iexec: KIEX Package

*

for Inputable Shell Executions

Yegor Bugayenko
yegor256@gmail . com

2024-01-14, 0.14.0

NB! This package doesn’t work on Windows!

1 Introduction

This package helps you execute shell commands right from the document and then put
their output to the document:

Today is 14-Jan-2024! 1 \documentclass{article}

»| \usepackage{iexec}

s \usepackage [paperwidth=3in] {geometry}
+| \pagestyle{empty}

s \begin{document}

s Today is \textbf{’

71 \iexec{date +\%e-\%b-\%Y}}\unskip!

s \end{document}

\iexec The only command provided by this package is \iexec [{(options)] {{cmd)}. Its
only mandatory argument (c¢md) is the command to be executed through the terminal
shell (bash, or whatever is set as the default one in your console).

You have to run pdflatex (or just latex) with the -—shell-escape flag in order
to let shellesc execute your shell command.
It is important to remember that KTgX always uses “/bin/sh” shell. This can’t be

changed, as explained here.

2 Options

quiet If you don’t want the output to be visible, use \phantom\{\iexec{. . .}}. Otherwise,
you can use the “quiet” option:

I just want to delete some file:
\iexec[quiet]{rm -f foo.txt}

In this case, whatever the shell command produces will not be included into the document.
stdout The output of your code is saved into the file provided as an optional argument of

*The sources are in GitHub at yegor256/iexec

https://ctan.org/pkg/shellesc
https://tex.stackexchange.com/questions/698312
https://github.com/yegor256/iexec

stderr

exit

trace

append

unskip

log

null

ignore

maybe

\iexec (the default value is “iexec.tmp”):
Today is \iexec[stdout=date.txt]{date +\%e-\%b-\%Y | tr -d ’\\n’}.

The tailing part of the command here removes all ends-of-line.
The error output of the code is saved into the file provided as an optional argument
of \iexec (by default the error output is streamed into “stdout”):

Today is \iexec[stderr=my.txt]{broken-command}.

The exit code of the command is saved into a file. You can change the name of it
using the “exit” option:

Today is \iexec[exit=code.txt]{./broken-command.sh}.

The file specified will be deleted right after its usage. If you don’t want this to happen,
use the “trace” package option: all files will remain in the directory where they were
created. It’s possible to turn on the tracing globbaly, for the entire document, using the
“trace” option of the package:

\documentclass{article}

\usepackage [trace]{iexec}

\begin{document}

This file won’t be deleted: \iexec[stdout=me.txt]{whoami}.
\end{document}

The “stdout” produced will be appended to the file specified:

\documentclass{article}

\usepackage [trace]{iexec}

\begin{document}
\iexec[append,stdout=foo.txt,quiet]{echo ’Hello, ’}
\iexec[append,stdout=foo.txt,quiet]{echo ’Jeffrey!’}
\input{foo.txt}

\end{document}

In order to remove the tailing spacing after the content, you may use unskip package
option, which will append \unskip commmand to every \iexec:

\documentclass{article}
\usepackage [unskip] {iexec}
\begin{document}

Today is \iexec{date +\%Y}!
\end{document}

The “stdout” produced will be printed in the TgX log:
\iexec[log]{echo ’Hello, \\LaTeX!’}

The “stdout” of the command will be sent to “/dev/null”:
\iexec[null]{rm some-file.txt}

By default, we report an error if the exit code is not equal to zero. You can suppress
this with the “ignore” option:

\iexec[ignore] {broken-command}

If -shell-escape is not set, the \iexec command will lead to compilation failure.
This failure may be avoided with the help of the maybe option, which means that the
execution of \iexec must be quietly skipped if -shell-escape is not set:

\iexec[maybe]{echo ’Hello, world!’}

3 Implementation

First, we include the shellesc package, which we use in order to execute shell commands:
1 \RequirePackage{shellesc}
Then, we parse package options, with the help of pgfopts:

2 \RequirePackage{pgfopts}

3 \pgfkeys{

4 [iexec/.cd,

5 trace/.store in=\iexec@trace,
6%

7 \ProcessPgfPackageOptions{/iexec}

Then, we prepare to parse the options of the \iexec command, with the help of

pgfkeys:

8 \RequirePackage{pgfkeys}

9 \makeatletter\pgfkeys{

10 /iexec/.is family,

11 /iexec,

12 exit/.store in = \iexec@exit,

13 exit/.default = iexec.ret,

14 stdout/.store in = \iexec@stdout,
15 stdout/.default = iexec.tmp,

16 stderr/.store in = \iexec@stderr,
17 trace/.store in = \iexec@traceit,
18 append/.store in = \iexec@append,
19 log/.store in = \iexec@log,

20 null/.store in = \iexec@null,

21 unskip/.store in = \iexec@unskip,
22 quiet/.store in = \iexecQquiet,
23 ignore/.store in = \iexec@ignore,
24 maybe/.store in = \iexec@maybe,
25 stdout,exit

26 }\makeatother

\iexec@typeout Then, we define an internal command \iexec@typeout for printing the content of a
file, as suggested here:
27 \RequirePackage{expl3}
28 \makeatletter\ExplSyntaxOn
29 \NewDocumentCommand{\iexec@typeout}{m}{
30 \iexec_typeout_file:n { #1 }}
31 \ior_new:N \g_iexec_typeout_ior
32 \cs_new_protected:Nn \iexec_typeout_file:n
33 {
3¢ \ior_open:Nn \g_iexec_typeout_ior { #1 }
35 \ior_str_map_inline:Nn \g_iexec_typeout_ior
36 {\iow_term:n { ##1 }}
37 \ior_close:N \g_iexec_typeout_ior
38}
39 \ExplSyntax0ff\makeatother

\iexec Then, we define \iexec command. It is implemented with the help of \ShellEscape
from shellesc package:

40 \makeatletter

https://ctan.org/pkg/shellesc
https://ctan.org/pkg/pgfopts
https://ctan.org/pkg/pgfkeys
https://tex.stackexchange.com/questions/660808

41 \newread\iexec@exitfile

42 \newcommand\iexec [2] [1{/

43 \begingroup,

44 \pgfgkeys{/iexec}{#11}/

First, we verify that latex is running with --shell-escape option, since without it
nothing will work; so, it’s better to throw an error earlier than later:

45 \ifnum\ShellEscapeStatus=1%

46 \begingroup’
Then, we start the log from a clean line:
47 \ifdefined\iexec@log}
48 \message{~~J}%
49 \fi%

Then, we define a few special chars in order to escape them in the shell (the full list of
them is in macros2e):

50 \let\%\@percentchary,
51 \let\\\@backslashchar},
52 \let\{\@charlb},

53 \let\}\@charrb},

Then, we execute it and save exit code into a file (where we also add % in order to trim
the content to exactly one number, as suggested here):

54 \def\iexec@cmd{ (#2)

55 \ifdefined\iexec@append>\fi>

56 \ifdefined\iexec@null/dev/null\else\iexec@stdout\fi
57 \space\ifdefined\iexec@stderr2>\iexec@stderr\else2>&1\fi;
58 /bin/echo -n \string$?\} >\iexec@exitl}V,

59 \ShellEscape{\iexec@cmd}

Then, a message is printed to TgX log:

60 \ifdefined\iexec@log/

61 \message{iexec: [\iexec@cmd]~"~J}%

62 \fi%

63 \endgroup’,

Then, we read back the exit code, from the file:

64 \immediate\openin\iexec@exitfile=\iexec@exit}

65 \read\iexec@exitfile to \iexec@code}

66 \immediate\closein\iexec@exitfile,

Then, if required, we print the content of the stdout file to TgX log:

67 \ifdefined\iexec@null\else}

68 \IfFileExists

69 {\iexec@stdout}

70 {3

71 {\PackageError{iexec}{The "\iexec@stdout" file is absent
72 after processing, looks like some internal error}{}}%

73 \ifdefined\iexec@log/

74 \message{iexec: This is the content of ’\iexec@stdout’:""~J}}
75 \IfFileExists

76 {\iexec@stdout}

77 {\iexec@typeout{\iexec@stdout}}

78 {\PackageError{iexec}{The "\iexec@stdout" file is absent
79 after processing, looks like some internal error}{}}/
80 \message{<EOF>""J}/,

https://ctan.mirror.norbert-ruehl.de/info/macros2e/macros2e.pdf
https://tex.stackexchange.com/questions/662756

81
82
83
84
85
86
87
88
89
90
91

\else’
\ifnum\iexec@code=0\else’
\ifdefined\iexec@ignore\else
\message{iexec: See the content of ’\iexec@stdout’
after failure:""J}V
\iexec@typeout{\iexec@stdoutl}’
\message{<EQF>"~"J}%
\fi¥%
\fi%
\fi%
\£if%

Then, we check whether it’s zero or not (if not zero, we either print a message or fail the
build, depending on the presence of ignore option):

92
93
94
95
96
97
98
99
100
101
102

\ifnum\iexec@code=0\else}
\ifdefined\iexec@ignorej,
\ifdefined\iexec@log}
\message{iexec: Execution failure ignored,
the exit code was \iexec@code”"~J}
\fi%
\else’
\PackageError{iexec}{Execution failure,
the exit code was \iexec@codel}{}/
\fi%
\£iY%

Then, we include the produced output into the current document:

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

\ifdefined\iexec@null\else}
\ifdefined\iexec@quiet
\ifdefined\iexec@logi
\message{iexec: Due to ’quiet’ option we didn’t read
the content of ’\iexec@stdout’
\ifdefined\pdffilesize (\pdffilesize{\iexec@stdout}
bytes)\fi~~J}%
\fi%
\else
\ifdefined\iexec@log}
\message{iexec: We are going to include the content of
’\iexec@stdout’\ifdefined\pdffilesize (\pdffilesize
{\iexec@stdout} bytes)\fi... "J}%
\fi%
\input{\iexec@stdoutl}y,
\ifdefined\iexec@unskip\unskip\fi%
\message{iexec: The content of ’\iexec@stdout’
was included into the document~™"J}Y
\fi\fi%

Then, we delete the file or leave it untouched:

122
123
124
125
126
127
128

\ifdefined\iexec@null\elseY,
\ifdefined\iexec@trace},
\ifdefined\iexec@log/
\message{iexec: Due to package option ’trace’,
the files ’\iexec@stdout’ and ‘\iexec@exit‘ were
not deleted”"~J}Y
\£fi%

129 \else%

130 \ifdefined\iexec@traceit%

131 \ifdefined\iexec@log}

132 \message{iexec: Due to ’trace’ package option,

133 the files ’\iexec@stdout’ and ’\iexec@exit’

134 were not deleted”"~J}%

135 \fi%

136 \elseY

137 \ShellEscape{rm \iexec@stdoutl}/,

138 \ifdefined\iexec@log}

139 \message{iexec: The file ’\iexec@stdout’ was deleted”"J}}
140 \fi%

141 \ShellEscape{rm \iexec@exit}},

142 \ifdefined\iexec@log/

143 \message{iexec: The file ’\iexec@exit’ was deleted”"J}J
144 \fi%

145 \fi%

146 \fi\fi%

Finally, we ignore the whole story if the maybe option is provided and the -shell-escape
is not set:

147 \else),

148 \ifdefined\iexec@maybe},

149 \message{iexec: The execution skipped because -shell-escape
150 is not set and ’maybe’ option is provided~~J}%

151 \elsey,

152 \PackageError{iexec}{You must run TeX processor with

153 --shell-escape option}{}%

154 \fi%

155 \fiY

156 \endgroupl
157 }\makeatother

Change History

0.10.0
\iexec: The ability to track exit code
was added. Now, the code is saved
into “iexec.ret” file, which is
then read and checked for zero
value. L
The file "iexec.ret” is reused for all
scripts. ...
The option “ignore” suppresses the
checking of “iexec.ret” value.
0.11.0
\iexec: The file with exit code now
contains just numbers, without end
ofline.
The option “exit” allows to change
the name of the file with exit code.
0.11.1
\iexec: When exit code is printed to
the file, we add percentchar at the
end of line in order to avoid extra
space when reading it back.
0.11.2
\iexec: If execution fails, we print the
content of “stdout” anyway, even
if the “log” is not turned on.
0.11.3
\iexec: Bug fixed, because of which
we had an extra leading space.
0.11.4
\iexec: In this version we escape
dollar sign with \string
command.
0.12.0
\iexec: The option “unskip” adds
\unskip after each \iexec, in

order to trip the tailing end of line
SPACE. . .
0.14.0
General: The xkeyval package is not
used anymore. Instead, we use
pfgopts in order to parse package

options. 3

\iexec: The maybe option introduced,
allowing the user to skip the entire
execution of the \iexec command,
when -shell-escape option is
off ...

0.7.0

\iexec: The option “append” was
introduced — if it’s turned on,
stdout will be appended to the file,
instead of rewriting it (this is how
it was before).

The option “log” was introduced, to
turn on log/debug messages in TeX
log (they were all visible always,
which was sometimes annoying.
Also, this option enables printing
of the entire content of stdout to
the log too (this may be pretty
convenient for debugging). 3

0.8.0
\iexec: The option "null” was
introduced, allowing redirection of
stdout to “/dev/null”. Doesn’t
work on Windows, though.
0.9.0
\iexec: The option “stderr” was
introduced, allowing redirection of
stderr to a file. Without this option
specified, stderr will go to stdout.

Index

Numbers written in italic refer to the page where the corresponding entry is described;
numbers underlined refer to the code line of the definition; numbers in roman refer to
the code lines where the entry is used.

Symbols
\%oo 50, 58
\@backslashchar 51
\@charlb 52
\@charrb 53
\@percentchar 50
N 51
N 52
\}F oo 53
C
\closein 66
\ecs ... 32
D
\def 54
E
\ExplSyntax0ff 39
\ExplSyntaxOn 28
G
\g - 31, 34, 35, 37
I
\iexec 30, 32, 40
\iexec@append 18,55
\iexec@cmd 54,59, 61
\iexec@code
... 65,82,92, 96, 100
\iexec@exit ... 12,58,
64, 126, 133, 141, 143
\iexec@exitfile
41, 64, 65, 66

\iexec@ignore .. 23,83,93
\iexec@log 19,
47, 60, 73, 94, 105,
112, 124, 131, 138, 142

\iexec@maybe 24,148
\iexec@null

. 20, 56, 67, 103, 122
\iexec@quiet 22,104
\iexec@stderr 16, 57
\iexec@stdout 14,

56, 69, 71, 74, 76,
77, 78, 84, 86, 107,
108, 114, 115, 117,
119, 126, 133, 137, 139

\iexec@trace 5,123
\iexec@traceit 17, 130
\iexec@typeout . 27,77,86
\iexec@unskip 21,118
\ifdefined 47,55,

56, 57, 60, 67, 73,
83,93, 94, 103, 104,
105, 108, 112, 114,
118, 122, 123, 124,

130, 131, 138, 142, 148
\IfFileExists . 68,75
\ifnum 45, 82, 92
\immediate 64, 66
\input 117
\ior 31, 34, 35, 37
\iow 36

M
\makeatletter 9, 28, 40

\makeatother .. 26,39, 157

\message 48,
61, 74, 80, 84, 87,
95, 106, 113, 119,
125, 132, 139, 143, 149

N
\NewDocumentCommand . 29
\newread 41

(o)

\openin 64
P
\PackageError 71, 78,99, 152
\pdffilesize ... 108,114
\pgfkeys 3,9
\pgfakeys 44
\ProcessPgfPackageOptions

............. 7

R
\read 65
\RequirePackage 1, 2,38, 27

S
\ShellEscape . 59,137, 141
\ShellEscapeStatus .. 45
\space 57
\string 58

U
\unskip 118

	1 Introduction
	2 Options
	3 Implementation

