \To $n-1$ \By m

Loops that use theepeat-until structure are a bit different. We use tfiepeat and\Until com-
mands, as in the KsH-INSERT procedure on page 270:

\begin{codebox}
\Procname{$\proc{Hash-Insert}(T,k)$}

\li $i \gets 0%
\li \Repeat
\li $j \gets h(k,i)$
\li \If $T[j] \isequal \const{nil}$
\li \Then
$T[j] \gets k$
\li \Return j
\li \Else
$i \gets i+1$
\End

\li \Until $i \isequal m$
\li \Error “hash table overflow”
\end{codebox}

Note that thaUntil command has an implieé&nd .

Typesetting if statements

As you can see from the above example ofdfi-INSERT, we typeseif statements with the commands
\If ,\Then , \Else , and\End . In the first two editions of the book, the keywotiten appeared in
pseudocode, but—again mindful of requests from our reademsake our pseudocode more like C, C++,
and Java—we eliminated the keywdlgen in the third edition. Th&Then command remains, however, in
order to indent the code that runs when the test irftiskause evaluates ttRUE.

We use\End to terminate aiif statement, whether or not it has elseclause. For an example of &n
statement without aalseclause, here’s the FRGESORT procedure on page 34:

\begin{codebox}
\Procname{$\proc{Merge-Sort}(A, p, nN$}
\li \If $p < r$
\li \Then
$q \gets Mloor{(p + 1) / 2}$

\li $\proc{Merge-Sort}(A, p, 9)$
\li $\proc{Merge-Sort}(A, g+1, nN$
\li $\proc{Merge}A, p, g, N$

\End
\end{codebox}

The HAsSH-INSERT procedure above shows how to typeseifastatement that has afseclause. For a
more complicated example, using nesfestatements, here’s theaGCADING-CuUT procedure on page 519:

\begin{codebox}
\Procname{$\proc{Cascading-Cut}(H,y)$}
\li $z \gets \attrib{y}{p}$

\li \If $z \neq \const{nil}$

\li \Then
\If $\attrib{fy}{mark} \isequal \const{false}$
\li \Then $\attrib{y}{mark} \gets \const{true}$
\li \Else
$\proc{Cut}(H,y,2)$
\li $\proc{Cascading-Cut}(H,z)$
\End

\End

\end{codebox}

Note that\'Then and\Else always follow anli command to start a new numbered line. As with the
\Do command, don't put eithdli or\zi betweenriThen or\Else and the statement that follows.

As you can see, | line up thEnd commands under thdhen and\Else commands. | could just
as easily have chosen to line \lEEnd under thelf command instead. | also sometimes elect to put the
“then” or “else” code on the same source line as\tfleen or\Else command, especially when that code
is one short line, such as in line 4 oAGCADING-CUT.

Sometimes, you need more complicatedladders” than you can get from th&hen and\Else
commands. The RANSPLANT procedure on page 296 provides an example, and it uséBlgef and
\ElseNolf = commands:

\begin{codebox}
\Procname{$\proc{Transplant}(T, u, v)$}
\li \If $\attrib{ulp} \isequal \const{nil}$

\li \Then S$\attrib{T}Hroot} \gets v$
\li \Elself $u \isequal \attribb{u}{pKleft}$
\li \Then $\attribb{u}{p}{left} \gets v$
\li \ElseNolf
$\attribb{u{pHright} \gets v$
\End
\li \If $v \neq \const{nil}$
\li \Then $\attrib{v}{p} \gets \attrib{uX{p}$
\End
\end{codebox}

For anif-ladder, use@Then for the first case\ElseNolf for the last case, andlself followed by
\Then for all intermediate cases. You ulglseNolf like you use\Else in that it follows an\li
command, you don't follow it witRThen , and, because it terminates ididadder, it's followed by\End .
| usually line up the terminatingEnd with \If , the\Elself = commands, antElseNolf , but the way
you line it up won't change the typeset output.

As another example, here is the @MENTS INTERSECTprocedure on page 1018:

\begin{codebox}
\Procname{$\proc{Segments-Intersect}(p_1, p_2, p_3, p_ 4)$}
\li $d_1 \gets \proc{Direction}(p_3, p_4, p_1)$

\li $d_2 \gets \proc{Direction}(p_3, p_4, p_2)$
\li $d_3 \gets \proc{Direction}(p_1, p_2, p_3)$
\li $d_4 \gets \proc{Direction}(p_1, p_2, p_4)$
\li \If $((d_1 > 0 \mbox{ and } d_2 < 0) \mbox{ or }

(d 1 <0 \mbox{ and } d_ 2 > 0))$ and

\Indentmore
\zi $((d_3 > 0 \'mbox{ and } d_4 < 0) \mbox{ or }

(d_3 < 0 \mbox{ and } d_4 > 0))$

\End
\li \Then \Return \const{true}
\li \Elself $d_1 \isequal 0% and $\proc{On-Segment}p_3, p 4, p_)%
\li \Then \Return \const{true}
\li \Elself $d_2 \isequal 0% and $\proc{On-Segment}p_3, p 4, p_2)%
\li \Then \Return \const{true}
\li \Elself $d_3 \isequal 0% and $\proc{On-Segment}(p_1, p 2, p_3)%
\li \Then \Return \const{true}
\li \Elself $d_4 \isequal 0% and $\proc{On-Segment}p_1, p 2, p_ 4%
\li \Then \Return \const{true}
\li \ElseNolf \Return \const{false}

\End

\end{codebox}

This example also shows our first use of an unnumbered limeseéhond half of the tests on line 5. We
use\zi to indicate that we're starting an unnumbered line.

Indentation levels

In the SEGMENTSINTERSECTprocedure, we indent the unnumbered line after line 5 by enel Imore
than the line above it. We do so with thedentmore command. Th&End command following the
indented line decrements the indentation level back to wha#s prior to the\indentmore . If | had
wanted to indent the line by two levels, | would have used Wndentmore commands before the line
and two\End commands afterward. (Recall th&nd simply decrements the indentation level.)

Upon seeing th&end{codebox} = command, theodebox environment checks that the indentation
level is back to where it was when it started, namely an iratént level of 0. If it is not, you will get a
warning message like the following:

Warning: Indentation ends at level 1 in codebox on page 1.

This message would indicate that there is one misdtingl command. On the other hand, you might have
one too manyEnd commands, in which case you would get

Warning: Indentation ends at level -1 in codebox on page 1.

Whenever the indentation level is nonzero upon hittingesndl{codebox} = command, you’ll get a warn-
ing telling you what the indentation level was.

10

Tabs and comments

Line 3 of INSERTION-SORT shows how to make a line that is only a comment. It's a littlerentvicky

to put a comment at the end of a line of code. Using the tab corditya, explicitly tab to where you
want the comment to begin and then use\tbemment command to produce the comment symbol. When
several lines contain comments, you probably want themigo &ertically. | just add tab characters, using
a trial-and-error approach, until | am pleased with the ltedoor example, here’s how we produced the
KMP-MATCHER procedure on page 1005:

\begin{codebox}
\Procname{$\procdecl{KMP-Matcher}(T,P)$}

\li $n \gets \attrib{T}length}$

\li $m \gets \attrib{PKlength}$

\li $\pi \gets \proc{Compute-Prefix-Function}(P)$

\li $q \gets OB\>\>\>\>\>\>\>\>\Comment number of charact ers matched
\li \For $i \gets 1$ \To n\>\>\>\>\>\>\>\>\Comment scan t he text from left to right
\li \Do
\While $g>0% and $\Px{g+1}\ne \Tx{i}$
\li \Do $qg \gets \pi[g]$\>\>\>\>\>\>\Comment next charact er does not match
\End
\li \If $\Px{g+1} \isequal \Tx{i}$
\li \Then $q \gets g+1$\>\>\>\>\>\>\Comment next characte r matches
\End
\li \If $g \isequal m$\>\>\>\>\>\>\>\Comment is all of P m atched?
\li \Then
print “Pattern occurs with shift” $i-m$
\li $q \gets \pi[g]$\>\>\>\>\>\>\Comment look for the next match
\End
\End
\end{codebox}

All six comments align nicely.

We used the comman&Comment to justify a comment against the right margin. We used thia-co
mand only in the RBHAISERTFIXUP procedure on page 316 and the REAEBTE-FIXUP procedure on
page 326. For example, here’s how we typeset line 5 of RBERTFIXUP:

\li \Then
$\attribb{z}{pHcolorj\gets \const{black}$
\RComment case 1

Referencing line numbers

The source files for CLRS 3/e contain no absolute referercise numbers. We usenly symbolic ref-
erences. Theodebox environment is set up to allow you to pladabel commands on lines of pseu-
docode and then reference these labels. The referencegsdlle to the line numbers. Our convention is
that any label for a line number begins with |, but you can name the labels any way that you like.

For example, here’s how weally wrote the NSERTION-SORT procedure on page 18:

11

\begin{codebox}
\Procname{$\proc{Insertion-Sort}(A)$}
\li \For $j \gets 2% \To $\attrib{A}{length}$
\label{li:ins-sort-for}

\li \Do
Sid{key} \gets AJ[j]$ \label{li:ins-sort-pick}
\label{li:ins-sort-for-body-begin}
\li \Comment Insert $A[j]$ into the sorted sequence
$A[1 \twodots j-1]$.
\li $i \gets j-1$ \label{li:ins-sort-find-begin}
\li \While $i > 0% and $A[i] > \id{key}$
\label{li:ins-sort-while}
\li \Do
$A[i+1] \gets A[i]$ \label{li:ins-sort-while-begin}
\li $i \gets i-1$ \label{li:ins-sort-find-end}
\label{li:ins-sort-while-end}
\End
\li $A[i+1] \gets \id{key}$ \label{li:ins-sort-ins}
\label{li:ins-sort-for-body-end}
\End
\end{codebox}

Note that any line may have multiple labels. As an examplefgrencing these labels, here’s the beginning
of the first item under “Pseudocode conventions” on page 19:

\item Indentation indicates block structure. For example, the body of
the \kw{for} loop that begins on line™\ref{li:ins-sort-fo r} consists

of lines

\ref{li:ins-sort-for-body-begin}--\ref{li:ins-sort- for-body-end}, and

the body of the \kw{while} loop that begins on

line"\ref{li:ins-sort-while} contains lines
\ref{li:ins-sort-while-begin}--\ref{li:ins-sort-whi le-end} but not
line™\ref{li:ins-sort-for-body-end}.

Setting line numbers

On rare occasions, we needed to start line numbers somewtienethan 1. Use thsetlinenumber
command to set the next line number. For example, in ExeAs2-2 on page 657, we want the line
number to be the same as a line number within theé BBHORTESFPATHS procedure on page 655. Here’s
the source for the exercise:

Suppose we change line™\ref{li:dag-sp-loop-begin} of
\proc{Dag-Shortest-Paths} to read

\begin{codebox}

\setlinenumber{li:dag-sp-loop-begin}

\li \For the first $\card{V}-1$ vertices, taken in topologi cally sorted order
\end{codebox}

Show that the procedure would remain correct.

The DAG-SHORTESTFPATHS procedure is

12

\begin{codebox}
\Procname{$\proc{Dag-Shortest-Paths}(G,w,s)$}

\li topologically sort the vertices of G \label{li:dag-s p-topo-sort}

\li $\proc{Initialize-Single-Source}(G,s)$ \label{li: dag-sp-init}

\li \For each vertex u, taken in topologically sorted orde r
\label{li:dag-sp-loop-begin}

\li \Do

\For each vertex $v \in \attrib{ GHAdj}[u]$

\label{li:dag-sp-inner-begin}

\li \Do $\proc{Relax}(u,v,w)$ \label{li:dag-sp-loop-en d}

\End
\End
\end{codebox}

Even more rarely (just once, in fact), we needed to set a limeber to be some other line number plus
an offset. That was in the two lines of pseudocode on pagev8d&e the first line number had to be one
greater than the number of the last line (fAT-ROTATE on page 313. Use theetlinenumberplus
command:

\begin{codebox}

\setlinenumberplus{li:left-rot-parent}{1}

\li $\attrib{y}{size} \gets \attrib{x}{size}$

\li $\attrib{x}{size} \gets \attribb{x}{left}{size}
+ \attribb{x}right}{size} + 1

\end{codebox}

Here, the last line of EFT-ROTATE has\label{li:left-rot-parent}

Indenting long argument lists in procedure calls

You might find that you have to call a procedure with an argurtistso long that the call requires more than
one line. When this situation arises, it often looks bestigmahe second and subsequent lines of arguments
with the first argument. The only place we did so was in tb&SARRAYS' procedure in Problem 27-1 on
page 805.

To get this style of alignment, use tk®tartalign and\Stopalign commands, in concert with
the\> command of ATIpX 2¢. The\Startalign command takes an argument that is the text string that
you wish to align just to the right of. Start each line that yeant to indent with> . Use théStopalign
command to restore indentation to its state from beforéSkertalign command.

The source code for@®v-ARRAYS' shows how to use these commands:

13

\begin{codebox}

\Procname{$\procdecltag{Sum-Arrays{$'$}(A, B, C)$}

\li $n \gets \attrib{A}length}$

\li $\id{grain-size} \gets\ \ ?$ \>\>\>\>\>\>\Comment to b e determined
\li $r \gets \ceil{n/\id{grain-size}}$

\li \For $k \gets 0% \To $r-1%

\li \Do
\Spawn $\proc{Add-Subarray}(A, B, C, k\cdot\id{grain-si ze+1l,$

\Startalign{\Spawn $\proc{Add-Subarray}($}
\> $\min((k+1)\cdot\id{grain-size}, n))$
\Stopalign

\End
\li \Sync
\end{codebox}

The second line of arguments in the call toB- SUBARRAY starts right under the first parametdr,in the
call.

7 Reporting bugs

If you find errors in theelrscode3e package, please send me email (thc@cs.dartmouth.edwuldwe
best if your message included everything | would requirdititeéhe error myself.
Theclrscode3e.sty file contains the following disclaimer:

% Written for general distribution by Thomas H. Cormen, Marc h 2009.
% The author grants permission for anyone to use this macro pa ckage and
% to distribute it unchanged without further restriction. | f you choose
% to modify this package, you must indicate that you have modi fied it
% prior to your distributing it. | don't want to get bug report s about

% changes that *you=* have made!

I have enough trouble keeping up with my own bugs; | don't wianhear about bugs that others have
introduced in the package!

8 Revision history

e 27 January 2010. Corrected an error in the documentatioa fifidt line after ARepeat command
should begin withli

e 23 March 2009. Initial revision of document and code.

References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rjvaasd Clifford SteinlIntroduction to Algo-
rithms, third edition. The MIT Press, 2009.

14

[2] Leslie LamportlATeX: A Document Preparation System User’s Guide and Reference Manual. Addison-
Wesley, 1993.

15

