\gatheritems

numgathereditems

\gathereditem

The getitems package:
gathering \item’s from a list-like environment*

Anders Hendrickson
St. Norbert College, De Pere, WI, USA

anders.hendrickson@snc.edu

January 11, 2016

1 Overview

The enumerate and itemize environments of KTEX organize their contents
through the use of the \item command. Each entry in these lists is prefaced
with the command \item, making for very compact and easily readable source
code. Package designers may find it useful to use the same syntax for their cus-
tom environments. The getitems package makes it easy to code such environments
by parsing a string of tokens, separating them by the occurrence of \item’s, and
saving the contents as macros. Nested environments are handled correctly.

Moreover, some typesetting tasks naturally consist of a “header” followed by
several related items; one example would be a multiple-choice question on a school
examination. This package saves any TEX tokens appearing before the first \item
as the zeroth item for special handling.

2 Usage

To parse a string of text, such as the body of an environment, call
\gatheritems{(text to parse)}.

This will scan through the (text to parse), dividing it at each \item while respect-
ing TEX groupings and nested environments, and store the divided portions of
text into memory.

The total number of items in the parsed text is stored in the IMTEX counter
numgathereditems.

To retrieve a stored item, you may call \gathereditem{(item number)};
the (item number) should expand to an arabic representation of a nonnegative

*This document corresponds to getitems.sty v1.0, dated 2016/01/11.

\loopthroughitemswithcommand

currentitemnumber

\ifgatherbeginningofloop

integer. Any tokens occurring before the first \item may be retrieved with
\gathereditem{0}.

Once the items are gathered, it will probably be necessary to loop through all
of them. Of course a package author can do so manually, but getitems provides a
built-in way to do so by calling \loopthroughitemswithcommand{(macro)}. The
(macro) must be a control sequence taking exactly one argument; it will be called
successively with the item text. For example,

\gatheritems{/,
Zero
\item One
\item Two ‘()ne |T\Vo rfhree
\item Three
}
\loopthroughitemswithcommand{\fbox}

The result is the same as processing \fbox{One}, then \fbox{Two}, and finally
\fbox{Three}. Note that \loopthroughitemswithcommand deliberately ignores
the zeroth entry, which occurs before the first \item.

Typically the package author will create a custom macro to process each item.
This macro may make use of the index of the loop, which is stored in the IATEX
counter currentitemnumber. A conditional \ifgatherbeginningofloop is also
available, which only evaluates as true when processing the first item; it is thus
functionally equivalent to \ifnumi=\c@currentitemnumber. The custom macro
may take advantage of this to run special code for the first item only.

3 Example

An example using getitems to create a custom environment may be informative.
We use the \NewEnviron command from the environ package (automatically
loaded by getitems) to define a question environment; the body between the
\begin{question} and \end{question} is available as \BODY.

\def\doitem#1{\item #1\hfill \Box}%
\NewEnviron{question}{’
\expandafter\gatheritems\expandafter{\BODY}/ yhLo proved the unsolv-
\gathereditem{0}/,
\begin{itemize}
\loopthroughitemswithcommand{\doitem}
\end{itemize}
} e Abel O
\begin{question}
Who proved the unsolvability of the quintic? o (Galois O
\item Abel
\item Galois e Lie
\item Lie
\end{question}

ability of the quintic?
Check the appropriate
box.

This second example shows that nested environments are handled as expected.

\def\doitem#1{\item[\Box]
\fbox{\parbox [t1{1.76in}{#1}}}%
\NewEnviron{question}{%
\expandafter\gatheritems\expandafter{\BODY}%

\gathereditem{0}% . .
\begin{itemize} Who proved the unsolvability of the quin-
\loopthroughitemswithcommand{\doitem} tic? Check the appropriate box.
\end{itemize}
} O | Abel
\begin{question} — Born August 5, 1802
Who proved the unsolvability of the quintic? . .
Check the appropriate box. — Died April 6, 1829
\item Abel
\begin{itemize} O | Galois
\item Born August 5, 1802
\item Died April 6, 1829 — Born October 25, 1811
\end{itemize} — Died May 31, 1832
\item Galois
\begin{itemize} -
\item Born October 25, 1811 0 | Lie
\item Died May 31, 1832 — Born December 17, 1842
\end{itemize} .
\item Lie — Died February 18, 1899
\begin{itemize}

\item Born December 17, 1842
\item Died February 18, 1899
\end{itemize}
\end{question}

4 Implementation

We need the trimspaces package to remove excess spaces from the items we
find. Although the environ package is not used by getitems itself, it will almost
certainly be needed.

1 \RequirePackage{environ}
2 \RequirePackage{trimspaces}
3 \let\xa=\expandafter

\gathereditem The kth item found will be stored in the macro \getitems@item@(k); the user
can access it through the \gathereditem macro.

4 \def\gathereditem#1{\csname getitemsQitem@#1\endcsname}

numgathereditems We define the I TEX counter numgathereditems.

5 \newcounter{numgathereditems}

\gatheritems The main control sequence of this package is \gatheritems. The naive strat-
egy is to use the delimiter mechanism of TEX to split the text at the first

occurrence of the token “\item.” We add \getitems@relax before, and
“\item\getitems@terminalitem” after, the text to help us detect empty items

and prevent errors after we have found all the genuine \item’s.

6 \long\def\gatheritems#1{}%

7 \setcounter{getitems@begindepth}{0}%

8 \setcounter{numgathereditems}{0}/,

9 \xa\long\xa\gdef\csname getitems@item@0\endcsname{}%

10 \gatheritems@int\getitems@relax#1\item\getitems@terminalitem\getitems@endgatheritems
11 \xa\let\xa\gatheredheader\xa=\csname getitems@item@0\endcsname

12 }

The trouble with the naive strategy is that it won’t handle nested environments
correctly. To do that, we need to keep track of how deeply nested we are with the
macro \getitems@trackbegindepth, defined below. That macro stores its results
in the ITEX counter getitems@begindepth; a value of 0 indicates the top-level
within the argument of \gatheritems.

13 \def\@getitems@terminalitem{\getitems@terminalitem}

14 \def\@dummy@relax{\getitems@relax}%

15 \long\def\gatheritems@int#1\item#2\getitems@endgatheritems{’

16 \getitems@trackbegindepth{#11}/,

17 \ifnum\cOgetitems@begindepth=0\relax

At this point we have gathered a complete \item; we have not stopped
accidentally at a sub\item. The original \item might have had no con-
tent, in which case #1 will be simply “\getitems@relax”, and we do noth-
ing; otherwise we strip off the \getitems@relax and store those tokens in
\getitems@item@(numgathereditems).

18 \def\getitems@test@i{#1}/

19 \ifx\getitems@test@i\@dummy@relax

20 \relax

21 \else

22 \xa\xa\xa\g@addto@macro

23 \xa\xa\csname getitems@item@\the\c@numgathereditems\endcsname
24 \xa{\getitems@stripfirsttokenfrom#i\getitems@endstrip}’,

25 \fi

Now we test whether we have reached the end of the text to be parsed. This
is the case if #2 is simply \getitems@terminalitem, and we stop the recur-
sion. Otherwise there is at least one more \item to process, so we increment
numgathereditems, prepare \getitems@item@(k+1), and prepare to recurse.

26 \def\getitemsQtest@ii{#21}7,

27 \ifx\getitems@test@ii\@getitems@terminalitem

28 \let\getitems@next=\relax

29 \else

30 \stepcounter{numgathereditems}’

31 \xa\gdef\csname getitems@item@\the\c@numgathereditems\endcsname{}/,

32 \def\getitemsOnext{\gatheritems@int\getitems@relax#2\getitemsQendgatheritems}y,
33 \fi

34 \else

\loopthroughitemswithcommand

We are now in the case where getitems@begindepth # 0. This essentially means
that the text in #1 has more \begin’s than \end’s, so we have not read a complete
\item; we stopped at an “\item” token within a sub-environment. We save the
text gathered so far to \getitems@item@(k), including the \item we parsed by
mistake, and then call \gatheritems@int again to sweep up more tokens.

35 \xa\xa\xa\g@addto@macro

36 \xa\xa\csname getitems@item@\the\cOnumgathereditems\endcsname

37 \xa{\getitems@stripfirsttokenfrom#l\getitems@endstripl}y,

38 \xa\g@addto@macro\csname getitems@item@\the\c@numgathereditems\endcsname{\item}},
39 \def\getitemsOnext{\gatheritemsQ@int\getitemsOrelax#2\getitemsQ@endgatheritems}y,
40 \fi

41 \getitems@next

42'}

This next macro is used by \gatheritems@int to strip off a dummy \getitems@relax
token from the beginning of its first parameter.

43 \long\def\getitems@stripfirsttokenfrom#1#2\getitems@endstrip{#2}
Here is the code used to track the depth of nesting of \begin’s in a text.

44 \newcounter{getitems@begindepth}

45 \long\def\getitems@trackbegindepth#1{J

46 \getitems@trackbegindepth@int#1l\getitems@terminalbegindepth\getitems@endtrackbegindepth
47}

48 \def\Ogetitems@begin{\begin}/

49 \def\@getitems@end{\end}/,

50 \def\@getitems@terminalbegindepth{\getitems@terminalbegindepth}’

51 \long\def\getitems@trackbegindepth@int#1#2\getitems@endtrackbegindepth{’

52 \def\getitemsQtest@i{#1}/,

53 \ifx\getitemsQtest@i\Qgetitems@begin

54 \advance\c@getitems@begindepth by 1\relax

55 \else

56 \ifx\getitemsOtest@i\Qgetitems@end

57 \advance\c@getitems@begindepth by -1\relax
58 \fi

59 \fi

60 \def\getitems@test@ii{#2}}
61 \trim@spaces@in\getitems@test@ii
62 \ifx\getitems@test@ii\@getitems@terminalbegindepth

63 \let\getitems@trackbegindepth@ext=\relax

64 \else

65 \def\getitems@trackbegindepth@next{/,

66 \getitems@trackbegindepth@int#2\getitems@endtrackbegindepthl}y,
67 \fi

68 \getitems@trackbegindepth@next

69 }

Finally, we define the user-level command to loop through the gathered items from
1 through numgathereditems.

70 \newif\ifgatherbeginningofloop
71 \newcounter{currentitemnumber}

72 \def\loopthroughitemswithcommand#1{%

73 \setcounter{currentitemnumber}{1}},

74 \gatherbeginningoflooptrue

75 \loopthroughitemswithcommand@int{#1}/,

76 }

7

78 \def\loopthroughitemswithcommand@int#1{%

79 \ifnum\c@currentitemnumber>\c@numgathereditems\relax

80 \let\getitems@loop@next=\relaxy,

81 \else

82 \xa\xa\xa#1\xa\xa\xa{\csname getitems@item@\the\c@currentitemnumber\endcsnamel}’
83 \def\getitems@loop@next{\loopthroughitemswithcommand@int{#1}1}7,

84 \stepcounter{currentitemnumber}y,

85 \fi

86 \gatherbeginningofloopfalse
87 \getitems@loop@next
88 }

