FiXme — Collaborative annotation tool for IXTEX*

Didier Verna

mailto:didier@didierverna.net
http://www.lrde.epita.fr/"didier/

v4.5 (2019/01/03)

Abstract

FiXme is a collaborative annotation tool for KTEX documents. Annotat-
ing a document here refers to inserting meta-notes, that is, notes that do not
belong to the document itself, but rather to its development or reviewing
process. Such notes may involve things of different importance levels, rang-
ing from simple “fix the spelling” flags to critical “this paragraph is a lie”
mentions. Annotations like this should be visible during the development
or reviewing phase, but should normally disapear in the final version of the
document.

FiXme is designed to ease and automate the process of managing collabo-
rative annotations, by offering a set of predefined note levels and layouts, the
possibility to register multiple authors, to reference annotations by listing
and indexing etc. FiXme is extensible, giving you the possibility to create
new layouts or even complete “themes”, and also comes with support for
AUCTEX.

The FiXme package is Copyright (© 1998-2002, 2004-2007, 2009, 2013,
2017-2019 Didier Verna, and distributed under the terms of the LPPL li-

[SAENG, IS N

(4]

cense.
Contents
1 Installation
1.1 Extraction e
1.2 TDS-compliant layout
1.3 AUCTEX support« « v v v v v ittt e e
2 Features summary
3 Using FiXme
3.1 Inmitializationo
3.1.1 Requirements Lo
3.1.2 Loading the package
3.1.3 Global setup modification
3.1.4 Local setup modification
3.2 Inserting FiXmenotes

DY

*FiXme homepage: http://www.lrde.epita.fr/~didier/software/latex.php#fixme

FiXme v4.5 (2019/01/03)

3.3
3.4
3.5

3.6
3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.2.1 Commands

3.2.2 Targeted commands
3.23 Environments Lo
3.2.4 Targeted environments

List of FiXme’s . .

Controlling the behavior of FiXme
Controlling the layout of annotations
3.5.1 Selectingalayout L.
3.5.2 Built-in vs. external layouts
3.5.3 Available layouts oL oL

3.5.4 Inner layout

3.5.5 Other common layout problems
Corollary: floating annotations
Controlling the layout of environments
3.7.1 Selecting alayout.
3.7.2 Built-in vs. external layouts
3.7.3 Available layouts
Controlling the layout of targets
3.8.1 Selectingalayout oL
3.8.2 Built-in ws. external layouts
3.8.3 Available layoutso

3.9.1 Setting face values oo
3.9.2 Available faces oL
Controlling the logging of annotations
Controlling the language of FiXme
3.11.1 Available languages
3.11.2 Language tracking
3.11.3 Indexing in different languages
Standalone or collaborative mode
3.12.1 Standalonemode
3.12.2 Collaborative mode

Themes

3.13.1 Using themes
3.13.2 Available themes

4 Extending FiXme

4.1 Modifying existing layouts
4.1.1 Modifying existing annotation layouts
4.1.2 Modifying existing environment layouts
4.1.3 Modifying existing target layouts
Creating new layouts
4.2.1 Registering a new annotation layout
4.2.2 Registering a new environment layout
4.2.3 Registering a new target layout

4.2

4.3
44
4.5

Adding new options

Creating a new theme

Internationalization

5 History

00 00 00 =1 =1 =1 I ~J

I I R el o T el e e Tl e o T T T e S e e S e e e e Wl
= == O O© 00O JJO OO UTUTLULix ik WWNhE— OO

22
22
22
22
22
22
23
24
24
24
25
25

26

FiXme v4.5 (2019/01/03)

6 Implementation 28
6.1 Preamble 28
6.2 Utilitles oL 28

6.2.1 Miscellaneous 28
6.2.2 Key-value management (xkeyval) 29
6.3 List macros 30
6.3.1 Contentslines. L. 30
6.3.2 Listheaders 31
6.3.3 Status/class-dependent implementation 32
6.4 Faces. 33
6.5 Annotation layouts 33
6.5.1 Layoutmodes., 33
6.5.2 Layout creation L. 33
6.5.3 Standard textual dispositions L. 34
6.5.4 Built-inlayoutso oo 35
6.5.5 Layout loading 37
6.5.6 Layout control 37
6.6 Environment Layouts 38
6.6.1 Layout creation 38
6.6.2 Built-inlayoutso oo 38
6.6.3 Layout selection 39
6.6.4 Layoutloading 39
6.6.5 Layout control 40
6.7 Target Layouts 40
6.7.1 Layout creation L. 40
6.7.2 Built-in layouts 40
6.7.3 Layout selection 41
6.7.4 Target layout loading 41
6.7.5 Target layout control 41
6.7.6 Status-dependant versions 41
6.8 Logging 41
6.8.1 Logging macros 41
6.8.2 Logging control oL 42
6.9 FiXmemnotes 42
6.9.1 Note parameters 42
6.9.2 Layout dispatch L. 43
6.9.3 Status-dependent implementation. 44
6.9.4 Standard versiono 44
6.9.5 Starred version 45
6.9.6 User-level interface generation. 45
6.10 FiXme environments L. 46
6.10.1 Status-dependent implementation 46
6.10.2 Standard versions 46
6.10.3 Starred versions 47
6.10.4 User-level interface generation 47
6.11 FiXme authors Lo oo 47
6.12 Internationalization oL 48
6.12.1 Language definitions 48
6.12.2 Language tracking 50
6.12.3 Language options 50

FiXme v4.5 (2019/01/03)

1

6.12.4 Language abstraction layer 51
6.13 Document status processing o1
6.14 Theme support e 51
6.15 Finale 52
6.15.1 Class-dependent settings 52
6.15.2 Options Processing 52
6.15.3 The \fxsetupmacro. 53
6.15.4 FiXmesummaryo 53
External Layouts 54
A.1 Annotation layouts 54
A.1.1 The marginnote layout 54
A.1.2 The pdfnote layout 54
A.1.3 The pdfmargin layout 54
A.1.4 The pdfsignote layout 55
A.1.5 The pdfsigmarginlayout 55
A.1.6 The pdfcnotelayout. 56
A.1.7 The pdfcmargin layout 56
A.1.8 The pdfcsignote layout 57
A.1.9 The pdfcsigmargin layout 58
A2 Environment layouts oL 58
A21 Thecolorlayout. 58
A.22 The colorsiglayout. 59
A3 Target Layouts 59
A.3.1 The changebar layout 60
A32 Thecolorlayout. 60
A.3.3 The colorcblayout 60
Themes 61
B.1 The signature theme 61
B.2 The colortheme 62
B.3 The colorsigtheme 63
Installation

1.1 Extraction

If you are building FiXme from the tarball you need to execute the following
steps in order to extract the necessary files. FiXme also requires the DoX package
(version 2.0, release date 2009/09/21 or later), to build. It is not required to use
the package.

[pdf]latex fixme.ins
[pdf]latex fixme.dtx
[pdf]latex fixme.dtx
makeindex -s gind fixme.idx
[pdf]latex fixme.dtx
[pdf]latex fixme.dtx

After that, you need to install the generated documentation and style files to a
location where XTEX can find them.

FiXme v4.5 (2019/01/03)

1.2 TDS-compliant layout
For a TDS-compliant layout, the following locations are suggested:

[TEXMF] /tex/latex/fixme/fixme.sty
[TEXMF]/tex/latex/fixme/layouts/fxlayout*.sty

[TEXMF] /tex/latex/fixme/layouts/env/fxenvlayout*.sty
[TEXMF] /tex/latex/fixme/layouts/target/fxtargetlayout*.sty
[TEXMF]/tex/latex/fixme/themes/fxtheme*.sty

[TEXMF] /doc/latex/fixme/fixme. [pdf |dvi]

1.3 AUCTEX support

AUCTEX is a powerful major mode for editing TEX documents in Emacs. In
particular, it provides automatic completion of command names once they are
known. FiXme supports AUCTEX by providing a style file named fixme.el which
contains AUCTEX definitions for the relevant commands. This file should be
installed in a place where AUCTEX can find it (usually in a subdirectory of your
KTEX styles directory). Please refer to the AUCTEX documentation for more
information on this.

2 Features summary

If you're new to FiXme, you might be interested in a brief summary of the features
it provides. Otherwise, you may only take a look at the History section (section 5
on page 26) to see what’s new.

Annotation levels FiXme annotations may be of four different importance
levels, ranging from simple not-so-important notices to critical things that must
absolutely be fixed in the final version.

Layouts and themes FiXme gives you full and extensible control on the
layout of these annotations: they can be displayed inline, as marginal paragraphs,
as footnotes and also in any kind of user-defined way. All these “layouts” may
be combined together. FiXme also comes with support for “themes”, globally
modifying existing layouts, or providing new ones.

Annotation targets Annotations may be “targeted” to a specific portion
of text that will be highlighted, and on the contrary “floating” around, in which
case they may even appear in the document’s preamble.

Listing and indexing Annotations may be indexed and summarized in a
“list of fixmes”.

Logging Annotations are recorded in the log file, and (depending on their
importance level) some of them are displayed on the terminal during compilation.
A final summary is also created at the end of the compilation process.

FiXme v4.5 (2019/01/03)

\fxsetup

Modes All these features are actually available when you’re working in draft
mode. In final mode, the behavior is slightly different: any remaining critical
note generates an error (the compilation aborts), while non critical ones are just
removed from the document’s body (they’re still recorded in the log file though).

Authoring FiXme provides support for collaborative annotating by allowing
you to “register” several authors.

Internationalization FiXme currently supports 7 different languages and
features automatic language tracking for multilingual documents.

3 Using FiXme

3.1 Initialization
3.1.1 Requirements

In order to work properly, FiXme requires the presence of some KWTEX packages.
You don’t have to load them explicitly though. As long as I TEX can locate them,
they will be used automatically. FiXme currently depends on xspace, ifthen,
verbatim and xkeyval (version 2.5f, release date 2006/11/18 or later).

3.1.2 Loading the package

In order to load FiXme, simply say \usepackage [{options)]{fixme} in the pream-
ble of your document. There is an important number of options that you can use
in order to customize FiXme’s default or global behavior. These options will be
discussed when appropriate.

There might be times where you would like to use M TEX commands in package
options (for example, see section 3.9 on page 16). In such a case, you should know
that ITEX normally can’t handle this. In order to make it work, you need to use
the xkvltxp package first, like this:

\usepackage{xkvltxp}
\usepackage [myoption=\mymacro] {fixme}

3.1.3 Global setup modification

{{options)}

Another way of customizing FiXme’s global behavior is to use the \fxsetup com-
mand. \fxsetup understands the same options as the package itself and can be
used in the preamble as well as in the document’s body.

3.1.4 Local setup modification

Finally, note that unless specified otherwise, all package options are also under-
stood by the annotation commands or environments described in section 3.2 on
page 7. The effect is then local to that particular command.

FiXme v4.5 (2019/01/03)

\fxnote
\fxwarning
\fxerror
\fxfatal

\fixme

\fxnote*
\fxwarningx*
\fxerror*
\fxfatal*

anfxnote
anfxwarning
anfxerror
anfxfatal

afixme

anfxnotex*
anfxwarning*
anfxerror*
anfxfatal*

\listoffixmes

3.2 Imnserting FiXme notes
3.2.1

[{options)1{(note)}

FiXme provides four annotation commands corresponding to different levels of
importance (notes, warnings, errors and fatal errors). \fxfatal is a bit different
from the other ones, as will be explained in section 3.4 on page 8.

Commands

Warning: as of version 4, the \fizme command is a synonym for
\fzfatal and is considered deprecated.

3.2.2 Targeted commands

[{options)]{{note) }H{(text)}

Sometimes, you might not only want to issue a FiXme note, but also highlight
the relevant part of the text to which it applies. This is what I call “targeting”
the annotation. As of version 4, FiXme provides starred versions of its annota-
tion commands to do that. In star form, these commands expect an additional
mandatory argument containing the text to be highlighted.

3.2.3 Environments

Warning: as of version 4.0, the environment interface has
changed and is not backward-compatible.

[{options)1{(summary)}

FiXme annotations are normally meant to be short: consider that they are likely
to go in the list of fixmes and in the index for instance. If you feel the need for
writing longer comments, the environments described below might come in handy.
FiXme provides four annotation environments; one for every note level. These
environments take one mandatory argument (meant to be a short summary of the
long note) and behave in exactly the same way as their command counterpart.
The layout policy is a bit different though (see section 3.5 on page 8): the en-
vironment’s contents will always appear inline, and the (summary) will obey all
active annotation layouts except for the inline one, just as if it had been passed
to one of the FiXme annotation commands described in the previous section.

Warning: as of version 4, the afizme environement is a synonym
for anfzfatal, and is considered deprecated.

3.2.4 Targeted environments

[(options)1{{summary)}{(text)}

FiXme environments can also be targeted to a specific portion of text. When using
the starred version, the environments expect one additional mandatory argument:
the text in question that will be highlighted.

3.3 List of FiXme’s

FiXme remembers where you put your annotations in a toc-like file whose extension
is lox. The \listoffixmes command generates the annotations lists in a manner

FiXme v4.5 (2019/01/03)

final
draft

status

similar to that of the “list of figures”. A standard layout is automatically selected
for the article, report and book classes and the AMS ones. If loaded, FiXme will
also use the tocbasic package which makes it compliant with the KoMA-Script
classes and any other document using it. If another class is used, the article
layout is selected. Also, note that if there isn’t any annotation left in the document,
this command doesn’t generate an empty list, but rather stays silent. It also stays
silent in final mode, regardless of the presence of remaining annotations (see
section 3.4 on page 8).

3.4 Controlling the behavior of FiXme

The behavior of FiXme is controlled by the two standard options final and draft.
These options are usually given to \documentclass which in turn passes them to
all packages. In addition, you can also use them as options to \usepackage, in
the call to \fxsetup, and even to the annotation commands and environments.

In draft mode, annotations are recorded in the log file and appear in the doc-
ument as specified by the layout settings (see section 3.5 on page 8). Additionally,
warnings, errors and fatal errors are also displayed on the terminal.

In final mode, non fatal annotations (those generated by \fxnote, \fxwarning,
\fxerror and their corresponding environments) are still logged, but they’re not
typeset. On the other hand, fatal ones (those generated by the \fxfatal command
and the anfxfatal environment) will throw a IWTEX error and thus interrupt or
abort compilation with an informative message. This will help you track down
forgotten important caveats in your document.

Let me rephrase: final documents can only have FiXme notes, warnings, and
(non fatal) errors left. Of course, this is not completely true: remember that these
options are understood locally by all the annotation commands and environments,
so even in final mode, you can use something like this:

\fxfatal[draft]{bla bla}

By default, FiXme is in final mode (IWTEX itself behaves that way). If you're
manipulating the document status at the level of FiXme itself (as opposed to the
\documentclass level), then the preferred way to do this is to use the status
option, and give it the value final or draft.

3.5 Controlling the layout of annotations

Annotations can appear in several forms in your document. Each of these forms
can be individually selected, or they can be combined together to some extend.

3.5.1 Selecting a layout
3.5.1.1 Individual control

For each annotation layout, there is a corresponding boolean option (for instance,
the “inline” layout is controlled by the inline option). These options are un-
derstood by the package itself, the \fxsetup command and also locally by every
annotation command or environment. There are some restrictions on their usage
however, as discussed in the next section.

FiXme v4.5 (2019/01/03)

layout
morelayout

\fxuselayouts

To activate a layout, use the option alone or give it a value of true. For
instance, these two forms are equivalent:

\fxnote[inline]{note...}
\fxnote[inline=true]{note...}

For convenience, each layout option has a counterpart that deactivates the cor-
responding layout. The counterpart option has the same name, prefixed with no
(for instance, noinline). Again, these options are understood by the package
itself, the \fxsetup command and also locally by every annotation command or
environment (with the same usage restrictions, discussed in the next section). For
instance, these two forms are equivalent:

\fxsetup{inline=false}
\fxsetup{noinline}

3.5.1.2 Global control

An even more convenient way to specify the required layout is to use the layout
and morelayout options. In fact, the use of individual control is considered more
or less deprecated. Both of these options take a comma-separated list of the
individual options described above (this includes the no{option) form as well).

While the morelayout option adds to the current layout configuration, the
layout one completely overrides it. For instance, knowing that by default, only
the margin layout is active, the following forms are all equivalent:

\usepackage [nomargin,inline, index]{fixme}
\usepackage [margin=false,inline=true,index=true] {fixme}
\usepackage [morelayout={nomargin,inline, index}]{fixme}
\usepackage [layout={inline,index}]{fixme}

Again, these two options are understood by the package itself, the \fxsetup com-
mand and also locally by every annotation command or environment (with the
same usage restrictions, discussed in the next section).

{(name,...)}

Finally, an alternative way of selecting (or deselecting) several layouts simultane-
ously is to use the \fxuselayouts command, giving it a comma-separated list of
layout options as its only, mandatory, argument.

3.5.2 Built-in vs. external layouts

Annotation layouts are provided either in the core of FiXme, or in separate files
loaded dynamically on demand. Simple layouts are typically built-in, whereas
those requiring additional packages are external, so that they don’t consume TEX
resources if not used. As a consequence, selecting an external layout might involve
loading the relevant file first.

For technical reasons, it is not possible to do such a thing outside the preamble,
neither in the middle of processing \usepackage options. As a result, layout
options are restricted and you have three possibilities for using an external layout:

FiXme v4.5 (2019/01/03)

\fxloadlayouts

[no]linline
[nolmargin
[nolfootnote
[nolindex

[nolmarginclue

’ Name \ External \ Description
inline Display note inline
margin Display note in the margin
footnote Display note in a footnote
index Display note in the index
marginclue Display a marginal clue
marginnote * Display non-floating note in the margin
pdfnote * Display note as inline PDF comment
pdfmargin * Display note as marginal PDF comment
pdfsignote * Display signed note ala pdfnote
pdfsigmargin * Display signed note ala pdfmargin
pdfcnote * Display colored note ala pdfnote
pdfcmargin * Display colored note ala pdfmargin
pdfcsignote * Display colored note ala pdfcsignote
pdfcsigmargin * Display colored note ala pdfsigmargin

Table 1: Available annotation layouts

1. Use its corresponding option in a call to \fxsetup in the preamble, like this:
\fxsetup{(option)}. This will load it and select it immediately.

2. Use the \fxuselayouts command in the preamble like this:
\fxuselayouts{(name)}. This is strictly equivalent to the previous solu-
tion.

{(name,...)}

3 If on the other hand you want to load one or several external layouts with-
out using them immediately (perhaps in order to use them locally in some
specific annotation), use the \fxloadlayouts command in the preamble like
this: \fxloadlayouts{(name),...}. After that, you can select any of those
layouts anywhere you wish.

3.5.3 Available layouts

Table 1 lists the annotation layouts currently distributed with FiXme.
By default, only the margin layout is active. Most of these layouts should be
self-explanatory, but some precisions are given below.

3.5.3.1 marginclue

If your preferred layout is inline or say, footnote, it might be somewhat difficult
to localize the annotation on the page, especially its vertical position. That’s where
marginal clues come into play. A marginal clue does not display the annotation’s
contents, but only an indication that there is one at that (vertical) position. So
you need to use another layout as well (again, typically inline or footnote) in
order to get the actual annotation.

Obviously, the margin and margin clue layouts are mutually exclusive, so if you
try to activate both, only the most recently activated one will be enabled (and
youll get a notice in the log file and on the terminal).

10

FiXme v4.5 (2019/01/03)

[no]marginnote

[nolpdfnote
[no]lpdfmargin
[no]lpdfsignote
[no]lpdfsigmargin
[nolpdfcnote
[no]lpdfcmargin
[no]lpdfcsignote
[no]lpdfcsigmargin

innerlayout

3.5.3.2 marginnote

The marginnote layout is an alternate (external) way to display annotations in
the margin, using the eponymous package. Contrary to I¥TEX’s standard marginal
paragraphs, the ones issued by marginnote are constructed in a non-floating way.
This might be an advantage in some situations but marginnote also comes with
some disadvantages of its own. For more information, please refer to marginnote’s
documentation, and also read the next section. Also, note that it is not currently
possible to pass options to the \marginnote command through this layout.

For a reasonably robust marginal layout accross all annotations, includ-
ing those issued in floats, consider using marginnote in conjunction with
innerlayout=noinline (see section 3.5.4 on page 11).

3.5.3.3 PDF comments

The PDF format comes with a concept of comment, which
FiXme can use to display its own annotations. Support for PDF comments varies
across PDF viewers. Acrobat Reader is usually considered a reference, and MacOS
X’s Preview supports them reasonably well. The pdfnote and pdfmargin layouts
use the pdfcomment package to display annotations as PDF inline or marginal
comments.

The sig versions additionally display the author’s tag (see 3.12 on page 18) as
a signature instead of as a prefix.

The versions with a ¢ in their name (as in color) use one of four different colors
named fx(level) (according to the annotation’s importance level). They also avoid
printing the annotation’s level since this information is already conveyed by the
color.

3.5.4 Inner layout

There might be various reasons for you to change the layout locally for one par-
ticular annotation: creating a floating one is an example, see also section 3.5.5 on
page 12 for some others. One frequent reason (described below) can be handled
automatically by FiXme.

Remember that the default layout is to use margin paragraphs. Unfortunately,
margin paragraphs are forbidden by TEX in several situations, like a figure’s cap-
tion for instance. If you try that, you will get a cryptic “Not in outer par mode”
error message.

The good news is that this situation can be detected automatically. FiXme
provides an option named innerlayout that allows you to specify an alternative
layout setting to use when TEX is in inner mode. In addition to that, FiXme
automatically disables the margin and marginclue layouts. If you really want
to use marginal paragraphs in inner mode, a good idea is then to set your inner
layout to marginnote (see section 3.5.3.2).

Using innerlayout is not as trivial as it may seem: it really is an alternative
layout configuration, and as such, you can use any combination you like of individ-
ual layout options, or you can even use the layout and morelayout options. This
means that your alternative layout can either add to the existing one, or override
it. Here are some examples to clarify things a little. You should try to understand
them.

11

FiXme v4.5 (2019/01/03)

e By default, the FiXme inner layout is set to just inline. This can be simu-
lated by the following call:

\usepackage [layout=margin, innerlayout={layout=inline}]{fixme}

e The following happens to give the same result in our particular case, while
having a different semantics:

\usepackage [layout=margin, innerlayout=inline] {fixme}

e If you have set FiXme to use a safe layout globally (for instance, inline and
index), and you want to use the same layout in inner mode, then you should
provide an empty inner layout, like this:

\fxsetup{layout={inline, index},innerlayout=}

What would happen if you didn’t provide the innerlayout option?

One final remark on the innerlayout option: this option is not processed
immediately when you specify it, but instead, its value is stored and used only
when needed. As a result, if you plan to use an external layout in inner mode
(typically, marginnote) , you need to load it explicitely in the preamble first. Use
\fxloadlayouts for that.

3.5.5 Other common layout problems

This section describes some other common problems that people have encountered
using FiXme. Although FiXme might not be directly responsible for them, it is
still good to keep them in mind.

Annotations in captions being counted twice You are most likely using
\listofsomething (figure, table, or any other kind of float). Note that a caption
will be used twice here: once in the float itself, and once in the list of floats. Any
FiXme annotation in the caption will consequently be generated twice as well. The
solution to this problem is to use the optional argument to \caption, for example:

\caption[caption text]{caption text\fxnote{yuck!}}

Footnotes and margin paragraphs in floats Using footnotes in fig-
ures (and a fortiori in a figure’s caption) does not work in general. Although
there are some workarounds out there (for instance, using \footnotemark and
\footnotetext directly), there is no completely reliable solution and it is not
possible to detect that situation automatically. Similarly, marginal paragraphs
will cause problems in a figure (even when not in its caption) because floats can’t
be nested in ITEX. Usual symptoms of these situations are: a footnote not being
typeset, compilation breakage with the “Floats lost” message etc. If you're facing
this problem, you need to change your layout locally.

12

FiXme v4.5 (2019/01/03)

target

Marginal paragraphs showing up on the wrong margin You want to
look at the mparhack package.

ACM classes compatibility The ACM SIG classes (acm_proc_article-sp
and sig-alternate) forbid the use of \marginpar, so if you use these classes,
don’t forget to choose another layout for FiXme, and also avoid using marginal
clues.

Annotation indexing Remember that some characters are special in an
index entry (the ! for instance). FiXme currently does nothing to escape those
characters, so avoid using them in your annotations.

3.6 Corollary: floating annotations

At some point, people suggested that it would be nice to have global annotations,
not related to any portion of the text in particular. Such annotations could be
general comments about the whole document, and could even be issued in the
preamble. This is what I call “floating” annotations.

I know you don’t care, but originally, I started writing a new set of commands
to do just that. However, with the flexibility that FiXme 4.0 provides, I quickly
realized that such commands were an unnecessary addition.

Since floating anotations are not supposed to relate to any part of the text,
they should not be typeset anywhere in it. This is especially true if you want to put
some of them in the document’s preamble. However, even a preamble annotation
could be recorded and displayed in the index or in the list of fixmes. And it turns
out that you can specify all that with the layout options described in section 3.5
on page 8.

The only remaining problem is the page number, which normally appears in
the list of fixmes and in the index: if you choose to reference a floating annotation
that way, the page number is likely to be completely meaningless. To compensate,
a new option named target is provided. When used, the given value will replace
the page number in both the index and the list of fixmes. The target can be
anything you like, but should remain rather short. By default, target is set the
special value thepage, which as you guessed means to use the page number.

The name ”target” bears an intentional resemblance to FiXme’s targeted com-
mands and environments, because we are indeed targetting the annotation to
something. The only difference is that in the case of floating annotations, the
target is non-textual.

Here is an example of a floating annotation that would typically appear in the
document’s preamble:

\usepackage{hyperref}
\fxfatal[layout=index,target=hyperref]{Fill in PDF fields (title etc.)}

3.7 Controlling the layout of environments

As discussed in section 3.2 on page 7, the contents of a FiXme environment (a longer
annotation) always appears inline. However, the exact way this contents is typeset
(in draft mode only) is subject to a layout of its own, called the “environment
layout”.

13

FiXme v4.5 (2019/01/03)

3.7.1 Selecting a layout

envlayout The desired environment layout can be selected with the envlayout option. Con-
trary to the annotation layouts, only one environment layout can be active at a
time. The envlayout option is understood by the package itself, the \fxsetup
command and all the annotation environments (not the commands!). There are
some restrictions on its usage however, as discussed in the next section.

\fxuseenvlayout {(name)}

An alternative way of selecting an environment layout is to use the \fxuseenvlayout
command, giving it the layout’s name as its only, mandatory, argument.

3.7.2 Built-in vs. external layouts

Environments layouts are provided either in the core of FiXme, or in separate files
loaded dynamically on demand. Simple layouts are typically built-in, whereas
those requiring additional packages are external, so that they don’t consume TEX
resources if not used. As a consequence, selecting an external layout with the
envlayout option might involve loading the relevant file first.
\fxloadenvlayouts {(name,...)}

For technical reasons, it is not possible to do such a thing outside the preamble, nei-
ther in the middle of processing \usepackage options. As a result, the envlayout
option is restricted and you have three possibilities for using an external layout:

1. Use the envlayout option in a call to \fxsetup in the preamble, like this:
\fxsetup{envlayout=name}. This will load it and select it immediately.

2. Use the \fxuseenvlayout command in the preamble like this:
\fxuseenvlayout{name}. This is strictly equivalent to the previous solu-
tion.

3. If on the other hand you want to load one or several environment layouts
without using them immediately (perhaps in order to use them locally in
some specific annotation), use the \fxloadenvlayouts command in the
preamble like this: \fxloadenvlayouts{(name),...}. After that, you can
select any of those layouts anywhere you wish.

3.7.3 Available layouts

Table 2 lists the environment layouts currently distributed with FiXme.

plain e The plain environment layout prints its contents as-is, only in bold font (by
default) in order to distinguish it from the surrounding text.

signature e The signature environment layout prints the author’s tag (see 3.12 on page
18) as a signature instead of as a prefix. This layout is used by the signature
theme (see section 3.13 on page 21).

color e The color environment layout uses one of four colors named fx(level) (ac-
fxnote cording to the annotation’s importance level) to display its contents. It also
fxwarning avoids printing the annotation level, since that information is already con-
fxerror veyed by the color. This layout is used by the color theme (see section 3.13
fxfatal on page 21).

14

FiXme v4.5 (2019/01/03)

colorsig

targetlayout

\fxusetargetlayout

\fxloadtargetlayouts

’ Name \ External \ Description
plain Display contents as-is
signature Display signed contents
color * Display contents in color
colorsig * Display signed contents in color

Table 2: Available environment layouts

e The colorsig environment layout combines the features of the signature
and color ones. This layout is used by the colorsig theme (see section
3.13 on page 21).

3.8 Controlling the layout of targets

As discussed in section 3.2 on page 7, the starred versions of the FiXme annotation
commands and environments let you highlight a portion of text which is relevant
to the current annotation. The exact way this textual target is typeset (in draft
mode only; otherwise it is typeset as-is) is subject to a layout of its own, called
the “target layout”.

3.8.1 Selecting a layout

The desired layout can be selected with the targetlayout option. Contrary to
the annotation layouts, only one target layout can be active at a time. The
targetlayout option is understood by the package itself, the \fxsetup command
and all the starred versions of the annotation commands and environments. There
are some restrictions on its usage however, as discussed in the next section.
{{name)}

An alternative way of selecting a target layout is to use the \fxusetargetlayout
command, giving it the layout’s name as its only, mandatory, argument.

3.8.2 Built-in vs. external layouts

Target layouts are provided either in the core of FiXme, or in separate files loaded
dynamically on demand. Simple layouts are typically built-in, whereas those re-
quiring additional packages are external, so that they don’t consume TEX resources
if not used. As a consequence, selecting an external layout with the targetlayout
option might involve loading the relevant file first.

{(name,...)}

For technical reasons, it is not possible to do such a thing outside the pream-
ble, neither in the middle of processing \usepackage options. As a result, the
targetlayout option is restricted and you have two possibilities for using an ex-
ternal layout:

1. Use the targetlayout option in a call to \fxsetup in the preamble, like this:
\fxsetup{targetlayout=name}. This will load it and select it immediately.

2. Use the \fxusetargetlayout command in the preamble like this:
\fxusetargetlayout{name}. This is strictly equivalent to the previous so-
lution.

15

FiXme v4.5 (2019/01/03)

plain

changebar

color
fxtarget

colorcb
fxnote
fxwarning
fxerror
fxfatal

’ Name \ External \ Description
plain Display target as-is
changebar * Display a vertical bar aside target
color * Display target in color
colorcb * Display a colored vertical bar aside target

Table 3: Available target layouts

3. If on the other hand you want to load one or several target layouts without
using them immediately (perhaps in order to use them locally in some specific
annotation), use the \fxloadtargetlayouts command in the preamble like
this: \fxloadtargetlayouts{(name),...}. After that, you can select any
of those layouts anywhere you wish.

3.8.3 Available layouts

Table 3 lists the target layouts currently distributed with FiXme.

e The plain target layout displays its contents as-is, only in italics (by default)
in order to distinguish it from the surrounding text.

e The changebar target layout displays a vertical bar in the margin, on the
side of the target text.

e The color target layout uses the color named fxtarget to display the target
text. This layout is used by the color and colorsig themes (see section
3.13 on page 21).

e The colorcb target layout uses one of four colors named £x{level) (according
to the annotation’s importance level) to display a colored vertical bar in the
margin, on the side of the target text.

3.9 Faces

In the FiXme jargon, a “face” characterizes the visual aspect of some portion of
text. If you're familiar with the Emacs editor, this will come as no surprise to
you. FiXme provides several faces that allow you to further customize the layout
of annotations or their targets.

3.9.1 Setting face values

There are different ways to customize a face. The first one is to use the corre-
sponding face option. For each face (name), their is a (name)face option. For
instance, the “inline” face is controlled by the inlineface option. Face options
are understood by the package itself, the \fxsetup command and locally by all
annotation commands or environments. Here is an example:

\fxsetup{inlineface=\bfseries}

16

FiXme v4.5 (2019/01/03)

\fxsetface

inline

margin

env

signature

target

[no]silent

Since you will probably want to use XTEX commands in face values, you should
know that IXTEX normally can’t handle such commands in package options. If you
want this to work, you need to use the xkvltxp package first, like this:

\usepackage{xkvltxp}
\usepackage [inlineface=\bfseries]{fixme}

{(name)}{(value)}
Another way to customize a face is to use the \fxsetface command by providing
the face name and the face value as two mandatory arguments. For example:

\fxsetface{inline}{\bfseries}

3.9.2 Available faces

The inline face By default, the inline annotation layout displays its con-
tents in bold font, to distinguish the note from the surrounding text. This is
controlled by the inline face whose value is \bfseries by default.

The margin face By default, the margin and marginclue layouts display
their contents in footnote size. This is controlled by the margin face whose value
is \footnotesize by default.

The env face By default, the plain environment layout displays its contents
in bold font, to distinguish it from the surrounding text. This is controlled by
the env face whose value is \bfseries by default. The color and colorsig
environment layouts honor this face as well, but reset it to (nothing) first. You
should probably keep the same value for the inline and env faces, since they are
both used to display annotations within the document’s body.

The signature face The signature environment layout honors the env
face, and adds a signature face on top of it for the signature part. It is set to
\itshape by default. The colorsig environment layout honors this face as well.

The target face By default, the plain target layout displays its contents
in italics, to distinguish it from the surrounding text. This is controlled by the
target face whose value is \itshape by default. The changebar, color and
colorcb target layouts honor this face as well, but reset it to (nothing) first.

3.10 Controlling the logging of annotations

As well as being displayed in the document itself, all annotations are “logged”
in different ways: by default, simple notes are recorded in the log file while the
others (warnings, errors and fatal errors) are also displayed on the terminal output
during compilation.

You have the ability to suppress logging altogether by using the silent op-
tion. This option is understood by the package itself, the \fxsetup command and
all annotation commands and environments. Just as individual layout options,
silent is a boolean option, so all those forms are possible: silent, equivalent to
silent=true, and nosilent, equivalent to silent=false (the default).

17

FiXme v4.5 (2019/01/03)

english
french
francais
spanish
italian
german
ngerman
danish
croatian
lang

langtrack

defaultlang

3.11 Controlling the language of FiXme
3.11.1 Available languages

FiXme currently supports English (the default), French, Spanish, Italian, Ger-
man, Danish and Croatian. You can select your preferred language by using
the corresponding language option. These options usually appear in the call to
\documentclass or \usepackage, but they are also understood by \fxsetup and
all the annotation commands or environments. This allows you to change the se-
lected language either globally or locally, and at any point in the document. The
french and francais options are synonyms. The german and ngerman options
are currently equivalent.

If you're manipulating language settings at the level of FiXme itself (as opposed
to the \documentclass level), then the preferred way to specify a language is to
use the lang option, and give it the language name as a value. For instance:

\usepackage [lang=french] {fixme}

3.11.2 Language tracking

If the document you're working on has parts written in different languages, it
might be the case that the annotations should follow the current language as well
(especially if you're in collaborative mode; see section 3.12 on page 18). FiXme
provides a boolean option named langtrack. When specified, FiXme assumes that
you’re using babel and automatically switches to the current language (as specified
by babel’s \languagename command), without requiring an explicit language
option.

In the case where tracking falls on a language unsupported by FiXme, a warning
will be issued and FiXme will switch to the language specified by the defaultlang
option (english by default). If you happen to get one of these warnings, please
consider sending me a patch with support for this new language (see section 6.12
on page 48).

Finally, note that specifying a language explicitely (by means of a language
option) in the annotation commands and environments always takes precedence
over the language tracking behavior.

3.11.3 Indexing in different languages

If your document contains annotations written in different languages, and you have
requested the index layout, FiXme will not only classify the notes by their level
of importance, but also by language. For example, if you have FiXme warnings in
both English and French, you will find two different subcategories for warnings in
the index: one called “Warnings” and one called “Avertissements”.

3.12 Standalone or collaborative mode

FiXme supports collaborative annotations as well as “standalone”, single-author
documents.

18

FiXme v4.5 (2019/01/03)

author

\FXRegisterAuthor

3.12.1 Standalone mode

By default, FiXme is in standalone mode, meaning that it assumes there is only
one person annotating the document. This has several implications on the layout.
If you’ve tried it already, you may have noticed the following points.

e All the built-in annotation layouts (index excepted) put the FiXme logo in
front of every note. This is also true for the environments. The idea is to
distinguish FiXme contents from the rest of the document (for instance other
marginal notes or footnotes).

e All annotations are indexed under the main FiXme category, and sorted by
importance level, but the FiXme logo is not repeated constantly (that would
be useless).

e Similarly, the list of fixmes does not clutter itself with the logo, because we
already know that its contents is specific to FiXme.

As a matter of fact, when you see the FiXme logo appear somewhere, you’re not
actually contemplating it, but rather the annotation’s author. It just happens that
by default (meaning in standalone mode), the only author is FiXme itself.

In standalone mode, you might be annoyed by this orgy of FiXme logos. This
might happen if for instance you’re using the margin layout and you know there is
nothing but FiXme annotations in there. In such a case, you will most likely want
to change the author to nothing. This can be acomplished by using the author
option, which is understood by the package itself, the \fxsetup command and all
the annotation commands or environments. Doing something like the following
will get rid of the damn logo for good:

\usepackage [author=] {fixme}

3.12.2 Collaborative mode

If, on the other hand, you're working in collaboration with other people, every
potential “fixer” might want to tag his or her own annotations. So assuming that
John Doe is another author, he would most likely do something like this:

\fxfatal [author=JD]{rephrase this}

And suddenly, John’s fatal comment will be prefixed with his initials. This is not
a very satisfactory solution however, because it would require you to explicitely
provide the author’s tag in every single note you create. Fortunately, FiXme offers
an easier way to achieve this.

3.12.2.1 Registering new authors
{(emdprefiz) }{(envprefiz) }H{(tag)}

The command \FXRegisterAuthor registers a new author with FiXme. It takes
three arguments: the last one ((tag)) is just the same as the value you would pass to
the author option: it will serve as a prefix (or signature) for John’s annotations.
In addition to that, a complete new set of user-level commands (prefixed with

19

FiXme v4.5 (2019/01/03)

singleuser
multiuser
mode

(emdprefiz)) and environments (prefixed with (enuvprefiz)) will be created. To
clarify, suppose that we have registered John like this:

\FXRegisterAuthor{jd}{ajd}{JD}

Now, John can use the commands \jdnote, \jdwarning etc., along with their
starred versions, and he can also use the environments ajdnote, ajdwarning etc.,
along with their starred versions as well. If you really want to know the whole
story, it turns out that the main FiXme interface described in section 3.2 on page
7 is created with this single line of code:

\FXRegisterAuthor{fx}{anfx}{fixme}

Warning! (cmdprefiz) and (envprefiz) need to be different, or you will get
very strange errors. The technical reason is that in I TEX, an environment named
foo is defined in terms of two commands: \foo and \endfoo (yes, this is silly; the
first one should really be \beginfoo). As a consequence, if you use the same prefix,
you will get a name clash between the annotation commands and environments.

3.12.2.2 Fun with the author option

Some precisions about the author option are in order here. When a new author
is registered with FiXme, the generated commands and environments work by
presetting the author option to the specified (tag). This means that it is still
possible to override it explicitely like this:

\jdfatal [author=Anonymous] {For $500.00, you got your Ph.D.}

I don’t see any good reason for doing it though, the above example notwithstand-
ing.

The final remark is about the default £x* user interface: the fixme default user
is special in that it is the only registered user to honor a global author option
(provided in the call to \usepackage or \fxsetup). The intended use of this is
that the main author of the document uses the fx* interface (preferably with a
personal author setting, different from the FiXme logo), and all other authors are
registered via \FXRegisterAuthor.

3.12.2.3 Globally switching to collaborative mode

We're getting close, but we’re not quite there yet. Perhaps you would like to see
the tags from the different authors in the list of fixmes, or even in the index?
Remember that FiXme is in standalone mode by default, so the (only) tag does
not appear in those places.

If you want this additional information, you’ve got to ask FiXme to globally switch
to collaborative mode. This can be done with either one of the three options
singleuser, mutliuser or mode. singleuser and multiuser are boolean op-
tions. The mode option takes a value of either singleuser or multiuser. This
is the preferred way to switch the mode. These options are understood globally
by \usepackage or \fxsetup, and also locally by the annotation commands or
environments.

20

FiXme v4.5 (2019/01/03)

theme

\fxusetheme

signature

color

colorsig

When collaborative mode is active, FiXme adjusts the list of fixmes layout to
display the authors tags as well. Additionally, the annotations are indexed as
before, but additional index entries, sorted by author, are generated as well.

3.13 Themes

Themes are orthogonal to layouts: they provide a way to modify the overall ap-
pearance of FiXme by overriding the existing layouts and/or by providing new
ones. In fact, a theme can be any kind of customization that you would otherwise
put in your preamble.

3.13.1 Using themes

The interface for using a theme is quite simple: use the theme option and give it
the name of the theme you want to use. Themes are always external: there are
none in the core of FiXme but instead they are provided as independent files. As
a consequence, the theme option has the same usage restrictions as all the layout
options we’ve encountered so far. Moreover, it is not possible to “maintain” several
themes and switch between them in a single document. Themes can be loaded
only in the preamble.

{{name)}

An alternative to the theme option is to use the \fxusetheme command, which
takes the theme’s name as its only mandatory argument.

3.13.2 Available themes

FiXme comes with a number of predefined themes listed below.

3.13.2.1 The signature theme

This theme uses the signature environment layout (see section 3.7.3 on page 14),
and overrides the built-in ones to display the author tags as a signature (i.e. at
the end of the annotations) instead of as a prefix. All original layout faces are
honored.

3.13.2.2 The color theme

This theme uses the color environment and target layouts (see sections 3.7.3 on
page 14 and 3.8.3 on page 16), and overrides the built-in ones to use different
colors for the different annotation levels. As a consequence, it also avoids printing
the annotation names because this information is already contained in the colors
themselves. All original layout faces are honored, but the inline one is reset to
(nothing). Remember that the env and target faces are reset as well (this is
actually done by the color environment and target layouts).

3.13.2.3 The colorsig theme

This theme combines the features of the color and signature ones. All original
layout faces are honored, but the inline one is reset to (nothing).

21

FiXme v4.5 (2019/01/03)

\FXLayout(name)

\FXEnvLayout(name)Begin
\FXEnvLayout (name)End

\FXTargetLayout(name)

4 Extending FiXme

Hear hear, this is where you start spending more time hacking BTEX than actually
writing your document. . .

4.1 Modifying existing layouts

FiXme annotations, environment and target layouts are implemented as a (set of)
commands conforming to strict prototypes. If you're not happy with the way they
perform, you have the possibility to \renewcommand them (in fact, you should use
\renewcommand* for annotation and environment layouts). In such a case, it is
probably best to have a look at the code in order to figure out how the original
ones are written. However, a description of their prototypes is given below.

4.1.1 Modifying existing annotation layouts

{(type) H (annotation)}{{author)}

Each annotation layout is implemented as a macro taking three mandatory ar-
guments. By convention, this macro is named \FXLayout(name), for instance
\FXLayoutInline. (type) is the annotation type. It can be one of note, warning,
error and fatal. (annotation) is the annotation itself, and (author) is the au-
thor’s tag.

4.1.2 Modifying existing environment layouts

{(type) Y{{author)}

Each environment layout is implemented as two macros taking two mandatory ar-
guments. By convention, these macros are named \FXEnvLayout(name)Begin
and \FXEnvLayout(name)End, for instance \FXEnvLayoutPlainBegin and
\FXEnvLayoutPlainEnd. ({ype) is the annotation type. It can be one of note,
warning, error and fatal. (author) is the author’s tag.

4.1.3 Modifying existing target layouts
{(type) M (target)}

Each target layout is implemented as a macro taking two mandatory argu-
ments. By convention, this macro is named \FXTargetLayout(name), for instance
\FXTargetLayoutPlain. ({ype) is the annotation type. It can be one of note,
warning, error and fatal. (target) is the textual target.

4.2 Creating new layouts

Creating a new layout first requires that you write new layout macros as described
in the previous section. Once you've done that, the next step is to make FiXme
aware of this addition. This is called “registering” a layout.

22

FiXme v4.5 (2019/01/03)

\FXRegisterLayout

\FXRegisterLayout*

\FXProvidesLayout

4.2.1 Registering a new annotation layout
4.2.1.1 Early vs. late layouts

Normally, FiXme typesets your annotations at the current position in the text,
using a sensible order for built-in layouts. For instance, the footnote layout, if
active, is performed before the inline one, so that the footnote mark is sticked
to the preceding text and not to the annotation. When using targeted commands
or environments, the situation is a bit more complex: some layouts make more
sense at the beginning of the textual target, and some others at the end. The
former ones are called “early layouts” and the later ones are called “late layouts”.
A typical example of an early layout is the margin one: if you're highlighting a
long portion of text, it is more convenient to see the marginal note appear near
the top of that text, rather than near the end of it (a nice illustration of this is
to combine the changebar target layout and margin annotation layout). As for
built-in layouts, only the margin and marginclue ones are early. All others are
late. When you create a new layout, you need to decide whether it is an early or
a late one.

4.2.1.2 Registering late layouts

[(mutex)]{{name)X{{macro)}

In order to register a late annotation layout with FiXme, use the command
\FXRegisterLayout. This macro has two mandatory arguments: the layout
(name) (at least 3 characters long) and the associated layout (macro). For in-
stance, the inline layout is registered like this:

\FXRegisterLayout{inline}{\FXLayoutInline}

Once registered, the new layout gets a boolean option (name) and is also recog-
nized by the layout and morelayout options, as well as by the \fxuselayouts
command as (name).

The first (optional) argument (mutez) is a comma-separated list of other layout
names that should be in mutual exclusion with the layout we are registering (for
example, the margin and marginclue layouts are in mutual exclusion). Note that
mutual exclusion between two layouts need only be registered once. In other words,
a previsouly registered layout will automatically be made aware of subsequent
mutex declarations.

4.2.1.3 Registering early layouts

[(mutex)]{{name) X {macro)}
In order to register an early annotation layout with FiXme, use the starred form
of \FXRegisterLayout. Everything else behaves the same.

4.2.1.4 Providing a layout

{(name)} [(release information)]

If you want to save your layout externally, you need to store it in a file named
fxlayout(name).sty and advertise it by calling \FXProvidesLayout. It will then
be recognized by the \fxloadlayouts command as (name).

23

FiXme v4.5 (2019/01/03)

4.2.2 Registering a new environment layout

\FXRegisterEnvLayout {(name)}{(begin)}{{end)?}
In order to register a new environment layout with FiXme, use the command
\FXRegisterEnvLayout. This macro has three mandatory arguments: the layout
(name) and the associated (begin) and (end) macros. For instance, the color
layout is registered like this:

\FXRegisterEnvLayout{color}{\FXEnvLayoutColorBegin}{\FXEnvLayoutColorEnd}

Once registered, the new layout is recognized by the envlayout option and by the
\fxuseenvlayout command as (name).

\FXProvidesEnvLayout {(name)} [(release information)]
If you want to save your layout externally, you need to store it in a file named
fxenvlayout(name).sty and advertise it by calling \FXProvidesEnvLayout. It
will then be recognized by the \fxloadenvlayouts commands as (name).

4.2.3 Registering a new target layout

\FXRegisterTargetLayout {(name)}{(macro)}
In order to register a new target layout with FiXme, use the command
\FXRegisterTargetLayout. This macro has two mandatory arguments: the lay-
out (name) and the associated (macro). For instance, the color layout is regis-
tered like this:

\FXRegisterTargetLayout{color}{\FXTargetLayoutColor}

Once registered, the new layout is recognized by the targetlayout option and by
the \fxusetargetlayout as (name).

\FXProvidesTargetLayout {(name)} [{release information)]
If you want to save your layout externally, you need to store it in a file named
fxtargetlayout(name).sty and advertise it by calling \FXProvidesTargetLayout.
It will then be recognized by the \fxloadtargetlayouts commands as {name).

4.3 Adding new options

Note: FiXme uses the zkeyval package for its underlying options
management, so some knowledge of this package is required in order to
understand the remainder of this section.

Yet another way to customize FiXme is to plug additional behavior in, by way of
options. As of version 4.5, FiXme provides a convenient interface for creating new
options, and associate them with code to execute.

First of all, new options must belong to a “family”, which essentially defines
exactly where they make sense. FiXme currently provides three option families:
Layout, EnvLayout, and TargetLayout. Obviously, these families allow you to
define options that will affect the behavior of the corresponding three kinds of
layouts.

For each family, FiXme provides five commands wrapping around xkeyval to
define special kinds of options (keys in the xkeyval jargon). They are explained
below.

24

FiXme v4.5 (2019/01/03)

\FXDefine(family)Key
\FXDefine(family)CmdKey
\FXDefine(family)ChoiceKey

\FXDefine(family)VoidKey

\FXDefine(family)BoolKey

\FXRequireLayouts

\FXRequireEnvLayout
\FXRequireTargetLayout

\FXProvidesTheme

\fx(lang)name
\fx(lang)sname

{{key)} [{default)]1{{function)}
Define an xkeyval ordinary (key) belonging to (family).
[(mp)]1{{key)} [{default)]{{function)}
Define an xkeyval command (key) belonging to {family).
{(key)} [{bin)1{{alternatives)} [{default)1{(function)}
Define an xkeyval choice (key) belonging to (family).
{(key) H (func)}
A “void (key)” is an option that is not supposed to get an argument. This property
is automatically checked everytime the option is used.
[(func) 14 (key)}
Finally, a “boolean (key)” is like an xkeyval one, with the addition that for every
such key, there is a void nokey counterpart.
Every new option you define is inserted into the global options management
mechanism, which has some implications.

R

e First of all, new options are automatically available almost everywhere, and
in particular in the \fxsetup macro, in the annotations commands and envi-
ronments, etc. Note however that the EnvLayout and TargetLayout family
options are only processed when it makes sense, that is, when environments
or targeted commands are involved.

e Because new options are treated globally, they may affect every layout (ex-
isting, loaded in the future, etc.) and of course, also the built-in ones. Sup-
pose, for example, that you want the ability to adjust the vertical position
of the marginal notes layout. One solution is to create a vadj option like
this: \FXDefineLayoutKey{vadj}{\def\marginnotevadjust{#1}}, which
you can then use like that: \fxnote[vadj=.5ex]{...}.

e Finally, and again, because options are treated globally, beware of name
clashes! Every option name must be unique within a family.

4.4 Creating a new theme

Creating a new theme may involve anything from using (by way of \fxsetup) or
modifying existing layouts, to providing new ones. If your new theme has specific
layouts, you may consider writing them in seperate files as described before, in
order to make them more generally available.

{{layout names)}

In order to use external layouts in a theme, use the command \FXRequireLayouts,
passing it a list of (layout names) as argument.

{{name)}

In order to use and external environment or target layout in a theme, use the
commands \FXRequire*Layout and give them the layout’s name as argument.
{(name)} [(release information)]

A theme should be saved in a file named fxtheme(name).sty and advertised by
calling \FXProvidesTheme. It will then be recognized by the theme option and
the \fxusetheme command.

4.5 Internationalization

FiXme’s language control has been described in section 3.11 on page 18. For every

25

FiXme v4.5 (2019/01/03)

\(lang)listfixmename

supported language (lang), a number of macros define the language-dependent

part of FiXme. The commands \fx(lang)notename, \fx(lang)notesname, and

their equivalent for the other annotation levels define the singular and plural forms

of the note names.

The title for the list of fixmes is defined by the command \(lang)listfixmename.
All of these commands may be renewed, and their values will be honored by

FiXme in all situations, including potential language changes across the document.

5

v4.5

v4.4

v4.3

v4.2

v4.1

v4.0

History

Public interface for extending FiXme with new key/value options.

Revamp the AUCTEX support, with help from Arash Esbati and Tkumi
Keita.

Fix PDF signature layouts not working anymore, reported by Soeren
Wolfers.

Fix spurious space at the end of environments contents, reported by Frank
Mittelbach.

Handle existing yet empty lox file properly, meaning don’t actually typeset
an empty list of corrections.

Don’t update the lox file in final mode, avoiding potential typesetting arti-
facts, reported by Lars Madsen.

Various internals and documentation improvements.

Add a paragraph about the duplication of notes in captions, upon exchange
with Kreuvf.

Update support for the KoMA-Script classes by using the tocbasic interface
when available, reported by Dirk Surmann.

Separate inline notes from the text they follow, suggested by Victor Porton.
Fix potential inline layouts color leakage, reported by Victor Porton.

Fix several parsing problems when passing optional arguments containing
brackets, thanks to Joseph Wright and Lars Madsen.

Improve Danish translation, thanks to Lars Madsen.
Fix buglet in \@wrindex redefinition, reported by Norman Gray.

8 new PDF-specific annotation layouts.

New annotation layout: marginnote, suggested by Sébastien Mengin.
Better mechanism for handling layout mutual exclusion.

Fix bug in inner layout processing.

Support for collaborative annotations, suggested by Michael Kubovy.
Support for “targeted” notes and environments (highlighting a portion of
text), suggested by Mark Edgington.

Support for “floating notes” (not specific to any portion of text), suggested
by Rasmus Villemoes.

Support for alternative layout autoswitch in TEX’s inner mode, suggested
by Will Robertson.

Support for automatic language tracking in multilingual documents.
Support for themes.

Extended support for user-provided layouts.

26

FiXme v4.5 (2019/01/03)

Support for key=value argument syntax in the whole user interface.
New command \fxsetup.

Homogenize the log and console messages.

Heavy internals refactoring.

v3.4 \fixme, \fxerror, \fxwarning and \fxnote are now robust, thanks to Will
Robertson.
Fix incompatibility with KOMA-Script classes version of \@starttoc when
the lox file is inexistent, reported by Philipp Stephani.

v3.3 Document incompatibility between marginal layout and the ACM SIG
classes, reported by Jochen Wuttke.
Honor twoside option in marginal layout, suggested by Jens Remus.
Support for Koma-Script classes version 2006/07/30 v2.95b, suggested by
Jens Remus.
Documentation improvements suggested by Brian van den Broek.
Fix incompatibility with amsart reported by Lars Madsen: \@starttoc
takes two arguments.
Fix bug reported by Stefan Mann: a typo in the \fixme@footnotetrue
macro name.

v3.2 Added the marginclue layout option which only signals a fixme in the mar-
gin, withtout the actual contents.
Support for Croatian thanks to Marcel Maretic.
Fix incompatibility with amsbook reported by Claude Lacoursiere: \@starttoc
takes two arguments.
Fix incompatibility with Beamer reported by Akim Demaille: protect con-
tents of lox file.

v3.1 Fix bug reported by Arnold Beckmann: the environments were visible in
final mode.

v3.0 Added environments corresponding to the annotation commands.
Added an optional first argument to the annotation commands to change
the layout locally.
Fix bug reported by Akim Demaille: marginal notes could mess up the
document’s layout by flushing it right.

v2.2 New option silent to suppress notes logging.
Support for Danish thanks to Kim Rud Bille.

v2.1 Use \nobreakspace instead of the tilda character. This avoids conflicts with
Babel in Spanish environments.
Fix bug reported by Knut Lickert: index entries were unconditionally built.

v2.0 New feature: note levels.
New feature: FiXme note counters and usage summary.
Suggestions from Kasper B. Graversen.
Support for Spanish thanks to Agustin Martin.

v1.5 New appearance option: inline.

27

FiXme v4.5 (2019/01/03)

v1.4 Support for the KOMA-Script classes.
Fix bug reported by Ulf Jaenicke-Roessler: the \listoffixmes command
didn’t work when called before the first FiXme note.

v1.3 Support for Italian thanks to Riccardo Murri.

v1.2 Support for German thanks to Harald Harders.

6 Implementation

6.1 Preamble

1 (fixme)

2 \NeedsTeXFormat{LaTeX2e}

3 (xheader)

4 \ProvidesPackage{fixme}[2019/01/03 v4.5 Collaborative annotations for LaTeX2el
5

6 (/header)

Some required packages:

7 (*fixme)

8 \RequirePackage{ifthen}

9 \RequirePackage{verbatim}

10 \RequirePackage{xkeyvall}[2006/11/18]
11

12 (/fixme)

\fixmelogo The FiXme logo:

13 (xheader)

14 \newcommand\fixmelogo{\textsf{FiXme}}
15

16 (/header)

6.2 Utilities

6.2.1 Miscellaneous

\efxpkginfo {(msg)}
\@fxpkgwarning Issue a FiXme package info or warning:
17 (xfixme)
18 \newcommand\@f xpkginfo{\PackageInfo{FiXmel}}
19 \newcommand\@fxpkgwarning{\PackageWarning{FiXmel}}

\efxpkgerror {(shortmsg)H (longmsg)}
Issue a FiXme package error:

20 \newcommand\@fxpkgerror{\PackageError{FiXme}}
21

\efxaddtolist {(list)}{(elt)}
Add (elt) at the end of (list). We should check for duplicates, but this is not
currently done.
22 \newcommand*\@fxaddtolist [2]{%
23 \expandafter\ifx\csname #1\endcsname\relax,
24 \expandafter\def\csname #1\endcsname{#2}/,

28

FiXme v4.5 (2019/01/03)

25 \else},

26 \expandafter\ifx\csname #1\endcsname\empty/

27 \expandafter\g@addto@macro\csname #1\endcsname{#2}/,
28 \else%

29 \expandafter\g@addto@macro\csname #1\endcsname{,#23}/,
30 \£fi%

31 \fi}

32

6.2.2 Key-value management (xkeyval)
6.2.2.1 Shortcuts
The following macros are simple shortcuts for using xkeyval with the fx prefix.

\@fxkeyifundefined {(families)}{(key)}{(then)}{(else)}
33 \newcommand\@fxkeyifundefined{\key@ifundefined [fx]}

\@fxdefinekey {(family)}{{key)} [{default)]{{function)}
34 \newcommand\@fxdefinekey{\define@key [fx]}

\@fxdefinecmdkey {(family)} [(mp)l{(key)} [(default)]{(function)}
35 \newcommand\@fxdefinecmdkey{\define@cmdkey [fx]}

\@fxdefinechoicekey {(family)}{{key)} [(bin)1{{alternatives)} [{default)]{(function)}
36 \newcommand\@fxdefinechoicekey{\define@choicekey[fx]}

\efxsetkeys {(families)} [(na)l{{keys)}
37 \newcommand\@fxsetkeys{\setkeys [fx]}

\efxpresetkeys {(families)}{(head keys)}{(tail keys)}

38 Note: currently unused
39 %o \newcommand\@fxpresetkeys{\presetkeys[fx]}
40

6.2.2.2 Wrappers

\@fxvoidkeyerror {(key)}{(value)}
Issue a FiXme error about a void (key) misuse (see below):

41 \newcommand*\@fxvoidkeyerror [2]{/
42 \@fxpkgerror{misuse of key ’#1’}{%

43 You have given the key ’#1’ the argument ’#2’ but it takes
44 none . \MessageBreak
45 Type X to quit, fix that key and re-run LaTeX.\MessageBreak}}

\e@fxdefinevoidkey {(family)}{(key){(func)}
A FiXme “void (key)” isn’t supposed to get an argument.
46 \newcommand*\@fxdefinevoidkey [3]{%

47 \define®@key [fx]{#1}{#2}[1{%
48 \ifthenelse{\equal{##1}{}}{/

49 #3H%
50 \@fxvoidkeyerror{#2}{##1}}}}
51

29

FiXme v4.5 (2019/01/03)

\@fxdefineboolkey

\@fxdefineoptioninterface

\FXDefine. . .Key
\FXDefine. . .CmdKey
\FXDefine. ..ChoiceKey
\FXDefine. ..VoidKey
\FXDefine...BoolKey

\1@fixme

\@fxdottedtocline

[(func)]{{family) }{ (key)}

A FiXme “boolean (key)” is like an xkeyval one, with the addition that for every
such key, there is a void nokey counterpart.

52 \newcommand*\@fxdefineboolkey [3] [1{/

53 \define@boolkey [fx]{#2}{#3} [true] {#1}

54 \@fxdefinevoidkey{#2}{no#3}{\Gnameuse{fx0@#20#3}{false}}}

55

6.2.2.3 Extension-level option creation interface
{(family) H {infiz)}

This macro defines the extension-level interface allowing users to define new
xkeyval options for a certain (family). Note that the core of FiXme could use
those interfaces once defined, but it wouldn’t bring much to the picture. Indeed,
it basically boils down to using a (family) within the names of the macros instead
of as an argument (and avoiding the use of the “at” character).

56 \newcommand*\@fxdefineoptioninterface[2]{}

57 \expandafter\newcommand\csname FXDefine#2Key\endcsname{7

58 \@fxdefinekey{#1}}%

59 \expandafter\newcommand\csname FXDefine#2CmdKey\endcsname{7

60 \@fxdefinecmdkey{#1}}%

61 \expandafter\newcommand\csname FXDefine#2ChoiceKey\endcsname{%

62 \@fxdefinechoicekey{#1}}/

63 \expandafter\newcommand\csname FXDefine#2VoidKey\endcsname{’,

64 \@fxdefinevoidkey{#1}}%

65 \expandafter\newcommand\expandafter*\csname FXDefine#2BoolKey\endcsname [2] [1{%
66 \@fxdefineboolkey [##1]{#1}{##2}}}

67

6.3 List macros
6.3.1 Contents lines

We use the same layout as for the list of figures.
68 \let\1@fixme\1l@figure

{(tocdepth) H (indent) H {numwidth) }{{contents) H{ (target)}

This macro is copied almost verbatim from ITEX’s core. The intent is to do
a similar layout, but replacing the last argument, normally a page number, by
arbitrary text (in our case, a note’s target). The original macro defines a restricted
width to typeset the page number which is much too short for us, so we just let
the (target) text take all the space it needs.

69 \newcommand*\@fxdottedtocline [5]{}

70 \ifnum #1>\c@tocdepth \else

71 \vskip \z@ \@plus.2\p@

72 {\leftskip #2\relax \rightskip \Q@tocrmarg \parfillskip -\rightskip
73 \parindent #2\relax\Q@afterindenttrue

74 \interlinepenalty\@M

75 \leavevmode

76 \@tempdima #3\relax

77 \advance\leftskip \@tempdima \null\nobreak\hskip -\leftskip

78 {#4}\nobreak

30

FiXme v4.5 (2019/01/03)

\fxcontentsline

\fxaddcontentsline

\@lox@prtc@article
\@lox@psttc@article

\@lox@prtc@report
\@lox@psttc@report

79

\leaders\hbox{$\m@th
\mkern \@dotsep mu\hbox{.}\mkern \@dotsep
mu$\hfill

\nobreak

#5\par}’,

\fi}

{{contents){ (target)}

Similar to BTEX’s \contentsline macro, but temporarily bind \@dottedtocline
to our own version. The nice thing about this implementation is that we can still
use \1@fixme (remember that it is bound to \1@figure) without exactly knowing
what its definition is. This macro is at the user level because \contentsline is,
but it is not currently documented in the user manual.

85 \newcommand*\fxcontentsline [2]{%

86 \begingroup/

87 \let\@dottedtocline\@fxdottedtoclineY,
88 \lofixme{#1}{#2}%

89 \endgroup}

90

{{contents)}

Wrapper around ETEX’s \addcontentsline macro to handle the target option.
If a specific target is provided, we can’t use the normal \addcontentsline macro
for reasons explained above, so we use our own version of \contentsline instead.
This macro is at the user level because \addcontentsline is, but it is not currently
documented in the user manual.

91 \newcommand*\fxaddcontentsline[1]{%

92
93
94
95

\ifthenelse{\equal{\cmdfx@note@target}{thepage}}{%

\addcontentsline{lox}{fixme}{#1}}{%
\addtocontents{lox}{\protect\fxcontentsline{#1}{\cmdfx@note@target}}}}

6.3.2 List headers

FiXme recognizes the standard article, report and book classes, the AMS ones,
and adapts the list header accordingly. It also detects when the package basictoc
is loaded and uses it, which notably makes it compliant with the KOMA-Script
classes as well. Otherwise, the standard article layout is used.

6.3.2.1 article version

96 \newcommand\@lox@prtc@article{,

97
98

\section*{\@fxlistfixmename

\@mkboth{\MakeUppercase\@fxlistfixmenamel}{\MakeUppercase\@fxlistfixmename}}}

99 \let\@lox@psttc@article\relax

100

6.3.2.2 report version

101 \newcommand\@lox@prtc@report{%

31

FiXme v4.5 (2019/01/03)

\@lox@prtc@book
\@lox@psttc@book

\lox@final
\lox@draft

\lox@draft@ams

102 \if@twocolumn

103 \@restonecoltrue\onecolumn
104 \else

105 \@restonecolfalse

106 \fi

107 \chapter*{\@fxlistfixmenamey,

108 \@mkboth{\MakeUppercase\@fxlistfixmename}{\MakeUppercase\Q@fxlistfixmename}}}

109 \newcommand\@lox@psttc@report{\if@restonecol\twocolumn\fi}
110

6.3.2.3 book version

111 \newcommand\@lox@prtc@book{%
112 \if@twocolumn

113 \@restonecoltrue\onecolumn
114 \else

115 \@restonecolfalse

116 \fi

117 \chapter*{\@fxlistfixmename,

118 \@mkboth{\MakeUppercase\@fxlistfixmenamel}{\MakeUppercase\@fxlistfixmename}}}

119 \newcommand\@lox@psttc@book{\if@restonecol\twocolumn\fi}
120

6.3.3 Status/class-dependent implementation

In the new implementation of the draft mode below, we not only check that the
lox file exists, but also that it is not empty before actually typesetting anything.

121 \let\lox@final\relax

122

123 \newread\lox@file

124 \newif\iflox@typeset

125 \def\lox@eol{\par}

126 \newcommand\lox@draft{’,

127 \lox@typesetfalse,

128 \openin\lox@file\jobname.lox\relax
129 \ifeof\lox@file\else

130 \read\lox@file to \lox@maybeeol

131 \ifeof\lox@file

132 \ifx\lox@maybeeol\lox@eol\else\lox@typesettrue\fi
133 \else

134 \lox@typesettrue

135 \fi

136 \fi

137 \closein\lox@file
138 \iflox@typeset\Q@lox@prtc\@starttoc{lox}\Q@lox@psttc\else\@starttoc{lox}\fi}

The amsbook and amsart classes have the very ugly idea of redefining the
\@starttoc macro to take two arguments. Therefore, I need to provide a specific
version of the \listoffixmes macro:

139 \newcommand\lox@draft@ams{\@starttoc{lox}\@fxlistfixmename}
140

32

FiXme v4.5 (2019/01/03)

\fxsetface

\@fxnewface

\@fxuseface

multiuser
singleuser
mode

\@fxearlylayouts
\@fxlatelayouts

\FXProvidesLayout

\@fxrecordlayoutmutex

6.4 Faces

{(name)}{(value)}
141 \newcommand*\fxsetface [2] {\@fxsetkeys{face}{#1face=#2}}

[(default)1{(name)}
A face is just a command key:

142 \newcommand*\@fxnewface [2] [1{%
143 \@fxdefinecmdkey{face}{#2face}{}/
144 \fxsetface{#2}{#1}}

{(name)}
145 \newcommand*\@fxuseface[1]{\@nameuse{cmdfx@face@#1face}}
146

6.5 Annotation layouts
6.5.1 Layout modes

These options specify whether FiXme should function in standalone or collabora-
tive mode, allowing the different layouts to tweak their output.

147 \@fxdefineboolkey [%
148 \ifthenelse{\equal{#1}{true}}{%

149 \fx@mode@singleuserfalse}{%
150 \fx@mode@singleusertrue}]{%
151 mode}{multiuser}

152 \@fxdefineboolkey [%
153 \ifthenelse{\equal{#1}{true}}{%

154 \fx@mode@multiuserfalse}{%
155 \fx@mode@multiusertruel}]{%
156 mode}{singleuser}

157 \@fxdefinechoicekey{mode}{mode}{multiuser,singleuser}{\@fxsetkeys{mode}{#1}}
158

6.5.2 Layout creation

Separating between “early” and “late” layouts is needed in starred context, that
is, when we are using targeted commands or environments.

Comma-separated lists of available early and late layouts.

159 \let\@fxearlylayouts\empty
160 \let\@fxlatelayouts\empty

{(name)} [(release information)]
161 \newcommand*\FXProvidesLayout [1] {\ProvidesPackage{fxlayout#1}}

{{layout) H (layouts)}

Record mutual exclusion between (layout) and the comma-separated list of

(layouts). For each (layout), the mutual exclusion list is stored in \@fxlayout®{layout)@mutex.
162 \newcommand*\@fxrecordlayoutmutex [2]{%

163 \edef\@fxlts{\zap@space#2 \Q@empty}’

164 \def\@fxexpr{\@fxaddtolist{@fxlayout@#1@mutexl}}’,

165 \expandafter\@fxexpr\expandafter{\@fxlts}/

166 \@for\@fx1lt:=\Q@fxlts\do{\@fxaddtolist{@fxlayout@\@fx1lt @mutex}{#1}}}

33

FiXme v4.5 (2019/01/03)

\@fxhandlelayoutmutex

\@FXRegisterLayout

\FXRegisterLayout
\FXRegisterLayout*

\FXDefineLayout. . .Key

\@fxtextstd

{(layout)}

Handle (layout)’s mutual exclusion list.

167 \newcommand*\@fxhandlelayoutmutex [1]{%
168 \ifthenelse{\boolean{fx@layout@#13}}{%
169 \def\@fxexpr{\@for\@fxlt:=}J,

170 \expandafter\Q@fxexpr\csname Q@fxlayout@#l@mutex\endcsname\do{%
171 \@ifundefined{iffx@layout@\@fx1t}{}{%

172 \ifthenelse{\boolean{fx@layout@\@fx1t}}{%

173 \@fxpkgwarning{’,

174 #1 layout requested;\MessageBreak

175 turning \@fxlt\space layout off}},

176 \@nameuse{fx@layout@\@fx1lt}{false}}{}}}}{}}

177

{(when)} [{mutez)]{(name) H(funcname)}

Register a new layout with FiXme. This currently involves creating the boolean
layout option with an optional function argument, constructing the translation
macro to call the actual layout macro, and updating the appropriate layout list
(early or late). The translation macro can’t be \let to the real one, because
themes might want to redefine latter. An optional mutual exclusion list may also
be given.

178 \def\O@FXRegisterLayout#1 [#2] #3#4{%

179 \@fxkeyifundefined{layout}{#3}{%

180 \@fxrecordlayoutmutex{#3}{#2}/

181 \@fxdefineboolkey[\@fxhandlelayoutmutex{#3}]{layout}{#3}/

182 \expandafter\def\csname @fxlayout@#3\endcsname{#41}/,

183 \@fxaddtolist{@fx#1layouts}{#3}}{/%

184 \@fxpkgerror{layout ’#3’ already registered}{/

185 You have called \string\FXRegisterLayout\space with a name already
186 in use.\MessageBreak

187 If you want to modify an existing layout, renew its

188 command . \MessageBreak

189 Otherwise, you must choose a different name.}}}

(*) [{mutex)I{{name) X (funcname)}

And the use-level interface:

190 \newcommand\FXRegisterLayout{’

191 \@ifstar{y

192 \@ifnextchar [%]

193 {\@FXRegisterLayout{early}}{\@FXRegisterLayout{early} []1}}{%
194 \@ifnextchar [%]

195 {\@FXRegisterLayout{late}}{\@FXRegisterLayout{late}[]1}}}
196

Finally, the extension-level option creation interface:
197 \@fxdefineoptioninterface{layout}{Layout}

198
6.5.3 Standard textual dispositions

{(type) H(note)X{{author)}
The standard text disposition.
199 \newcommand*\@fxtextstd[3]{\ignorespaces#3 \fxnotename{#1}: #2}

34

FiXme v4.5 (2019/01/03)

\@fxsignature {(author)}
Typeset the signature part unless (author) is empty. Note that \ifthenelse is
fragile, so we need to make the signature stuff robust.

200 \DeclareRobustCommand*\@fxsignature[1]{%
201 \ifthenelse{\equal{#1}{}}{}{ -- {\@fxuseface{signaturel}#1}}}

\efxsigstd {(type)}{(note)}{{author)}
The standard signature disposition.

202 \newcommand*\Q@fxsigstd[3]{\fxnotename{#1}: #2\@fxsignature{#3}}

6.5.4 Built-in layouts

Let’s start with the early layouts, and continue with the late ones.

6.5.4.1 Margin

margin 903 \@fxnewface{margin}

\FXLayoutMargin {(type)}{(note)}{{author)}

204 \newcommand*\FXLayoutMargin [3]1{%
205 \marginpar[\raggedleft\@fxuseface{margin}\Q@fxtextstd{#1}{#2}{#3}]1{/
206 \raggedright\@fxuseface{margin}\@fxtextstd{#1{#2}{#3}}}

\@fxlayout@margin
[nolmargin 207 \FXRegisterLayout*{margin}{\FXLayoutMargin}

6.5.4.2 Margin clue

{(type)}H(note) X {author)}
\FXLayoutMarginCLue 503 \newcommand*\FXLayoutMarginClue [3]{%
209 \marginpar [%
210 {\raggedleft\@fxuseface{margin}\ignorespaces#3 \fxnotename{#1}!}]1{%
211 \raggedright\@fxuseface{margin}\ignorespaces#3 \fxnotename{#1}!'}}

\@fxlayout@marginclue

[nolmarginclue 212 \FXRegisterLayout* [margin] {marginclue}{\FXLayoutMarginClue}

6.5.4.3 Footnote

{(type) H{note) H (author)}
\FXLayoutFootnote 313 \newcommand*\FXLayoutFootnote [3]{\footnote{\Ofxtextstd{#1}{#2}{#3}}}

\@fxlayout@footnote
[no]footnote 214 \FXRegisterLayout{footnote}{\FXLayoutFootnote}

35

FiXme v4.5 (2019/01/03)

inline

\FXLayoutInline

\@fxlayout@inline
[nolinline

\fixmeindexname

\@wrindex

\@fxnotekey
\@fxwarningkey
\@fxerrorkey
\@fxfatalkey

\FXLayoutIndex

\@fxlayout@index
[no]index

6.5.4.4 Inline

215 \@fxnewface{inline}

{(type) Y {note) H (author)}
216 \newcommand*\FXLayoutInline[3]{ \@fxuseface{inline}\@fxtextstd{#1}{#2}{#3}}

217 \FXRegisterLayout{inline}{\FXLayoutInline}

6.5.4.5 Index

218 \newcommand\fixmeindexname{\fixmelogo}

{{contents)}

A replacement for ITEX’s standard \@wrindex macro to deal with the target
option. When given, it is supposed to replace the page number, just as in the list
of fixmes.

219 \def\@wrindex#1{%

220 \ifthenelse{\equal{\cmdfx@note@target}{thepage}}{%

221 \protected@urite\@indexfile{}{\string\indexentry{#1}{\thepage}}}{/

222 \protected@urite\@indexfile{}{\string\indexentry{#1}{\cmdfx@note@target}}}/
223 \endgroup

224 \@esphack}

The keys used to sort indexed annotations by importance level:

225 \newcommand\@f xnotekey{***a}
226 \newcommand\Q@fxwarningkey{***b}
227 \newcommand\@f xerrorkey{***c}
228 \newcommand\@fxfatalkey{***d}

{{type) H(note) X {author)}
229 \newcommand*\FXLayoutIndex[3]{/
230 \iffxOmode@multiuser

231 \index{***@\fixmeindexname:?Y

232 '\@nameuse{Q@fx#1key}@\fxnotesname{#1}:%
233 '\@nameuse{thefx#icount}: #3: #2}),

234 \index{***#30\fixmeindexname{} (#3):%

235 '\@nameuse{Q@fx#1key}@\fxnotesname{#1}:%
236 '\@nameuse{thefx#1count}: #2}/

237 \else’,

238 \index{***@\fixmeindexname:?Y

239 I\@nameuse{@fx#1key}@\fxnotesname{#1}:%
240 I\@nameuse{thefx#lcount}: #2}J,

241 \fi}

242 \FXRegisterLayout{index}{\FXLayoutIndex}

36

FiXme v4.5 (2019/01/03)

\FXLayoutContentsLine

\fxloadlayouts

\@fxsetlayoutkeys

\@fxparselayout

innerlayout

6.5.4.6 Contents line

The contents of the lox file is handled through this pseudo-layout. It follows the
normal layout design, but is not registered the usual way because we don’t want to
give the user control over it. It is triggered explicitely by \@@@fxnote@late@draft.

{(type)}H(note)X{{author)}

243 \newcommand*\FXLayoutContentsLine [3]1{/
244 \iffx@mode@multiusery

245 \fxaddcontentsline{\@fxtextstd{#1}{#2}{#3}}/
246 \else’,

247 \fxaddcontentsline{\fxnotename{#1}: #21}J

248 \fi}

249

6.5.5 Layout loading
{(name,...)}

250 \newcommand*\fxloadlayouts[1]{%

251 \edef\@fxlts{\zap@space#1 \Qemptyl}’%

252 \@for\efxlt:=\@fxlts\do{\usepackage{fxlayout#1}}}
253

6.5.6 Layout control

{(keys)} This macro would probably be overkill if we didn’t need to \expandafter
it at some point (See \@fxhandleinnermode).

254 \newcommand\@fxsetlayoutkeys{\@fxsetkeys{layout}}

Utility macro to detect the no{name) form of layout options. The drawback of
this technique is that layout options must be at least 3 characters long. No big
deal though. ..

255 \def\@fxparselayout#1#2#3\relax{\def\@fxltprefix{#1#2}\def\@fx1ltrest{#3}}
256 % \begin{macro}{\fxuselayouts}

257 % \marg{[no]lnames}\\

258 % First, ensure that those layouts are available, then activate them.
259 % \cs{\FXRequireLayouts} is a better style for theme programming.

260 % \begin{macrocode}

261 \newcommand*\fxuselayouts[11{/

262 \edef\@fxlts{\zap@space#l \Qemptyl}’

263 \@for\@fxlt:=\@fxlts\do{/

264 \expandafter\@fxparselayout\@fx1lt\relax,

265 \ifthenelse{\equal{\@fxltprefix}{no}}{/

266 \let\@fxltname\@fxltrest}{/

267 \let\@fx1ltname\@fx1t}/,

268 \@fxkeyifundefined{layout}{\@fxltname}{\fxloadlayouts{\@fxltname}}{}}%

269 \@fxsetkeys{layout}{#1}}
270 \let\FXRequireLayouts\fxuselayouts
271

The alternative inner mode layout:
272 \@fxdefinecmdkey{layout}{innerlayout}{}

37

FiXme v4.5 (2019/01/03)

morelayout The morelayout option adds to the existing layout configuration. The imple-
mentation is trivial, as it simply boils down to calling \setkeys on its argument.
There are several advantages in doing this.

1. Tt is possible to disable a layout by using the no(layout) form. For example,
morelayout={inline,nomargin} will work.

2. A wrong layout name (for instance, misspelled) will trigger an xkeyval error.

273 \@fxdefinekey{layout}{morelayout}{\fxuselayouts{#1}}

layout The layout option lets the user specify exactly which ones she wants to use. Not
very difficult to implement either: it works by first deactivating all layouts, and
then activating the provided ones as before. Note that the use of the no{layout)
form is valid but has no effect.
274 \@fxdefinekey{layout}{layout}{%
275 \edef\@fxlayouts{\@fxearlylayouts,\@fxlatelayoutsl}/
276 \@for\@fxlt:=\@fxlayouts\do{/,

277 \@nameuse{fx@layout@\@fx1lt}{false}}%
278 \fxuselayouts{#1}}
279

6.6 Environment Layouts
6.6.1 Layout creation

\FXProvidesEnvLayout {(name)} [{release information)]

280 \newcommand*\FXProvidesEnvLayout [1]{\ProvidesPackage{fxenvlayout#1}}

\FXRegisterEnvLayout {(name)}{(beginfuncname)}{{endfuncname)}
Register a new environment layout with FiXme. This currently only involves con-
structing the translation macros. The translation macros in question can’t be
\let to the real ones, because themes or users might want to redefine the latter.
281 \newcommand*\FXRegisterEnvLayout [3]1{%
282 \@ifundefined{@fxenvlayout@#1@begin}{’

283 \expandafter\def\csname @fxenvlayout@#1@begin\endcsname{#21}/,

284 \expandafter\def\csname @fxenvlayout@#1@end\endcsname{#3}}{%

285 \@fxpkgerror{environment layout ’#2’ already registered}{’

286 You have called \string\FXRegisterEnvLayout\space with a name already in
287 use.\MessageBreak

288 If you want to modify an existing environment layout, renew its

289 commands . \MessageBreak

290 Otherwise, you must choose a different name.l}}}

291

\FXDefineEnvLayout...Key The extension-level option creation interface:
292 \@fxdefineoptioninterface{envlayout}{EnvLayout}
203
6.6.2 Built-in layouts
6.6.2.1 Plain

env 294 \@fxnewface{env}

38

FiXme v4.5 (2019/01/03)

\FXEnvLayoutPlainBegin
\FXEnvLayoutPlainEnd

\@fxenvlayout@plain@begin
\@fxenvlayout@plain@end

signature
signature

\FXEnvLayoutSignatureBegin
\FXEnvLayoutSignatureEnd

\@fxenvlayout@signature@begin
\@fxenvlayout@signature@end

\@fxselectenvlayout

\@fxenvlayout@begin
\@fxenvlayout@end

\fxloadenvlayouts

{(type) Y{{author)}

295 \newcommand*\FXEnvLayoutPlainBegin [2]{/

296 \@fxuseface{env}\ignorespaces#2 \fxnotename{#1}: \ignorespaces}
297 \newcommand*\FXEnvLayoutPlainEnd [2] {}

298 \FXRegisterEnvLayout{plain}{\FXEnvLayoutPlainBegin}{\FXEnvLayoutPlainEnd}
299

6.6.2.2 Signature

300 \@fxnewface[\itshape] {signature}

{(type)}{(author)}

301 \newcommand*\FXEnvLayoutSignatureBegin[2]{/

302 \@fxuseface{env}\fxnotename{#1}: \ignorespaces}

303 \newcommand*\FXEnvLayoutSignatureEnd [2] {\@fxsignature{#2}}

304 \FXRegisterEnvLayout{signature}{/
305 \FXEnvLayoutSignatureBegin}{\FXEnvLayoutSignatureEnd}
306

6.6.3 Layout selection
{(name)}

{(type) Y{{author)}

This is much simpler than standard layout management because only one envi-
ronment layout at a time is possible. Using a specific environment layout boils
down to possibly loading it, and binding the beginning and ending macros to the
proper translation ones.

307 \newcommand*\@fxselectenvlayout [1]1{/%
308 \expandafter\let\expandafter\@fxenvlayout@beginy,

309 \csname Qfxenvlayout@#1@begin\endcsname,

310 \expandafter\let\expandafter\@fxenvlayout@end
311 \csname Q@fxenvlayout@#1@end\endcsname}

312

6.6.4 Layout loading
{({name,...)}

313 \newcommand*\fxloadenvlayouts [1]{%

314 \edef\@fxlts{\zap@space#l \Qemptyl}%

315 \@for\@fxlt:=\@fxlts\do{\usepackage{fxenvlayout#1}}}
316

39

FiXme v4.5 (2019/01/03)

\fxuseenvlayout
\FXRequireEnvLayout

envlayout

\FXProvidesTargetLayout

\FXRegisterTargetLayout

\FXDefineTargetLayout. . .Key

target

\FXTargetLayoutPlain

\@fxtargetlayout@plain

6.6.5 Layout control
{(name)}
\FXRequireEnvLayout is a better style for theme programming.

317 \newcommand*\fxuseenvlayout [1]{%

318 \@ifundefined{@fxenvlayout@#1@begin}{\fxloadenvlayouts{#1}}{}/
319 \@fxselectenvlayout{#1}}

320 \let\FXRequireEnvLayout\fxuseenvlayout

321 \@fxdefinekey{envlayout}{envlayout}{\fxuseenvlayout{#1}}
322

6.7 Target Layouts
6.7.1 Layout creation

{(name)} [{release information)]
323 \newcommand*\FXProvidesTargetLayout [1]{\ProvidesPackage{fxtargetlayout#1}}

{{name)H(funcname)}

Register a new target layout with FiXme. This currently only involves constructing
the translation macro. The translation macro in question can’t be \let to the
real one, because themes or user might want to redefine the latter.

324 \newcommand*\FXRegisterTargetLayout [2]{

325 \@ifundefined{@fxtargetlayout@#1}{%

326 \expandafter\def\csname @fxtargetlayout@#1\endcsname{#2}}{%

327 \@fxpkgerror{target layout ’#1’ already registered}{’

328 You have called \string\FXRegisterTargetLayout\space with a name
329 already in use.\MessageBreak

330 If you want to modify an existing target layout, renew its

331 command . \MessageBreak

332 Otherwise, you must choose another name.}}}

333

The extension-level option creation interface:

334 \@fxdefineoptioninterface{targetlayout}{TargetLayout}
335

6.7.2 Built-in layouts

6.7.2.1 Plain

336 \@fxnewface{target}

{(target)}
337 \newcommand\FXTargetLayoutPlain[2] {\@fxuseface{target}#2}

338 \FXRegisterTargetLayout{plain}{\FXTargetLayoutPlain}
339

40

FiXme v4.5 (2019/01/03)

6.7.3 Layout selection
\@fxselecttargetlayout {(name)}

\@ofxtargetlayout {(target)}
This is much simpler than standard layout management because only one target
layout at a time is possible. Using a specific target layout boils down to possibly
loading it, and binding the layout macro to the proper translation one.
340 \newcommand*\@fxselecttargetlayout [1]{%
341 \expandafter\let\expandafter\@@fxtargetlayout?
342 \csname Qfxtargetlayout@#1l\endcsname}
343

6.7.4 Target layout loading

\fxloadtargetlayouts {(name,...)}

344 \newcommand*\fxloadtargetlayouts[1]{%

345 \edef\@fxlts{\zap@space#1 \Qemptyl}’

346 \@for\e@fxlt:=\@fxlts\do{\usepackage{fxtargetlayout#1}}}
347

6.7.5 Target layout control

\fxusetargetlayout {(name)}
\FXRequireTargetLayout \FXRequireTargetLayout is a better style for theme programming.
348 \newcommand*\fxusetargetlayout [1]{%
349 \@ifundefined{@fxtargetlayout@#1}{\fxloadtargetlayouts{#1}}{}/
350 \@fxselecttargetlayout{#1}}
351 \let\FXRequireTargetLayout\fxusetargetlayout

targetlayout

352 \@fxdefinekey{targetlayout}{targetlayout}{\fxusetargetlayout{#1}}
353

6.7.6 Status-dependant versions

\@fxtargetlayout@final {(target)}
\@fxtargetlayout@draft In final mode, the target is typeset as-is. In draft mode, we use the selected
layout.
354 \newcommand\@fxtargetlayout@final [2] {#2}
355 \newcommand\@fxtargetlayout@draft [2]{}
356 \begingroup\@0fxtargetlayout{#1}{#2}\endgroup}
357

6.8 Logging

6.8.1 Logging macros

\FXLogNote {<7nsg>}

\FXLogWarning 358 \newcommand*\FXLogNote [1]{%
\FXLogerror 359 \GenericInfo{/
\FXLogFatal 360 (FiXme) \@spaces\@spaces\@spaces\@spaces}{/
361 FiXme Note: ’#1°}}

41

FiXme v4.5 (2019/01/03)

\@fxlog@note
\@fxlog@warning
\@fxlog@error
\@fxlog@fatal

[nolsilent

fixmecount
fxnotecount
fxwarningcount
fxerrorcount
fxfatalcount

author

target

362 \newcommand*\FXLogWarning [1]{/

363 \GenericWarning{%

364 (FiXme) \@spaces\@spaces\@spaces\@spaces}{/
365 FiXme Warning: ’#1°}}

366 \newcommand*\FXLogError [1]{/

367 \GenericWarning{J

368 (FiXme) \@spaces\@spaces\@spaces\@spaces}{%
369 FiXme Error: ’#1°}}

370 \newcommand*\FXLogFatal [1]{/

371 \GenericWarning{J

372 (FiXme) \@spaces\@spaces\@spaces\@spaces}{/

373 FiXme Fatal Error: ’#1’}}

374

In order for the generic note dispatcher to be able to call the logging macros

(see section 6.9.3 on page 44), we need an easier translation mechanism from the
annotation type to the actual macro name. The translation macros in question
can’t be \1let to the real one, because users might want to redefine the actual log
macros later.

375 \def\@fxlog@note{\FXLogNote}

376 \def\@fxlog@warning{\FXLogWarning}

377 \def\@fxlog@error{\FXLogError}

378 \def\@fxlog@fatal{\FXLogFatal}

379

6.8.2 Logging control

Whether to log the annotations:

380 \@fxdefineboolkey{log}t{silent}
381

6.9 FiXme notes
6.9.1 Note parameters

fixmecount maintains the total of all annotations, regardless of their level. Each
note type also gets its own counter:

382 \newcounter{fixmecount}

383 \newcounter{fxnotecount}

384 \newcounter{fxwarningcount}

385 \newcounter{fxerrorcount}

386 \newcounter{fxfatalcount}

387

An annotation “author” allows to distinguish notes from different persons in col-
laborative mode.

388 \@fxdefinecmdkey{note}{author}{}

An annotation “target” may replace the page number in the list of corrections or
in the index (see also section 6.5.4.6 on page 37).

389 \@fxdefinecmdkey{note}{target}{}

42

FiXme v4.5 (2019/01/03)

\@fxhandleinnermode

\@fxissueearlydraftlayouts
\@fxissuelatedraftlayouts

\@fxissuecommonlayouts

6.9.2 Layout dispatch

Handle the case where TEX is in inner mode. We use the alternative layout
provided by the innerlayout option, and we make sure to disable both the
margin and marginclue layout forms. This is done by appending nomargin and
nomarginclue to the inner layout value (this also renders nasty user settings harm-
less). Before that, we provide some informative message if risky layout forms were
active.

390 \newcommand\@fxhandleinnermode{%

391 \ifinner},

392 \ifthenelse{\boolean{fx@layout@margin}}{/

393 \@fxpkginfo{%

394 inner mode detected;\MessageBreak

395 turning margin layout form off}}{J

396 \ifthenelse{\boolean{fx@layout@marginclue}}{/
397 \@fxpkginfo{%

398 inner mode detected;\MessageBreak

399 turning marginclue layout form off}}{}1}
400 \expandafter\Q@fxsetlayoutkeys\expandafter{’

401 \cmdfx@layout@innerlayout ,nomargin,nomargincluely,
402 \fi}

{(type) H {note)}

Dispatch all active draft mode layouts. \@fxissueearlydraftlayouts takes
care of dispatching early layouts, but before that, handles the inner mode case.
\@fxissuelatedraftlayouts just dispatches late layouts.

403 \newcommand*\@fxissueearlydraftlayouts[2]{/

404 \@fxhandleinnermode},

405 \@for\@fxlt:=\@fxearlylayouts\do{’

406 \@nameuse{iffx@layout@\Q@fx1lt}’
407 \@nameuse{@fxlayout@\@fx1t}{#1}{#2}{\cmdfx@note@authorl}y
408 \fi}}

409 \newcommand*\@fxissuelatedraftlayouts[2]{%
410 \@for\@fxlt:=\@fxlatelayouts\do{%

411 \@nameuse{iffx@layout@\Q@fx1lt}’
412 \@nameuse{@fxlayout@\Q@fx1t}{#1}{#2}{\cmdfx@note@authorl}y,
413 \fi}}

{(type) H (note)}

Dispatch all mode-independent layouts (actually, “layout” is to be taken in a
slightly broader sense here). This macro executes all operations that need to be
performed regardless of the document status. This currently means logging the
annotations. Previously, this code also updated the lox file, but this could lead
to typesetting artifacts even in final mode (because of the whatsit introduced by
\write), which is highly undesirable, and besides, there’s no point in keeping that
information up to date, since it won’t be typeset. So from now on, the contents
lines are only generated in draft mode by \@@@fxnote@late@draft.

414 \newcommand*\@fxissuecommonlayouts [2] {/

415 \iffx@log@silent\else\@nameuse{@fxlog@#1}{#2}\fi}
416

43

FiXme v4.5 (2019/01/03)

\@@@fxnote@early@final
\@Q@@fxnote@late@final
\@e@fxnote@early@draft
\@@Afxnote@late@draft

\@fxpostconfigure

\@fxendgroup

6.9.3 Status-dependent implementation

{(type) X (note)}

The lower-level macros that perform the real job. In final mode, early work is
only to check for remaining fatal annotations and late work is to dispatch common
layouts.

417 \newcommand*\@@@fxnote@early@final [2]{/

418 \ifthenelse{\equal{#1}{fatal}}{%

419 \@fxpkgerror{’#2’ fatal error left in final version}{}

420 You are currently processing in final mode,\MessageBreak

421 but you still have some FiXme fatal errors left behind.\MessageBreak
422 Type X to quit, fix your document (or switch back to draft

423 mode) , \MessageBreak

424 and rerun LaTeX.}}{}}

425 \newcommand*\@Q@@fxnote@late@final [2] {\@fxissuecommonlayouts{#1}{#2}}

In draft mode, early work is to dispatch early layouts, while late work is to
dispatch both late and common layouts, and update the lox file.

426 \newcommand*\@Q@@fxnote@early@draft [2]{%

427 \@fxissueearlydraftlayouts{#1}{#2}}

428 \newcommand*\@@@fxnote@late@draft [2]{%

429 \@fxissuelatedraftlayouts{#1}{#2}/,

430 \FXLayoutContentsLine{#1}{#2}{\cmdfx@note@authorl}’

431 \@fxissuecommonlayouts{#1}{#2}}

432

6.9.4 Standard version

This macro is used in \@@fxnote@early below, after processing user options (even
when there is none), to postconfigure some aspects of the annotations. Currently,
this involves two things: setting the author to \fixmelogo if it still is fixme, and
automatically tracking the current language if required (note that all other lan-
guage options turn tracking off, meaning that one can override language tracking
locally by providing a language explicitely). Since environments need the post-
configuration done sooner, they perform it themselves and rebind this macro to
\relax.

433 \newcommand*\@fxpostconfigure{’
434 \ifthenelse{\equal{\cmdfx@note@author}{fixmel}}{Y%

435 \@fxsetkeys{note}{author=\fixmelogo}}{}%

436 \iffx@lang@langtrack

437 \@fxkeyifundefined{lang}{\languagename}{7

438 \@fxpkgwarning{unknown language ’\languagename’;\MessageBreak
439 falling back to \@fxdefaultlangl}’

440 \@fxsetkeys{lang}{\@fxdefaultlang}}{/

441 \@fxsetkeys{lang}{\languagename}}

442 \fi}

443

This macro is used in \@@fxnote@late below to close the group opened at the user
level. Since environments need the group opened for a longer time, they rebind it
to \relax and close the group themselves later on.

444 \let\@fxendgroup\endgroup

44

FiXme v4.5 (2019/01/03)

\@@fxnote@early

\@@fxnote@late

\@@fxnote

\@fxnote

\@@fxsnote

\@fxsnote

\@fxpreconfigure

{(type) H(note)>

Counters need to be updated regardless of the mode.
445 \def\@@fxnoteQearly#1#2{%

446 \@fxpostconfigure,
447 \stepcounter{fixmecount}%
448 \stepcounter{fx#1lcount}y,

449 \@@e@fxnote@early{#1}{#2}}

450 \def\@@fxnote@late#1#2{%
451 \@eefxnote@late{#1}{#2}Y%
452 \@fxendgroup}

{(type)H{(note)}

This macro is used everywhere outside a starred context, because in that case, we
do early and late work in a row.

453 \def\@@fxnote#1#2{%

454 \Q@@fxnote@early{#1}{#2}/,

455 \@@fxnote@late{#1}{#2}}

{{type)} [{options)1{(note)}
456 \def\@fxnote#1 [#2]#3{%
457 \@fxsetkeys{mode,status,lang,log,note,face,layout}{#2}/
458 \Q@Q@fxnote{#1}{#3}}
459

6.9.5 Starred version

{(type) X (note)}{(text)}

Post-configuration is done here because it’s the code path confluent for all starred
commands. Relaxing post-configuration afterwards is to prevent \@@fxnote@early
from doing it again. Note that this is the only place where we actually do early
and late work not in a row.
460 \long\def\@@fxsnote#1#2#3{%

461 \@fxpostconfigure\let\@fxpostconfigure\relaxy,
462 \@@fxnote@early{#1}{#2}\@fxtargetlayout{#1}{#3}\0@@fxnote@late{#1}{#2}}

{(type)} [{options)1{(note)}{(text)}

Note the targetlayout family here.

463 \long\def\@fxsnote#1 [#2]#3#4{),

464 \@fxsetkeys{mode,status,lang,log,note,face,layout,targetlayout}{#2}%
465 \@@fxsnote{#1}{#3}{#4}}

466

6.9.6 User-level interface generation

{(author)}

This macro is used at the beginning of every user-level entry point (here for notes,
and also in the environments section), to preconfigure some aspects of the annota-
tions, before possibly processing options. Currently, this only involves presetting
the note’s author to the one specified in the call to \FXRegisterAuthor. This

45

FiXme v4.5 (2019/01/03)

however is not done for the built-in fixme author, because this one should honor
a global setting.

467 \newcommand*\@fxpreconfigure [1]1{/
468 \ifthenelse{\equal{#1}{fixme}}{}{\@fxsetkeys{note}{author=#13}}3}

\@fxnewnotemacro {(prefir)H (type)H (author)}
This macro defines the user-level interface:

469 \newcommand*\@fxnewnotemacro [3]{/,
470 \expandafter\DeclareRobustCommand\csname #1#2\endcsname{’,

471 \begingroup’

472 \@fxpreconfigure{#31}/,

473 \@ifstar{Y

474 \@ifnextchar [%]

475 {\@fxsnote{#2}}{\@C@fxsnote{#2}}}{%
476 \@ifnextchar [%]

477 {\efxnote{#2}}{\@0fxnote{#2}}}1}}

6.10 FiXme environments

A FiXme environment’s summary is laid out by the corresponding macro, but the
inline layout is disabled. This is as easy as appending noinline to the end of
the options list.

6.10.1 Status-dependent implementation

\@eeefxbeginenvefinal {(type)}
\@eeefxbeginenv@draft In final mode, verbatim’s comment environment is used to suppress output.
\@fxendenv@final 473 \def\@@@Qfxbeginenvefinal#1{\comment}
\@fxendenv@draft 479 \def\@e@efxbeginenv@draft#1{\@fxenvlayout@begin{#1}{\cmdfx@note@author}}
480 \def\@fxendenv@final#1{\endcomment}
481 \def\@fxendenv@draft#1{\unskip\@fxenvlayout@end{#1}{\cmdfx@note@author}}
482

6.10.2 Standard versions

\eeefxbeginenv {(type)}{(summary)}

\@efxbeginenv Post-configuration is done here (it’s the code path confluent for all non-starred
environments). Relaxing post-configuration afterwards is to prevent \@@fxnote
from doing it again.

483 \def\@Q@Qfxbeginenv#1#2{%

484 \@fxpostconfigure\let\@fxpostconfigure\relaxy,
485 \Q@@fxnote{#1}{#2}Y

486 \QQQ@Q@fxbeginenv{#1}}

487 \def\@@fxbeginenv#1#2{}

488 \@fxsetkeys{layout}{noinlinel}j,

489 \@@@fxbeginenv{#1}{#2}}

\@fxbeginenv {(type)} [{options)]{{summary)}
490 \def\@fxbeginenv#1 [#2]#3{/
491 \@fxsetkeys{mode,status,lang,log,note,face,layout,envlayout}{#2,noinlinel}y,
492 \@@efxbeginenv{#1}{#3}}
493

46

FiXme v4.5 (2019/01/03)

6.10.3 Starred versions

\@eefxbeginsenv {(type)H (summary)}{(text)}

\@efxbeginsenv Post-configuration is done here (it’s the code path confluent for all starred envi-
ronments). Relaxing post-configuration afterwards is to prevent \@@fxsnote from
doing it again.

494 \long\def\Q@@Qfxbeginsenv#1#2#3{},

495 \@fxpostconfigure\let\@fxpostconfigure\relaxj
496 \Q@@fxsnote{#1}{#2}{#3}/

497 \@Q@Qfxbeginenv{#1}}

498 \long\def\@@fxbeginsenv#1#2#3{}

499 \@fxsetkeys{layout}{noinlinel}

500 \@@efxbeginsenv{#1}{#2}{#3}}

\efxbeginenv {(type)} [(options)]{{summary)I{(text)}
Note the targetlayout family here.

501 \long\def\@fxbeginsenv#1 [#2] #3#4{/
502 \@fxsetkeys{mode,status,lang,log,note,face,layout,envlayout,targetlayout}{/

503 #2,noinlinel}%
504 \@@@fxbeginsenv{#1}{#3}{#4}}
505

6.10.4 User-level interface generation

\@fxnewnoteenvs {(prefix)}{(type)H (author)}
This macro defines the user-level interface. The ending macros are identical. Also,
the environments close their own group, so we prevent \@@fxnote from doing so
by temporarily rebinding \@fxendgroup to \relax.
506 \newcommand*\@fxnewnoteenvs [3]{%
507 \expandafter\def\csname #1#2\endcsname{’
508 \begingroup%

509 \let\@fxendgroup\relax,

510 \@fxpreconfigure{#31}/

511 \@ifnextchar [%]

512 {\efxbeginenv{#2}}{\@efxbeginenv{#2}}}
513 \expandafter\def\csname end#1#2\endcsname{’,
514 \@fxendenv{#2}/,

515 \endgroupl}/,

516 \expandafter\long\expandafter\def\csname #1#2x\endcsname{7
517 \begingroup%

518 \let\@fxendgroup\relax,

519 \@fxpreconfigure{#31}/

520 \@ifnextchar [%]

521 {\efxbeginsenv{#2}}{\@0fxbeginsenv{#2}}}
522 \expandafter\def\csname end#1#2*\endcsname{,
523 \@fxendenv{#2}/,

524 \endgroup}}

525

6.11 FiXme authors

\FXRegisterAuthor {({cmdprefiz)}{{envprefiz)H (name)}
This macro creates the whole user-level interface for a particular author:

47

FiXme v4.5 (2019/01/03)

\fx...[*]

anfx...[*]

\fixme

afixme

\@fxlanguages

english
\fxenglish. .. [s]name

\englishlistfixmename

526 \newcommand*\FXRegisterAuthor [3]{%

527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544

\@ifundefined{#1inote}{}{%
\@fxpkgerror{command prefix ’#1’ already in usel}{/
You have called \string\FXRegisterAuthor\space with a command prefix
already in use.\MessageBreak
Please choose another one.l}}/,
\@ifundefined{#2note}{}{%
\@fxpkgerror{environment prefix ’#2’ already in use}{
You have called \string\FXRegisterAuthor\space with an environment
prefix already in use.\MessageBreak
Please choose another one.}}%
\@fxnewnotemacro{#1}{note}{#3}%
\@fxnewnotemacro{#1}{warning}{#3}/,
\@fxnewnotemacro{#1}{error}{#3}/
\@fxnewnotemacro{#1}{fatal}{#3}/
\@fxnewnoteenvs{#2}{note}{#3}%
\@fxnewnoteenvs{#2}{warning}{#3}%
\@fxnewnoteenvs{#2}{error}{#3}/,
\@fxnewnoteenvs{#2}{fatal}{#3}}

And we use it to create the FiXme default user:
546 \FXRegisterAuthor{fx}{anfx}{fixme}

[(options)1{(note)}
Deprecate \fixme:

547 \DeclareRobustCommand\fixme{

548
549
550

\@fxpkgwarning{\string\fixme\space is deprecated;\MessageBreak
please use \string\fxfatal\space insteadl}/,
\fxfatal}

Deprecate the afixme environment:
551 \def\afixme{/,

552
553

554

\@fxpkgwarning{The ’afixme’ environment is deprecated;\MessageBreak
please use ’anfxfatal’ insteadl}V
\anfxfatal}

555 \let\endafixme\endanfxfatal

6.12 Internationalization

This macro lists all the supported languages, including aliases:

556 \newcommand*\@fxlanguages{%

557
558

english,french,francais,spanish,italian,german,ngerman,danish,croatian}

6.12.1 Language definitions
6.12.1.1 English

559 \newcommand\fxenglishnotename{Note}
560 \newcommand\fxenglishnotesname{Notes}
561 \newcommand\fxenglishwarningname{Warning}

48

FiXme v4.5 (2019/01/03)

french
francais
\fxfrench. .. [s]name

\frenchlistfixmename

spanish
\fxspanish. .. [s]Iname

\spanishlistfixmename

italian

\fxitalian...[s]name

\italianlistfixmename

german
ngerman
\fxgerman. .. [s]name

562 \newcommand\fxenglishwarningsname{Warnings}

563 \newcommand\fxenglisherrorname{Error}

564 \newcommand\fxenglisherrorsname{Errors}

565 \newcommand\fxenglishfatalname{Fatal}

566 \newcommand\fxenglishfatalsname{Fatal errors}

567 \newcommand\englishlistfixmename{List of Corrections}
568

6.12.1.2 French

569 \newcommand\fxfrenchnotename{Note}

570 \newcommand\fxfrenchnotesname{Notes}

571 \newcommand\fxfrenchwarningname{Attention}

572 \newcommand\fxfrenchwarningsname{Avertissements}

573 \newcommand\fxfrencherrorname{Erreur}

574 \newcommand\fxfrencherrorsname{Erreurs}

575 \newcommand\fxfrenchfatalname{Fatal}

576 \newcommand\fxfrenchfatalsname{Erreurs fatales}

577 \newcommand\frenchlistfixmename{Liste des Corrections}
578

6.12.1.3 Spanish

579 \newcommand\fxspanishnotename{Nota}

580 \newcommand\fxspanishnotesname{Notas}

581 \newcommand\fxspanishwarningname{Aviso}

582 \newcommand\fxspanishwarningsname{Avisos}

583 \newcommand\fxspanisherrorname{Error}

584 \newcommand\fxspanisherrorsname{Errores}

585 \newcommand\fxspanishfatalname{Fatal}

586 \newcommand\fxspanishfatalsname{Errores fatales}

587 \newcommand\spanishlistfixmename{Lista de Correcciones}
588

6.12.1.4 Italian

589 \newcommand\fxitaliannotename{Nota}

590 \newcommand\fxitaliannotesname{Note}

591 \newcommand\fxitalianwarningname{Avviso}

592 \newcommand\fxitalianwarningsname{Avvisi}

593 \newcommand\fxitalianerrorname{Errore}

594 \newcommand\fxitalianerrorsname{Errori}

595 \newcommand\fxitalianfatalname{Fatale}

596 \newcommand\fxitalianfatalsname{Errori fatali}
597 \newcommand\italianlistfixmename{Corrigenda}
598

6.12.1.5 German

49

FiXme v4.5 (2019/01/03)

danish
\fxdanish. .. [s]name

\danishlistfixmename

croatian
\fxcroatian...[s]name

\croatianlistfixmename

langtrack

defaultlang

lang
\@fxlang

599 \newcommand\fxgermannotename{Anm}

600 \newcommand\fxgermannotesname{Anmerkungen}

601 \newcommand\fxgermanwarningname{Warnung}

602 \newcommand\fxgermanwarningsname{Warnungen}

603 \newcommand\fxgermanerrorname{Fehler}

604 \newcommand\fxgermanerrorsname{Fehler}

605 \newcommand\fxgermanfatalname{Verh\"angnisvoll}

606 \newcommand\fxgermanfatalsname{Verh\"angnisvolle fehler}

607 \newcommand\germanlistfixmename{Verzeichnis der Korrekturen}
608

6.12.1.6 Danish

609 \newcommand\fxdanishnotename{Note}

610 \newcommand\fxdanishnotesname{Noter}

611 \newcommand\fxdanishwarningname{Advarsel}
612 \newcommand\fxdanishwarningsname{Advarsler}
613 \newcommand\fxdanisherrorname{Fejl}

614 \newcommand\fxdanisherrorsname{Fejl}

615 \newcommand\fxdanishfatalname{Fatal}

616 \newcommand\fxdanishfatalsname{Fatale fejl}
617 \newcommand\danishlistfixmename{Rettelser}
618

6.12.1.7 Croatian

619 \newcommand\fxcroatiannotename{Poruka}

620 \newcommand\fxcroatiannotesname{Poruke}

621 \newcommand\fxcroatianwarningname{Upozorenja}

622 \newcommand\fxcroatianwarningsname{Upozorenje}

623 \newcommand\fxcroatianerrorname{Gre\v ska}

624 \newcommand\fxcroatianerrorsname{Greske}

625 \newcommand\fxcroatianfatalname{Fatalan}

626 \newcommand\fxcroatianfatalsname{Kobne gre\v ske}
627 \newcommand\croatianlistfixmename{Popis korekcija}
628

6.12.2 Language tracking

Whether to track the value of \languagename automatically:
629 \@fxdefineboolkey{lang}{langtrack}

Which language to use when tracking leads to an unsuported language:
630 \def\@fxexpr{\@fxdefinechoicekey{lang}{defaultlang}[\@fxdefaultlang]}

631 \expandafter\@fxexpr\expandafter{\@fxlanguages}{}
632

6.12.3 Language options

Store the current language in \@fxlang after having handled language aliases, and
disable language tracking:

50

FiXme v4.5 (2019/01/03)

english
french
francais
spanish
italian
german
ngerman
danish

. croatian
\@fxlistfixmename

\fxnotename
\fxnotesname

\@@@fxnote@early
\@@efxnote@late
\@Q@@Qefxbeginenv

\@fxendenv
\@fxtargetlayout
\listoffixmes
final

draft

status

\FXProvidesTheme

\fxusetheme

633 \def\@fxexpr{\@fxdefinechoicekey{lang}{lang}[\@fxlang]}
634 \expandafter\@fxexpr\expandafter{\@fxlanguages}{/

635 \ifthenelse{\equal{#1}{francais}}{\def\@fxlang{french}}{/
636 \ifthenelse{\equal{#1}{ngerman}}{\def\@fxlang{german}}{}1}/
637 \@fxsetkeys{lang}{langtrack=falsel}}

638

Create individual language options:
639 \@for\@fxlg:=\@fxlanguages\do{

640 \def\@fxexprone{\@fxdefinevoidkey{lang}}

641 \edef\@fxexprtwo{{\@fxlg}{\noexpand\@fxsetkeys{lang}{lang=\0fxlg}t}}
642 \expandafter\@fxexprone\@fxexprtwol}

643

6.12.4 Language abstraction layer

Construct the “list of fixmes” title in a language dependent fashion:

644 \newcommand*\@fxlistfixmename{\@nameuse{\@fxlang listfixmenamel}}

{{type)}

Construct the notes names in a language dependent fashion:

645 \newcommand*\fxnotename [1]{\@nameuse{fx\@fxlang#inamel}}
646 \newcommand*\fxnotesname [1] {\@nameuse{fx\@fxlang#lsname}}
647

6.13 Document status processing

Select draft or final versions of internal macros (some of them also depending on

the document class):
648 \@fxdefinevoidkey{status}{finall}{%

649 \let\@@@fxnote@early\@O@@fxnote@early@finalj,
650 \let\@@@fxnote@late\@Q@@fxnote@late@finaly,
651 \let\@Q@OQ@fxbeginenv\0QO@Qfxbeginenv@final
652 \let\@fxendenv\@fxendenv@finall,

653 \let\@fxtargetlayout\@fxtargetlayout@finaly,
654 \let\listoffixmes\lox@final}

655 \@fxdefinevoidkey{status}{draft}{/

656 \let\@@@fxnote@early\@@@fxnote@early@drafty,
657 \let\@@@fxnote@late\@Q@@fxnoteQ@late@drafty
658 \let\@@QQ@fxbeginenv\@QQ@@fxbeginenve@draft
659 \let\@fxendenv\@fxendenv@drafty

660 \let\@fxtargetlayout\@fxtargetlayout@drafty
661 \let\listoffixmes\lox@draft}

662 \@fxdefinechoicekey{status}{status}{final,draft}{\@fxsetkeys{status}{#1}}

663

6.14 Theme support

{(name)} [(release information)]
664 \newcommand*\FXProvidesTheme [1] {\ProvidesPackage{fxtheme#1}}

{{name)}

665 \newcommand*\fxusetheme [1]{\usepackage{fxtheme#1}}

o1

FiXme v4.5 (2019/01/03)

theme

\@lox@prtc
\@lox@psttc
\@lox@draft

666 \@fxdefinekey{theme}{theme}{\fxusetheme{#1}}

6.15 Finale
6.15.1 Class-dependent settings

Currently, our class dependencies only matter in draft mode, so one could argue
that it is not optimal to handle this here. However, it would be incorrect to do
it in the draft option code because this option can be switched at any point in
the document (remember that it is understood even by the annotation macros
and environments) and the stuff below should only be executed once. Besides,
\@ifclassloaded is an \@onlypreamble macro...

As documented, marginal notes are incompatible with the ACM SIG classes.
Initially, I thought I would detect these classes and issue an error if marginal
layout (or clue) is active. However, I changed my mind, because nothing prevents
somebody to write a new class on top of these ones and authorize \marginpar
back again. Normally these classes issue an error if \marginpar is used. However,
the 2.3 / June 2007 versions are buggy and the error actually triggers a stack
overflow in WTEX. .. (patch submitted). Oh boy, these classes are a mess.

667 \@ifclassloaded{article}{%

668 \let\@lox@prtc\@lox@prtc@article

669 \let\@lox@psttc\@lox@psttc@article}{%
670 \@ifclassloaded{report}{%

671 \let\@lox@prtc\@lox@prtc@reporty,

672 \let\@lox@psttc\@lox@psttc@report}{%

673 \@ifclassloaded{book}{%

674 \let\@lox@prtc\@lox@prtc@booky

675 \let\@lox@psttc\@lox@psttc@book}{%

676 \@ifclassloaded{amsbook}{/

677 \let\lox@draft\lox@draft@ams}{%

678 \@ifclassloaded{amsart}{%

679 \let\lox@draft\lox@draft@ams}{’

680 %% Use the article layout by default.
681 \let\@lox@prtc\@lox@prtcOarticle}

682 \let\@lox@psttc\@lox@psttc@article}}}}}
683

This overrides any previous class-based settings but makes the list of corrections
compliant with the KOMA-Script classes and any document using the tocbasic
package.

684 \@ifpackageloaded{tocbasic}{%

685 \addtotoclist[fixme]{lox}%
686 \renewcommand\lox@draft{\listoftoc[\@fxlistfixmename]{lox}}}{}

6.15.2 Options Processing

First, we execute some options to initialize FiXme to something sensible, and then
we process the user ones. Note the abscence of the theme family here.

687 \ExecuteOptionsX [fx]<J,
688 mode,status,lang,log,note,face,layout,envlayout,targetlayout>{/

52

FiXme v4.5 (2019/01/03)

\fxsetup

689 mode=singleuser,’

690 status=final,’

691 lang=english,%

692 langtrack=false,’

693 defaultlang=english,7,

694 nosilent,%

695 author=fixme,?

696 target=thepage,?

697 layout=margin,7

698 innerlayout={layout=inline},%
699 envlayout=plain,

700 targetlayout=plain,?

701 inlineface=\bfseries,}

702 marginface=\footnotesize,
703 envface=\bfseries,}

704 targetface=\itshape}

705 \ProcessOptionsX* [fx] <Y

706 mode,status,lang,log,note,face,layout,envlayout,targetlayout>
707

6.15.3 The \fxsetup macro

{({options)}

The inevitable setup macro, extremely impressive yet as trivial as can be with
the xkeyval package...\fxsetup is the only place where the theme family is
processed.

708 \newcommand*\fxsetup[1]{/

709 \@fxsetkeys{%

710 mode, status, lang,log,note,face,layout,envlayout,targetlayout, theme}{/
711 #1}}
712

6.15.4 FiXme summary

Finally, output a summary giving the number of fixme notes at the end of the
compilation:

713 \AtEndDocument{%

714 \iffx@log@silent\else

715 \GenericWarning{’

716 (FiXme) \@spaces\@spaces}{/

717 FiXme Summary: Number of notes: \thefxnotecount,\MessageBreak},
718 Number of warnings: \thefxwarningcount,\MessageBreaky,

719 Number of errors: \thefxerrorcount,\MessageBreaky,

720 Number of fatal errors: \thefxfatalcount,\MessageBreak,

721 Total: \thefixmecount\@gobble}’,

722 \fi}

723 (/fixme)

53

FiXme v4.5 (2019/01/03)

marginnote

\FXLayoutMarginNote

\@fxlayout@marginnote
[nolmarginnote

pdfnote

\FXLayoutPDFNote

\@fxlayout@pdfnote

[nolpdfnote

pdfmargin

\FXLayoutPDFMargin

A External Layouts

A.1 Annotation layouts
A.1.1 The marginnote layout

724 (xfxlayoutmarginnote)

725 \NeedsTeXFormat{LaTeX2e}

726 \FXProvidesLayout{marginnote}
727

728 \RequirePackage{marginnote}
729

{(type) X (note) H {author)}
730 \newcommand*\FXLayoutMarginNote [3]1{/
731 \marginnote[\raggedleft\@fxuseface{margin}\@fxtextstd{#1}{#2}{#3}]1{%
732 \raggedright\@fxuseface{margin}\@fxtextstd{#1{#2}{#3}}}

733 \FXRegisterLayout*[margin,marginclue] {marginnote}{\FXLayoutMarginNote}
734 (/fxlayoutmarginnote)

A.1.2 The pdfnote layout

735 (xfxlayoutpdfnote)

736 \NeedsTeXFormat{LaTeX2e}
737 \FXProvidesLayout{pdfnote}
738

739 \RequirePackage{pdfcomment}
740

{(type) H{note) H (author)}
741 \newcommand*\FXLayoutPDFNote [3]{%
742 \pdfcomment [author={#3}]{\Cfxtextstd{#1}{#2}{#3}}}

743 \FXRegisterLayout{pdfnote}{\FXLayoutPDFNote}
744 (/fxlayoutpdfnote)

A.1.3 The pdfmargin layout

745 (xfxlayoutpdfmargin)

746 \NeedsTeXFormat{LaTeX2e}

747 \FXProvidesLayout{pdfmargin}
748

749 \RequirePackage{pdfcomment}
750

{(type) Y (note) H (author)}
751 \newcommand*\FXLayoutPDFMargin [3]{/%
752 \pdfmargincomment [author={#3}]{\@fxtextstd{#1}{#2}{#3}}}

54

FiXme v4.5 (2019/01/03)

\@fxlayout@pdfmargin
[no]pdfmargin

pdfsignote

\FXLayoutPDFSigNote

\@fxlayout@pdfsignote
[no]pdfsignote

pdfsigmargin

\FXLayoutPDFSigMargin

753 \FXRegisterLayout*[margin,marginclue,marginnote] {pdfmargin}{%
754 \FXLayoutPDFMargin}
755 (/fxlayoutpdfmargin)

A.1.4 The pdfsignote layout

756 (xfxlayoutpdfsignote)

757 \NeedsTeXFormat{LaTeX2e}

758 \FXProvidesLayout{pdfsignote}
759

760 \RequirePackage{pdfcomment}
761

{(type) X (note) H (author)}

Warning: this layout cannot use \@fxsignature properly, because of the pres-
ence of an \ifthenelse inside, and that, eventough it was declared robust. This
problem seems to affect PDF layouts only. The workaround I use below is to
externalize the conditional and temporarily redefine \@fxsignature accordingly.
This is a bit clumsy but it works. . .

762 \newcommand*\FXLayoutPDFSigNote [3]{%

763 \begingroup’

764 \ifthenelse{\equal{#3}{}}{%

765 \def\@fxsignature##1{}}{%

766 \def\@fxsignature##1{ -- {\@fxuseface{signature}#1}}}%

767 \pdf comment [author={#3}]{\@fxsigstd{#1}{#2}{#3}}/

768 \endgroup}

769 \FXRegisterLayout [pdfnote] {pdfsignote}{\FXLayoutPDFSigNote}
770 (/fxlayoutpdfsignote)

A.1.5 The pdfsigmargin layout

771 (xfxlayoutpdfsigmargin)

772 \NeedsTeXFormat{LaTeX2e}

773 \FXProvidesLayout{pdfsigmargin}
774

775 \RequirePackage{pdf comment}

776

{(type) Y (note) H (author)}

Warning: this layout cannot use \@fxsignature properly, because of the pres-
ence of an \ifthenelse inside, and that, eventough it was declared robust. This
problem seems to affect PDF layouts only. The workaround I use below is to
externalize the conditional and temporarily redefine \@fxsignature accordingly.
This is a bit clumsy but it works. . .

777 \newcommand*\FXLayoutPDFSigMargin [3]{%

778 \begingroup’

779 \ifthenelse{\equal{#3}{}}{%

55

FiXme v4.5 (2019/01/03)

\@fxlayout@pdfsigmargin
[nolpdfsigmargin

pdfcnote

fxnote
fxwarning
fxerror
fxfatal

\@fxdocolon

\FXLayoutPDFCNote

\@fxlayout@pdfcnote
[nolpdfcnote

pdfcmargin

780 \def\@fxsignature##1{}}{%
781 \def\@fxsignature##1{ -- {\@fxuseface{signature}#1}}1}/
782 \pdfmargincomment [author={#3}]1{\@fxsigstd{#1}{#2}{#3}}%

783 \endgroup}

784 \FXRegisterLayout* [margin,marginclue,marginnote,pdfmargin] {pdfsigmargin}{%
785 \FXLayoutPDFSigMargin}
786 (/fxlayoutpdfsigmargin)

A.1.6 The pdfcnote layout

787 (xfxlayoutpdfcnote)

788 \NeedsTeXFormat{LaTeX2e}
789 \FXProvidesLayout{pdfcnote}
790

791 \RequirePackage{pdfcomment}
792 \RequirePackage{xcolor}

793

Environments use the same colors as the notes themselves because their contents
really is a longer note.

794 \definecolor{fxnote}{rgb}{0.0000,0.6000,0.0000}

795 \definecolor{fxwarning}{rgb}{1.0000,0.5490,0.0000}

796 \definecolor{fxerror}{rgb}{1.0000,0.2706,0.0000}

797 \definecolor{fxfatal}{rgb}{1.0000,0.0000,0.0000}

798

{(author)}

Add a colon after the author tag, unless empty.

799 \providecommand*\@fxdocolon[1]{%

800 \ifthenelse{\equal{#1}{}}{\def\@fxcolon{}}{\def\@fxcolon{: }}}
801

{(type) Y (note) H {author)}

802 \newcommand*\FXLayoutPDFCNote [3]{/

803 \@fxdocolon{#3}/,

804 \pdfcomment [author={#3},color={fx#1}]{\ignorespaces#3\@fxcolon#2}}

805 \FXRegisterLayout [pdfnote] {pdfcnote}{\FXLayoutPDFCNote}
806 (/fxlayoutpdfcnote)

A.1.7 The pdfcmargin layout

807 (xfxlayoutpdfcmargin)

808 \NeedsTeXFormat{LaTeX2e}

809 \FXProvidesLayout{pdfcmargin}
810

811 \RequirePackage{pdfcomment}
812 \RequirePackage{xcolor}

813

56

FiXme v4.5 (2019/01/03)

fxnote
fxwarning
fxerror
fxfatal

\@fxdocolon

\FXLayoutPDFCMargin

\@fxlayout@pdfcmargin
[no]lpdfcmargin

pdfcsignote

fxnote
fxwarning
fxerror
fxfatal

\FXLayoutPDFCSigNote

\@fxlayout@pdfcsignote
[nolpdfcsignote

Environments use the same colors as the notes themselves because their contents
really is a longer note.

814 \definecolor{fxnote}{rgb}{0.0000,0.6000,0.0000}
815 \definecolor{fxwarning}{rgb}{1.0000,0.5490,0.0000}
816 \definecolor{fxerror}{rgb}{1.0000,0.2706,0.0000}
817 \definecolor{fxfatal}{rgb}{1.0000,0.0000,0.0000}
818

{(author)}
Add a colon after the author tag, unless empty.

819 \providecommand*\@fxdocolon[1]{%
820 \ifthenelse{\equal{#1}{}}{\def\@fxcolon{}}{\def\@fxcolon{: }}}
821

{(type)}H(note)X{{author)}

822 \newcommand*\FXLayoutPDFCMargin[3]{%

823 \@fxdocolon{#3}/,

824 \pdfmargincomment [author={#3},color={fx#1}]{\ignorespaces#3\@fxcolon#2}}

825 \FXRegisterLayout* [margin,marginclue,marginnote,pdfmargin] {pdfcmargin}{%
826 \FXLayoutPDFCMargin}
827 (/fxlayoutpdfcmargin)

A.1.8 The pdfcsignote layout

828 (xfxlayoutpdfcsignote)

829 \NeedsTeXFormat{LaTeX2e}

830 \FXProvidesLayout{pdfcsignote}
831

832 \RequirePackage{pdfcomment}
833 \RequirePackage{xcolor}

834

Environments use the same colors as the notes themselves because their contents
really is a longer note.

835 \definecolor{fxnote}{rgb}{0.0000,0.6000,0.0000}

836 \definecolor{fxwarning}{rgb}{1.0000,0.5490,0.0000}

837 \definecolor{fxerror}{rgb}{1.0000,0.2706,0.0000}

838 \definecolor{fxfatal}{rgb}{1.0000,0.0000,0.0000}

839

{(type) Y (note) H (author)}
840 \newcommand*\FXLayoutPDFCSigNote [3]1{%
841 \pdfcomment [author={#3},color={fx#1}]{#2\0fxsignature{#3}}}

842 \FXRegisterLayout [pdfnote,pdfcnote] {pdfcsignote}{\FXLayoutPDFCSigNote}
843 (/fxlayoutpdfcsignote)

o7

FiXme v4.5 (2019/01/03)

pdfcsigmargin

fxnote
fxwarning
fxerror
fxfatal

\FXLayoutPDFCSigMargin

\@fxlayout@pdfcsigmargin
[no]lpdfcsigmargin

color

\@fxdocolon

fxnote
fxwarning
fxerror
fxfatal

A.1.9 The pdfcsigmargin layout

844 (xfxlayoutpdfcsigmargin)

845 \NeedsTeXFormat{LaTeX2e}

846 \FXProvidesLayout{pdfcsigmargin}
847

848 \RequirePackage{pdfcomment}

849 \RequirePackage{xcolor}

850

Environments use the same colors as the notes themselves because their contents
really is a longer note.

851 \definecolor{fxnote}{rgb}{0.0000,0.6000,0.0000}
852 \definecolor{fxwarning}{rgb}{1.0000,0.5490,0.0000}
853 \definecolor{fxerror}{rgb}{1.0000,0.2706,0.0000}
854 \definecolor{fxfatal}{rgb}{1.0000,0.0000,0.0000}
855

{(type) Y (note) H (author)}
856 \newcommand*\FXLayoutPDFCSigMargin[3]{%
857 \pdfmargincomment [author={#3},color={fx#1}]{#2\@fxsignature{#3}}}

858 \FXRegisterLayout* [margin,marginclue,marginnote,pdfmargin,pdfsigmargin] {%
859 pdfcsigmargin}{%

860 \FXLayoutPDFCSigMargin}

861 (/fxlayoutpdfcsigmargin)

A.2 Environment layouts

A.2.1 The color layout

862 (*fxenvlayoutcolor)

863 \NeedsTeXFormat{LaTeX2e}
864 \FXProvidesEnvLayout{color}
865

866 \RequirePackage{color}

867

{(author)}

Add a colon after the author tag, unless empty.

868 \providecommand*\@fxdocolon[1]{%

869 \ifthenelse{\equal{#1}{}}{\def\@fxcolon{}}{\def\@fxcolon{: }}}
870

Environments use the same colors as the notes themselves because their contents
really is a longer note.

871 \definecolor{fxnote}{rgb}{0.0000,0.6000,0.0000}
872\defineColor{fxwarning}{rgb}{1.0000,0.5490,0.0000}

873 \definecolor{fxerror}{rgb}{1.0000,0.2706,0.0000}

874 \definecolor{fxfatal}{rgb}{1.0000,0.0000,0.0000}

58

FiXme v4.5 (2019/01/03)

\FXEnvLayoutColorBegin
\FXEnvLayoutColorEnd

\@fxenvlayout@color@begin
\@fxenvlayout@color@end

colorsig

signature

fxnote
fxwarning
fxerror
fxfatal

\FXEnvLayoutColorSigBegin
\FXEnvLayoutColorSigEnd

\@fxenvlayout@colorsig@begin
\@fxenvlayout@colorsig@end

875
876 \fxsetface{env}{}
877

{(type)H(author)}

878 \newcommand*\FXEnvLayoutColorBegin[2]{%

879 \@fxdocolon{#2}J,

880 \@fxuseface{env}\color{fx#1}\ignorespaces#2\@fxcolon\ignorespaces}
881 \newcommand*\FXEnvLayoutColorEnd [2]{}

882 \FXRegisterEnvLayout{color}{\FXEnvLayoutColorBegin}{\FXEnvLayoutColorEnd}
883 (/fxenvlayoutcolor)

A.2.2 The colorsig layout

884 (xfxenvlayoutcolorsig)

885 \NeedsTeXFormat{LaTeX2e}

886 \FXProvidesEnvLayout{colorsig}
887

888 \RequirePackage{color}

889

890 \@fxnewface[\itshape] {signature}

Environments use the same colors as the notes themselves because their contents
really is a longer note.

891 \definecolor{fxnote}{rgb}{0.0000,0.6000,0.0000}

892 \definecolor{fxwarning}{rgb}{1.0000,0.5490,0.0000}

893 \definecolor{fxerror}{rgb}{1.0000,0.2706,0.0000}

894 \definecolor{fxfatal}{rgb}{1.0000,0.0000,0.0000}

895

896 \fxsetface{env}{}

897

{(type) Y{{author)}
898 \newcommand*\FXEnvLayoutColorSigBegin[2]{\@fxuseface{env}\color{fx#1}}
899 \newcommand*\FXEnvLayoutColorSigEnd [2] {\@fxsignature{#2}}

900 \FXRegisterEnvLayout{colorsig}{/
901 \FXEnvLayoutColorSigBegin}{\FXEnvLayoutColorSigEnd}
902 (/fxenvlayoutcolorsig)

A.3 Target Layouts

Since target layouts don’t include author information, they’re orthogonal to (and
hence usable in) prefix/signature display.

59

FiXme v4.5 (2019/01/03)

A.3.1 The changebar layout

changebar

903 (*fxtargetlayoutchangebar)

904 \NeedsTeXFormat{LaTeX2e}

905 \FXProvidesTargetLayout{changebar}
906

907 \RequirePackage{changebar}

908 \setlength{\changebarsep}{5pt}

909

910 \fxsetface{target}{}

\FXTargetLayoutChangeBar {(target)}
911 \newcommand\FXTargetLayoutChangeBar [2] {\cbstart\@fxuseface{target}#2\cbend}

\@fxtargetlayout@changebar

912 \FXRegisterTargetLayout{changebar}{\FXTargetLayoutChangeBar}
913 (/fxtargetlayoutchangebar)

A.3.2 The color layout

color

914 (xfxtargetlayoutcolor)

915 \NeedsTeXFormat{LaTeX2e}

916 \FXProvidesTargetLayout{color}

917

918 \RequirePackage{color}

919 \definecolor{fxnote}{rgb}{0.0000,0.6000,0.0000}
920 \definecolor{fxwarning}{rgb}{1.0000,0.5490,0.0000}
921 \definecolor{fxerror}{rgb}{1.0000,0.2706,0.0000}
922 \definecolor{fxfatal}{rgb}{1.0000,0.0000,0.0000}
923

fxtarget

924 \definecolor{fxtarget}{rgb}{0.3725,0.6196,0.6275}
925

926 \fxsetface{target}{}

927

\FXTargetLayoutColor {(target)}
928 \newcommand\FXTargetLayoutColor [2] {\@fxuseface{target}\color{fxtarget}#2}

\@fxtargetlayout@color

929 \FXRegisterTargetLayout{color}{\FXTargetLayoutColor}
930 (/fxtargetlayoutcolor)

A.3.3 The colorcb layout

colorcb

931 (xfxtargetlayoutcolorcb)

932 \NeedsTeXFormat{LaTeX2e}

933 \FXProvidesTargetLayout{colorcb}
934

60

FiXme v4.5 (2019/01/03)

\FXTargetLayoutColorCB

\@fxtargetlayout@colorch

signature

935 \RequirePackage{color}

936

937 \RequirePackage [color]{changebar}
938 \setlength{\changebarsep}{5pt}
939

940 \fxsetface{target}{}

{(target)}
941 \newcommand\FXTargetLayoutColorCB[2]{%
942 \cbstart\cbcolor{fx#1}\@fxuseface{target}#2\cbend}

943 \FXRegisterTargetLayout{colorcb}{\FXTargetLayoutColorCB}
944 (/fxtargetlayoutcolorch)

B Themes

B.1 The signature theme

945 (xfxthemesignature)

946 \NeedsTeXFormat{LaTeX2e}

947 \FXProvidesTheme{signature}

948

949 \fxuseenvlayout{signature}

950

951 \renewcommand*\FXLayoutFootnote [3]{\footnote{\@fxsigstd{#1}{#2}{#3}}}

952 \renewcommand*\FXLayoutMargin[3]{/

953 \marginpar [{\raggedleft\@fxuseface{margin}\@fxsigstd{#1}{#2{#3}}1{V

954 \raggedright\@fxuseface{margin}\@fxsigstd{#1}{#2}{#3}}}

955 \renewcommand*\FXLayoutMarginClue [3]{%

956 \marginpar[{\raggedleft\@fxuseface{margin}\fxnotename{#1}!\@fxsignature{#3}}1{J
957 \raggedright\@fxuseface{margin}\fxnotename{#1}!\Q@fxsignature{#3}}}

958 \renewcommand*\FXLayoutInline[3]{{ \@fxuseface{inline}\@fxsigstd{#1}{#2}{#3}}}
959 \renewcommand*\FXLayoutIndex [3]{%

960 \iffx@mode®@multiuser,

961 \index{***@\fixmeindexname:

962 '\@nameuse{@fx#1key}@\fxnotesname{#1}:%
963 ''\@Cnameuse{thefx#lcount}: #2\0@fxsignature{#3}1}/,
964 \index{***#3@\fixmeindexname{} (#3):Y%

965 '\@nameuse{@fx#1key}@\fxnotesname{#1}:%
966 '\@nameuse{thefx#icount}: #21}J,

967 \else’,

968 \index{***@\fixmeindexname:J

969 ''\@nameuse{Q@fx#1key}@\fxnotesname{#1}:%
970 I\@nameuse{thefx#icount}: #2}%

971 \fi}

972 \renewcommand*\FXLayoutContentsLine [3]{%
973 \iffxOmode®multiuser?,

974 \fxaddcontentsline{\@fxsigstd{#1}{#2}{#3}1}/
975 \else’,

976 \fxaddcontentsline{\fxnotename{#1}: #2}J
977 \fi}

61

FiXme v4.5 (2019/01/03)

color

978 (/fxthemesignature)

B.2 The color theme

979 (*fxthemecolor)

980 \NeedsTeXFormat{LaTeX2e}

981 \FXProvidesTheme{color}

982

983 \RequirePackage{color}

984

985 \FXRequireEnvLayout{color}

986 \FXRequireTargetLayout{color}

987

988 \fxsetface{inline}{}

989

990 \renewcommand*\FXLayoutFootnote [3]{%

991 \@fxdocolon{#3}/,

992 \footnote{\color{fx#1}\ignorespaces#3\0fxcolon#2}}

993 \renewcommand*\FXLayoutMargin[3]{/

994 \@fxdocolon{#3}/,

995 \marginpar[%

996 {\raggedleft\@fxuseface{margin}\color{fx#1}\ignorespaces#3\@fxcolon#2}]1{/
997 \raggedright\@fxuseface{margin}\color{fx#1}\ignorespaces#3\@fxcolon#2}}
998 \renewcommand*\FXLayoutMarginClue [3]{/

999 \marginpar[{\raggedleft\@fxuseface{margin}\color{fx#1}\ignorespaces#3!}]1{J
1000 \raggedright\@fxuseface{margin}\color{fx#1}\ignorespaces#3!}}

1001 \renewcommand*\FXLayoutInline[3]{%

1002 \@fxdocolon{#3}%

1003 { \textcolor{fx#1}{\@fxuseface{inline}\ignorespaces#3\@fxcolon#2}}}

1004 \renewcommand*\FXLayoutIndex [3]{%

1005 \iffx@mode@multiuser,

1006 \index{***@\fixmeindexname:?Y

1007 '\@nameuse{Q@fx#1key}@\fxnotesname{#1}:%

1008 1{\color{fx#1}\@nameuse{thefx#icount}: #3: #2}}V
1009 \index{***#30@\fixmeindexname{} (#3):%

1010 ''\@nameuse{Q@fx#1key}@\fxnotesname{#1}:%

1011 '{\color{fx#1}\@nameuse{thefx#icount}: #2}}%
1012 \else%

1013 \index{***@\fixmeindexname:Y

1014 I\@nameuse{@fx#1key}@\fxnotesname{#1}:%

1015 '{\color{fx#1}\@nameuse{thefx#icount}: #2}}%
1016 \fi}

1017

1018 \renewcommand*\FXLayoutContentsLine [3]{%
1019 \@fxdocolon{#3}%
1020 \iffx@mode@multiuser},

1021 \fxaddcontentsline{\color{fx#1}\ignorespaces#3\@fxcolon#2}/,
1022 \else’,

1023 \fxaddcontentsline{\color{fx#1}#2}Y

1024 \fi}

1025 (/fxthemecolor)

62

FiXme v4.5 (2019/01/03)

B.3 The colorsig theme

colorsig

1026 (*fxthemecolorsig)

1027 \NeedsTeXFormat{LaTeX2e}

1028 \FXProvidesTheme{colorsig}

1029

1030 \RequirePackage{color}

1031

1032 \FXRequireEnvLayout{colorsig}

1033 \FXRequireTargetLayout{color}

1034

1035 \fxsetface{inline}{}

1036

1037 \renewcommand*\FXLayoutFootnote [3]{\footnote{\color{fx#1}#2\0fxsignature{#3}}}
1038 \renewcommand*\FXLayoutMargin[3]{%

1039 \marginpar [{\raggedleft\@fxuseface{margin}\color{fx#1}#2\@fxsignature{#3}}]1{%
1040 \raggedright\@fxuseface{margin}\color{fx#1}#2\0fxsignature{#3}}}

1041 \renewcommand*\FXLayoutMarginClue [3]{%

1042 \marginpar [{\raggedleft\@fxuseface{margin}\color{fx#1}!\@fxsignature{#3}}1{/
1043 \raggedright\@fxuseface{margin}\color{fx#1}!\@fxsignature{#3}}}

1044 \renewcommand*\FXLayoutInline[3]{%

1045 { \textcolor{fx#1}{\@fxuseface{inline}#2\@fxsignature{#3}}}}

1046 \renewcommand*\FXLayoutIndex [3]{%

1047 \iffx@mode®@multiuser,

1048 \index{***@\fixmeindexname:Y

1049 I\@nameuse{@fx#1key}@\fxnotesname{#1}:%

1050 '{\color{fx#1}\@nameuse{thefx#lcount}: #2\@fxsignature{#3}}}/
1051 \index{***#30@\fixmeindexname{} (#3):7

1052 I\@nameuse{@fx#1key}@\fxnotesname{#1}:%

1053 '{\color{fx#1}\@nameuse{thefx#lcount}: #2}}J
1054 \else,

1055 \index{***@\fixmeindexname:J

1056 '\@nameuse{Q@fx#1key}@\fxnotesname{#1}:%

1057 '{\color{fx#1}\@nameuse{thefx#lcount}: #2}1}J
1058 \fi}

1059 \renewcommand*\FXLayoutContentsLine [3]{%
1060 \iffxOmode@multiuser’

1061 \fxaddcontentsline{\color{fx#1}#2\@fxsignature{#3}1}/
1062 \else}

1063 \fxaddcontentsline{\color{fx#1}#2}}

1064 \fi}

1065 (/fxthemecolorsig)

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols oL 478 \@Q@@fxbeginenv 483
\@Ceefxbeginenv ... 648 \@@Qefxbeginenve@final \@e@fxbeginsenv ... 494
\@Q0Qfxbeginenv@draft 478 \@Q@Qfxnote@early .. 648

FiXme v4.5 (2019/01/03)

\@@@fxnote@early@draft \@fxhandlelayoutmutex \@fxselecttargetlayout
........... 417 B (6 V4 - 211
\@@@fxnote@early@final \@fxissuecommonlayouts \@fxsetkeys 37
........... 417 414 \efxsetlayoutkeys . 254
\@@@fxnote@late . 648 \e@fxissueearlydraftlayouts\@fxsignature 200
\@@@fxnote@late@draft 403 \efxsigstd 202
........... 417 \@fxissuelatedraftlayouts \@fxsnote 463
\@@@fxnote@late@final 403 \@fxtargetlayout . 648
........... 417 \@fxkeyifundefined . 33 \@fxtargetlayout@changebar
\@@fxbeginenv 483 \e@fxlang 633 912
\@@fxbeginsenv . 494 \efxlanguages 556 \@fxtargetlayout@color
\@@fxnote 453 \@fxlatelayouts 189 L 929
\@@fxnote@early . 445 \efxlayout@footnote 214 \@fxtargetlayout@colorcb
\@@fxnote@late . 450 \efxlayout@index .. 242 943
\@@fxsnote 460 \@fxlayout@inline . 217 \@fxtargetlayout@draft
\@@fxtargetlayout . 340 \@fxlayout@margin . 207 354
\@FXRegisterLayout . 178 \@fxlayout@marginclue \@fxtargetlayout@final
\@fxaddtolist 22 . 212 354
\@fxbeginenv .. 490, 501 \@fxlayout@marginnote \@fxtargetlayout@plain
\@fxdefineboolkey 52 L 733 338
\@fxdefinechoicekey 36 \@fxlayout@pdfcmargin \@fxtextstd 199
\@fxdefinecmdkey 35 825 \@fxuseface 145
\@fxdefinekey 34 \e@fxlayout@pdfcnote 805 \@fxvoidkeyerror .. 41
\@fxdefineoptioninterface \@fxlayout@pdfcsigmargin \@fxwarningkey . 225
............ 56 so......... 858 \@lox@draft 667
\@fxdefinevoidkey 46 \@fxlayout@pdfcsignote \@lox@prtc 667
\@fxdocolon 799, 819,868 842 \Q@lox@prtc@article . 96
\@fxdottedtocline 69 \@fxlayout@pdfmargin \@lox@prtc@book 111
\@fxearlylayouts .. 159 753 \@lox@prtc@report 101
\@fxendenv 648 \@fxlayout@pdfnote . 743 \@lox@psttc 667
\@fxendenv@draft . 478 \@fxlayout@pdfsigmargin \@lox@psttc@article 96
\@fxendenv@final .. 478 784 \@lox@psttc@book .. 111
\@fxendgroup 444 \@fxlayout@pdfsignote \@lox@psttc@report . 101
\@fxenvlayout@begin 307 769 \@wrindex 219
\@fxenvlayout@color@begin \@fxlistfixmename . 644
........... 882 \@fxlog@error 375 A
\@fxenvlayout@color@end \@fxlog@fatal 375 afixme (env.) 7, 551
........... 882 \@fxlog@note 375 anfxerror (env.) 7, 546
\@fxenvlayout@colorsig@begi@fxlog@warning . 375 anfxerror* (env.) . 7, 546
........... 900 \@fxnewface 142 anfxfatal (env.) 7, 546
\@fxenvlayout@colorsig@end\@fxnewnoteenvs . 506 anfxfatal* (env.) . 7, 546
........... 900 \efxnewnotemacro .. 469 anfxnote (env.) 7, 546
\@fxenvlayout@end . 307 \@fxnote 456 anfxnote* (env.) 7, 546
\@fxenvlayout@plain@begin \@fxnotekey 225 anfxwarning (env.) 7, 546
........... 298 \@fxparselayout . 255 anfxwarningx (env.) 7, 546
\@fxenvlayout@plain@end \@fxpkgerror 20 author (opt.) 19, 388
........... 298 \@fxpkginfo 17
\@fxenvlayout@signature@bey@fxpkgwarning .17 C
........... 304 \efxpostconfigure . 433 changebar (target lt.)
\@fxenvlayout@signature@en¥0fxpreconfigure .. 467 16, 903
........... 304 \@fxpresetkeys 38 color (env. lt.) .. 14, 862
\@fxerrorkey 225 \@fxrecordlayoutmutex color (target 1t.) 16, 914
\@fxfatalkey 225 . 162 color (theme) 21, 979
\@fxhandleinnermode 390 \@fxselectenvlayout 307 colorcb (targetlt.) 16,931

64

FiXme v4.5 (2019/01/03)

colors:
fxerror
14, 16,794, 814,
835, 851, 871, 891
fxfatal
14, 16,794, 814,
835, 851, 871, 891
fxnote
14, 16,794, 814,
835, 851, 871, 891
fxtarget 16, 924

fxwarning
]47 167 M7 M7
835, 851, 871, 891
colorsig (env. It.) 15, 884
colorsig (theme) 21, 1026
counters:

fixmecount 382
fxerrorcount . 382
fxfatalcount . 382
fxnotecount . 382
fxwarningcount . 382
croatian (lang.) 619
croatian (opt.) 18, 639

\croatianlistfixmename

........ 26, 619

D
danish (lang.) 609
danish (opt.) 18, 639

\danishlistfixmename
26, 609
defaultlang (opt.) 18, 630

draft (opt.) 8, 648
E

english (lang.) 559

english (opt.) 18, 639

\englishlistfixmename

........ 26, 559
env (face) 17,294
env. layouts:
color 14, 862
colorsig 15, 884
plain 14, 294
signature ... 14, 300
environments:
afixme 7, 551
anfxerror 7, 546
anfxerrorx ... 7, 546
anfxfatal 7, 546
anfxfatal* ... 7, 546
anfxnote 7, 546
anfxnote* 7, 546

anfxwarning .. 7, 546
anfxwarningx* 7, 546
envlayout (opt.) . 14, 321
F
faces:
env 17, 294
inline 17, 215
margin 17, 203
signature 17, 300, 890
target 17, 336
final (opt.) 8, 648
\fixme 7, 547
fixmecount (cnt.) . 382
\fixmeindexname . 218
\fixmelogo 13

footnote (note It.) 10, 213

footnote (opt.) 10, 214
francais (lang.) 569
francais (opt.) 18, 639
french (lang.) 569
french (opt.) 18, 639

\frenchlistfixmename

26, 569
\fxaddcontentsline . 91
\fxcontentsline ... 85
\fxcroatianerrorname

25, 619
\fxcroatianerrorsname
25, 619
\fxcroatianfatalname

25, 619
\fxcroatianfatalsname
25, 619
\fxcroatiannotename

25, 619
\fxcroatiannotesname

25, 619
\fxcroatianwarningname
25, 619
\fxcroatianwarningsname
25, 619
\fxdanisherrorname .

25, 609
\fxdanisherrorsname

25, 609
\fxdanishfatalname .

25, 609
\fxdanishfatalsname

25, 609

\fxdanishnotename
25, 609
\fxdanishnotesname .

25, 609

\fxdanishwarningname

25, 609
\fxdanishwarningsname

25, 609
\FXDef ineEnvLayoutBoolKey
25, 292
\FXDefineEnvLayoutChoiceKey
25, 292
\FXDefineEnvLayoutCmdKey
25, 292
\FXDefineEnvLayoutKey

25, 292
\FXDefineEnvLayoutVoidKey
25, 292
\FXDefineLayoutBoolKey
25, 197
\FXDefineLayoutChoiceKey
25, 197
\FXDefineLayoutCmdKey

25, 197
\FXDefineLayoutKey .

25, 197
\FXDef ineLayoutVoidKey
25, 197
\FXDefineTargetLayoutBoolKey
25, 334
\FXDefineTargetLayoutChoiceKey
25, 334
\FXDefineTargetLayoutCmdKey
25, 334
\FXDefineTargetLayoutKey
25, 334
\FXDefineTargetLayoutVoidKey
25, 334
\fxenglisherrorname

25, 559
\fxenglisherrorsname

25, 559
\fxenglishfatalname

25, 559
\fxenglishfatalsname

25, 559
\fxenglishnotename

25, 559
\fxenglishnotesname

25, 559
\fxenglishwarningname

25, 559
\fxenglishwarningsname
25, 559
\FXEnvLayoutColorBegin
22, 878
\FXEnvLayoutColorEnd

22, 878

FiXme v4.5 (2019/01/03)

\FXEnvLayoutColorSigBegin \fxgermanwarningsname

22, 898
\FXEnvLayoutColorSigEnd
22, 898
\FXEnvLayoutPlainBegin
22, 295
\FXEnvLayoutPlainEnd

22, 295

25, 599
\fxitalianerrorname
25, 589
\fxitalianerrorsname
25, 589
\fxitalianfatalname
25, 589

\FXEnvLayoutSignatureBegin\fxitalianfatalsname

22, 301
\FXEnvLayoutSignatureEnd
22, 301

\fxerror

fxerror (color)
14, 16,794, 814,
835, 851, 871, 891

\fxerror* 7, 546

fxerrorcount (cnt.) . 382

\fxfatal 7, 546

fxfatal (color)
14, 16,794, 814,
835, 851, 871, 891

\fxfatal* 7, 546

fxfatalcount (cnt.) . 382

\fxfrencherrorname .

25, 569

\fxfrencherrorsname

25, 569

\fxfrenchfatalname .

25, 569

\fxfrenchfatalsname

25, 569

\fxfrenchnotename
25, 569
\fxfrenchnotesname .

25, 569
\fxfrenchwarningname

25, 569
\fxfrenchwarningsname
25, 569
\fxgermanerrorname .

25, 599
\fxgermanerrorsname

25, 599
\fxgermanfatalname .

25, 599
\fxgermanfatalsname

25, 599

\fxgermannotename

........ 25, 599
\fxgermannotesname .
25, 599

\fxgermanwarningname

25, 599

25, 589
\fxitaliannotename .

25, 589
\fxitaliannotesname

25, 589
\fxitalianwarningname
25, 589
\fxitalianwarningsname
25, 589
\FXLayoutContentsLine
243

\FXLayoutFootnote

22, 213
22, 229
22, 216

\FXLayoutIndex
\FXLayoutInline
\FXLayoutMargin 22, 204
\FXLayoutMarginCLue 208
\FXLayoutMarginClue 22
\FXLayoutMarginNote 730
\FXLayoutPDFCMargin 822
\FXLayoutPDFCNote . 802
\FXLayoutPDFCSigMargin
........... 856
........... 840
\FXLayoutPDFMargin . 751
\FXLayoutPDFNote . 741
\FXLayoutPDFSigMargin
i
762

\FXLayoutPDFSigNote
\fxloadenvlayouts
........ 14, 313
\fxloadlayouts 10, 250
\fxloadtargetlayouts
15, 344
358
358

\FXLogerror
\FXLogFatal
\FXLogNote 358
\FXLogWarning 358
\fxnote 7, 546
fxnote (color)
14, 16, 794, 814,
@7 @7 an @
\fxnotex 7, 546
fxnotecount (cnt.) .. 382

66

\fxnotename

\fxnotesname 645
\FXProvidesEnvLayout

24, 280

\FXProvidesLayout
23, 161
\FXProvidesTargetLayout
24, 323
\FXProvidesTheme 25, 664
\FXRegisterAuthor
........ 19,
\FXRegisterEnvLayout
24, 281

\FXRegisterLayout
23, 190
\FXRegisterLayout*

23, 190
\FXRegisterTargetLayout
24, 324
\FXRequireEnvLayout

25, 317
\FXRequireLayouts . 25
\FXRequireTargetLayout

........ 25, 348
\fxsetface 17, 141
\fxsetup 6, 708
\fxspanisherrorname

........ 25, 579
\fxspanisherrorsname

........ 25, 579
\fxspanishfatalname

........ 25, 579
\fxspanishfatalsname

........ 25, 579
\fxspanishnotename

........ 25, 579
\fxspanishnotesname

........ 25, 579
\fxspanishwarningname

........ 25, 579
\fxspanishwarningsname

........ 25, 579
fxtarget (color) . 16,924

\FXTargetLayoutChangeBar
........... 911

\FXTargetLayoutColor

22, 928

\FXTargetLayoutColorCB

\FXTargetLayoutPlain
22, 337
14, 317

\fxuseenvlayout
\fxuselayouts

FiXme v4.5 (2019/01/03)

\fxusetargetlayout .
........ 15, 348

\fxusetheme 21, 665

\fxwarning 7, 546

fxwarning (color)
14, 16, 794, 814,
835, 851, 871, 891

\fxwarning* 7, 546
fxwarningcount (cnt.) 382
G
german (lang.) 599
german (opt.) 18, 639

\germanlistfixmename

........ 26, 599
I

index (note 1t.) .. 10, 218
index (opt.) 10, 242
inline (face) 17, 215
inline (note lt.) . 10, 215
inline (opt.) 10, 217
innerlayout (opt.) 11,272
italian (lang.) 589
italian (opt.) 18, 639

\italianlistfixmename

........ 26, 589
L

\l@fixme 68
lang (opt.) 18, 633
langtrack (opt.) . 18, 629

languages:
croatian 619
danish 609
english 559
francais 569
french 569
german 599
italian 589
ngerman 999
spanish 579
layout (opt.) 9,274
\listoffixmes ... 7, 648
\lox@draft 121
\lox@draft@ams 139
\lox@final 121

M

margin (face) 17, 203
margin (note 1t.) . 10, 203
margin (opt.) 10, 207

marginclue (note lt.)
10, 208
10, 212

marginclue (opt.)

marginnote (note lt.)

........ 11,
marginnote (opt.) 11,
mode (opt.) 20,

morelayout (opt.) . 9, :

multiuser (opt.) . 20,
N
ngerman (lang.)
ngerman (opt.) 18,
nofootnote (opt.) 10,
noindex (opt.) 10,
noinline (opt.) 10,
nomargin (opt.) 10,

nomarginclue (opt.)

nopdfcmargin (opt.)
11,
11,

nopdfcnote (opt.)
nopdfcsigmargin
(opt.) ... 11,
nopdfcsignote (opt.)
11,

733

825
805

858

nopdfmargin (opt.) 11, :

nopdfnote (opt.) .
nopdfsigmargin (opt.)

nopdfsignote (opt.) .
........ 11,

nosilent (opt.) 17,

note layouts:
footnote 10,
index 10,
inline 10,
margin 10,
marginclue .. 10,
marginnote .. 11,
pdfcmargin ..
pdfcnote
pdfcsigmargin 11,
pdfcsignote
pdfmargin . ..
pdfnote
pdfsigmargin 11,
pdfsignote ..

(0]

options:
author 19,
croatian 18,
danish 18,
defaultlang . 1§,

67

11, 743

11,784

11, 807
11, 787

11, 828
11, 745
11, 735

11, 756

388
639
639
630

draft 8,
english 18,
envlayout ... 14,
final 8,
footnote 10,
francais 18,
french 18,
german 18,
index 10,
inline 10,
innerlayout 11,
italian 18,
lang 18,
langtrack ... 1§,
layout 9,
margin 10,
marginclue .. 10,
marginnote .. 11,
mode 20,
morelayout ... 9,
multiuser ... 20,
ngerman 18,
nofootnote .. 10,
noindex 10,
noinline 10,
nomargin 10,
nomarginclue 10,
nomarginnote 11,
nopdfcmargin 11,
nopdfcnote .. 11,
nopdfcsigmargin
........ 11,
nopdfcsignote 11,
nopdfmargin . 11,
nopdfnote ... 11,
nopdfsigmargin
........ 11,
nopdfsignote 11,
nosilent 17,
pdfcmargin .. 11,
pdfcnote 11,
pdfcsigmargin 11,
pdfcsignote 11,
pdfmargin ... 11,
pdfnote 11,
pdfsigmargin 11,
pdfsignote .. 11,
silent 17,
singleuser .. 20,
spanish 18,
status 8,
target 13,
targetlayout 19,
theme 21,

648
639
321
648
214
639
639
639
242
217
272
639
633
629
274
207
212
733
147
273
147
639
214
242
217
207
212
733
825
805

858
842
753
743

784
769
380
825
805
858
842
753
743
784
769
380
147
639
648
389
352
666

FiXme v4.5 (2019/01/03)

P
pdfcmargin (note 1t.)
........ 11, 807
pdfcmargin (opt.) 11, 825

pdfcnote (note lt.) 11, 787

pdfcnote (opt.) 11, 805
pdfcsigmargin (note
It) 11, 844
pdfcsigmargin (opt.)
........ 11, 858
pdfcsignote (note lt.)
........ 11, 828

pdfcsignote (opt.) 11,842
pdfmargin (note 1t.)

........ 11, 745
pdfmargin (opt.) . 11, 753
pdfnote (note lt.) 11, 735
pdfnote (opt.) 11,743

pdfsigmargin (note lt.)

........ 11, 771
pdfsigmargin (opt.)
........ 11, 784
pdfsignote (note lt.)
........ 11, 756
pdfsignote (opt.) 11, 769
plain (env. 1t.) .. 14,294
plain (target It.) 16, 336

S
signature (env. It.)
........ 14, 300
signature (face)
17, 300, 890

signature (theme) 21, 945

silent (opt.) 17, 380
singleuser (opt.) 20, 147
spanish (lang.) 579
spanish (opt.) 18, 639

\spanishlistfixmename

........ 26, 579
status (opt.) . 8,648
T
target (face) 17, 336
target (opt.) 13, 389
target layouts:
changebar ... 16, 903
color 16, 914
colorcb 16, 931
plain 16, 336
targetlayout (opt.)
........ 15, 352
theme (opt.) 21, 666
themes:
color 21, 979
colorsig 21, 1026
signature ... 21, 945

Copyright © 19982002, 2004-2007, 2009, 2013, 2017-2019 Didier Verna.

68

