
The codedescribe and codelisting Packages

Version 1.4

Alceu Frigeri*

February 2024

Abstract

This documentation package is designed to be ‘as class independent as possible’,
depending only on expl3, scontents, listing and pifont. Unlike other packages of
the kind, a minimal set of macros/commands/environments is defined: most/all defined
commands have an ’object type’ as a keyval parameter, allowing for an easy expansion
mechanism (instead of the usual ’one set of macros/environments’ for each object type).

No assumption about page layout is made (besides ‘having a marginpar’), or un-
derlying macros, so that it can be used with any document class.

Contents

1 Introduction 1
1.1 Single versus Multi-column Classes . 2
1.2 Current Version . 2

2 codelisting Package 2
2.1 In Memory Code Storage . 2
2.2 Code Display/Demo . 2

2.2.1 Code Keys . 3

3 codedescribe Package 4
3.1 Package Options . 4
3.2 Object Type keys . 4

3.2.1 Format Keys . 4
3.2.2 Format Groups . 5
3.2.3 Object Types . 5
3.2.4 Customization . 5

3.3 Environments . 6
3.4 Commands . 7
3.5 Auxiliary Command / Environment . 8

1 Introduction

This package aims to document both Document level (i.e. final user) commands, as well
Package/Class level commands. It’s fully implemented using expl3 syntax and structures, in
special l3coffins, l3seq and l3keys. Besides those scontents and listing packages are used
to typeset code snippets. The package pifont is needed just to typeset those (open)stars,
in case one wants to mark a command as (restricted) expandable.

No other package/class is needed, any class can be used as the base one, which allows to
demonstrate the documented commands with any desired layout.

codelisting defines a few macros to display and demonstrate LATEX code (using listings

and scontents), whilst codedescribe defines a series of macros to display/enumerate macros
and environments (somewhat resembling the doc3 style).

*https://github.com/alceu-frigeri/codedescribe

1

1.1 Single versus Multi-column Classes

This package ’can’ be used with multi-column classes, given that the \linewidth and \columnsep

are defined appropriately. \linewidth shall defaults to text/column real width, whilst
\columnsep, if needed (2 or more columns) shall be greater than \marginparwidth plus
\marginparsep.

1.2 Current Version

This doc regards to codedescribe version 1.4 and codelisting version 1.4. Those two
packages are fairly stable, and given the ⟨obj-type⟩ mechanism (see below, 3.2) it can be
easily extended without changing it’s interface.

2 codelisting Package

It requires two packages: listings and scontents, defines an environment: codestore and 3
main commands: \tscode, \tsdemo and \tsresult and 1 auxiliary command: \setcodekeys.

2.1 In Memory Code Storage

Thanks to scontents (expl3 based) it’s possible to store LATEX code snippets in a expl3 key.

\begin{codestore} [⟨stcontents-keys⟩]
\end{codestore}

codestore

This environment is an alias to scontents environment (from scontents package), all
scontents keys are valid, with two additional ones: st and store-at which are aliases to
the store-env key. If an ’isolated’ ⟨st-name⟩ is given (unknown key), it is assumed ’by
Default’ that the environment body shall be stored in it (for use with \tscode and \tsdemo).

2.2 Code Display/Demo

\setcodekeys {⟨code-keys⟩}\setcodekeys

One has the option to set ⟨code-keys⟩ (see 2.2.1) per \tscode /\tsdemo call, or globally,
better said, in the called context group .

N.B.: All \tscode and \tsdemo commands create a local group in which
the ⟨code-keys⟩ are defined, and discarded once said local group is closed.
\setcodekeys defines those keys in the current context/group.

\tscode* [⟨code-keys⟩] {⟨st-name⟩}
\tsdemo* [⟨code-keys⟩] {⟨st-name⟩}
\tsresult* [⟨code-keys⟩] {⟨st-name⟩}

\tscode*

\tsdemo*

\tsresult*

update: 2024/01/06 \tscode just typesets ⟨st-name⟩ (the key-name created with stcode), in verbatim mode with
syntax highlight. The non-star version centers it and use just half of the base line. The star
version uses the full text width.
\tsdemo* first typesets ⟨st-name⟩, as above, then it executes said code. The non-start versions
place them side-by-side, whilst the star versions places one following the other.
(new 2024/01/06) \tsresult* only executes said code. The non-start versions centers it and
use just half of the base line, whilst the star versions uses the full text width.

2

For Example:

LATEX Code:

\begin{codestore}[stmeta]

Some \LaTeX~coding, for example: \ldots.

\end{codestore}

This will just typesets \tsobj[key]{stmeta}:

\tscode*[codeprefix={Sample Code:}] {stmeta}

and this will demonstrate it, side by side with source code:

\tsdemo[numbers=left,ruleht=0.5,

codeprefix={inner sample code},

resultprefix={inner sample result}] {stmeta}

LATEX Result:

This will just typesets stmeta:

Sample Code:

Some \LaTeX~coding, for example: \ldots.

and this will demonstrate it, side by side with source code:

inner sample code inner sample result

1 Some \LaTeX~coding, for example: \ldots. Some LATEX coding, for example:

2.2.1 Code Keys

Using a key=value syntax, one can fine tune listings syntax highlight.

settexcs, settexcs2 and settexcs3

texcs, texcs2 and texcs3

texcsstyle, texcs2style and texcs3style

settexcs

texcs

texcsstyle

Those define sets of LATEX commands (csnames), the set variants initialize/redefine those
sets (an empty list, clears the set), while the others extend those sets. The style ones
redefines the command display style (an empty ⟨value⟩ resets the style to it’s default).

setkeywd, setkeywd2 and setkeywd3

keywd, keywd2 and keywd3

keywdstyle, keywd2style and keywd3style

setkeywd

keywd

keywdstyle

Same for other keywords sets.

setemph, setemph2 and setemph3

emph, emph2 and emph3

emphstyle, emph2style and emph3style

setemph

emph

emphstyle

for some extra emphasis sets.

numbers and numberstylenumbers

numberstyle numbers possible values are none (default) and left (to add tinny numbers to the left of the
listing). With numberstyle one can redefine the numbering style.

stringstyle and commentstylestringstyle

codestyle to redefine strings and comments formatting style.

3

bckgndcolorbckgndcolor

to change the listing background’s color.

codeprefix and resultprefixcodeprefix

resultprefix those set the codeprefix (default: LATEX Code:) and resultprefix (default: LATEX Result:)

parindentparindent

Sets the indentation to be used when ’demonstrating’ LATEX code (\tsdemo). Defaults to
whatever value \parindent was when the package was first loaded.

rulehtruleht

When typesetting the ’code demo’ (\tsdemo) a set of rules is drawn. The Default, 1, equals
to \arrayrulewidth (usually 0.4pt).

basicstylebasicstyle

new: 2023/11/18 Sets the base font style used when typesetting the ’code demo’, default being
\footnotesize\ttfamily

3 codedescribe Package

This package aims at minimizing the number of commands, having the object kind (if a
macro, or a function, or environment, or variable, or key ...) as a parameter, allowing for a
simple ’extension mechanism’: other object types can be easily introduced without having
to change, or add commands.

3.1 Package Options

It has a single package option:

it will suppress the codelisting package load. In case it’s not necessary or one wants to use
a differen package for LATEX code listing.

nolisting

3.2 Object Type keys

The applied text format is defined in terms of ⟨obj-types⟩, which are defined in terms of
⟨format-groups⟩ and each one defines a ’formatting function’, ’font shape’, bracketing, etc.
to be applied.

3.2.1 Format Keys

There is a set of primitive ⟨format-keys⟩ used to define ⟨format-groups⟩ and ⟨obj-types⟩,
which are:

to typeset between angles,meta

to typeset *verbatim* between angles,xmeta

to typeset *verbatim*,verb

to typeset *verbatim*, suppressing all spaces,xverb

to typeset *verbatim*, suppressing all spaces and replacing a TF by TF,code

in case of a redefinition, to remove the ’base’ formatting,nofmt

to use a slanted font shape,slshape

to use an italic font shape,itshape

in case of a redefinition, to remove the ’base’ shape,noshape

defines the left bracket (when using \tsargs). Note: this key must have an
associated value,

lbracket

4

defines the right bracket (when using \tsargs). Note: this key must have an
associated value,

rbracket

defines the text color. Note: this key must have an associated value (a color,
as understood by xcolor package).

color

3.2.2 Format Groups

Using \defgroupfmt one can (re-)define custom ⟨format-groups⟩. There is, though, a set of
pre-defined ones as follow:

which sets meta and colormeta

which sets colorverb

which sets meta and coloroarg

which sets code and colorcode

which sets colorsyntax

which sets slshape and colorkeyval

which sets coloroption

which sets colordefaultval

which sets slshape and colorenv

which sets slshape and colorpkg

Note: color was used in the list above just as a ’reminder’ that a color is
defined/associated with the given group.

3.2.3 Object Types

Using \defobjectfmt one can (re-)define custom ⟨obj-types⟩. Similarly, there is a set of
predefined ones, as follow:

based on (group) metaarg, meta

based on (group) verb plus verb or xverbverb, xverb

based on (group) meta plus bracketsmarg

based on (group) oarg plus bracketsoarg, parg, xarg

based on (group) codecode, macro, function

based on (group) syntaxsyntax

based on (group) keyvalkeyval, key, keys, values

based on (group) optionoption

based on (group) defaultvaldefaultval

based on (group) envenv

based on (group) pkgpkg, pack

3.2.4 Customization

One can add user defined groups/objects or change the pre-defined ones with the following
commands:

\defgroupfmt {⟨format-group⟩} {⟨format-keys⟩}\defgroupfmt

new: 2023/05/16 ⟨format-group⟩ is the name of the new group (or one being redefined, which can be one of
the standard ones). ⟨format-keys⟩ is any combination of the keys defined in 3.2.1

For example, one can redefine the code group standard color with \defgroupfmt{code}{color=red}

and all obj-types based on it will be typeset in red (in the standard case: code, macro and
function objects).

\defobjectfmt {⟨obj-type⟩} {⟨format-group⟩} {⟨format-keys⟩}\defobjectfmt

new: 2023/05/16 ⟨obj-type⟩ is the name of the new ⟨object⟩ being defined (or redefined), ⟨format-group⟩ is
the base group to be used. ⟨format-keys⟩ allows for further differentiation.

For instance, the many optional ⟨*arg⟩ are defined as follow:

5

\colorlet {c__codedesc_oarg_color} { gray!90!black }

\defgroupfmt {oarg} { meta , color=c__codedesc_oarg_color }

\defobjectfmt {oarg} {oarg} { lbracket={[} , rbracket={]} }

\defobjectfmt {parg} {oarg} { lbracket={(} , rbracket={)} }

\defobjectfmt {xarg} {oarg} { lbracket={<} , rbracket={>} }

3.3 Environments

\begin{codedescribe} [⟨obj-type⟩] {⟨csv-list⟩}
...

\end{codedescribe}

codedescribe

new: 2023/05/01
update: 2023/05/01
update: 2024/02/16
NB: this is an example

This is the main environment to describe Macros, Functions, Variable, Environments and
etc. ⟨csv-list⟩ is typeset in the margin. The optional ⟨obj-type⟩ (see 3.2 and 3.2.3) defines
the object-type format.

Note 1: One can change the rule color with the key rulecolor, for instance
\begin{codedescribe}[rulecolor=white] will remove the rules.

Note 2: Besides that, one can use the keys new, update and note to further
customize it. (2024/02/16 these keys can also be used multiple times).

Note 3: Finally, one can use EXP and rEXP to add a star ★ or a hollow star ✩,
as per expl3/doc3 conventions (if expandable, restricted expandable or not).

\begin{codesyntax}

...

\end{codesyntax}

codesyntax

The codesyntax environment sets the fontsize and activates \obeylines, \obeyspaces , so one
can list macros/cmds/keys use, one per line.

Note: codesyntax environment shall appear only once, inside of a
codedescribe environment. Take note, as well, this is not a verbatim envi-
ronment!

For example, the code for codedescribe (entry above) is:

LATEX Code:

\begin{codedescribe}[env,new=2023/05/01,update=2023/05/01,note={this is an example},update

=2024/02/16]{codedescribe}

\begin{codesyntax}

\tsmacro{\begin{codedescribe}}[obj-type]{csv-list}

\ldots

\tsmacro{\end{codedescribe}}{}

\end{codesyntax}

This is the main ...

\end{codedescribe}

\begin{describelist} [⟨item-indent⟩] {⟨obj-type⟩}
..\describe {⟨item-name⟩} {⟨item-description⟩}
..\describe {⟨item-name⟩} {⟨item-description⟩}
...

\end{describelist}

describelist

describelist*

This sets a description like ’list’. In the non-star version the ⟨items-name⟩ will be typeset
on the marginpar. In the star version, ⟨item-description⟩ will be indented by ⟨item-indent⟩
(defaults to: 20mm). ⟨obj-type⟩ defines the object-type format used to typeset ⟨item-name⟩.

6

\describe {⟨item-name⟩} {⟨item-description⟩}\describe

This is the describelist companion macro. In case of the describe*, ⟨item-name⟩ will be
typeset in a box ⟨item-ident⟩ wide, so that ⟨item-description⟩ will be fully indented, oth-
erwise ⟨item-name⟩ will be typed in the marginpar.

3.4 Commands

\typesetobj [⟨obj-type⟩] {⟨csv-list⟩}
\tsobj [⟨obj-type⟩] {⟨csv-list⟩}

\typesetobj

\tsobj

This is the main typesetting command (most of the others are based on this). It can be
used to typeset a single ’object’ or a list thereof. In the case of a list, each term will be
separated by commas. The last two by sep (defaults to: and).

Note: One can change the last ’separator’ with the key sep, for instance \tsobj
[env,sep=or] {} (in case one wants to produce an ’or’ list of environments).
Additionally, one can use the key comma to change the last separator to a single
comma, like \tsobj [env,comma] {}.

\typesetargs [⟨obj-type⟩] {⟨csv-list⟩}
\tsargs [⟨obj-type⟩] {⟨csv-list⟩}

\typesetargs

\tsargs

Those will typeset ⟨csv-list⟩ as a list of parameters, like [⟨arg1⟩] [⟨arg2⟩] [⟨arg3⟩], or
{⟨arg1⟩} {⟨arg2⟩} {⟨arg3⟩}, etc. ⟨obj-type⟩ defines the formating AND kind of brackets used
(see 3.2): [] for optional arguments (oarg), {} for mandatory arguments (marg), and so on.

\typesetmacro {⟨macro-list⟩} [⟨oargs-list⟩] {⟨margs-list⟩}
\tsmacro {⟨macro-list⟩} [⟨oargs-list⟩] {⟨margs-list⟩}

\typesetmacro

\tsmacro

This is just a short-cut for
\tsobj[code]{macro-list} \tsargs[oarg]{oargs-list} \tsargs[marg]{margs-list}.

\typesetmeta {⟨name⟩}
\tsmeta {⟨name⟩}

\typesetmeta

\tsmeta

Those will just typeset ⟨name⟩ between left/right ’angles’ (no other formatting).

\typesetverb [⟨obj-type⟩] {⟨verbatim text⟩}
\tsverb [⟨obj-type⟩] {⟨verbatim text⟩}

\typesetverb

\tsverb

Typesets ⟨verbatim text⟩ as is (verbatim...). ⟨obj-type⟩ defines the used format. The dif-
ference with \tsobj [verb]{something} is that ⟨verbatim text⟩ can contain commas (which,
otherwise, would be interpreted as a list separator in \tsobj.

Note: This is meant for short expressions, and not multi-line, complex code
(one is better of, then, using 2.2). ⟨verbatim text⟩ must be balanced ! other-
wise, some low level TEX errors may pop out.

\typesetmarginnote {⟨note⟩}
\tsmarginnote {⟨note⟩}

\typesetmarginnote

\tsmarginnote

Typesets a small note at the margin.

7

\begin{tsremark} [⟨NB⟩]
\end{tsremark}

tsremark

The environment body will be typeset as a text note. ⟨NB⟩ (defaults to Note:) is the note
begin (in boldface). For instance:

LATEX Code: LATEX Result:

Sample text. Sample test.

\begin{tsremark}[N.B.]

This is an example.

\end{tsremark}

Sample text. Sample test.

N.B. This is an example.

3.5 Auxiliary Command / Environment

In case the used Document Class redefines the \maketitle command and/or abstract envi-
ronment, alternatives are provided (based on the article class).

\typesettitle {⟨title-keys⟩}
\tstitle {⟨title-keys⟩}

typesettitle

tstitle

This is based on the \maketitle from the article class. The ⟨title-keys⟩ are:

The used title.title

Author’s name. It’s possible to use \footnote command in it.author

Title’s date.date

\begin{tsabstract}

...

\end{tsabstract}

tsabstract

This is the abstract environment from the article class.

\typesetdate

\tsdate
typesetdate

tsdate

new: 2023/05/16 This provides the current date (Month Year, format).

8

