
The dashrule package∗

Scott Pakin
scott+dash@pakin.org

March 28, 2013

Abstract

The dashrule package makes it easy to draw a huge variety of dashed
rules (i.e., lines) in LATEX. dashrule provides a command, \hdashrule,
which is a cross between LATEX’s \rule and PostScript’s setdash command.
\hdashrule draws horizontally dashed rules using the same syntax as \rule

but with an additional, setdash-like parameter that specifies the pattern of
dash segments and the space between those segments. Because dashrule’s
rules are constructed internally using \rule (as opposed to, e.g., PostScript
\specials) they are fully compatible with every LATEX back-end processor.

1 Usage

LATEX’s \rule command draws a rectangular blob of ink with a given width, height,\hdashrule

and distance above the baseline. The dashrule package introduces an analogous
command, \hdashrule, which draws the same blob of ink, but horizontally dashed.
\hdashrule takes five parameters, two of which are optional:

\hdashrule [〈raise〉] [〈leader〉] {〈width〉} {〈height〉} {〈dash〉}

The 〈raise〉, 〈width〉, and 〈height〉 parameters have the same meaning as in
LATEX’s \rule macro: the distance to raise the rule above the baseline and the
width and height of the rule.

Because \hdashrule is implemented in terms of TEX’s primitive leader com-
mands (\leaders, \cleaders, and \xleaders), the dash pattern must be repeated
an integral number of times. 〈leader〉 specifies what to do with the extra whitespace
(always less than the width of the dash pattern) that this requirement introduces.
The default, which corresponds to TEX’s \leaders command, adds space to both
ends of the rule so the dash patterns from multiple \hdashrules line up. If 〈leader〉
is c, which corresponds to TEX’s \cleaders command, an equal amount of whites-
pace is added to both ends of the rule. If 〈leader〉 is x, which corresponds to

∗This document corresponds to dashrule v1.3, dated 2013/03/28.

1

TEX’s \xleaders command, the whitespace is divided up, and the same amount
of whitespace separates each repetition of the dash pattern.

The 〈dash〉 argument specifies the dash pattern and is analogous to the array
argument to PostScript’s setdash function. That is, it is a list of space-separated
〈dimen〉s that alternate “on” and “off” distances. For instance, “2pt 1pt” means
a 2 pt. rule, followed by a 1 pt. gap, followed by a 2 pt. rule, followed by a 1 pt. gap,
and so forth. An odd number of 〈dimen〉s is no different; “2pt” alternates 2 pt.
rules and 2 pt. gaps, and “1pt 2pt 3pt” repeats “1 pt. rule, 2 pt. gap, 3 pt. rule,
1 pt. gap, 2 pt. rule, 3 pt. gap.” As a special case, an empty 〈dash〉 argument draws
a solid rule.

2 Examples

The following are some typical ways to use \hdashrule. Each example changes
from the previous in only one parameter. For clarity, underlines are used to indicate
modified text, and the rule is bracketed by an upper- and lowercase “X”.

\rule{2cm}{1pt} X x

\hdashrule{2cm}{1pt}{} X x

\hdashrule{2cm}{1pt}{1pt} X x

\hdashrule{4cm}{1pt}{1pt} X x

\hdashrule[0.5ex]{4cm}{1pt}{1pt} X x

\hdashrule[0.5ex]{4cm}{1pt}{3mm} X x

\hdashrule[0.5ex]{4cm}{1mm}{3mm} X x

\hdashrule[0.5ex]{4cm}{1mm}{3mm 3pt} X x

\hdashrule[0.5ex]{4cm}{1mm}{%
3mm 3pt 1mm 2pt} X x

These next examples show the effect of using different leader types. Each leader is
used with both a 4 cm wide rule and a 3 cm wide rule.

\hdashrule[0.5ex]{4cm}{1mm}{8mm 2pt} X x

\hdashrule[0.5ex]{3cm}{1mm}{8mm 2pt} X x

\hdashrule[0.5ex][c]{4cm}{1mm}{8mm 2pt} X x

\hdashrule[0.5ex][c]{3cm}{1mm}{8mm 2pt} X x

\hdashrule[0.5ex][x]{4cm}{1mm}{8mm 2pt} X x

\hdashrule[0.5ex][x]{3cm}{1mm}{8mm 2pt} X x

2

Notice how the dashes in the first pair of \hdashrules line up; the rules in the
second pair each have an equal amount of whitespace on either side of the rule;
and the rules in the third pair have extra spaces within the dash pattern itself
instead of around it. The x qualifier is rarely useful for dashed rules because it
alters the pattern itself. However, x does enable rules with long dashes to better
fill a comparatively small width, as in the following example:

\hdashrule[0.5ex][x]{3in}{2pt}{2cm 0pt}

X x

The gaps in the above are clearly wider than 0pt, but they are evenly spaced.

3 Differences from setdash

\hdashrule is different from PostScript’s setdash command in the following ways:

• setdash takes on/off values in terms of PostScript points (TEX “big points”
or “bp”), while \hdashrule requires explicit units.

• There is no equivalent of setdash’s offset parameter to specify a starting
offset into the pattern. If you’re desperate you can fake offset with a leading
\rule and \hspace.

4 Implementation

We load the ifmtarg package to help check if the final argument to \hdashrule is
empty.

1 \RequirePackage{ifmtarg}

\hdr@do@rule This macro is exactly like LATEX’s \rule except that the optional argument is re-
quired, and it has the side effect of pointing \hdr@do@something to \hdr@do@skip.

2 \def\hdr@do@rule[#1]#2#3{%

3 \rule[#1]{#2}{#3}%

4 \let\hdr@do@something=\hdr@do@skip

5 }

\hdr@do@skip This macro takes the same arguments as \hdr@do@rule, but instead of drawing
a rule, it inserts an equivalent amount of horizontal whitespace. Additionally, it
points \hdr@do@something to \hdr@do@rule as a side effect.

6 \def\hdr@do@skip[#1]#2#3{%

7 \hspace*{#2}%

8 \let\hdr@do@something=\hdr@do@rule

9 }

3

\c@hdr@segments

\hdr@tally@segments

Dash patterns containing an odd number of segments are treated differently from
dash patterns containing an even number of segments. We therefore define a macro,
\hdr@tally@segments, which counts the number of space-separated segments in
a dash pattern and stores the tally in the hdr@segments counter. Note that
hdr@segments should be initialized to 0 before invoking \hdr@tally@segments.

10 \newcounter{hdr@segments}

11 \def\hdr@tally@segments#1 {%

12 \ifx#1!%

13 \else

14 \addtocounter{hdr@segments}{1}%

15 \expandafter\hdr@tally@segments

16 \fi

17 }

\hdashrule This is the only macro in dashrule’s external interface. (\hdashrule@ii does
most of the work for \hdashrule, though.) All \hdashrule itself does is invoke
\hdashrule@i with its first optional argument or 0.0pt if none was provided.
\hdashrule@i, in turn, invokes \hdashrule@ii with the two optional arguments,
supplying \empty as the default value of the second optional argument.

18 \DeclareRobustCommand{\hdashrule}{\mbox{}\@testopt{\hdashrule@i}{0pt}}

\hdashrule@i Supply \empty as the default second argument and call \hdashrule@ii.

19 \def\hdashrule@i[#1]{\@testopt{\hdashrule@ii[#1]}\empty}

\hdashrule@ii Now we can do the real work for \hdashrule. \hdashrule@ii takes the following
parameters:

#1 #2 #3 #4 #5

[〈raise〉] [〈leader〉] {〈width〉} {〈height〉} {〈dash〉}

The 〈raise〉, 〈width〉, and 〈height〉 parameters have the same meaning as in LATEX’s
\rule macro. 〈leader〉 specifies the TEX leader function to use to fill 〈width〉
amount of space. It should be c for \cleaders, x for \xleaders, or nothing
for ordinary \leaders. The 〈dash〉 argument specifies the dash pattern and is
analogous to the array argument to PostScript’s setdash function. That is, it is a
list of space-separated 〈dimen〉s that alternate “on” and “off” distances.

20 \def\hdashrule@ii[#1][#2]#3#4#5{%

If the final argument, 〈dash〉, is empty, we fall back to using an ordinary \rule

command. This is not terribly useful in practice but does make \hdashrule behave
more like PostScript’s setdash.

21 \@ifmtarg{#5}{%

22 \rule[#1]{#3}{#4}%

23 }{%

Here begins the common case, in which the 〈dash〉 argument is nonempty.

4

\hdr@do@something The \hdr@do@something alias alternates between \hdr@do@rule and \hdr@do@skip,
starting with \hdr@do@rule.

24 \let\hdr@do@something=\hdr@do@rule

\hdr@parse@dash For every space-separated 〈dimen〉 in 〈dash〉, we invoke \hdr@do@something to
draw a rule or a space, as appropriate. We define \hdr@parse@dash within
\hdashrule@ii so we don’t have to pass in \hdashrule@ii’s #1 and #4 on every
invocation.

25 \def\hdr@parse@dash##1 {%

26 \ifx##1!%

27 \else

28 \hdr@do@something[#1]{##1}{#4}%

29 \expandafter\hdr@parse@dash

30 \fi

31 }%

We now count the number of segments in the dash pattern so we can determine if
we have an even or odd number of them.

32 \setcounter{hdr@segments}{0}%

33 \hdr@tally@segments#5 !

Finally, we invoke \leaders, \cleaders, or \xleaders to draw the dashed line,
repeating the pattern until 〈width〉 space is filled. The trick here is that odd-
lengthed pattern descriptions must be repeated to yield the complete pattern.
For instance, the pattern “1pt” is actually short for “1 pt. rule, 1 pt. space,” and
“2pt 4pt 6pt” is an abridged version of “2 pt. rule, 4 pt. space, 6 pt. rule, 2 pt.
space, 4 pt. rule, 6 pt. space.” Although it is valid to repeat even-lengthed patterns
as well—an earlier draft of \hdashrule@ii did just that—this produces inferior
results because TEX’s various leader commands do not split boxes. The longer the
pattern, the less likely it will fit snugly into the given width.

34 \ifodd\c@hdr@segments

35 \csname#2leaders\endcsname

36 \hbox{\hdr@parse@dash#5 #5 ! }%

37 \hskip#3%

38 \else

39 \csname#2leaders\endcsname

40 \hbox{\hdr@parse@dash#5 ! }%

41 \hskip#3%

42 \fi

43 \mbox{}%

44 }%

45 }

5 Future Work

dashrule v1.3 supports only horizontally dashed rules. Future versions (if any) may
support vertically dashed rules as well. For the time being, the graphicx package’s

5

\rotatebox can be used to define a \vdashrule in terms of a rotated \hdashrule.
The next logical step after adding a \vdashrule is to support dashed rectangles,

which would be composed of \hdashrules and \vdashrules. Other possible
enhancements would be a way of drawing dotted lines, presumably composed from
the limited set of circle characters available in LATEX’s fonts.

Change History

v1.0
General: Initial version 1

v1.1
\hdashrule: Preceded the invo-

cation of \@testopt with an
empty box so that \hdashrule

can now begin a paragraph . . . 4
v1.2

\hdr@parse@dash: Ended the rule

with an empty box to enable
\hdashrule to work within a
tabular cell. Thanks to Piazza
Luca for the bug report 5

v1.3
\hdr@parse@dash: Prevented spu-

rious spaces from being intro-
duced into the output. Thanks
to Halil Şen for the bug report . 5

Index

Numbers written in italic refer to the page where the corresponding entry is
described; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols

\@ifmtarg 21

\@testopt 18, 19

C

\c@hdr@segments . 10, 34

H

\hdashrule 18

\hdashrule@i 18, 19

\hdashrule@ii . . . 19, 20

\hdr@do@rule . . . 2, 8, 24

\hdr@do@skip 4, 6

\hdr@do@something . .

. 4, 8, 24, 28
\hdr@parse@dash . . . 25
\hdr@tally@segments

. 10, 33

R
\RequirePackage 1
\rule 3, 22

6

	Usage
	Examples
	Differences from setdash
	Implementation
	Future Work
	Change History
	Index

