1
1.1

2

2.1
2.2
2.2.1

3

3.1
3.2
3.3
3.4
3.5
3.6

The democodetools and democodelisting
Packages - Version 1.0.1beta

Alceu Frigeri
September 2022

Abstract

This is ‘yet another doc/docx/doc3’ package. It is designed to be
‘as class independent as possible’, meaning: it makes no assumption
about page layout (besides ‘having a marginpar’) or underline macros.
Furthermore, it’s assumed that \maketitle and the abstract environ-
ment were modified by the underline class, so alternatives (based on the
article class) are provided. The main idea is to be able to document a
package/class loading it first and then this, so that it is possible not only
to document the ‘syntax’ but also to show the end result ‘as is’” when
using that other specific class/package.

Contents

Introduction.
Current Version

democodelisting Package
In Memory Code Storage.........
Code Display/Demo
(delisting-keys)

democodetools Package oL,
Environments.
Describe Commands i
Macros Typeset
Args Typeset
Keys Typeset
Others.

1 Introduction

O CL O Ol e W NN NN

The packages/classes doc/docx/doc3 (and for that matter doctools) where
designed to be used with dtx files, which is handy for package developers, as
long as one is fine with the ‘default article’ format (which is true most of the
time). This came to be from the willingness of having the ‘new look and feel’
used in doc3, but, instead of having to rely on a standard class, being able to
use any class as the base one, which allows to ‘demonstrate the documented
commands with the final layout’.

stcode

\DisplayCode
\DemoCode
\TabbedDemoCode

democodelisting defines a few macros to display and demonstrate IXTEX code
verbatim (using listings and scontents), whilst democodetools defines a
series of macros to display/enumerate macros and environments (somewhat
resembling the doc3 style).

1.1 Current Version

This doc regards to democodelisting version 1.0.1beta and democodetools
version 1.0.1beta. Those two packages are 'usable’ but they haven’t been
thoroughly tested, nor should anyone consider them stable (they might be
considered more or less stable but more due the 'maintainer’ lack of time than
anything else. Use it at your own risk.)

2 democodelisting Package

It requires two packages: listings and scontents
Defines an environment: stcode and
4 commands: \DemoCode, \DisplayCode, \TabbedDisplayCode and \setdclisting.

2.1 In Memory Code Storage

Thanks to scontents (expl3 based) it’s possible to store KTEX code snippets
in a expl3 key.

\begin{stcode} [(keys)] \end{stcode}

This environment is an alias to scontents environment (from scontents pack-
age), all scontents keys are valid, with an additional one: st which is an alias
to the store-env key. The environment body is stored verbatim in the st
named key.

2.2 Code Display/Demo

\DisplayCode [(dclisting-keys)] {(st-name)}

\DemoCode [(dclisting-keys)] {(st-name)’}

\TabbedDemoCode [(dclisting-keys)] {(st-name)}

\DisplayCode just typesets (st-name) (the key-name created with stcode), in
verbatim mode with syntax highlight.

\DemoCode first typesets (st-name), as above, then it executes said code. Finally
\TabbedDemoCode does the same, but typesetting it, and executed code, side by
side. N.B. Both typeset and executed code are placed inside a minipage so
that, when executing the code, one can have, for instance, 'normal’ paragraph
indentation.

For Example:

BTEX Code:

\begin{stcodel} [st=stmetal
Some \LaTeX~coding, for example: \ldots.
\end{stcode}
This will just typesets \Key{stmeta}:

\DisplayCode{stmeta}
and this will demonstrate it, side by side with source code:

\TabbedDemoCode [numbers=left,codeprefix={inner code},resultprefix={inner
result}]{stmeta}

\setdclisting

(dclisting-keys)

KTEX Result:

This will just typesets stmeta:
ETEX Code:

Some \LaTeX~coding, for example: \ldots.

and this will demonstrate it, side by side with source code:
inner code inner result

Some \LaTeX~coding, for example:

Mo Some KTEX coding, for example:

\setdclisting {(dclisting-keys)}

Instead of setting/defining (dclisting-keys) per \Demo/\Display call, one can
set those globally, better said, in the called context group .

N.B.: All \Display/\Demo commands create a local group (\begingroup) in
which the (dclisting-keys) are defined, and discarded once said local group is
closed. \setdclisting defines those keys in the current context/group (\def,
\edef)

2.2.1 (dclisting-keys)

Using a key = value syntax, one can fine tune listings syntax highlight.
settexcs, settexcs2, settexcs3

texcs, texcs2, texcs3

texcsstyle, texcs2style, texcs3style

Those define sets of XTEX commands (csnames), the set variants initialize/re-
define those sets (an empty list, clears the set), while the others extend those
sets. The style ones redefines the command display style (an empty (par)
resets the style to it’s default).

setkeywd, setkeywd2, setkeywd3
keywd, keywd2, keywd3

keywdstyle, keywd2style, keywd3style
Same for other keywords sets.

setemph, setemph2, setemph3

emph, emph2, emph3

emphstyle, emph2style, emph3style
for some extra emphasis sets.

numbers, numberstyle

numbers possible values are none (default) and left (to add tinny numbers
to the left of the listing). With numberstyle one can redefine the numbering
style.

stringstyle, commentstyle
to redefine strings and comments formatting style.

bckgndcolor
to change the listing background’s color.

codeprefix, resultprefix
those set the codeprefix (default: KTEX Code:) and resultprefix (default:
ITEX Result:)

3 democodetools Package

3.1 Environments

Macros \begin{Macros}{(macrolist)}
Envs \begin{Envs} {(envlist)}

Those are the two main environments to describe Macros and Environments.
Both typeset (macrolist) (csv list) or (envlist) (csv list) in the margin. N.B.
Each element of the list gets \detokenize

Syntax \begin{Syntax}

The Syntax environment sets the fontsize and activates \obeylines, so one can
list macros/cmds/keys use, one per line.
ETEX Code:

\begin{Envs}{Macros,Envs}
\begin{Syntax}/,
\Macro{\begin{Macros}}{macrolist}
\Macro{\begin{Envs}}{envlist}
\end{Syntax}

Those are the two main ...
\end{Envs}

Args \begin{Args}
Keys \begin{Args+}

Val .
Dp%igg: \begin{Keys}

\begin{Keys+}

\begin{Values}

\begin{Values+2}

\begin{Options}

\begin{Options+}

Those environments are all the same, starting a dedicated description list.
Together with the many \Description... commands, one can list all Options,
Args, Keys, Values as needed. The + form are meant to be used with the
\Description. ..+ forms, for in text lists. The non + form are meant to have
the many ’descriptors’ in the margin par.

3.2 Describe Commands

\DescribeMacro \DescribeMacrox!+{(csname)} [(oarglist)] {(marglist)}

* typesets the macro name in bold face.
! (marglist) is treated as an expandable code, ’as is’.
+ the macro name is typeseted in text.

(csname) macro name (\detokenize)
(oarglist) csv list of optional args.
(marglist) csv list of mandatory args.

\DescribeArg \DescribeArg*+ [(type)] {(arg)}
\DescribeKey \DescribeKey*+ [(type)] {(arg)}
\DescribeValue \DescribeValue*+ [(type)] {(arg)}

\DescribeOption . .
D beOption*+ [(t
\DescribePackage \DescribeOption+ [(type)] {(arg)}

\Macro

\oarg
\marg
\parg
\xarg

\Arg
\Meta

(type)

(arg)

\Key
\Keylst
\KeyUse

\DescribePackage*+ [(type)] {(arg)}

* typesets it in bold face.

+ typesets in text (not in marginpar)
(type) key/arg/... format

(arg) key/arg/... name.

3.3 Macros Typeset

\Macro {(csname)} <(embl)> [(olist)] {(mlist)}

\Macro! {(csname)} <(embl)>{(par.desc.)}

When describing a macro (csname) (Command Sequence, csname) the (olist)
and (mlist) are comma separated lists (csv) of optional and mandatory argu-
ments. (embl) are optional, single char, ’embellishment’ tokens, like * ! +.
Finally, in the ! form, the (par.desc.) is any text representing the macro
parameter list (for non regular, non usual, cases).

KHTEX Code: BETEX Result:

\Macro
DR SIS P Ep e \Macrox! [(opt1)] [{opt2)] {(arg3)}

\Macro!
{\Macro}<!>{\xarg{embl}\marg{par. \Macro! <(embl)>{(par.desc.)}

desc.}}

3.4 Args Typeset

\oarg [(type)] {(arg)}
\marg [(type)] {(arg)}
\parg [(type)] {(arg)}
\xarg [(type)] {(arg)}

\Arg [(type)] {(arg)}

\Meta {(arg)}

Those are meant to typeset the diverse kinds of ‘command’s arguments’ (manda-
tory, optional, parenthesis . . .). \Meta{arg} typesets arg as (arg).

defaults to Meta (it’s the csname of any valid formatting command, like Meta,
textbf, etc.)
the argument name itself.

ETEX Code: ETEX Result:
\oarg{fam}
\parg{xtra} _
\marg [textbf] {text} [(fam)] ((xtra)) {text} <(x-text)>

\xarg{x-text}

3.5 Keys Typeset

\Key [(pre)] {(key)}

\Keylst [(default)] {(keylst)}

\KeyUse { (key)}value

To typeset a (Key) or (keylst) (csv list). (pre) is just prepended to (key) whilst
(default) is the default key value. \KeyUse is just a short-cut for a, possible,
common construction.

\Env
\Pack
\Value

\MetaFmt

\MarginNote

\dcAuthor
\dcDate
\dcTitle
\dcMakeTitle

dcAbstract

KTEX Code: BETEX Result:
\Key{Akey}
YRRy Akey
\Keylst [Bkey] {Akey,Bkey} Akey, Bkey Default: Bkey
keyA =:<arg>

\KeyUse{keyA}{arg}

\Env [(pre)] {(key)}

\Pack [(pre)] {(key)}

\Value [(pre)] {(key)}

Similar to \Key above, they will typeset a (Key). (pre) is just prepended to
(key) whilst (default) is the default key value.

3.6 Others

\MetaFmt* [(type)]

It sets the font size, series, face as defined by (type), (type) being one of Oarg,
Marg, Parg, Xarg, Macro, Code, Key, KeyVal, Option, Value, Default. The
star version uses bold.

\MarginNote {(text)}
As the name implies, to add small margin notes.

\dcAuthor {(name)}

\dcDate {(date)}

\dcTitle {(title)}

\dcMakeTitle

Those allow one to define (as in standard article, book, report classes) the
document author, date and date \dcMakeTitle will write a typical title4-author
heading (as in the article class).

\begin{dcAbstract} \end{dcAbstract}
Same as above, for the abstract.

	Introduction
	Current Version

	democodelisting Package
	In Memory Code Storage
	Code Display/Demo
	dclisting-keys

	democodetools Package
	Environments
	Describe Commands
	Macros Typeset
	Args Typeset
	Keys Typeset
	Others

