
The filecontentsdef package
Jean-François Burnol

jfbu (at) free (dot) fr
Package version: v1.5 (2019/09/29); documentation date: 2019/09/29.
From source file filecontentsdef.dtx (29-09-2019 at 10:46:12 CEST)

Abstract

This lightweight LaTeX2e package provides an environment filecontentsdef
which is like the filecontents environment of Scott Pakin’s filecontents
package but in addition to the file creation stores the (verbatim) contents into
a macro given as an additional argument (either as a control sequence or as a
name).

Displaying verbatim these contents is possible via \filecontentsprint, and
executing them (if they represent LaTeX code) via \filecontentsexec.

A variant environment filecontentsdefmacro stores the contents into a
macro, but skips the save-to-a-file part.

I developed this to display TEX code verbatim in documentation and simul-
taneously produce during the LaTeX run the corresponding files in order to
embed them in the PDF as file attachment annotations (via the services of
Scott Pakin’s further package attachfile.)

Contents

1 Environments and macros 1
1.1 filecontentsdef, filecontentsgdef 1
1.2 filecontentsdefmacro, filecontentsgdefmacro 3
1.3 \filecontentsprint, \FCDprintenvname, \FCDprintenvoptions . . . 3
1.4 \filecontentsprintviascan . 5
1.5 \filecontentsexec . 6
1.6 filecontentshere . 7

2 How to wrap usage of filecontentsdef in another environment 8

3 How to customize handling of tabulation and form feed characters 9

4 How to obtain customized verbatim in the output 11

5 Related packages 12

6 Implementation 13

1 Environments and macros

1.1 filecontentsdef, filecontentsgdef

The filecontentsdef environment is like filecontents but requires a second ar-
gument. This argument will either be:

• a single control sequence token such as \foo,

https://ctan.org/pkg/attachfile

1 Environments and macros

• or anything else which then must after expansion be usable as a macro name
(it will be handled via \csname...\endcsname encapsulation). For example
\myitemnumber{3} can be used as argument and it will then be expanded
inside \csname...\endcsname to construct a control sequence, whose name
will possibly contain digits or other characters of non-letter catcodes. A single
active character is allowed as long as its expansion is \csname...\endcsname
compatible; the character itself will not be assigned a new meaning.

Thus the syntax is either:

\begin{filecontentsdef}{<filename>}{\foo}

... arbitrary contents ...

\end{filecontentsdef}

or:

\begin{filecontentsdef}{<filename>}{(expanding to) macro name}

... arbitrary contents ...

\end{filecontentsdef}

The environment creates the file and stores its (verbatim) contents into its second
argument \foo (or into the macro \<macro name> with given name).

Hint: if some \foo contains the name of the macro to be defined, use
\empty\foo as argument, thus avoiding \foo itself to get overwritten by the
environment.

1. The starred variant filecontentsdef* acts like filecontents* environment
regarding the file contents, i.e. it drops addition of a (TEX) commented out
header.

2. filecontentsdefstarred is an alias for filecontentsdef*.New with v1.5

3. The contents put into the macro are the same for the starred and non-starred
environments: neither contains a commented-out header.

4. The scope of the macro definition is local.Changed at v1.5

5. Use filecontentsgdef for a definition with global scope.New with v1.5

6. No check is done on whether the defined macro pre-existed.

7. The macro holds a verbatim rendering of the contents, with active spaces and
active ^^M tokens.

8. The handling of the Form Feed and Tabulation characters can be, contrarilyNew with v1.5
to the filecontents treatment, customized. See section 3.

9. Babel shorthands will be neutralized the same way they are when encountered
in a verbatim environment or in a filecontents environment. Their action
is reactivated if the macro (assuming the contents represent LATEX code) gets
later executed via \filecontentsexec.

2

1 Environments and macros

10. The environment can be used either in the preamble or the body of the doc-
ument.

11. The contents must not contain themselves a \end{filecontentsdef} (or
\end{filecontentsdef*} in the starred case).

Here are some additional relevant details:

1. the usual special characters are sanitized like they would be in a verbatim environment,

2. the space becomes the active character of ascii code 32,

3. the end of line is converted into the active character ^^M (i.e. ascii code 13),

4. see section 3 for the handling of the horizontal tabulation and form feed characters,

5. the active bytes of ascii code between 128 and 255 (this is now systematically the case with
inputenc+utf8 being default) are stored into the produced macro “as is”,

6. the non-active bytes of ascii code between 128 and 255 are stored into the produced macro
with catcode letter.

These last two items together mean that 8bit or UTF8-encoded characters will display as expected
in a verbatim rendering, see \filecontentsprint next.

1.2 filecontentsdefmacro, filecontentsgdefmacro

This environment

\begin{filecontentsdefmacro}{\foo or macro name}

... arbitrary contents ...

\end{filecontentsdefmacro}

was added at v1.4. It is like filecontentsdef without the “save to file” part... and
has thus a sole mandatory argument which may be either a control sequence or
a name (or material expanding to name), as previously described. The macro can
then be either printed verbatim via \filecontentsprint or, if it consists of LATEX
code, be executed in re-tokenized form via \filecontentsexec.

Its name is thus a bit paradoxical but was chosen to share an existing prefix with
the other package macros and environments.

1.3 \filecontentsprint, \FCDprintenvname, \FCDprintenvoptions

\filecontentsprint has a unique mandatory argument which will be either:

• a single control sequence token (for example \foo),

• or anything else which then must after expansion be usable as a macro name
(for example macro). It will be handled via \csname...\endcsname encapsula-
tion (see earlier explanations).

The \foo must be of the type constructed by the environments filecontentsdef or
filecontentsdefmacro. It will be then be printed exactly as

\begin{verbatim}

<contents of \foo>

\end{verbatim}

3

1 Environments and macros

would have done.
This uses underneath the verbatim environment and has been tested to be

compatible with the standard verbatim, with the one from package doc (classes
ltxdoc.cls, scrdoc.cls) and also with the one from package verbatim (whose
mechanism is quite different from the one of the default verbatim environment.)

Due to limitation of the verbatim environment, the \end{verbatim} must not
appear inside the contents... else it will be misconstrued as ending the external
verbatim environment itself which is added by \filecontentsprint!

This limitation only affects \filecontentsprint, not \filecontentsexec.

The name of the used environment is held in macro \FCDprintenvname. RedefineNew with v1.5
it to modify the environment name from its default verbatim.

Furthermore the macro \FCDprintenvoptions can be used to pass options to thatNew with v1.5
environment.

Here is a set-up using fancyvrb which I tested with success:

\documentclass{article}

\usepackage{filecontentsdef}

\usepackage{xcolor}

\usepackage{fancyvrb}

\usepackage{fvextra}

% store tabs as active characters so they can be handled by fancyvrb

{\catcode`\^^I=\active\gdef\FCDtabtomacro{\noexpand^^I}}

% Use fancyvrb Verbatim environment

\renewcommand*\FCDprintenvname{Verbatim}

% with these options. This will be submitted to an \edef, so we

% simply wrap in \unexpanded to avoid problems

\renewcommand*\FCDprintenvoptions{%

\unexpanded{[fontsize=\scriptsize, highlightlines={1, 3-4},

numbers=both, showspaces, spacecolor=red,

showtabs, %tab=\rightarrowfill% incompatible with linebreaks?

breaklines,breakbefore=\\\space]}%

}

\begin{filecontentsdefmacro}{\testfancyvrb}

some contents with long lines and tabs to test the options

\end{filecontentsdefmacro}

Here is now a set-up with minted which worked also (although the syntax high-
lighting was not handling correctly control sequences using the @ letter, but I am
not knowledgeable enough in the Pygmentize library):

\documentclass{article}% needs shell-escape

\usepackage{filecontentsdef}

4

http://www.ctan.org/pkg/doc
http://www.ctan.org/pkg/verbatim

1 Environments and macros

\usepackage{minted}

\newminted{tex}{linenos}

\renewcommand*\FCDprintenvname{texcode}

\begin{filecontentsdefmacro}{\testminted}

some TeX macros

\end{filecontentsdefmacro}

\begin{document}

\filecontentsprint\testminted

\end{document}

1.4 \filecontentsprintviascan

It is not possible to use a listings environment via \filecontentsprint and \FCD-
printenv, because listings has a special way to identify where it ends and this is
incompatible with the \filecontentsprint approach.

At v1.5 \filecontentsprintviascan is added which is more powerful thanNew with v1.5
\filecontentsprint as it should work not only with verbatim environments known
to be compatible with \filecontentsprint but also with environments of the
listings type. But this requires ε-TEX \scantokens (it uses \filecontentsexec,
see next).1

Here is an example of usage which worked for me (although the syntax highlight-
ing, like the one from minted, was not fully satisfying):

\documentclass{article}

\usepackage{filecontentsdef}

\usepackage{xcolor}

\usepackage{listings}

\lstnewenvironment{latexverbatim}

{\lstset{

basicstyle=\small\ttfamily,

breaklines=true,

columns=fullflexible,

language=[LaTeX]TeX,

numbers=left,

numbersep=1em,

numberstyle=\tiny\color{gray},

keywordstyle=\color{red}}}{}

\renewcommand*\FCDprintenvname{latexverbatim}

\begin{document}

1I know that the LATEX kernel itself requires ε-TEX for a few years now, but filecontentsdef could
have been installed on an old machine...

5

1 Environments and macros

\begin{filecontentsdefmacro}{\testlistings}

\gdef\filecontentsprintviascan{\FCD@get\FCD@printviascan}%

\gdef\FCD@printviascan#1{%

\toks@\expandafter{#1}%

\edef\FCD@envwithcontents{%

\noexpand\begin{\FCDprintenvname}\FCDprintenvoptions\noexpand^^M%

\the\toks@\@backslashchar end{\FCDprintenvname}\noexpand^^M}%

\FCD@exec\FCD@envwithcontents}%

\end{filecontentsdefmacro}

\filecontentsprintviascan\testlistings

\end{document}

1.5 \filecontentsexec

Although filecontentsdef itself generally does not require ε-TEX, it provides as a
convenience \filecontentsexec which does require it as it uses \scantokens to re-
assign the current catcode regime to the verbatimized tokens stored into its manda-
tory argument. Again the mandatory argument may have one of the two forms
described previously.

And of course this assumes that the tokens provide legitimate LATEX code.
TeX-hacker note: No group is used in order to not create an extra scoping of the executed

macro contents.
TeX-hacker note: In the case of storage in a macro of some LATEX contents, and re-parsing

via \filecontentsexec which uses \scantokens, the last line before the \end{filecontentsdef} or
\end{filecontentsdefmacro} potentially generates an end of line character, typically a space token
(but this depends on the \endlinechar valid at this location setting). Such a space coming from
the last end of line has no impact if the LATEX contents get executed in vertical mode. In horizontal
mode it will be avoided if these contents end with a % or also with some control sequence such as
a \relax or \empty (only if \endlinechar is standard).

At v1.5 a special convention is added that if the \end{filecontentsdef} (or variants) stands onNew with v1.5
the same line as the last line of the contents, rather than being on a line of its own, then the stored
contents will get postfixed with an added \empty token. Thus execution via \filecontentsexec in
horizontal mode will not induce any ending space token (assuming the \endlinechar is then at its
standard setting). This feature is to be used only with contents representing TEX macros, as the
\empty makes sense only in that context. This token will remain invisible in the PDF output from
\filecontentsprint.

No \empty gets added to the last line of the exported file (if there is one). The original
filecontents environment issues a warning when there is contents before the end of the envi-
ronment on the same line, this warning is now skipped.Changed at v1.5

This extra \empty added only under such special usage of the environment is not currently
customizable, but I can add such a feature if there is a user request.

TeX-hacker note: one should not think that using \filecontentsexec with some stored ma-
terial will behave like copying pasting that material directly at that very location of the source
code: for example if the last line ends with a % this does not mean that this will comment out
what is next in the source code on the same line after the \filecontentsexec! It is more analogous
to making first a macro definition with the contents and then execute that macro. But it is not
possible for some macro from inside these contents to itself grab tokens coming next after the
\filecontentsexec\foo (moreover, filecontentsdef adds tokens of its own in order restore the
\newlinechar).

6

1 Environments and macros

1.6 filecontentshere

This environment

\begin{filecontentshere}{<filename>}

... arbitrary contents ...

\end{filecontentshere}

creates on the fly a file with these contents, and simultaneously it typesets them in
a verbatim environment. It is a shortcut to doing

\begin{filecontentsdef}{<filename>}{\filecontentsheremacro}

... arbitrary contents ...

\end{filecontentsdef}

and then immediately

\filecontentsprint\filecontentsheremacro

The \filecontentsheremacro is then available for usage as argument of \filecontentsexec.
Since v1.5 its definition has only local scope.Changed at v1.5

The environment has a starred variant filecontentshere* (also filecontentsherestarred)
which does the expected thing.

For example

\begin{filecontentshere*}{\jobname.test}

\begin{framed}

\noindent

We have coded this in \LaTeX: both

$E=mc^2$ (input as \verb|$E=mc^2$|)

and $E=h\nu$ owe much to \textsc{Albert Einstein}.

\end{framed}

\end{filecontentshere*}

\filecontentsexec\filecontentsheremacro

will produce an external file with the above contents and have this effect in the
document (verbatim framed then real framed):

\begin{framed}

\noindent

We have coded this in \LaTeX: both

$E=mc^2$ (input as \verb|$E=mc^2$|)

and $E=h\nu$ owe much to \textsc{Albert Einstein}.

\end{framed}

We have coded this in LATEX: both E = mc2 (input as $E=mc^2$) and E = hν
owe much to Albert Einstein.

7

2 How to wrap usage of filecontentsdef in another environment

2 How to wrap usage of filecontentsdef in another
environment

Don’t use the \begin/\end syntax but directly \begingroup\filecontentsdef{..}{..}
and \endfilecontentsdef\endgroup. And these should come last, respectively first,
in the definition of the begin, respectively end, part of the new environment.

The extra \begingroup...\endgroup are mandatory with the filecontentsdef
environments making a local scope definition.Changed at v1.5

For those creating global scope macros, \begingroup...\endgroup is recom-
mended, as the LATEX state is not completely clean after \endfilecontentsgdef
(et al.) execution. Thus it is better to have the extra \begingroup...\endgroup
pair always (which are a part of the things added by the \begin/\end syntax).

For wrapping the starred variant one needs to use \csname filecontents-
def*\endcsname, or make the definition with * having catcode letter. A simpler
way is to use the alias ending in ...starred. Regarding the ending macro its nameNew with v1.5
can drop the *, as the starred environments defined by the filecontentsdef package
use the same ending macros as their non-starred variants.

As exercise, let’s imagine we want an environment which will be associated to
some counter, will automatically increment it at each usage, and will use this
counter to index the files and macros created on each invocation. Except if you
know how to smuggle how a macro from an environment you probably want to use
filecontentsgdef in order for the macro to have global scope.

\newcounter{pablo}

\newenvironment{defexercise}

{\stepcounter{pablo}%

\begingroup

\filecontentsgdefstarred

{\jobname-ex\the\value{pablo}}{exercise-\the\value{pablo}}}%

{\endfilecontentsgdefstarred\endgroup}

\newcommand{\printexercise}[1]{\filecontentsexec{exercise-\the\numexpr#1\relax}}

We can then use it this way:

\begin{defexercise}

Prove that \[x^n+y^n=z^n\] is not solvable in positive integers if n is at

most -3.\par

\end{defexercise}

\begin{defexercise}

Refute the existence of black holes in less than 140 characters.\par

\end{defexercise}

\begin{defexercise}

\def\NSA{NSA}%

Prove that factorization is easily done via probabilistic algorithms and

advance evidence from knowledge of the names of its employees in the

seventies that the \NSA\ has known that for 40 years.\par

\end{defexercise}

\begin{itemize}

8

3 How to customize handling of tabulation and form feed characters

\item \printexercise{3}

\item \printexercise{2}

\item \printexercise{1}

\end{itemize}

This produces in the document:

• Prove that factorization is easily done via probabilistic algorithms and advance
evidence from knowledge of the names of its employees in the seventies that
the NSA has known that for 40 years.

• Refute the existence of black holes in less than 140 characters.

• Prove that
xn + yn = zn

is not solvable in positive integers if n is at most −3.

Additionally, three small files were created containing the LATEX mark-up for each
exercise.

3 How to customize handling of tabulation and form
feed characters

LATEX assigns catcode 10 by default to ^^I meaning that it is handled by default as
a space character:

\def\test{^^I}

\ifx\test\space \textcolor{blue}{OK}\else \ERROR\fi

OK
But filecontentsdef like the original filecontents environment assigns active

catcode to the tabulation character before parsing the contents. This allows special
treatment.

Attention that if input as ^^I (in opposition to the real ascii character of ascii
code 9), it will end up simply as ^^I in external file or macro, because the caret
loses its special meaning in the environment.

The discussion in this section about customizing filecontentsdef behaviour
applies only to a source with a real tabulation character, not one in TEX notation
^^I.

With v1.5, filecontentsdef diverges from original filecontents by adding the
means to customize the handling of such tabulation character, rather than simply
raising a warning and exporting it as a space like original filecontents. And also
the handling of the form feed character can be customized.

This is controlled via four control sequences whose default definitions are the
following:New with v1.5

9

3 How to customize handling of tabulation and form feed characters

\def\FCDtabtofile{ }%

{\catcode32\active\gdef\FCDtabtomacro{\noexpand }}%

\def\FCDformfeedtofile{^^J^^J}%

{\catcode`\^^M\active\gdef\FCDformfeedtomacro{\noexpand^^M\noexpand^^M}}%

Each of \FCDtabtofile, \FCDtabtomacro, \FCDformfeedtofile, \FCDformfeed-
tomacro gets used via an expansion inside an \edef, hence the need for \noexpand
in front of active characters. The ^^J in \FCDformfeedtofile matches the default
newline character (ascii code 10) of LATEX for exporting files. The active ^^M is used
for macro storage because this is the most suitable for verbatim printing via \file-
contentsprint as typically in a verbatim environment end of lines get converted
into such active ^^M (which will create a \par token).

If you want for example tabulation characters to get converted into four spaces,
use:

\def\FCDtabtofile{\space\space\space\space}%

{\catcode32\active\gdef\FCDtabtomacro{\noexpand \noexpand \noexpand \noex-

pand }}%

I have here used for macro storage active spaces. The \noexpand are mandatory
in such case, but they will disappear from stored contents in a macro. We could
also have defined \FCDtabtofile as an alias to \FCDtabtomacro here because a non-
expanding active space will simply give a space in the external file. Due to TEX
tokenization rules \def\FCDtabtofile{ } would be the same as with only one
single space and thus we used \space\space\space\space.

If you want an actual tabulation character stored to a file, use:

{\catcode`\^^I=12 \gdef\FCDtabtofile{^^I}}

\def\FCDtabtomacro{TAB}

The second line is for demonstration only as an example of how to store the tab-
ulation character in a macro, use anything adequate to replace TAB as used here.
For example you can store in it the actual tabulation (ascii code 9) with catcode
12, via using rather \let\FCDtabtomacro\FCDtabtofile in the above. Or use some
Unicode symbol and appropriate font configuration.

Here is an example. This is rendered via verbatim which will treat the tabulation
characters as spaces, but they are there in the original:

{\catcode`\^^I=12 \gdef\FCDtabtofile{^^I}}

\let\FCDtabtomacro\FCDtabtofile

\begin{filecontentshere}{\jobname-tab.test}

Here is a tab and then three in a row .

\end{filecontentshere}

(we will see them in the PDF output via the glyph at slot 9 of the T1 encoding).

Here is what the original produces indeed when executed:

Here is a tab¯and then three in a row¯¯¯.

10

4 How to obtain customized verbatim in the output

The way it looks in the PDF is due to our definition of \FCDtabtomacro which gives
a catcode12 character of ascii code 9, and we use T1 font-encoding. The exported
file does contain on the other hand as promised a real tabulation character.

LATEX since 2018 uses by default \usepackage[utf8]{inputenc} and almost all control char-
acters are given active catcode. Exceptions: ^^@ (illegal), ^^I (treated as space), ^^J (for some
reason it gets catcode 12 and thus will if printed to PDF give the glyph at slot 10 of the font
encoding), and ^^M (end of line).

Notice that such a control character which in the source gets input using TEX notation, for
example ^^P, causes no issue to filecontentsdef as the caret ^ has lost its special catcode.
Thus a ^^P will be printed to external file.

If one tries to use directly in the source the CTRL-P, an error will be raised by LATEX
triggered by the active character (filecontentsdef does not sanitize catcodes in this ascii
range, as original filecontents environment does not either).

One can always reassign catcodes, thus you can set the catcode of ^^P to 12 for example.
However, when exporting such a control character with catcode 11 or 12 to a file, pdflatex
uses ^^ notation in the output. There are three exceptions (with pdflatex): the horizontal
tabulation (ascii code 9, ^^I), the line feed (ascii code 10, ^^J), and vertical tabulation (ascii
code 11, ^^K) are exported to the file as the corresponding ascii characters (at least this is the
case with TEXLive). These exceptions do not apply with xelatex.

Thus we again end up with TEX notation ^^P in the exported file. To get a literal CTRL-P,
you need to set the catcode of ^^P to 11 or 12, and to run pdflatex with the -8bit option.
With XeLATEX, this would be needed even for the horizontal tabulation CTRL-I.

4 How to obtain customized verbatim in the output
Please refer first to the discussion of \filecontentsprint and \filecontentsprintviascan as it
provides examples using fancyvrb, minted, or listings environments which may be what you are
looking for.

Here we make quick comments on alternatives to using \filecontentsprint, and handling di-
rectly the contents via the configuration of active spaces and active end of lines.

Here is some (non-LATEX) text snippet.

\begin{filecontentsdef}{\jobname.test2}{\testactive}

v1.2 \[2016/09/19\]

Initial version.

test: éèàùÉÈÇÀÙÛÎåðñòóôõöœøùúûüýþßŸŽ§

\end{filecontentsdef}

We can expand \testactive directly inside the LATEX document, but must give some definitions
to the active space token and the active ^^M token like verbatim environment does.

For a true verbatim printout \obeyspaces and \obeylines are not enough because spaces at
start of lines will disappear, and multiple empty lines give multiple \par’s which collapse into a
single one (hence no empty line can be observed in the output). The usual verbatim environment
uses a special definition of \par which prevents the disappearance of empty lines, and for the spaces
it has macro \@vobeyspaces which makes the spaces issue \leavevmode so they are not skipped at
the start of lines. Let’s define:

\makeatletter

% this redefines active spaces, but does not make spaces active

\def\niceactivespaces{\@vobeyspaces\catcode32=10\relax}%

\makeatother

11

5 Related packages

\begingroup

% this redefines active end of lines, but does not make them active

\catcode`\^^M\active %

\gdef\niceactiveCRs{\def^^M{\leavevmode\par}}%

\endgroup %

Then we can issue something like:

{\setlength{\parindent}{2cm}\niceactivespaces\niceactiveCRs\testactive\par}

This allows hyphenation and ligatures, which are usually inhibited in standard verbatim, and it
does not switch to the monospace font. Here is what happens if we do all of the above, as a test:

v1.2 \[2016/09/19\]
——————-

Initial version.

test: éèàùÉÈÇÀÙÛÎåðñòóôõöœøùúûüýþßŸŽ§
We see indeed how the ---...-- gave rise to ligatures, and that the monospace font was not

used. This was only to give an idea of how one can use the macros created by the filecontentsdef
or filecontentsdefmacro environments for variant verbatim rendering. This technique can be
used as workaround to the problem with \filecontentsprint that the contents can not contain
\end{verbatim}.

5 Related packages

• Scott Pakin’s filecontents. Notice that the package functionality has been
integrated into LATEX release dated 2019/10/01.

• Pablo González’s scontents. Make sure your version is at least v1.3 as earlier
ones had a dependency on filecontentsdef and are broken by the changes
coming with filecontentsdef v1.5.

12

http://www.ctan.org/pkg/filecontents
http://www.ctan.org/pkg/scontents

6 Implementation

6 Implementation
See the README.md file for the CHANGE LOG.

1 \NeedsTeXFormat{LaTeX2e}[1999/12/01]
2 \ProvidesPackage{filecontentsdef}
3 [2019/09/29 v1.5 filecontents + macro + verbatim (JFB)]

4 \let\FCD@global\global
5 \begingroup
6 \catcode`\^^M\active%

Attention that all end of lines must now get protected due to the end of line character being
active.

The LATEX default for active ^^L was \outer up to the 2017-01-01 release (got modified
in {v2.3b}{2016/11/06} version of ltplain.dtx). But we must still handle that possibility
for usage with older formats.
7 \catcode`\^^L\active\let^^L\relax%
8 \catcode`\^^I\active%

\FCD@main is the core construct.
Bulk of the code is still identical to the one in Scott Pakin’s filecontents hence to the

original one in LATEX’s sources regarding \filec@ntents, as filecontentsdef was conceived
as an extension of the original filecontents environment, with the added feature of storing
the verbatimized contents in a TEX macro, which can then be printed (verbatim) or re-
tokenized later via \scantokens and executed (if it represents LATEX material). Starting
with v1.5 some renaming of internal macros appears and the original coding is not only
extended but starts being modified at some places as well.
v1.4 adds \filecontentsdefmacro which does not write to a file.
v1.5 renames all internal macros to use \FCD@ namespace prefix. This applies here to

\FCD@main whose name was still \filec@ntentsdef at v1.4. The change also applies to the
\reserved@b and \reservec@c.
v1.5 adds customizability of how tabulation and form feed characters are handled either

in file output or in macro storage.
v1.5 modifies filecontentsdef to only make a definition with local scope. For this

we must smuggle out of the environment both the name and the meaning of the con-
trol sequence to define. We prepare for this a \FCD@defmacro which gets executed via
\endfilecontentsdef (and variants). As \FCD@defmacro issues \endgroup, direct usage of
\filecontentsdef (not as environment) must be inside an explicit \begingroup/\endgroup
pair, mimicking the one which an environment would insert.

The filecontentsgdef/filecontentsgdefmacro environments do define \FCD@defmacro
but do not execute it.
9 \gdef\FCD@main#1#2{%

10 \def\FCD@defmacro%
11 {\toks@\expandafter{#2}%
12 \edef\x{\endgroup\def\noexpand#2{\the\toks@}%
13 \begingroup\def\noexpand\@currenvir{\@currenvir}}%
14 \x}%
15 \FCD@global\let#2\@empty%
16 \if@filesw%
17 \openin\@inputcheck#1 %
18 \ifeof\@inputcheck%
19 \@latex@warning@no@line%
20 {Writing file `\@currdir#1'}%
21 \else%
22 \@latex@warning@no@line%
23 {Overwriting file `\@currdir#1'}%

13

http://www.ctan.org/pkg/filecontents

6 Implementation

24 \fi%
25 \closein\@inputcheck%
26 \chardef\FCD@reserved@c15 %
27 \ch@ck7\FCD@reserved@c\write%
28 \immediate\openout\FCD@reserved@c#1\relax%
29 \if@tempswa%
30 \immediate\write\FCD@reserved@c{%
31 \@percentchar\@percentchar\space%
32 \expandafter\@gobble\string\LaTeX2e file `#1'^^J%
33 \@percentchar\@percentchar\space generated by the %
34 `\@currenvir' \expandafter\@gobblefour\string\newenvironment^^J%
35 \@percentchar\@percentchar\space from source `\jobname' on %
36 \number\year/\two@digits\month/\two@digits\day.^^J%
37 \@percentchar\@percentchar}%
38 \fi%
39 \fi%
40 \let\do\@makeother\dospecials%

SP’s filecontents sets here in the loop all catcodes to 11, but we need for correct rendering
in verbatim that the constructed macro stores active characters as active characters.

We don’t check for unusual active characters of ascii code <128 as this is not done by
original or SP’s filecontents. But if present then they will expand similarly both in the
\write and in the construction of the macro.
41 \count@=128\relax%
42 \loop%
43 \ifnum\catcode\count@=\active%
44 \lccode`~\count@%
45 \lowercase{\def~{\noexpand~}}%
46 \else%
47 \catcode\count@=11 %
48 \fi%
49 \advance\count@ by \@ne%
50 \ifnum\count@<\@cclvi%
51 \repeat%

The default active ^^L was \outer up to 2017/01/01.
52 \let^^L\relax%
53 \edef\FCD@E{\@backslashchar end\string{\@currenvir\string}}%
54 \edef\FCD@reserved@b{\def\noexpand\FCD@reserved@b####1\FCD@E####2\FCD@E####3\relax}%

\filecontentsdefmacro sets \if@filesw to false.
55 \FCD@reserved@b{%
56 \ifx\relax##3\relax%
57 \if@filesw%
58 \let^^L\FCDformfeedtofile%
59 \let^^I\FCDtabtofile%
60 \immediate\write\FCD@reserved@c{##1}%
61 \fi%

This is where the original filecontents is extended to store the parsed material in a macro
(in my very first hack I simply patched it to redefine \write to also do the macro storage,
but considerations like the one relative to active characters due to inputenc made me decide
to re-write the whole thing, hence make a new package.)

Active characters were defined with a single \noexpand in the loop, and this is enough
because after each new line is processed the characters it contains are protected from
further expansion in the \xdef’s. And the single \noexpand is enough also for the \write
done above.
62 \toks@\expandafter{#2}%

14

6 Implementation

63 \let^^L\FCDformfeedtomacro%
64 \let^^I\FCDtabtomacro%
65 \FCD@global\edef#2{\the\toks@##1\noexpand^^M}%
66 \else%
67 \edef^^M{\noexpand\end{\@currenvir}}%
68 \ifx\relax##1\relax%
69 \else%
70 \if@filesw%

v1.5 suppresses the warning issued by filecontents environment in such case.
71 \let^^L\FCDformfeedtofile%
72 \let^^I\FCDtabtofile%
73 \immediate\write\FCD@reserved@c{##1}%
74 \fi%

In such case with the end of environment not being on a line of its own, v1.5 injects an
extra \empty token at end of last line. Thus usage in this form is restricted to contents
representing TEX macros. We still need the final ^^M for \filecontentsprint matters.
75 \toks@\expandafter{#2}%
76 \let^^L\FCDformfeedtomacro%
77 \let^^I\FCDtabtomacro%
78 \FCD@global\edef#2{\the\toks@##1\noexpand\empty\noexpand^^M}%
79 \fi%
80 \ifx\relax##2\relax%
81 \else%
82 \@latex@warning{%
83 Ignoring text `##2' after \string\end{\@currenvir}}%
84 \fi%
85 \fi%
86 ^^M}%

v1.4: sync ^^L and ^^I with 2018/04/01 LATEX release.
v1.5: drop the ^^L and ^^I LATEX definitions in favour of \FCDformfeedtomacro etc...

87 \catcode`\^^L\active%
88 \catcode`\^^I\active%
89 \catcode`\^^M\active%
90 \edef^^M##1^^M{\noexpand\FCD@reserved@b##1\FCD@E\FCD@E\relax}%

We need active space characters to be active in the produced macro. We only need to
protect them once from expansion. The definition will work both for writing to a file and
for storage into the macro.
91 \catcode32\active\lccode`~32 \lowercase{\def~{\noexpand~}}%
92 }%
93 \gdef\FCDformfeedtofile{^^J^^J}%
94 \gdef\FCDformfeedtomacro{\noexpand^^M\noexpand^^M}%
95 \gdef\FCDtabtofile{ }%
96 \catcode32\active\gdef\FCDtabtomacro{\noexpand }%
97 \endgroup%

The v1.4 macros accept a name as alternative to a macro. Empty or ill-formed #2 will break
code. But #2 can be using \if, \else, \fi tokens, the whole thing will end up \csname-
expanded. An active character also will end up \csname-expanded. There is no check on
whether #2 or \csname#2\endcsname is an existing macro.
v1.5 replaces \@tempa,b by \FCD@tempa,b. And its \FCD@get@aux directly grabs #2 rather

than issuing \@firstofone.
98 \long\def\FCD@get@aux#1\FCD@get@aux#2{#2}%
99 \def\FCD@get#1#2%

100 {%

15

6 Implementation

101 \def\FCD@tempa{#1}\def\FCD@tempb{{#2}}%
102 \expandafter\FCD@get@aux\@gobbletwo#2\FCD@get@aux
103 \@thirdofthree
104 \FCD@get@aux
105 {\ifcat\relax\noexpand#2\expandafter\@gobble\else\expandafter\@firstofone\fi}%
106 {\edef\FCD@tempb{{\expandafter\noexpand\csname#2\endcsname}}}%
107 \expandafter\FCD@tempa\FCD@tempb
108 }%

v1.4 adds \filecontentsdefmacro. I abuse the \if@filesw toggle as there is no \if@tempswb
available. No need for a starred version as anyhow the commented-out header was not put
into the macro by the existing \FCD@main code. No need to reset the toggle as documen-
tation explains direct usage of the environment begin and end macros must be inside a
\begingroup\endgroup pair.
v1.5 adds the “starred”-named variants as aliases.

109 \begingroup
110 \catcode`*=11
111 \gdef\filecontentsdef #1{\let\FCD@global\@empty
112 \@tempswatrue\FCD@get{\FCD@main{#1}}}%
113 \gdef\filecontentsdef*#1{\let\FCD@global\@empty
114 \@tempswafalse\FCD@get{\FCD@main{#1}}}%
115 \global\let\filecontentsdefstarred\filecontentsdef*
116 \gdef\filecontentsgdef #1{\@tempswatrue\FCD@get{\FCD@main{#1}}}%
117 \gdef\filecontentsgdef*#1{\@tempswafalse\FCD@get{\FCD@main{#1}}}%
118 \global\let\filecontentsgdefstarred\filecontentsgdef*

v1.5 can not use original \endfilecontents which makes reference to \reserved@c whereas
filecontentsdef now uses in its place \FCD@reserved@c. Finally I drop altogether the bulk
of this macro which issued a warning in case of an encountered form feed or tabulation
character.
v1.5 adds support for definitions with local scope so we must smuggle the defined macro

out of the environment. This is done via \FCD@defmacro which is set-up via \FCD@main.
119 \gdef\endfilecontentsdef{\immediate\closeout\FCD@reserved@c\FCD@defmacro}%
120 \global\let\endfilecontentsdef*\endfilecontentsdef
121 \global\let\endfilecontentsdefstarred\endfilecontentsdef
122 \gdef\endfilecontentsgdef{\immediate\closeout\FCD@reserved@c}%
123 \global\let\endfilecontentsgdef*\endfilecontentsgdef
124 \global\let\endfilecontentsgdefstarred\endfilecontentsgdef
125 \gdef\filecontentsdefmacro{\let\FCD@global\@empty
126 \@fileswfalse\FCD@get{\FCD@main{}}}%
127 \gdef\endfilecontentsdefmacro{\FCD@defmacro}%
128 \gdef\filecontentsgdefmacro{\@fileswfalse\FCD@get{\FCD@main{}}}%
129 \global\let\endfilecontentsgdefmacro\relax
130 \gdef\filecontentshere #1{\let\FCD@global\@empty
131 \@tempswatrue\FCD@main{#1}\filecontentsheremacro}%
132 \gdef\filecontentshere*#1{\let\FCD@global\@empty
133 \@tempswafalse\FCD@main{#1}\filecontentsheremacro}%
134 \global\let\filecontentsherestarred\filecontentshere*
135 \gdef\endfilecontentshere{\endfilecontentsdef\aftergroup\FCD@here}%
136 \global\let\endfilecontentshere*\endfilecontentshere
137 \global\let\endfilecontentsherestarred\endfilecontentshere

Package verbatim.sty modifies the standard verbatim environment. For both the original
and the modified version we need to insert an active ^^M upfront, else an empty first
line would not be obeyed. The verbatim.sty’s verbatim needs that we feed it with the
macro expanded once, as it uses active end of lines as delimiters and they thus need to
be immediately visible. It also needs an active ^^M after the \end{verbatim}. To avoid

16

6 Implementation

to check at \AtBeginDocument if package verbatim.sty is loaded, we use a slightly tricky
common definition. The advantage is that this may help make the code compatible with
further packages (I have not looked for them) modifying the verbatim environment. For
better code readibility I use ^^M%’s rather than exploiting the active ends of lines here.
v1.5 adds \FCDprintenvname which holds the name of the environment to be used. Ini-

tially configured to hold of course verbatim. And it also adds \FCDprintenvoptions.
138 \gdef\filecontentsprint{\FCD@get\FCD@print}%
139 \catcode`\^^M\active%
140 \gdef\FCD@print #1{\let\FCD@print@EOL^^M\let^^M\relax%
141 \begingroup\toks@\expandafter{#1}%
142 \edef\x{\endgroup%
143 \noexpand\begin{\FCDprintenvname}\FCDprintenvoptions^^M%
144 \the\toks@\@backslashchar end\string{\FCDprintenvname\string}}%
145 \x^^M%
146 \FCD@print@resetEOL}%
147 \gdef\FCD@print@resetEOL{\let^^M\FCD@print@EOL}%
148 \gdef\filecontentsprintviascan{\FCD@get\FCD@printviascan}%

v1.5 adds \filecontentsprintviascan which uses \scantokens to wrap stored contents in
a verbatim-like environment. This is needed for things such as listings (it uses an active
backslash at start of lines). Attention to the \scantokens subtlety with \end which would
become \end<space> and then again listings would not recognize the ending pattern.

149 \gdef\FCD@printviascan#1{%
150 \toks@\expandafter{#1}%
151 \edef\FCD@envwithcontents{%
152 \noexpand\begin{\FCDprintenvname}\FCDprintenvoptions\noexpand^^M%
153 \the\toks@\@backslashchar end{\FCDprintenvname}\noexpand^^M}%
154 \FCD@exec\FCD@envwithcontents}%
155 \endgroup
156 \def\FCDprintenvname{verbatim}%
157 \let\FCDprintenvoptions\@empty
158 \def\FCD@here{\FCD@print\filecontentsheremacro}%
159 \def\filecontentsexec{\FCD@get\FCD@exec}%

v1.5 restores \newlinechar to its prior value, rather than setting it to the LATEX default
(10).

160 \def\FCD@exec #1{\edef\FCD@newlinechar{\the\newlinechar}%
161 \newlinechar13
162 \scantokens\expandafter{#1}\newlinechar\FCD@newlinechar\relax}%
163 \endinput

17

	Title page
	Environments and macros
	filecontentsdef, filecontentsgdef
	filecontentsdefmacro, filecontentsgdefmacro
	\filecontentsprint, \FCDprintenvname, \FCDprintenvoptions
	\filecontentsprintviascan
	\filecontentsexec
	filecontentshere

	How to wrap usage of filecontentsdef in another environment
	How to customize handling of tabulation and form feed characters
	How to obtain customized verbatim in the output
	Related packages
	Implementation

