
The euclideangeometry package
Claudio Beccari

claudio dot beccari at gmail dot com

Version v.0.2.2 – Last revised 2023-07-11.

Contents
1 The code 1

1.1 Test the date of a suf-
ficiently recent curve2e
package 1

1.2 Labelling 2
1.3 Service macros for ellipses 4
1.4 Processing lines and seg-

ments 5
1.5 Triangle special points . . 11
1.6 Other specific service

macros 13

1.7 Regular polygons and
special ellipses 17
1.7.1 Regular polygons . 17
1.7.2 The Steiner ellipse 18
1.7.3 The ellipse that is

internally tangent
to a triangle while
one of its foci is
prescribed 20

2 Comments on this package 22

3 Acknowledgements 23

Preface
This file contains the documented code of euclideangeometry. The user man-
ual source file euclideangeometry-man.tex and the readable document is
euclideangeometry.pdf; it should already be installed with your updated com-
plete TEX system installation.

Please refer to the user manual before using this package.

1 The code
1.1 Test the date of a sufficiently recent curve2e package
This package has been already identified by the commands extracted by the
docstrip package, during the .dtx file compilation. In any case, if the test
checks that the curve2e file date is too old; it warns the user with an empha-
sised error message on the console, loading this euclideangeometry package is
stopped and the whole job aborts. The emphasised error message appears like this:

Package curve2e too old
Be sure that your TeX installation is complete and up to date

1

Input of euclideangeometry is stopped and job aborted

This message should be sufficiently strong in order to avoid using this package
with a vintage version of TEX Live or MikTEX.

1 \RequirePackage{curve2e}
2 \@ifpackagelater{curve2e}{2020/01/18}{}%
3 {%
4 \typeout{***}
5 \typeout{Package curve2e too old}
6 \typeout{Be sure that your TeX installation is complete and up to date}
7 \typeout{***}
8 \typeout{Input of euclideangeometry stopped and job aborted}
9 \typeout{***}

10 \@@end
11 }%
12

1.2 Labelling
While doing any graphical geometrical drawing it is necessary to label points,
lines, angles and other such items. Non measurable labels should be in upright
sans serif font, according to the ISO regulations, but here we are dealing with
point identified by macros the contain their (cartesian or polar) coordinates that
very often are both labels and math variables.

Here we provide a versatile macro that can do several things. Its name is \Pbox
and it produces a box containing the label in math format. By default the point
label is typeset with the math font variant produced by command \mathsf, but
the macro is sufficiently versatile to allow other settings; it accepts several optional
arguments, therefore it syntax is particular:

\Pbox(〈coordinates〉)[〈alignment〉]{〈label〉}[〈diameter〉]〈⋆〉<〈angle〉>

where 〈coordinates〉 are the coordinates where to possibly set a black dot with
the specified 〈diameter〉; in any case it is the reference point of the 〈label〉; the
〈alignment〉 is formed by the usual letters t, b, c, l, r that can be paired in
a coherent way (for example the couple tb is evidently incoherent, as well as
lr), but in absence of this optional specification, the couple cc is assumed; most
often than not, the label position becomes such that when the user reviews the
document drafts, s/he understands immediately that s/he forgot to specify some
reasonable 〈alignment〉 codes; in any case the cc code works fine to just put the
dot of a specified diameter but with an empty label. Think of the 〈alignment〉
letters as the position of the reference point with respect to the the 〈label〉 optical
center. The optional 〈angle〉 argument produces a rotation of the whole label by
that angle; it may be used in several circumstances, especially when the label is
just text, to produce, for example, a sideways legend. It is useful also when the
labels are produced within a rotated box, in order to counterrotate them.

The optional asterisk draws a frame around the label. Notice that the separator
between the visible or the invisible frame and the box contents varies according the
the fact that the 〈alignment〉 specification contains just one or two letter codes;
this is useful, because the diagonal position of the label should be optically equal
to the gap that exists between the reference point and the 〈label〉 box.

2

If the 〈diameter〉 is zero, no dot is drawn, the whole 〈label〉 is typeset with
the \mathit math font; otherwise only the first symbol of a math expression is
typeset in sans serif. The presence of subscripts makes the labels appear more
distant from their reference point; the same is true when math symbols, even
without subscripts, are used, because of the oblique nature of the math ‘letters’
alphabet.

If some text has to be printed as a label, it suffices to surround it with dollar
signs, that switch back to text mode when the default mode is the math one. With
this kind of textual labels it might be convenient to use the optional asterisk to
frame the text. The final optional argument 〈angle〉 (to be delimited with the < >
signs) specifies the inclination of the label with respect to the horizontal line; it is
useful, for example to set a label along a sloping line.

13 \providecommand\Pbox{}
14 \RenewDocumentCommand\Pbox{D(){0,0} O{cc} m O{0.5ex} s D<>{0}}{%
15 \put(#1){\rotatebox{#6}{\makebox(0,0){%
16 \settowidth\PbDim{#2}%
17 \edef\Rapp{\fpeval{\PbDim/{1ex}}}%
18 \fptest{\Rapp > 1.5}{\fboxsep=0.5ex}{\fboxsep=0.75ex}%
19 \IfBooleanTF{#5}{\fboxrule=0.4pt}{\fboxrule=0pt}%
20 \fptest{#4 = 0sp}%
21 {\makebox(0,0)[#2]{\fbox{$\relax#3\relax$}}}%
22 {\edef\Diam{\fpeval{(#4)/\unitlength}}%
23 \makebox(0,0){\circle*{\Diam}}%
24 \makebox(0,0)[#2]{\fbox{$\relax\mathsf#3\relax$}}%
25 }}}%
26 }\ignorespaces}

The following command, to be used always within a group, or a environment or
inside a box, works only with piecewise continuously scalable font collection, such
as, for example, the Latin Modern fonts, or with continuously scalable fonts, such
as, for example, the Times ones. They let the operator select, for the scope of
the command ,any size, even fractional so as to fine adjust the text width in the
space allowed for it; it is particularly useful with the monospaced fonts, that forbid
hyphenation, and therefore cannot be adjusted to the current line width.

27 \DeclareRobustCommand\setfontsize[2][1.2]{%
28 \linespread{#1}\fontsize{#2}{#2}\selectfont}

With OpenType fonts there should not be any problems even with math fonts;
with Type 1 fonts the only scalable fonts I know of, are the LibertinusMath fonts,
usable through the LibertinusT1math package, are also the only ones that have
8 bit encoded math fonts (256 glyph fonts), while the standard default math fonts
are just 7 bit encoded (128 glyphs fonts).

Another useful labelling command is Zbox; this command is an evolution of a
command that I have been using for years in several documents of mine. It uses
some general text, not necessarily connected to a particular point of the picture
environment, as a legend; It can draw short text as a simple horizontal box, and
longer texts as a vertical box of specified width and height

Is syntax is the following:

\Zbox(〈position〉)(〈dimensions〉)[〈alignment〉]{〈text〉}

where 〈position〉 is where the box reference point has to be put in the picture;
〈dimensions〉 are optional; if not specified, the box is a horizontal one, and it is

3

as wide as its contents; if it is specified, it must be a comma separated list of
two integer or fractional numbers that are the width and the height of the box; if
the height is specified as zero, the width specifies a horizontal box of that width;
〈alignment〉 is optional and is formed by one or two coherent letter codes from
the usual set t, b, c, l, r; if the 〈alignment〉 is absent, the default alignment
letters are bl, i.e. the box reference point is the bottom left corner; 〈text〉 contains
general text, even containing some math.

29
30 \def\EUGsplitArgs(#1,#2)#3#4{\edef#3{#1}\edef#4{#2}}
31 \newlength\EUGZbox
32 \providecommand\Zbox{}
33 \RenewDocumentCommand\Zbox{r() D(){0,0} O{bl} m}{%
34 \EUGsplitArgs(#2)\ZboxX\ZboxY % splits box dimensions
35 \fboxsep=2\unitlength
36 \ifnum\ZboxX=\z@
37 \def\ZTesto{\fbox{#4}}%
38 \else
39 \ifnum\ZboxY=\z@
40 \def\ZTesto{\fbox{\parbox{\ZboxX\unitlength}{#4}}}%
41 \else
42 \def\ZTesto{%
43 \setbox\EUGZbox=\hbox{\fbox{%
44 \parbox[c][\ZboxY\unitlength][c]{\ZboxX\unitlength}{#4}}}%
45 \dimen\EUGZbox=\dimexpr(\ht\EUGZbox +\dp\EUGZbox)/2\relax
46 \ht\EUGZbox=\dimen\EUGZbox\relax
47 \dp\EUGZbox=\dimen\EUGZbox\relax
48 \box\EUGZbox%
49 }%
50 \fi
51 \fi
52 \put(#1){\makebox(0,0)[#3]{\ZTesto}}\ignorespaces}

1.3 Service macros for ellipses
The \ellisse has a control sequence name in Italian; it differs for just one letter
from the name ellipse English name, but we cannot use the latter one because it
may conflict with other packages loaded by the user; actually this command and
the next one are just shortcuts for executing more general commands with specific
sets of arguments. For details and syntax, please refer yourself to section 1.6

53
54 \NewDocumentCommand\ellisse{ s m m}{%
55 \IfBooleanTF{#1}%
56 {\let\fillstroke\fillpath}%
57 {\let\fillstroke\strokepath}%
58 \Sellisse{#2}{#3}%
59 }
60
61 \NewDocumentCommand\Xellisse{ s D(){0,0} O{0} m m O{} o}{%
62 \IfBooleanTF{#1}%
63 {\XSellisse*(#2)[#3]{#4}{#5}[#6][#7]}%
64 {\XSellisse(#2)[#3]{#4}{#5}[#6][#7]}%
65 }

4

We do not know if the following macro \polyvector may be useful for eu-
clidean geometry constructions, but it may be useful in block diagrams; it is sim-
ply a polyline where the last segment is a geometrical vector. As in polyline the
number of recursions is done until the last specified coordinate pair; recognising
that it is the last one, instead of drawing a segment, the macro draws a vector.

66
67 \def\polyvector(#1){\roundcap\def\EUGpreviouspoint{#1}\EUGpolyvector}
68 \def\EUGpolyvector(#1){%
69 \@ifnextchar({%
70 \segment(\EUGpreviouspoint)(#1)\def\EUGpreviouspoint{#1}\EUGpolyvector}%
71 {\VECTOR(\EUGpreviouspoint)(#1)}%
72 }

1.4 Processing lines and segments
The next macros are functional for the geometric constructions we are going to
make: finding the intersection of lines or segments, finding the lengths and ar-
guments of segments, directions, distances, distance of a point from a line or a
segment, the symmetrical point of a another one specified with respect to a given
center of symmetry; the axes of segments, the solutions of the relationship between
the semi axes of an ellipse and the semi focal distance, and so on.

Most of these commands have delimited arguments; the delimiters may be the
usual parentheses, but they may be keywords; many commands contain the key-
word to, not necessarily the last one; the arguments before such keyword may
be entered as ordered comma separated numerical couples, or comma separated
macros the containing scalar values; or they may be macros that contain the or-
dered couples representing vectors or directions; they all may be in cartesian or
polar form. Remember that such ordered couples are complex numbers, repre-
sentable by vectors applied to the origin of the axes; therefore sometimes it is
necessary that the underlying commands execute some vector differences so as to
work with generic vectors.

On the opposite the output values, i.e. the argument after that to keyword,
should be tokens that can receive a definition, in general macros, to which the
user should assign a mnemonic name; s/he should use such macros for further
computations or for drawing commands.

The first and principal command is \IntersectionOfLines and it has the
following syntax:

\IntersectionOfLines(〈point1 〉)(〈dir1 〉)and(〈point2 〉)(〈dir2 〉)to〈crossing
point〉

where 〈point1 〉 and 〈dir1 〉 are respectively a point of the first line and its direction,
not a second point, but the direction — it is important to stress this point; similarly
for the second line; the output is stored in the macro that identifies the 〈crossing
point〉. The directions do not need to be expressed with unit vectors, but the lines
must not be parallel or anti parallel (equal directions or differing by 180◦); the
macro contains a test that checks this anomalous situation because an intersection
at infinity or too far away (214 − 1 typographical points, approximately 5,758 m)
is of no interest; in case, no warning message is issued, the result is put to 0,0,
and the remaining computations become nonsense. It is a very unusual situation
and I never encountered it; nevertheless. . .

5

73
74 \def\IntersectionOfLines(#1)(#2)and(#3)(#4)to#5{\bgroup
75 \def\IntPu{#1}\def\Uu{#2}\def\IntPd{#3}\def\Ud{#4}%
76 \DirOfVect\Uu to\Du
77 \DirOfVect\Ud to\Dd
78 \XpartOfVect\Du to \a \YpartOfVect\Du to \b
79 \XpartOfVect\Dd to \c \YpartOfVect\Dd to \d
80 \XpartOfVect\IntPu to \xu \YpartOfVect\IntPu to \yu
81 \XpartOfVect\IntPd to \xd \YpartOfVect\IntPd to \yd
82 \edef\Den{\fpeval{-(\a*\d-\b*\c)}}%
83 \fptest{abs(\Den)<1e-5}{% Almost vanishing determinant
84 \def#5{0,0}%
85 }{% Determinant OK
86 \edef\Numx{\fpeval{(\c*(\b*\xu-\a*\yu)-\a*(\d*\xd-\c*\yd))/\Den}}%
87 \edef\Numy{\fpeval{(\d*(\b*\xu-\a*\yu)-\b*(\d*\xd-\c*\yd))/\Den}}%
88 \CopyVect\Numx,\Numy to\Paux
89 \edef\x{\egroup\noexpand\edef\noexpand#5{\Paux}}\x\ignorespaces}}

The IntersectionOfSegments macro is similar but in input it contains the
end points of two segments: internally it uses \IntersectionOfLines and to do
so it has to determine the directions of both segments. The syntax is the following:

\IntersectionOfSegments(〈point11 〉)(〈point12 〉)and(〈point21 〉)(〈point22 〉)
to〈crossing〉

The 〈crossing〉 point might fall outside one or both segments. It is up to the
users to find out if the result is meaningful or nonsense. Two non parallel lines
are infinitely long in both directions and any 〈crossing〉 point is acceptable; with
segments the situation might become nonsense.

90
91 \def\IntersectionOfSegments(#1)(#2)and(#3)(#4)to#5{%
92 \SubVect#1from#2to\IoSvectu \DirOfVect\IoSvectu to\DirIoSVecu
93 \SubVect#3from#4to\IoSvectd \DirOfVect\IoSvectd to\DirIoSVecd
94 \IntersectionOfLines(#1)(\DirIoSVecu)and(#3)(\DirIoSVecd)to#5\ignorespaces}

An application of the above intersections is formed by the next two macros;
they find the axes of a couple of sides of a triangle and use their base point and
direction to identify two lines the intersection of which is the circumcenter; the
distance of one base point from the circumcenter is the radius of the circumcircle
that can be drawn with the usual macros. We have to describe the macros \AxisOf
and CircleWithCenter and we will do it in a little while. Meanwhile the syntax
of the whole macro is the following:

\ThreePointCircle〈⋆〉(〈vertex1 〉)(〈vertex2 〉)(〈vertex3 〉)

where the three vertices are the three points where the circle must pass, but they
identify also a triangle. Its side axes intersect in one point that by construction is
at the same distance from the three vertices, therefore it is the center of the circle
that passes through the three vertices. A sub product of the computations is the
macro \C that contains the center coordinates. If the optional asterisk is used
the whole drawing is executed, while if it is missing, only the \C macro remains
available but the user is responsible to save/copy its value into another macro; for
this reason another macro should be more easy to use; its syntax is the following:

6

\ThreePointCircleCenter(〈vertex1 〉)(〈vertex2 〉)(〈vertex3 〉)
to〈center〉

where the vertices have the same meaning, but〈center〉 is the user chosen macro
that contains the center coordinates.

95
96 \NewDocumentCommand\ThreePointCircle{s r() r() r()}{%
97 \AxisOf#2and#3to\Mu\Du \AxisOf#2and#4to\Md\Dd
98 \IntersectionOfSegments(\Mu)(\Du)and(\Md)(\Dd)to\C
99 \SubVect#2from\C to\R

100 \IfBooleanTF{#1}{\CircleWithCenter\C Radius\R}{}\ignorespaces}
101
102 \NewDocumentCommand\ThreePointCircleCenter{r() r() r() m}{%
103 \ThreePointCircle(#1)(#2)(#3)\CopyVect\C to#4}

There are some useful commands that help creating picture diagrams in an
easier way; for example one of the above described commands internally uses
\CircleWithCenter. It is well known that the native picture command \circle
requires the specification of the diameter but many euclideangeometry com-
mands already get the distance of two points, or the magnitude of a segment,
or similar objects that may be used as a radius, rather than the diameter; why
should we not have macros that simultaneously compute the require diameter and
draw the circle. Here there are two such macros; they are similar to one another
but their names differ in capitalisation, but also in the way they use the available
input information. The syntax is the following:

\CircleWithCenter〈center〉 Radius〈Radius〉
\Circlewithcenter〈center〉 radius〈radius〉

where in both cases 〈center〉 is a vector/ordered couple that points to the circle
center. On the contrary 〈Radius〉 is a vector obtained through previous calcula-
tions, while 〈radius〉 is a scalar containing a previously calculated length.
104 \def\CircleWithCenter#1Radius#2{\put(#1){\ModOfVect#2to\CWR
105 \circle{\fpeval{2*\CWR}}}\ignorespaces}
106 %
107 \def\Circlewithcenter#1radius#2{\put(#1){\circle{\fpeval{2*abs(#2)}}}%
108 \ignorespaces}

As announced, here we have a macro to compute the axis of a segment; given
two points P1 and P2, for example the end points of a segment, or better the end
points of the vector that goes from P1 to P2, the macro determines the segment
middle point and a second point the lays on the perpendicular at a distance equal
to half the first two points distance; this second point lays at the left of vector
P2 − P1, therefore it is important to select the right initial vector, in order to
have the second axis point on the desired side. This macro did not work well
because sometimes its internal variables interfered with other commands internal
ones; enclosing everything within an auto deleting group by means of the auto
deleting \x macro usual trick, such interferences should be avoided.

\AxisOf〈P1 〉 and〈P2 〉 to〈Axis1 〉〈Axis2 〉

Macros \SegmentCenter and \MiddlePointOf are alias of one another; their syn-
tax is:

7

\SegmentCenter(〈P1 〉)(〈P2 〉)to〈center〉
\MiddlePointOf(〈P1 〉)(〈P2 〉)to〈center〉

〈P1 〉, 〈P2 〉, 〈Axis1 〉, 〈Axis2 〉 and 〈center〉 are all ordered pairs (vectors).
109
110 \def\AxisOf#1and#2to#3#4{\bgroup
111 \SubVect#1from#2to\Base \ScaleVect\Base by0.5to\Base
112 \AddVect\Base and#1to\Mout \MultVect\Base by0,1to\Base
113 \AddVect\Mout and\Base to\Dout
114 \edef\x{\egroup\noexpand\CopyVect\Mout to\noexpand#3\relax
115 \noexpand\CopyVect\Dout to\noexpand#4}\x\ignorespaces}
116
117 \def\SegmentCenter(#1)(#2)to#3{\AddVect#1and#2to\Segm
118 \ScaleVect\Segm by0.5to#3\ignorespaces}
119
120 \let\MiddlePointOf\SegmentCenter

Some other macros are needed to solve certain triangle problems; one of such
macros is the one allows to determine the length of one leg of a right triangle
by knowing the lengths of the hypothenuse and the other leg. The syntax is the
following:

\LegFromHypotenuse〈hypothenuse〉 AndOtherLeg〈leg1 〉 to〈leg2 〉

where the three parameters may be macros, especially the last one; all of them
contina scalar values.
121 \def\LegFromHypotenuse#1AndOtherLeg#2to#3{%
122 \edef#3{\fpeval{sqrt(#1**2-#2**2)}}}

Another useful macro determines the two intersections of a line with a circum-
ference if they exist; otherwise it issues a warning and sets both output values to
vector 0,0, which, of course, is wrong, but it allows to go on with typesetting,
although with non sense results. Warnings do not stop the compilation program,
therefore their message goes to the .log file and the user might not notice it; but
since the results are probably absurd, s/he certainly notices this fact and looks
for messages; the user, therefore, who has carefully read this user manual, im-
mediately looks onto the .log file and realises the reason of the wrong results.
A similar approach is used for the macro that determines the intersection of two
circles; see below The syntax of this macro is the following:

\IntersectionsOfLine(〈point〉)(〈direction〉) WithCircle(〈center〉){〈radius〉}
to〈int1 〉 and〈int2 〉

where 〈point〉 and 〈direction〉 are the line parameters that can be explicit complex
values or macros; 〈center〉 is the circumference explicit complex value, or a macro,
containing the center coordinates; 〈radius〉 is the scalar explicit or macro radius
length; The intersection points 〈int1 〉 and 〈ind2 〉 are supposed to be macros that
get defined with the intersection point coordinates; 〈int1 〉 is the first intersection
that is determined along the line direction. Please notice the different first part of
the macro name IntersectionsOfLine compared to the macro that determines
the intersection of two lines IntersectionOfLines: two intersections and one line
vs. one intersection with two lines.

8

123 \def\IntersectionsOfLine(#1)(#2)WithCircle(#3)#4to#5and#6{%
124 \CopyVect#3 to\C \edef\R{#4}
125 \CopyVect#1to\Pu \CopyVect#2to\Pd
126 \Circlewithcenter\C radius\R
127 \segment(\Pu)(\Pd)\SegmentArg(\Pu)(\Pd)to\Diru
128 \edef\Dird{\fpeval{\Diru+90}}\Pbox(\C)[b]{C}[2]
129 \IntersectionOfLines(\Pu)(\Diru:1)and(\C)(\Dird:1)to\Int
130 \SegmentLength(\C)(\Int)to\A
131 \fptest{\A > \R}{\PackageError{euclideangeometry}%
132 {Distance of line \A\space larger than radius \R. No intersections}%
133 {Check your data; correct and retry}}{%
134 \LegFromHypotenuse\R AndOtherLeg\A to\B
135 \AddVect\Int and\Diru:-\B to\Pt \edef#5{\Pt}
136 \SymmetricalPointOf\Pt respect\Int to\Pq \edef#6{\Pq}
137 }}

Another useful macro determines the point 〈p2 〉 symmetric to a given point
〈p1 〉 with respect to a given segment the end points of which are 〈Segm1 〉 and
〈Segm2 〉:

\Segment(〈Segm1 〉)(〈Segm2 〉)SymmetricPointOf{〈p1 〉} to〈p2 〉

where, as usual, the input data may be explicit or macro defined coordinates,
while the output result should be a macro name.
138 \def\Segment(#1)(#2)SymmetricPointOf#3to#4{%
139 \SegmentArg(#1)(#2)to\Sanguno\edef\Sangdue{\fpeval{\Sanguno+90}}
140 \IntersectionOfLines(#1)(\Sanguno:1)and(#3)(\Sangdue:1)to\Smed
141 \SymmetricalPointOf#3respect\Smed to#4\ignorespaces}

This useful macro draws a circle given its 〈center〉 and the coordinates of the
〈point〉 which the circumference should pass through. The syntax is:

\CircleThrough(〈[point〉)WithCenter{〈center〉}

As usual, the parameters are all explicit or macro defined complex numbers.
142 \def\CircleThrough#1WithCenter#2{%
143 \SegmentLength(#1)(#2)to\Radius
144 \Circlewithcenter#2radius\Radius}

The above macro is the building block for a simple macro that draws two circles
that cross at a given point; but it is so simple that it is not worth defining a macro:
if the user wants to try his/her ability, s/he may define:

\NewDocumentCommand{r() r() r()}{%
\CircleThrough#3 WithCenter{#1}
\CircleThrough#3 WithCenter{#2}\ignorespaces}

where \ignorespaces may be superfluous, but is always a safety action when
defining commands to be used within the picture environment. In any case see
example 15 in euclideangeometry-man.pdf

If it is necessary to find the intersections of two circles that do not share a
previously known point; we can use the following macro. Analytically given the
equations of two circumferences, it is necessary to solve a system of two second
degree equations the processing of which ends up with a second degree polynomial
that might have real roots (the coordinates of the intersection points), or two

9

coincident roots (the circles are tangent), or complex roots (the circles do not
intersect), or they may be indefinite (the two circles heve the same center and the
same radii). Let us exclude the last case, although it would be trivial to create
the macro with a test that controls such situation. But even the analysis of the
discriminant of the second degree equation requires a complicated code.

On the opposite a simple drawing of the two circles, with centers C1 and C2 and
radii R1 and R2, with the centers distance of a = C_1-C_2, allows to understand
that in order to have intersections: (α) if a ≤ max(R1, R2) (the center of a circle is
contained within the other one) then it must be a ≥ R_1 - R_2, where the ‘equals’
sign applies when the circles are internally tangent; (β) otherwise a ≥ max(R1, R2)
and it must be a ≤ R1 + R2 , where the ‘equals’ sign applies when the circles are
externally tangent. In conclusion in any case il the range R_1-R_2 ≤ a ≤ R1 + R2
is where the two circles intersect, while outside this distance range the circles do
not intersect.

For simplicity let us assume that R1 ≥ R2; the macro can receive the circle data
in any order, but the macro very easily switches their data so that circle number 1
is the one with larger radius. If the distance a is outside the allowed range, there
are no intersections, therefore a warning message is output and the intersection
point coordinates are both set to 0,0, so that processing continues with non sense
data; the remaining geometric construction based on such intersection points might
continue with other error messages or to absurd results; a string message to the
user who, having read the documentation, understand the problem and provides
for.

The new macro has the following syntax:

\TwoCirclesIntersections(〈C1 〉)(〈C2 〉)withradii{〈R1 〉} and{〈R2 〉}
to〈P1 〉 and〈P2 〉

where the symbols in input may be macros or explicit numerical values; the output
point coordinates 〈P1 〉 and 〈P2 〉 should be definable single tokens, therefore the
surrounding braces are not necessary.
145 \def\TwoCirclesIntersections(#1)(#2)withradii#3and#4to#5and#6{%
146 \fptest{#3 >=#4}{%
147 \edef\Cuno{#1}\edef\Cdue{#2}%
148 \edef\Runo{#3}\edef\Rdue{#4}%
149 }{%
150 \edef\Cdue{#2}\edef\Cuno{#2}%
151 \edef\Rdue{#3}\edef\Runo{#4}%
152 }

Above we switched the circle data so as to be sure that symbols relating to circle
‘one’ refer to the circle with larger (or equal) radius. Now we define the centers
distance in macro \A; the test if \A lays in the correct range, otherwise we output
a warning message.
153 \SegmentLength(\Cuno)(\Cdue)to\A
154 \edef\TCIdiffR{\fpeval{\Runo-\Rdue}}\edef\TCIsumR{\fpeval{\Runo+\Rdue}}
155 \fptest{\TCIdiffR > \A || \A > \TCIsumR}{%
156 \edef#5{0,0}\edef#6{0,0}% Valori assurdi se i cerchi non si intersecano
157 \PackageWarning{euclideangeometry}{%
158 ***********************************\MessageBreak
159 Circles do not intersect \MessageBreak
160 Check centers and radii and retry \MessageBreak

10

161 Both intersection point are set to \MessageBreak
162 (0,0) therefore expect errors \MessageBreak
163 ***********************************\MessageBreak}%
164 }{%

Here we are within the correct range and we proceed with the calculations. We take
as a temporary reference the segment that joins the centers. The common chord
that joins the intersection points is perpendicular to such a segment crossing it by
a distance c form C1, and, therefore by a distance a − c from C2; this chord forms
two isosceles triangles with the centers; the above segment bisects such triangles,
forming four right triangles; their hypotenuses equal the radii of the respective
circles; their bases h are all equal to half the chord; Pythagoras’ theorem allows
us to write: {

h2 = R2
1 − c2

h2 = R2
2 − (a − c)2

Solving for c, we get: 
c = R2

1 − R2
2 + a2

2a

h =
√

R2
1 − c2

165 \SegmentArg(\Cuno)(\Cdue)to\Acompl
166 \SubVect\Cuno from\Cdue to \Cdue
167 \edef\CI{\fpeval{(\Runoˆ2 - \Rdueˆ2 +\Aˆ2)/(2*\A)}}
168 \edef\H{\fpeval{sqrt(\Runoˆ2 - \CIˆ2)}}
169 \CopyVect\CI,-\H to\Puno
170 \CopyVect\CI,\H to\Pdue

Now we do not need anymore the chord intersection distance \CI any more, so
we can use for other tasks, and we create a vector with absolute coordinates; We
then add the rotated vector corresponding to the base \H so as to get the absolute
chord extrema \PPuno and \PPdue.
171 \MultVect\CI,0 by\Acompl:1 to\CI
172 \AddVect\Cuno and\CI to\CI
173 \MultVect\Puno by\Acompl:1 to\PPunorot
174 \AddVect\PPunorot and \Cuno to \PPuno
175 \MultVect\Pdue by\Acompl:1 to\PPduerot
176 \AddVect\PPduerot and \Cuno to \PPdue
177 \edef#5{\PPuno}\edef#6{\PPdue}%
178 }%
179 }

It may be noticed that the first intersection point, assigned to parameter #5
is the one found along the orthogonal direction to the vector form C1 to
C2, obtained by a rotation of 90◦ counterclockwise. The whole construction
of the geometry described above is shown in figure 16 in the user manual
euclideangeometry-man.pdf.

1.5 Triangle special points
Here we have the macros to find the special points on a triangle side that are the
“foot” of special lines from one vertex to the opposite side. We already described
the circumcircle and the circumcenter, but that is a separate case, because the
circumcenter is not the intersection of special lines from one vertex to the opposite

11

base. The special lines we are interested in here are the height, the median, and
the bisector The macros have the same aspect \Triangle...Base, where the dots
are replaced with each of the (capitalised) special line names. Their syntaxes are
therefore very similar:

\TriangleMedianBase〈vertex〉 on〈base1 〉 and〈base2 〉 to〈M 〉
\TriangleHeightBase〈vertex〉 on〈base1 〉 and〈base2 〉 to〈H 〉
\TrinagleBisectorBase〈vertex〉 on〈base1 〉 and〈base2 〉 to〈B〉

where 〈vertex〉 contains one of the vertices coordinates, and 〈base1 〉 and 〈base2 〉
are the end points of the side opposite to that triangle vertex; 〈M 〉, metaH, and
〈B〉 are the intersections of these special lines from the 〈vertex〉 to the opposite
side; in order, they are the foot of the median, the foot of the height; the foot of
the bisector. The construction of the median foot 〈M 〉 is trivial because this foot
is the base center; the construction of the height foot is a little more complicated,
because it is necessary to find the exact direction of the perpendicular from the
vertex to the base in order to find the intersection 〈H 〉; the construction of the
bisector base implies finding the exact direction of the two sides starting at the
〈vertex〉, and taking the mean direction, which is trivial if polar coordinates are
used; at this point the bisector line is completely determined and the intersection
with the base line 〈B〉 is easily obtained.
180
181 \def\TriangleMedianBase#1on#2and#3to#4{%
182 \SubVect#1from#2to\TMBu \SubVect#1from#3to\TMBd
183 \SubVect\TMBu from\TMBd to\Base
184 \ScaleVect\Base by0.5to\TMBm\AddVect#2and\TMBm to#4\ignorespaces}
185 %
186 \def\TriangleHeightBase#1on#2and#3to#4{%
187 \SubVect#2from#3to\Base
188 \ArgOfVect\Base to\Ang \CopyVect\fpeval{\Ang+90}:1 to\Perp
189 \IntersectionOfLines(#1)(\Perp)and(#2)(\Base)to#4\ignorespaces}
190 %
191 \def\TriangleBisectorBase#1on#2and#3to#4{%
192 \SubVect#2from#1to\Luno \SubVect#3from#1to\Ldue
193 \SubVect#2from#3to\Base
194 \ArgOfVect\Luno to\Arguno \ArgOfVect\Ldue to\Argdue
195 \edef\ArgBis{\fpeval{(\Arguno+\Argdue)/2}}%
196 \CopyVect \ArgBis:1to \Bisect
197 \IntersectionOfLines(#2)(\Base)and(#1)(\Bisect)to#4\ignorespaces}

Having defined the previous macros, it becomes very easy to create the macros to
find thebarycenter, the orthocenter, theincenter ; for the circumcenter and the cir-
cumcircle we have already solved the question with the \ThreePointCircleCenter
and the ThreePointCircle macros; for homogeneity, we create here their aliases
with the same form as the new “center” macros. Actually, for the “circle” macros,
once the center is known, there is no problem with the circumcircle, while for the
incircle it suffices a macro to determine the distance of the incenter from one of
the triangle sides; such a macro is going to be defined in a little while; it is more
general than simply to determine the radius of the incircle.
198
199 \let\TriangleCircumcenter\ThreePointCircleCenter
200 \let\TriangleCircummcircle\ThreePointCircle

12

The other “center” macros are the following; they all consist in finding two
of the specific triangle lines, and finding their intersection. Therefore for the
barycenter we intersect two median lines; for the orthocenter we intersect two
height lines; for the incenter we intersect two bisector lines;
201
202 \def\TriangleBarycenter(#1)(#2)(#3)to#4{%
203 \TriangleMedianBase#1on#2and#3to\Pa
204 \TriangleMedianBase#2on#3and#1to\Pb
205 \DistanceAndDirOfVect#1minus\Pa to\ModPa and\AngPa
206 \DistanceAndDirOfVect#2minus\Pb to\ModPb and\AngPb
207 \IntersectionOfLines(#1)(\AngPa)and(#2)(\AngPb)to#4}
208
209 \def\TriangleOrthocenter(#1)(#2)(#3)to#4{%
210 \TriangleHeightBase#1on#2and#3to\Pa
211 \TriangleHeightBase#2on#3and#1to\Pb
212 \DistanceAndDirOfVect#1minus\Pa to\ModPa and\AngPa
213 \DistanceAndDirOfVect#2minus\Pb to\ModPb and\AngPb
214 \IntersectionOfLines(#1)(\AngPa)and(#2)(\AngPb)to#4}
215
216 \def\TriangleIncenter(#1)(#2)(#3)to#4{%
217 \TriangleBisectorBase#1on#2and#3to\Pa
218 \TriangleBisectorBase#2on#3and#1to\Pb
219 \DistanceAndDirOfVect#1minus\Pa to\ModPa and\AngPa
220 \DistanceAndDirOfVect#2minus\Pb to\ModPb and\AngPb
221 \IntersectionOfLines(#1)(\AngPa)and(#2)(\AngPb)to#4}

1.6 Other specific service macros
And here it comes the general macro to determine the distance of a point from a
segment or from a line that contains that segment; it may be used for determining
the radius of the incenter, but it is going to be used also for other purposes. Its
syntax is the following:

\DistanceOfPoint〈point〉 from(〈P1 〉)(〈P2 〉)to〈distance〉

where 〈point〉 is a generic point; 〈P1 〉 and 〈P2 〉 are a segment end points, or two
generic points on a line; 〈distance〉 is the macro that receives the computed scalar
distance value.
222
223 \def\DistanceOfPoint#1from(#2)(#3)to#4{%
224 \SubVect#2from#3to\Base \MultVect\Base by0,1to\AB
225 \IntersectionOfLines(#1)(\AB)and(#2)(\Base)to\D
226 \SubVect#1from\D to\D
227 \ModOfVect\D to#4}

The following macros are specific to solve other little geometrical problems that
arise when creating more complicated constructions.

The \AxisFromAxisAndFocus is an unhappy name that describes the solution
of an ellipse relationship between the ellipse axes and the focal distance

a2 = b2 + c2 (1)

This relation exists between the “semi” values, but it works equally well with
the full values. Evidently a is the largest quantity and refers to the main ellipse

13

axis, the one that passes through the two foci; b refers to the other shorter ellipse
axis and c refers to the foci; b and c are smaller than a, but there is no specific
relationship among these two quantities It goes by itself that these statements
apply to a veritable ellipse, not to a circle, that is the special case where b = a
and c = 0.

Since to solve the above equation we have one unknown and two known data,
but we do not know what they represent, we have to assume some relationship
exist between the known data; therefore if a is known it must be entered as the
first macro argument; otherwise a is the unknown and the first Argument has to
be the smaller one among b and c. Since b andc may come from other computation
the user has a dilemma: which is the smaller one? But this is a wrong approach; of
course if the user knows which is the smaller, s/he can use the macro by entering
the data in the proper order; but the user is determining the main axis, therefore
it better that s/he uses directly the second macro \MainAxisFromAxisAndFocus
that directly computes a disregarding the order with which b and c are entered;
the macro name suggests to enter b first and c second, but it is irrelevant thanks
to the sum properties. Summarising:

• if the main axis is known use \AxisFromAxisAndFocus by entering the main
axis as the first argument; otherwise

•
– if it is known which is smaller among b and c, it is possible to use

\AxisFromAxisAndFocus by entering the smaller one as the first argu-
ment; otherwise

– determine the main axis by using \MainAxisFromAxisAndFocus

Their syntaxes of these two commands are basically the following:

\AxisFromAxisAndFocus〈main axis〉 and〈axis or focus〉 to〈focus or axis〉
\MainAxisFromAxisAndFocus〈axis or focus〉 and〈focus or axis〉 to〈main axis〉

but it is possible to enter the data in a different way with the first command; the
described syntax is the suggested one. Evidently 〈axis or focus〉 and 〈focus or
axis〉 imply that if you specify the focus in one of the two, you have to specify the
axis in the other one.
228
229 \def\AxisFromAxisAndFocus#1and#2to#3{%
230 \fptest{abs(#1)>abs(#2)}%
231 {\edef#3{\fpeval{sqrt(#1**2-#2**2)}}}%
232 {\edef#3{\fpeval{sqrt(#2**2+#1**2)}}}}
233
234 \def\MainAxisFromAxisAndFocus#1and#2to#3{%
235 \edef#3{\fpeval{sqrt(#2**2+#1**2)}}}

The following macros allow to determine some scalar values relative to segments;
in the second one the order of the segment end points is important, because the
computed argument refers to the vector P2 −P1. Their syntaxes are the following:

\SegmentLength(〈P1 〉)(〈P2 〉)to〈length〉
\SegmentArg(〈P1 〉)(〈P2 〉)to〈argument〉

14

Both 〈length〉 and 〈argument〉 are macros that contain scalar quantities; the argu-
ment is in the range −180◦ < Φ ≤ +180◦.
236
237 \def\SegmentLength(#1)(#2)to#3{\SubVect#1from#2to\Segm
238 \ModOfVect\Segm to#3}
239
240 \def\SegmentArg(#1)(#2)to#3{\SubVect#1from#2to\Segm
241 \GetCoord(\Segm)\SegmX\SegmY\edef#3{\fpeval{atand(\SegmY,\SegmX)}}%
242 \ignorespaces}

In the following sections we need some transformations, in particular the affine
shear one. The macros we define here are not for general use, but are specific for
the purpose of this package.

The fist macro shears a segment, or better a vector that goes from point P1
to point P2 with a horizontal shear factor/angle α; the origin of the vector does
not vary and remains P1 but the arrow tip of the vector is moved according to
the shear factor; in practice this shearing macro is valid only for vectors that start
from any point laying on the x axis. The shear factor α is the angle of the clock
wise rotation vector operator by which the vertical coordinate lines get rotated
with respect to their original position. The syntax is the following:

\ShearVect(〈P1 〉)(〈P2 〉)by〈shear〉 to〈vector〉

where 〈P1 〉 and 〈P2 〉 are the initial and final points of the vector to be sheared
with the 〈shear〉 angle, and the result is put in the output 〈vector〉
243
244 \def\ShearVect(#1)(#2)by#3to#4{%
245 \SubVect#1from#2to\AUX
246 \GetCoord(\AUX)\Aux\Auy
247 \edef\Aux{\fpeval{\Aux + #3*\Auy}}%
248 \edef\Auy{\fpeval{\Auy}}%
249 \AddVect\Aux,\Auy and#1to#4\ignorespaces}
250

Again we have another different \ScaleVector macro that takes in input the
starting and ending points of a vector, and scales the vector independently of the
initial point.
251
252 \def\ScaleVector(#1)(#2)by#3to#4{%
253 % Scala per il fattore #3 il vettore da #1 a #2
254 \SubVect#1from#2to\AUX
255 \ScaleVect\AUX by#3to\AUX
256 \AddVect\AUX and#1to#4\ignorespaces}

The following macro to draw a possibly sheared ellipse appears complicated;
but in reality it is not much different from a “normal” ellipse drawing command.
In oder to do the whole work the ellipse center is set in the origin of the axes,
therefore it is not altered by the shearing process; everything else is horizontally
sheared by the shear angle α. In particular the 12 nodes and control point that are
required by the Bézier splines that draw the four ellipse quarters. It is this mul-
titude of shearing commands that makes the macro mach longer and apparently
complicated. The syntax is the following:

\Sellisse〈⋆〉{〈h-axis〉}{〈v-axis〉}[〈shear〉]

15

where the optional asterisk is used to mark and label the Bézier spline nodes and
the control points of the possibly sheared ellipse; without the asterisk the ellipse
is drawn without any “decoration”; the optional 〈shear〉 is as usual the angle of
the sheared vertical coordinate lines; its default value is zero.
257 %
258 \NewDocumentCommand\Sellisse{s m m O{0}}{\bgroup
259 \CopyVect#2,#3to\Ptr \ScaleVect\Ptr by-1to\Pbl
260 \CopyVect#2,-#3to\Pbr \ScaleVect\Pbr by-1to\Ptl
261 \edef\Ys{\fpeval{tand{#4}}}%
262 \edef\K{\fpeval{4*(sqrt(2)-1)/3}}%
263 %
264 \ShearVect(0,0)(0,#3)by\Ys to\Pmt
265 \ShearVect(0,0)(0,-#3)by\Ys to\Pmb
266 \ShearVect(0,0)(#2,0)by\Ys to\Pmr
267 \ShearVect(0,0)(-#2,0)by\Ys to\Pml
268 %
269 \ShearVect(\Pmr)(\Ptr)by\Ys to\Ptr
270 \ShearVect(\Pml)(\Ptl)by\Ys to\Ptl
271 \ShearVect(\Pmr)(\Pbr)by\Ys to\Pbr
272 \ShearVect(\Pml)(\Pbl)by\Ys to\Pbl
273 %
274 \IfBooleanTF{#1}{\Pbox(\Ptr)[bl]{P_{tr}}\Pbox(\Pbl)[tr]{P_{bl}}%
275 \Pbox(\Pbr)[tl]{P_{br}}\Pbox(\Ptl)[br]{P_{tl}}%
276 \polygon(\Pbr)(\Ptr)(\Ptl)(\Pbl)}{}%
277 %
278 \ScaleVector(\Pmr)(\Ptr)by\K to\Crt
279 \ScaleVector(\Pmr)(\Pbr)by\K to\Crb
280 \ScaleVector(\Pml)(\Ptl)by\K to\Clt
281 \ScaleVector(\Pml)(\Pbl)by\K to\Clb
282 \ScaleVector(\Pmt)(\Ptr)by\K to\Ctr
283 \ScaleVector(\Pmt)(\Ptl)by\K to\Ctl
284 \ScaleVector(\Pmb)(\Pbr)by\K to\Cbr
285 \ScaleVector(\Pmb)(\Pbl)by\K to\Cbl
286 %
287 \IfBooleanTF{#1}{%
288 \Pbox(\Crt)[l]{C_{rt}}\Pbox(\Crb)[l]{C_{rb}}
289 \Pbox(\Clt)[r]{C_{lt}}\Pbox(\Clb)[r]{C_{lb}}
290 \Pbox(\Ctr)[b]{C_{tr}}\Pbox(\Ctl)[b]{C_{tl}}
291 \Pbox(\Cbr)[t]{C_{br}}\Pbox(\Cbl)[t]{C_{bl}}
292 %
293 \Pbox(\Pmr)[l]{P_{mr}}\Pbox(\Pmt)[b]{P_{mt}}%
294 \Pbox(\Pml)[r]{P_{ml}}\Pbox(\Pmb)[t]{P_{mb}}%
295 %
296 \polygon(\Pbr)(\Ptr)(\Ptl)(\Pbl)\thicklines}{}%
297 %
298 \moveto(\Pmr)
299 \curveto(\Crt)(\Ctr)(\Pmt)
300 \curveto(\Ctl)(\Clt)(\Pml)
301 \curveto(\Clb)(\Cbl)(\Pmb)
302 \curveto(\Cbr)(\Crb)(\Pmr)
303 \fillstroke
304 \egroup}
305

16

This user macro is used to call the \Sellisse macro with the desired parameters,
but also to act with it on order to fill or stroke the ellipse contour, and to select
some settings such as the contour line thickness, or the color of the ellipse contour
or interior. the syntax is the following:

\XSellisse〈⋆1 〉(〈center〉)[〈angle〉]<〈shear〉>{〈h-axis〉}{〈v
axis〉}〈⋆2 〉[〈settings1 〉][〈settings2 〉]

where there are two optional asterisks, 〈⋆1 〉 and 〈⋆2 〉; the first one controls the
coloring of the ellipse: if present the interior is filled, if absent the contour is
stroked; the second one controls the way a possibly sheared ellipse appears: if
present, the construction is shown, if absent only the final result is shown; 〈center〉
is optional: if present, the ellipse center is specified; if absent, its center is at the
origin of the picture axes; 〈angle〉 is optional with default value zero: if absent, the
ellipse is not rotated and the 〈h-axis〉 remains horizontal, while the 〈v-axis〉 remains
vertical, while if present and with a non vanishing value, the ellipse is rotated
counterclockwise the amount specified, and, of course, if the value is negative, the
rotation is clockwise. The optional parameter 〈shear〉, if present, shears the ellipse
paralle the 〈h-axis〉 direction; the 〈settings1 〉 and 〈settings2 〉 operate as described
for command \Xellisse.
306
307 \NewDocumentCommand\XSellisse{ s D(){0,0} O{0} D<>{0} m m s O{} o }%
308 {\IfBooleanTF#1{\let\fillstroke\fillpath}%
309 {\let\fillstroke\strokepath}%
310 \put(#2){\rotatebox{#3}{#8\relax
311 \IfBooleanTF{#7}{\Sellisse*{#5}{#6}[#4]}%
312 {\Sellisse{#5}{#6}[#4]}%
313 \IfValueTF{#9}{\let\fillstroke\strokepath
314 #9\Sellisse{#5}{#7}[#4]}{}}}%
315 \ignorespaces}

1.7 Regular polygons and special ellipses
We finally arrive to more complex macros used to create special polygons and
special ellipses.

1.7.1 Regular polygons

Regular polygons are not that special; it is possible to draw them by using the
\multiput or \xmultiput commands, but a single command that does everything
by itself with more built in functionalities is much handier. The new command
\RegPolygon has the following syntax:

\RegPoligon〈⋆〉(〈center〉){〈radius〉}{〈number〉}[〈angle〉]<〈settings〉>

where 〈⋆〉 is an optional asterisk; its presence means that the polygon interior is
filled, instead of the polygon contour being stroked; the 〈center〉 specification of
the polygon is optional; if it is omitted, the polygon center goes to the origin of
the picture coordinates; 〈radius〉 is the mandatory radius of the circumscribed
circle, or, in other words, the distance of each polygon vertex form the 〈center〉;
the mandatory 〈number〉 is an integer that specifies the number of polygon sides;

17

the first vertex that is being drawn by this command, has an angle of zero degrees
with respect to the 〈center〉; if a different initial 〈angle〉 different from zero is de-
sired, it is specified through this optional argument; possibly the angle bracketed
optional 〈setting〉 parameter may be used to specify, for example, the line thick-
ness for the contour, and/or the color for the polygon contour or interior. See
the documentation euclideangeometry-man.pdf for more information and usage
examples.
316 \newcount\RPI
317 \NewDocumentCommand\RegPolygon{s D(){0,0} m m O{0} D<>{\relax} }{{%
318 %\countdef\RPI=258
319 \RPI=0
320 \CopyVect#5:#3to\P
321 \CopyVect\fpeval{360/#4}:1to\R
322 \put(#2){#6\relax
323 \moveto(\P)\fpdowhile{\RPI < #4}%
324 {\MultVect\P by\R to\P
325 \lineto(\P)\advance\RPI by 1}%
326 \IfBooleanTF{#1}%
327 {\fillpath}{#6\strokepath}}}\ignorespaces}
328 %%%%%%%%%
329 \def\DirOfVect#1to#2{\GetCoord(#1)\t@X\t@Y
330 \ModOfVect#1to\@tempa
331 \unless\ifdim\@tempa\p@=\z@
332 \DividE\t@X by\@tempa to\t@X
333 \DividE\t@Y by\@tempa to\t@Y
334 \fi\MakeVectorFrom\t@X\t@Y to#2\ignorespaces}%

1.7.2 The Steiner ellipse

The construction of the Steiner ellipse is very peculiar; it is almost intuitive that
any triangle has infinitely many internal tangent ellipses; therefore it is necessary
to state some other constraints to find one specific ellipse out from this unlimited
set.

One such ellipse is the Steiner one, obtained by adding the constraint that the
ellipse be tangent to the median points of the triangle sides. But one thing is the
definition, and another totally different one is to find the parameters of such an
ellipse; and working with ruler and compass, it is necessary to find a procedure to
draw such an ellipse.

The construction described here and implemented with the SteinerEllipse
macro is based on the following steps, each one requiring the use of some of the
commands and/or transformations described in the previous sections.

1. Given a generic triangle (the coordinates of its three vertices) it is not nec-
essary, but it is clearer to explain, if the triangle is shifted and rotated so as
to have one of its sides horizontal, and the third vertex in the upper part of
the picture drawing. So we first perform the initial shift and rotation and
memorise the parameters of this transformation so that, at the end of the
procedure, we can put back the triangle (and its Steiner ellipse) in its orig-
inal position. Let us call this shifted and rotated triangle with the symbol
T0.

2. We transform T0 with an affine shear transformation into an isosceles triangle
T1 that has the same base and the same height as T0. We memorise the shear

18

“angle” so as to proceed to an inverse transformation when the following
steps are completed: let be α this shear angle; geometrically it represents
the angle of the sheared vertical coordinate lines with respect to the original
vertical position.

3. With another affine vertical scaling transformation we transform T1 into
an equilateral triangle T2; the ratio of the vertical transformation equals the
ratio between the T2 to the T1 heights; we memorise this ratio for the reverse
transformation at the end of the procedure.

4. The Steiner ellipse of the equilateral triangle T2 is its incircle. We are almost
done; we just have to proceed to the inverse transformations; getting back
from T2 to T1 first implies transforming the incircle of T2 into an ellipse with
its vertical axis scaled by the inverse ratio memorised in step 3.

5. The second inverse transformation by the shear angle is easy with the pas-
sage from T1 to T0, but it would be more difficult for transforming the
ellipse into the sheared ellipse. We have already defined the \Sellipse and
the \XSellipse macros that may take care of the ellipse shear transforma-
tion; we already memorised the shear angle in step 2, therefore the whole
procedure, except for putting back the triangle, is almost done.

6. Eventually we perform the last shifting and rotating transformation and the
whole construction is completed.

The new macro Steiner ellipse has therefore the following syntax:

\SteinerEllipse〈⋆〉(〈P1 〉)(〈P2 〉)(〈P3 〉)[〈diameter〉]

where 〈P1 〉, 〈P2 〉, 〈P3 〉 are the vertices of the triangle; 〈⋆〉 is an optional asterisk;
without it the maro draws only the final result, that contains only the given
triangle and its Steiner ellipse; on the opposite, if the asterisk is used the whole
construction from T0 to its Steiner ellipse is drawn; the labelling of points is done
with little dots of the default 〈diameter〉 or a specified value; by default it is a
1 pt diameter, but sometimes it would be better to use a slightly larger value
(remembering that 1 mm — about three points — is already too much). Please
refer to the documentation file euclideangeometry-man.pdf for usage examples
and suggestions.
335 %
336
337 \NewDocumentCommand\SteinerEllipse{s d() d() d() O{1}}{\bgroup
338 %
339 \IfBooleanTF{#1}{}{\put(#2)}{%
340 \CopyVect0,0to\Pu
341 \SubVect#2from#3to\Pd
342 \SubVect#2from#4to\Pt
343 \ModAndAngleOfVect\Pd to\M and\Rot
344 \MultVect\Pd by-\Rot:1 to\Pd \MultVect\Pt by-\Rot:1 to\Pt
345 \IfBooleanTF{#1}{}{\rotatebox{\Rot}}{\makebox(0,0)[bl]{%
346 \Pbox(\Pu)[r]{P_1}[#5]<-\Rot>\Pbox(\Pd)[t]{P_2}[#5]<-\Rot>
347 \Pbox(\Pt)[b]{P_3}[#5]<-\Rot>%
348 \polygon(\Pu)(\Pd)(\Pt)%
349 \edef\B{\fpeval{\M/2}}\edef\H{\fpeval{\B*tand(60)}}
350 \IfBooleanTF{#1}{\Pbox(\B,\H)[b]{H}[#5]
351 \polygon(\Pu)(\B,\H)(\Pd)}{}%
352 \edef\R{\fpeval{\B*tand(30)}}

19

353 \IfBooleanTF{#1}{\Pbox(\B,\R)[bl]{C}[#5]
354 \Circlewithcenter\B,\R radius{\R}}{}%
355 \GetCoord(\Pt)\Xt\Yt\edef\VScale{\fpeval{\Yt/\H}}
356 \IfBooleanTF{#1}{\polyline(\Pu)(\B,\Yt)(\Pd)
357 \Pbox(\B,\Yt)[b]{V}[#5]}{}%
358 \edef\Ce{\fpeval{\R*\VScale}}
359 \IfBooleanTF{#1}{\Xellisse(\B,\Ce){\R}{\Ce}
360 \Pbox(\B,\Ce)[r]{C_e}[#5]\Pbox(\B,0)[t]{B}[#5]}{}%
361 \SubVect\B,0 from\Pt to\SlMedian
362 \IfBooleanTF{#1}{\Dotline(\B,0)(\Pt){2}[1.5]}{}%
363 \ModAndAngleOfVect\SlMedian to\Med and\Alfa
364 \edef\Alfa{\fpeval{90-\Alfa}}
365 \IfBooleanTF{#1}{\Dotline(\B,\Yt)(\B,0){2}[1.5]
366 \Pbox(\fpeval{\B+\Ce*tand{\Alfa}},\Ce)[l]{C_i}[#5]
367 \VectorArc(\B,0)(\B,15){-\Alfa}
368 \Pbox(\fpeval{\B+2.5},14)[t]{\alpha}[0]}{}%
369 \edef\a{\R}\edef\b{\Ce}%
370 \CopyVect\fpeval{\B+\Ce*tand{\Alfa}},\Ce to\CI
371 \XSellisse(\CI)<\Alfa>{\R}{\Ce}
372 }}}%
373 \egroup\ignorespaces}
374 \let\EllisseSteiner\SteinerEllipse

1.7.3 The ellipse that is internally tangent to a triangle while one of
its foci is prescribed

We now are going to tackle another problem. As we said before, any triangle
has an infinite set of internally tangent circles, unless some further constraint is
specified.

Another problem of this kind is the determination and geometrical construction
of an internally tangent ellipse when one focus is specified; of course since the whole
ellipse is totally internal to the triangle, we assume that the user has already
verified that the coordinates of the focus fall inside the triangle. We are not going
to check this feature in place of the user; after all, if the user draws the triangle
within a picture image, together with the chosen focus, is suffices a glance to
verify that such focus lays within the triangle perimeter.

The geometrical construction is quite complicated, but it is described in a
paper by Estevão V. Candia on TUGboat 2019 40(3); it consists of the following
steps.

1. Suppose you have specified a triangle by means of its three vertices, and a
point inside it to play the role of a focus; it is necessary to find the other
focus and the main axis length in order to have a full description of the
ellipse.

2. To do so, it is necessary to find the focus three symmetrical points with
respect to the three sides.

3. The center of the three point circle through these symmetrical points is the
second focus.

4. The lines that join the second focus to the three symmetrical points of the
first focus, intersect the triangle sides in three points that result to be the
tangency points of the ellipse to the triangle.

20

5. Chosen one of these tangency points and computing the sum of its distances
from both foci, the total length of the ellipsis main axis is found.

6. Knowing both foci, the total inter focal distance is found, therefore equa-
tion (1) allows to find the other axis length.

7. The inclination of the focal segment gives us the the rotation to which the
ellipse is subject, and the middle point of such segment gives the ellipse
center.

8. At this point we have all the necessary elements to draw the ellipse.

We need another little macro to find the symmetrical points; if the focus F and
its symmetrical point P with respect to a side/segment, the intersection of such
segment F −P with the side is the segment middle point M ; from this property we
derive the formula P = 2M −F . Now M is also the intersection of the line passing
through F and perpendicular to the side. Therefore it is particularly simple to
compute, but its better to have available a macro that does the whole work; here
it is, but it assumes the the center of symmetry is already known:
375
376 \def\SymmetricalPointOf#1respect#2to#3{\ScaleVect#2by2to\Segm
377 \SubVect#1from\Segm to#3\ignorespaces}

And its syntax is the following:

\SymmetricalPointOf〈focus〉 respect〈symmetry center〉
to〈symmetrical point〉

where the argument names are self explanatory.
The overall macro that executes all the passages described in the above enu-

meration follows; the reader can easily recognise the various steps, since the names
of the macros are self explanatory; the Si point names are the symmetrical ones to
the first focus F ; the Mi points are the centers of symmetry; the F ′ point is the sec-
ond focus; the Ti points are the tangency points. The macro \EllipseWithFOcus
has the following syntax:

\EllipseWithFocus〈⋆〉(〈P1 〉)(〈P2 〉)(〈P3 〉)(〈focus〉)

where 〈P1 〉, 〈P2 〉, 〈P3 〉 are the triangle vertices and 〈focus〉 contains the first
focus coordinates; the optional asterisk, as usual, selects the construction steps
versus the final result: no asterisk, no construction steps.
378
379 \NewDocumentCommand\EllipseWithFocus{s d() d() d() d()}{\bgroup%
380 \CopyVect#2to\Pu
381 \CopyVect#3to\Pd
382 \CopyVect#4to\Pt
383 \CopyVect#5to\F
384 \polygon(\Pu)(\Pd)(\Pt)
385 \Pbox(\Pu)[r]{P_1}[1.5pt]\Pbox(\Pd)[t]{P_2}[1.5pt]
386 \Pbox(\Pt)[b]{P_3}[1.5pt]\Pbox(\F)[b]{F}[1.5pt]
387 \SegmentArg(\Pu)(\Pt)to\At
388 \SegmentArg(\Pu)(\Pd)to\Ad
389 \SegmentArg(\Pd)(\Pt)to\Au
390 \IntersectionOfLines(\Pu)(\At:1)and(\F)(\fpeval{\At+90}:1)to\Mt
391 \IntersectionOfLines(\Pd)(\Ad:1)and(\F)(\fpeval{\Ad+90}:1)to\Md
392 \IntersectionOfLines(\Pd)(\Au:1)and(\F)(\fpeval{\Au+90}:1)to\Mu

21

393 \IfBooleanTF{#1}{\Pbox(\Mt)[br]{M_3}[1.5pt]\Pbox(\Md)[t]{M_2}[1.5pt]
394 \Pbox(\Mu)[b]{M_1}[1.5pt]}{}
395 \SymmetricalPointOf\F respect\Mu to\Su
396 \IfBooleanTF{#1}{\Pbox(\Su)[l]{S_1}[1.5pt]}{}
397 \SymmetricalPointOf\F respect \Md to\Sd
398 \IfBooleanTF{#1}{\Pbox(\Sd)[t]{S_2}[1.5pt]}{}
399 \SymmetricalPointOf\F respect \Mt to\St
400 \IfBooleanTF{#1}{\Pbox(\St)[r]{S_3}[1.5pt]}{}
401 \IfBooleanTF{#1}{\ThreePointCircle*(\Su)(\Sd)(\St)}%
402 {\ThreePointCircle(\Su)(\Sd)(\St)}
403 \CopyVect\C to\Fp \Pbox(\Fp)[l]{F’}[1.5pt]
404 \IfBooleanTF{#1}{%
405 \Dotline(\F)(\St){2}[1.5pt]
406 \Dotline(\F)(\Sd){2}[1.5pt]
407 \Dotline(\F)(\Su){2}[1.5pt]}{}
408 \IntersectionOfSegments(\Pu)(\Pt)and(\Fp)(\St)to\Tt
409 \IntersectionOfSegments(\Pu)(\Pd)and(\Fp)(\Sd)to\Td
410 \IntersectionOfSegments(\Pd)(\Pt)and(\Fp)(\Su)to\Tu
411 \IfBooleanTF{#1}{\Pbox(\Tu)[l]{T_1}[1.5pt]
412 \Pbox(\Td)[b]{T_2}[1.5pt]
413 \Pbox(\Tt)[tl]{T_3}[1.5pt]
414 \Dashline(\Fp)(\Su){1}\Dashline(\Fp)(\Sd){1}\Dashline(\Fp)(\St){1}}{}
415 \DistanceAndDirOfVect\Fp minus\Tt to\DFp and\AFu
416 \DistanceAndDirOfVect\F minus\Tt to\DF and\AF
417 \SegmentCenter(\F)(\Fp)to\CE \Pbox(\CE)[b]{C}[1.5pt]
418 \edef\a{\fpeval{(\DFp+\DF)/2}}
419 \SegmentArg(\F)(\Fp)to\AngFocalAxis
420 \SegmentLength(\F)(\CE)to\c
421 \AxisFromAxisAndFocus\a and\c to\b
422 \Xellisse(\CE)[\AngFocalAxis]{\a}{\b}[\thicklines]
423 \VECTOR(-30,0)(120,0)\Pbox(120,0)[t]{x}[0]
424 \VECTOR(0,-20)(0,130)\Pbox(0,130)[r]{y}[0]\Pbox(0,0)[tr]{O}[1.5pt]
425 \egroup\ignorespaces}
426 \let\EllisseConFuoco\EllipseWithFocus

2 Comments on this package
In general we found very comfortable to draw ellipses and to define macros to draw
not only such shapes or filled elliptical areas, but also to create “legends” with
coloured backgrounds and borders; such applications found their way in other
works. But here we dealt with other geometrical problems. The accompany-
ing document euclideangeometry-man.pdf describes much clearly with examples
what you can do with the macros described in this package. In facts, this file just
describes the package macros, and it gives some ideas on how to extend the ability
of curve2e to draw geometrical diagrams. The users who would like to modify or
to add some functionalities are invited to do so; I will certainly acknowledge their
contributions and even add their names to the list of authors.

As long as I can, I enjoy playing with LATEX and its wonderful facilities; but,
taking into consideration my age, I would invite the users to consider the possibility
of assuming the maintenance of this package.

22

3 Acknowledgements
I am very grateful to Enrico Gregorio who let me know the several glitches I made
in my first version; besides being a real TEX wizard, he is a wise person and
suggested me several things that was important to change, because they could
offer risks of confusion with other packages.

23

	Contents
	1 The code
	1.1 Test the date of a sufficiently recent curve2e package
	1.2 Labelling
	1.3 Service macros for ellipses
	1.4 Processing lines and segments
	1.5 Triangle special points
	1.6 Other specific service macros
	1.7 Regular polygons and special ellipses
	1.7.1 Regular polygons
	1.7.2 The Steiner ellipse
	1.7.3 The ellipse that is internally tangent to a triangle while one of its foci is prescribed

	2 Comments on this package
	3 Acknowledgements

