The matlab-prettifier package*

Julien Cretel
jubobs.matlab.prettifier at gmail.com

2014,/06,19

Abstract

Built on top of the listings package, the matlab-prettifier package allows
you to effortlessly prettyprint MATLAB source code in documents typeset
with BTEX & friends. Three predefined styles, one of which closely mimics
that of the MATLAB editor, are available and can be invoked by listings
macros and environments in conjunction with (most) options provided by
the listings package. The appearance of your MATLAB listings can be further
tweaked via a key-value interface extending that of listings’ Partial support
for Octave syntax is provided.

Contents

Introduction

1

Tt o= W N

Why this package?

Review of alternatives to matlab-prettifier

Syntactic elements automatically highlighted by matlab-prettifier
Styles provided by matlab-prettifier

Other features

User’s guide

6

6.1
6.2
7

7.1
7.2
7.3
7.4
7.5

Installation
Package dependencies oL Lo
Installing matlab-prettifier 0oL

Getting started
Loading matlab-prettifier o
Displayed listings e
Standalone listings Lo Lo
Inline listings e
Placeholders

*This document corresponds to matlab-prettifier v0.3, dated 2014,/06/19.

N o ot w ow W

© © W00 o o oo 00

—
o

8 Advanced customization 11

8.1 Keys from the listings that you should not use 11
8.2 Changing the font of Matlab listings 11
8.3 matlab-prettifier’s key-value interface 12
9 Tips and tricks 13
Miscellaneous 14
10 To-do list 15
11 Missing features and known issues 15
12 Bug reports and feature suggestions 16
13 Acknowledgments 17
Implementation 17
14 Preliminary checks 17
15 Package options 17
16 Required packages 18
17 Definition of the Matlab-pretty language 18
18 State variables 21
19 Processing of syntactic elements 22
20 Hooking into listings’ hooks 27
21 Key-value interface 30
22 Two user-level macros 32
23 Other helper macros 33
24 matlab-prettifier styles 33
Index 36

Introduction

1 Why this package?

MATLAB® is a high-level language and interactive environment for numerical com-
putation, visualization, and programming.! Despite being proprietary and occa-
sionally frustrating, MATLAB remains a great tool for prototyping matrix-oriented,
number-crunching programs. As such, it enjoys widespread popularity, especially
in academia, where, in particular, it is often used for teaching numerical methods.

Users of both MATLAB and IATEX (and friends) often need to typeset MAT-
LAB listings in IMTEX documents, usually with some syntax highlighting, for im-
proved code readability; the relatively large number of relevant questions posted
on tex.stackexchange.com attests to that need.

Recent versions of MATLAB provide a built-in function, called publish, that
can generate INTEX code for typesetting MATLAB listings, but that function uses
a verbatim environment, which doesn’t allow for any fancy formatting. Several
ETEX packages—vanilla listings, mcode, and minted, among others—allow for au-
tomatic syntax highlighting of MATLAB listings in I TEX documents. However,
none of those packages do a great job at replicating the very specific syntax-
highlighting style performed on the fly by the MATLAB editor.?

The lack of tools for faithfully mimicking the style of the MATLAB editor is
unfortunate, especially from an educational standpoint, for the following reason.
Most newcomers to MATLAB read and write code in the MATLAB editor and are,
therefore, continually exposed to its highlighting style. Visual cues—such as those
provided by syntax highlighting—play an important role for recognising patterns,
and students of a programming language are more likely to quickly and effectively
learn and recognize its syntax if they see it highlighted in a consistent manner,
whether it be in a text editor or in some course material (lab handout, assignment
paper, etc.).

The matlab-prettifier package is intended to fill that gap. Built on top of the
feature-rich listings package, matlab-prettifier allows you to beautifully and effort-
lessly typeset MATLAB listings, as it configures listings “behind the scenes” to
replicate, as closely as possible, the syntax-highlighting style of the MATLAB edi-
tor.

What about code written in OCTAVE (a free alternative to MATLAB)? Because
OCTAVE’s syntax and MATLAB’s syntax overlap a lot, matlab-prettifier correctly
highlights OCTAVE listings that strictly adhere to the subset of syntax that lies in
this overlap. More support for OCTAVE is expected to ship with a future release.

Furthermore, matlab-prettifier comes with a few additional features that should
make your life easier. Read on!

2 Review of alternatives to matlab-prettifier

Here is a review of the different alternatives—other than the matlab-prettifier pack-
age and MATLAB’s publish function—available for typesetting MATLAB listings
in BTEX documents.

LSource: http://www.mathworks.co.uk/products/matlab/
2see ... for a comparison.

http://tex.stackexchange.com/search?q=matlab+code+is%3Aquestion
http://wiki.octave.org/FAQ#How_is_Octave_different_from_Matlab.3F
http://www.mathworks.co.uk/products/matlab/

listings’ Matlab language

+ A starting point!

+ listings’ rich features are available.

+ Settings for MATLAB listings are bundled into a listings language, which can
be invoked locally.

— Some MATLAB keywords (e.g. parfor) are not listed.

— Built-in MATLAB function names (e.g. sum) get highlighted like MATLAB
keywords do, which is very distracting.

— Highlighting of keywords is not context-aware; in particular, the end keyword
gets typeset in the same style, regardless of the context (closing keyword or
last-element keyword) in which it occurs.

— No highlighting of block comments

— No highlighting of line-continuation token and associated comment

— Section titles are not highlighted in a style distinct from that of comments.

— No highlighting of unquoted strings

mcode
4+ An honest attempt at improving listings’ Matlab language
+ Package options for quickly effecting global changes to the look of MATLAB

listings

+ Block comments are highlighted as such.

A line-continuation token activates comment style. . .
... but also gets highlighted in comment style.

Settings for MATLAB listings are defined globally (using \lstset) rather
than locally, which means those settings can easily be overwritten/lost.

The enumeration keyword is not listed.

Highlighting of the last-element keyword is handled by a series of literate
replacements; this approach works well only in a limited number of cases in
which that keyword occurs.

Highlighting of the four context-sensitive class-definition keywords is not
context-aware; in particular, properties gets typeset in the same style,
regardless of the context (function or class-definition keyword) in which it
occurs.

Undesirable literate replacements (<= by <, delta by A) are forced upon
the users, and cannot be easily prevented without breaking other literate
replacements put in place for highlighting the last-element keyword.

Section titles are not highlighted in a style distinct from that of comments.

No highlighting of unquoted strings

The implementation of mcode lacks “namespacing”, which increases the risk
of conflict with other packages.

mcode is currently not available on CTAN.

Pygments-based packages (minted, verbments, pythontex)

+

Python!

+ Pygments!

+ o+

3

Slick look

Block comments are highlighted as such.

A line-continuation token activates comment style. ..
... but also gets highlighted in comment style.
listings’ features are not available.

Highlighting of keywords is not context-aware; in particular, the last-element
keyword gets highlighted like the closing keyword does, which is very dis-
tracting.

MATLAB’s transpose operator (.') and }' are incorrectly interpreted as
starting a string literal.

No highlighting of unquoted strings
Escape to KTEX is only allowed in comments.
Slow compared to listings

Requires -shell-escape

Syntactic elements automatically highlighted

by matlab-prettifier

The matlab-prettifier package defines a listings language called Matlab-pretty,
which is designed to keep track of the context behind the scenes and, therefore,
facilitates context-sensitive highlighting of various elements of MATLAB syntax.
That language is used as a basis for three listings styles, one of which, called
Matlab-editor, is showcased below.

Context-insensitive keywords while, for, break, etc.

Context-sensitive keywords end, events, properties, etc.

Quoted strings

'The

sleeper must awaken.'

http://ftp.heanet.ie/pub/CTAN/tex/support/ctanify/ctanify.pdf

To-end-of-line and block comments

% Now let's assign the value of pi to variable a
=pl

Q

o°

{
Now that a holds the value of pi,

here is what we're going to do...
blah blah blah
%}

Line-continuation token (and associated to-end-of-line comment)

A=1[1, 2, 3,... (second row defined on next line)
4, 5, 6];

Section titles

%% Variable initialization

System commands

I gzip sample.m

4 Styles provided by matlab-prettifier

The package defines three listings styles for MATLAB code: Matlab-editor,

Matlab-bw, and Matlab-Pyglike. Those styles differ in terms of color scheme

but, for convenience, all three activate automatic line breaking; for more defails

about automatic line breaking, see subsection 4.10 in listings documentation.
Here is a comparison of the three styles defined by matlab-prettifier.

Matlab-editor This style mimics the default style of the MATLAB editor.

%% Sample Matlab code
Imv test.txt test2.txt
A=1[1, 2, 3;... foo

4, 5, 6];
s = 'abcd’;
for k = 1:4
disp(s(k)) % bar
end

create row vector x, then reverse it
}
x = linspace(0,1,101);

y = x(end:—1:1);

o°

http://www.ctan.org/pkg/listings

Matlab-bw This style is mainly for black & white printing.

Imv test.txt test2.txt
A=1[1, 2, 3;...
4, 5, 6];
s = 'abcd';
for k = 1:4
disp(s(k))
end

x
Il

linspace(0,1,101);
x(end:—1:1);

<
1]

Matlab-Pyglike The minted, verbments, and pythontex packages all use Pyg-
ments lexers for syntax highlighting of listings. This matlab-prettifier style closely
mimics the default style associated with Pygments’ ‘MatlabLexer’.

%% Sample Matlab code
Imv test.txt test2.txt

A=11, 2, 3;... foo
4, 5, 6];

s = 'abcd’;
for k = 1:4

disp(s(k)) % bar
end
%s{
create row vector x, then reverse it
%}
x = linspace(0,1,101);
y = x(end:—1:1);

5 Other features

Additional features include

e a key-value interface extending that of the listings package,

« manual highlighting of variables with shared scope (e.g. myglobalvar),
» manual highlighting of unquoted strings (e.g. “on” in “hold on”),

« a macro for easily typesetting placeholders (e.g. (initial-value)),

e automatic scaling of inline code according to its surroundings,

e an option to only print the header of a MATLAB function.

http://pygments.org
http://pygments.org

User’s guide

6 Installation

6.1 Package dependencies

matlab-prettifier requires relatively up-to-date versions of packages textcomp,
xcolor, and listings, all three of which ship with popular TEX distributions. It
loads those three packages without any options.

6.2 Installing matlab-prettifier

Since the package has been officially released on CTAN, you should be able to
install it directly through your package manager.
However, if you need to install matlab-prettifier manually, you should run

latex matlab-prettifier.ins

and copy the file called matlab-prettifier.sty to a path where WTEX (or your
preferred typesetting engine) can find it. To generate the documentation, run

pdflatex matlab-prettifier.dtx
makeindex -s gglo.ist -o matlab-prettifier.gls matlab-prettifier.glo
makeindex -s gind.ist -o matlab-prettifier.ind matlab-prettifier.idx
pdflatex matlab-prettifier.dtx
pdflatex matlab-prettifier.dtx

7 Getting started

As stated above, the matlab-prettifier package is built on top of the listings package.
If you already are a seasoned listings user, you should feel right at home. If you're
not, be aware that this user’s guide makes use of some listings functionalities (such
as key-value options) without describing their usage. For more details on those
functionalities, you should consult the listings documentation.

7.1 Loading matlab-prettifier
Simply write
\usepackage{matlab-prettifier}

somewhere in your preamble.

You may want to load the listings and xcolor packages with some options; in
that case, make sure those options are passed to those two packages before loading
the matlab-prettifier package.

The matlab-prettifier package currently offers four options. The first two are
inspired from the mcode package. The last two are simply listings options that
matlab-prettifier passes to listings behind the scenes; I chose to define those two
options as matlab-prettifier options to save you the hassle of loading them with
listings separately, should you wish to use them.

http://www.ctan.org/pkg/matlab-prettifier
http://www.ctan.org/pkg/listings

framed
Draws (by default) a dark gray frame around each listing that uses one of
the three styles defined by matlab-prettifier.

numbered
Prints (by default) line numbers in light gray to the left of each listing that
uses one of the three styles defined by matlab-prettifier.

draft
This is simply listings’ draft option. For more details, see subsection 2.2 of
the listings documentation.

final

This is simply listings’ £inal option. For more details, see subsection 2.2 of
the listings documentation.

7.2 Displayed listings

To typeset a MATLAB listing embedded in your tex file, simply enclose it in
an lstlisting environment, and load some style in the environment’s optional
argument, using listings’ style key.

\begin{lstlisting}[style=Matlab-editor]

\end{1lstlisting}

7.3 Standalone listings

In practice, though, keeping your MATLAB listings in external files—rather than
embedding them in a tex file—is preferable, for maintainability reasons. To type-
set a MATLAB listing residing in an m-file, simply invoke the \lstinputlisting
macro; load some style in the environment’s optional argument, and specify the
path to the m-file in question in the mandatory argument.

\1lstinputlisting[style=Matlab-editor]{sample.m}

7.4 Inline listings

You may want to typeset fragments of MATLAB code within the main text of
your document. For instance, you may want to typeset the break keyword in a
sentence, in order to explain its usage. The \lstinline macro can be used for
typesetting such inline code.

\1lstinline[style=Matlab-style] !break!

Well, that’s quite a mouthful for such a simple MATLAB keyword! Writing
\1lstinline for each instance of inline MATLAB code in your document can rapidly
become tedious. Fortunately, listings allows its users to define a character as a
shorthand for inline code via the \1stMakeShortInline macro. For instance, you
could define the double-quote character (") as a shorthand for inline MATLAB code
with

\1lstMakeShortInline[style=Matlab-editor]"

http://www.ctan.org/pkg/listings
http://www.ctan.org/pkg/listings

and you would then be able to typeset this break keyword simply by writing

"break"

in your tex file (but outside displayed listings, of course).

You should choose a character that does not otherwise occur in your tex file,
especially in the inline MATLAB code itself, or you run the risk of confusing TEX.
I find that, in general, the double-quote character (") offers a good compromise.
If necessary, you can undefine a character as a shorthand for inline code, via
listings’ \1stDeleteShortInline macro. For more details, see subsection 4.17 in
the listings manual.

7.5 Placeholders

Code-snippet placeholders, such as (initial-value), are particularly useful for edu-
cational purposes, e.g. to describe the syntax of a programming language to stu-
dents. The following macro allows you to typeset such placeholders, both inside
and outside listings:

\mlplaceholder{(placeholder content)}

typesets a code-snippet placeholder. You can use this macro both inside
and outside listings. When used inside listings, it must be invoked within
an escape to ETEX; see subsection 4.14 of the listings manual.

If you choose to define a single character for escaping to KTEX (via listings’
escapechar key), I recommend you define either the double-quote character (")
or the backtick character (7) as escape character, because neither is allowed in
MATLAB statements and expressions—although they may occur in MATLAB string
literals. Note that using " both as shorthand for inline code and as an escape-to-
IXTEX character inside listings is perfectly allowed.

The following example illustrates how placeholders may be used to describe
the syntax of the MATLAB while loop.

\begin{lstlisting}[
style=Matlab-editor,
basicstyle=\mlttfamily,
escapechar=",

]

while “\mlplaceholder{condition}"
if “\mlplaceholder{something-bad-happens}”

break
else

% do something useful
end

end

\end{1lstlisting}

while (condition)
if (something-bad-happens)
break
else
% do something useful

10

end
end

For convenience, you can of course define a custom macro with a shorter name
for typesetting placeholders, e.g. \ph:

\newcommand\ph\mlplaceholder

8 Advanced customization

The listings package provides a large number of options accessible via a nifty key-
value interface, which is described in its excellent documentation. The matlab-
prettifier package extends listings’ key-value interface interface by defining several
additional keys that allow you to customize the style of your MATLAB listings,
should you wish to do so. All the keys provided by matlab-prettifier are prefixed
by “ml”, to help you distinguish them from native listings keys.

8.1 Keys from the listings that you should not use

The great majority of keys provided by listings can be used in conjunction with
keys provided by matlab-prettifier without any detrimental side effects, but there
are a few exceptions that you should keep in mind.

Some matlab-prettifier keys rely on listings keys “under the hood”, and using
those matlab-prettifier and listings keys in conjunction is strongly discouraged, be-
cause doing so has the potential to wreak havok on the syntax highlighting of
MATLAB listings. It would be like crossing the streams: it would be bad!

For instance, if you want to change the way MATLAB keywords are typeset,
you should use the dedicated matlab-prettifier key called mlkeywordstyle and
eschew the listings key called keywordstyle. More generally, if listings provides a
key called (something) and matlab-prettifier provides a key called m1({something),
customization of your MATLAB listings should be done with the latter, not the
former.

8.2 Changing the font of Matlab listings

For compatibility reasons, the matlab-prettifier package uses the Computer Modern
typewriter font by default. However, this font is far from ideal, because it doesn’t
come with a boldface version, and the MATLAB editor does display some elements
of MATLAB syntax (section titles) in boldface. Therefore, I encourage you to
switch to your preferred “programmer font” instead; how to do that depends on
which typesetting engine you use.

For pdflatex users, matlab-prettifier conveniently provides a macro for easily
selecting the Bera Mono font—which is a popular monospaced font for listings,
and the one I used for all listings in this manual.

\mlttfamily
selects the Bera Mono font (somewhat scaled down).

To use Bera Mono in your MATLAB listings, you must pass \mltttfamily to
listings’ basicstyle key (after loading one of the three styles defined by matlab-
prettifier) and also—this is important—Iload the fontenc package with option T1:

11

http://www.ctan.org/pkg/listings

\usepackage [T1]{fontenc}

8.3 matlab-prettifier’s key-value interface

For each of the matlab-prettifier keys described below, the value assigned to it in
the Matlab-editor style is indicated on the right-hand side.

mlkeywordstyle=(style) \color{blue}

This key determines the style applied to MATLAB keywords. The last token
can be a one-parameter command, such as \textbf or \underbar.

mllastelementstyle=(style) \color{black}

The end keyword has different meanings depending on the context in which
it occurs: it may be used to close a code block (e.g. a while loop), or it may
stand for the last element of an array. In the first case, it gets highlighted
in the same style as the other MATLAB keywords, like so: end. In the other
case, it gets highlighted like “normal text”, like so: end. This key determines
the style of this keyword in cases where it means “last element”. The last
token can be a one-parameter command, such as \textbf or \underbar.

mloverride=(true|false) or mloverride false

By default, in inline code, matlab-prettifier highlights the end keyword as
the closing keyword (not as the last-element keyword) and highlights the
four class-definition identifiers as MATLAB functions (not as keywords), like
so: end, events, enumeration, methods, and properties. This key allows
you to override the current context, so that those five context-sensitive key-
words be typeset in the style of the alternative context, like so: end, events,
enumeration, methods, properties.

mlstringstyle=(style) \color[RGB]{160,32,240}
This key determines the style applied to MATLAB quoted and unquoted
strings. The last token can be a one-parameter command, such as \textbf
or \underbar.

mlcommentstyle=(style) \color [RGB]1{34,139,34}
This key determines the style applied to MATLAB to-end-of-line and block
comments. The last token can be a one-parameter command, such as
\textbf or \underbar.

mlsectiontitlestyle=(style) \bfseries\color [RGB]{34,139,34}
This key determines the style applied to MATLAB section titles. The last
token can be a one-parameter command, such as \textbf or \underbar.

mlshowsectionrules=(true|false) or mlshowsectionrules false
This key determines whether an horizontal rule gets printed above each
MATLAB section title.

mlsectionrulethickness=(number) .05

This key determines the thickness of the horizontal rule above each MATLAB
section title. The resulting thickness corresponds to the product of the value
passed to this key and the length value of \baselineskip.

12

mlsectionrulecolor=(color) black!15
This key determines the color of the horizontal rule shown above each MAT-
LAB section title.

mlsyscomstyle=(style) \color[RGB]{178,140,0}
This key determines the style applied to MATLAB system commands. The
last token can be a one-parameter command, such as \textbf or \underbar.

mlsharedvars=(list of variables)

mlmoresharedvars=(list of variables)

mldeletesharedvars=(list of variables)

mlsharedvarstyle=(style) \color[RGB]{0,163,163}

The first three of these four keys allow you to define, add, or remove (re-
spectively) MATLAB variables with shared scope. The last one determines
the style applied to such variables; the last token can be a one-parameter
command, such as \textbf or \underbar.

mlunquotedstringdelim={(opening delimiter)}{(closing delimiter)}

This key allows you to define delimiters (possibly composed of multiple char-
acters) for highlighting unquoted strings; the delimiters themselves do not
get printed in the output. Be aware that the special characters {}#%\ must
be escaped with a backslash (see item 5 in subsection 4.1 of the listings
documentation). Note that this key is only a tentative solution; automatic
highlighting of unquoted strings is a planned feature for the next release of
matlab-prettifier, which should make this key obsolete.

mlplaceholderstyle=(style) \rmfamily\itshape\color [RGB]{209,0,86%}
This key determines the style applied to placeholders in code snippets. The
last token can be a one-parameter command, such as \textbf or \underbar.
mlscaleinline=(true|false) or mlscaleinline true

If this key is set, any font-size specification in the basic style is overriden,
and inline MATLAB code is scaled to it surroundings; in other words, the
font size of inline MATLAB code is made to match the local font size.

mlonlyheader=(true|false) or mlonlyheader false

If this key is set, output is dropped after the first block of contiguous line
comments, which normally corresponds to the function’s header, if any.

9 Tips and tricks

Here is a list of recommendations—some more opinionated than others.

Stick with the Matlab-pretty language. Defining a listings language based
on Matlab-pretty is discouraged, for the following reason: matlab-prettifier per-
forms some necessary housekeeping tasks at the beginning and end of each listing,
but only under the condition that the name of the language used by the list-
ing be Matlab-pretty; therefore, MATLAB listings are unlikely to get correctly
highlighted if the language name differs from Matlab-pretty.

13

http://www.ctan.org/pkg/listings
http://www.ctan.org/pkg/listings

Define your own style. For maintainability reasons, if you're not completely
satisfied with any of the predefined styles, you should define your own listings style.
You can even base your custom style on one of the predefined styles and tweak it
(see subsection 4.5 in the listings documentation).

Load the base language/style first; customize later. If you want to cus-
tomize the appearance of your MATLAB listings, you should use listings’ language
key or style key before using any other (listings or matlab-prettifier) key, because
loading a language or a style “too late” has the potential to wipe out most of the
current settings.

Define macros for recurring placeholders. For maintainability reasons, you
should define macros for oft-used placeholders, e.g.

\newcommand\phcond{\mlplaceholder{condition}}

For more highlights, use listings’ emph key If you want to highlight some
identifiers in MATLAB listings, use listings’ emph key. Do not use listings’ keywords
or morekeywords keys.

Don’t copy & paste! Do not encourage your readers to copy listings from their
PDF viewer and then paste them in the MATLAB editor. Unfortunately, it simply
is not a reliable way of distributing code, for at least three reasons:

e copying listings than span multiple pages of a PDF document is tedious and
€rror-prone;

 the results of copying content from a PDF for subsequent pasting vary widely
from one PDF viewer to another;

e line breaks introduced by listings for typesetting a MATLAB listing may trans-
late to invalid MATLAB syntax, if copied and pasted verbatim.

Typesetting a vertically centered tilde Unfortunately, not all fonts typeset
the tilde character (~) vertically centered—as it is in the MATLAB editor. Be
aware that, if you set a font for your MATLAB listings (via listings’ basicstyle
key) that is different from matlab-prettifier’s default (a scaled-down version of
Bera Mono), tilde characters occuring in your listings may get typeset vertically
off-center. Because a good, font-independent workaround seems out of reach, I
refer you to http://tex.stackexchange.com/q/312/21891, where you will find
a list of ad-hoc solutions.

Avoid literate replacements like the plague! The mcode package predefines
so-called “literate replacements” (see subsection 5.4 in the listings documentation),
e.g. for printing “<” in place of each instance of “<=". I deliberately chose not to
define any such literate replacements in matlab-prettifier because I think that,
rather than improving code readability, they have a potential to confuse and mis-
lead your readers. In particular, newcomers to the programming language may
not immediately realize that those symbols are not part of the language’s syntax;
they may ascribe literal meaning to them and attempt to reproduce them in their
editor or IDE. How counterproductive! Of course, if you insist, you can still define
your own literate replacements.

14

http://www.ctan.org/pkg/listings
http://tex.stackexchange.com/q/312/21891
http://www.ctan.org/pkg/listings

Miscellaneous

10 To-do list

Automatic highlighting of unquoted strings In the current version of
matlab-prettifier, unquoted strings will only be highlighted as strings if you de-
limit them with custom delimiters (defined via the mlunquotedstringdelim key).
However, I have plans to implement an automatic approach in a future release.
Note that this feature will make the mlunquotedstringdelim key obsolete.

Increased support for Octave’s syntax Support for OCTAVE’s idiosyncratic
syntax—e.g. endif and endwhile keywords—will be added in a future release of
matlab-prettifier.

11 Missing features and known issues

Although matlab-prettifier does a reasonably good job at replicating the syntax
highlighting performed by the MATLAB editor, some problems remain. Here is a
list of known, currently unresolved problems.

No automatic highlighting of variables with shared scope Unfortunately,
automatic highlighting of variables with shared scope would require multiple
passes, which the listings package cannot do. However, I believe that the number
of variables in your MATLAB code should be small enough—otherwise, your MAT-
LAB code is probably not sound!—that you can afford to highlight those variables
manually, if you insist on highlighting them at all.

No highlighting of unterminated strings Because listings cannot look very
far ahead, I haven’t found an easy way of checking whether an opening string
delimiter is missing a matching (closing) string delimiter on the same line.

Illegal syntax tends to yield incorrect syntax highlighting For example,
the MATLAB editor would highlight the end keyword in the listing below, not as
closing keyword (end), but as last-element keyword (end).

\begin{lstlisting}[
style=Matlab-editor,
basicstyle=\mlttfamily,
numbers=none]

if=end

\end{1lstlisting}

if=end

Some section titles fail to be highlighted as such In MATLAB, a line
containing only “%%” and blank characters is a section title. matlab-prettifier in-
correctly highlights such a line in comment style.

15

\begin{lstlisting}[
style=Matlab-editor,
numbers=none,

%% This is a section title basicstyle=\mlttfamily,
% and so is the next line numbers=none]

%% %% This is a section title
% but it gets highlighted % and so is the next line
% like a comment. YAA

% but it gets highlighted
% like a comment.
\end{lstlisting}

listings’ keespaces key messes up section-title rules If both listings’
keepspaces and matlab-prettifier’s mlshowsectionrules are set, section titles that
start by some white space get pushed to the right.

\begin{lstlisting}[

style=Matlab-editor,

basicstyle=\mlttfamily,

numbers=none,

keepspaces,

mlshowsectionrules]

%% the rule gets pushed to the right...

\end{1lstlisting}

%% the rule gets pushed to the right...

“Runaway” block comments end prematurely (in some cases) MATLAB
requires opening and closing delimiters of block comments to each be on a line on
its own, without any visible character, but matlab-prettifier incorrectly considers
block comments closed even in some cases where this rule is infringed. For example,
in the listing below, the MATLAB editor would typeset a = 1 in comment style.

\begin{lstlisting}[
style=Matlab-editor,

%{ basicstyle=\mlttfamily,
"runaway" y{numbers=none]
Dok "runaway"
comment %} o y
oc
a=1
comment %}
a=1
\end{lstlisting}

12 Bug reports and feature suggestions

The development version of matlab-prettifier is currently hosted on Bitbucket at
Jubobs/matlab-prettifier. If you find an issue in matlab-prettifier that this manual
does not mention, if you would like to see a feature implemented in the package,
or if you can think of ways in which the matlab-prettifier documentation could be
improved, please open a ticket in the Bitbucket repository’s issue tracker; alterna-
tively, you can send me an email at jubobs.matlab.prettifier@gmail.com

16

http://bitbucket.org/Jubobs/matlab-prettifier/
mailto:jubobs.matlab.prettifier@gmail.com

\1lstoptcheck@mlpr

\ifframed@mlpr@

13 Acknowledgments

Thanks to the developers of the listings package, without which matlab-prettifier
would never have existed. I'm also in debt to many TeX.SX users for their help,
encouragements, and suggestions. Thanks in particular to David Carlisle, Marco
Daniel, Enrico Gregorio (egreg), Harish Kumar, Heiko Oberdiek, and Robert
Schlicht. Thanks also to the good people at CTAN for hosting the package.

Implementation

Be aware that, for “namespacing”, the matlab-prettifier package uses, not a prefix,
but the “mlpr” suffix (preceded by an @ character) throughout.

14 Preliminary checks

Because the listings options noaspects, 0.21, and savemen are incompatible with
matlab-prettifier, checking whether the listings package has been loaded with any
of those options is a good idea; if so, we should issue an error. This macro checks
whether listings was loaded with a given option and, if so, throws an error.

1 \newcommand\1lstoptcheck@mlpr [1]

2 {%

3 \@ifpackagewith{listings}{#1}%

4 A

5 \PackageError{matlab-prettifier},

6 {incompatible listings’ option #1}%
7 v

8 Make sure the ‘listings’ package
9 doesn’t get loaded with option ‘#1°%
10 }

1}

12 {}

13 }

We now use this macro to make sure that none of the problematic listings options
has been passed to listings during an earlier loading of that package.

14 \1stoptcheck@mlpr{noaspects}
15 \lstoptcheck@mlpr{0.21}
16 \1stoptcheck@mlpr{savemem}

15 Package options

Framed listings

This option draws a frame around each listing by default.

17 \newif\ifframed@mlpr@
18 \DeclareOption{framed}{\framed@mlpr@true}

17

http://tex.stackexchange.com
http://www.ctan.org

\ifnumbered@mlpr@

\language@mlpr

\languageNormedDefd@mlpr

Numbered lines

This option prints line numbers to the left of each listing by default.

19 \newif\ifnumberedOmlpr@
20 \DeclareOption{numbered}{\numbered@mlpr@true}

Draft This option is simply passed to listings.

21 \DeclareOption{draft}{\PassOptionsToPackage{\CurrentOption}{listings}}
Final This option is simply passed to listings.

22 \DeclareOption{final}{\PassOptionsToPackage{\CurrentOption}{listings}}
Discard undefined options We discard any other option passed to matlab-
prettifier by the user and issue a warning.

23 \DeclareOption*,

24 {%

25 \OptionNotUsed

26 \PackageWarning{matlab-prettifier}{Unknown ‘\CurrentOption’ option}
27 }

Process options

28 \ProcessOptions\relax

16 Required packages

The matlab-prettifier package require three packages without any package option:
the textcomp package, in order to use listings’ upquote key; the xcolor package, in
order to color our MATLAB code; and, of course, the listings package.

29 \RequirePackage{textcomp} [2005/09/27]
30 \RequirePackage{xcolor}[2007/01/21]
31 \RequirePackage{listings}[2013/08/26]

17 Definition of the Matlab-pretty language

Language name

To avoid code duplication in this package file, we define a macro that expands to
the name of our new language, Matlab-pretty.

32 \newcommand\language@mlpr{Matlab-pretty}

However, because listings “normalizes” language names internally, we will also need
to define a macro that expands to the normalized name of the new language.

33 \expandafter\lst@NormedDef\expandafter\languageNormedDefd@mlpr?,
34 \expandafter{\language@mlpr}

Language definition We can now define our new listings language, using some
\expandafter trickery on \1stdefinelanguage.
35 \expandafter\expandafter\expandafter\lstdefinelanguage\expandafter,

36 {\language®@mlpr}
37 {h

18

Case sensitivity MATLAB is a case-sensitive language.

38 sensitive=true,

Forbidden characters in identifiers By default, listings allows “$” and “@”
to occur in identifiers, but those characters are not valid MATLAB identifiers.

39 alsoother={\$@},

Character-table adjustments In order to keep track of the context, we need
to modify the character table a bit.

40 MoreSelectCharTable=\MoreSelectCharTable@mlpr,

Keywords The keywords defined below are based on the list returned by the
MATLAB (R2013a) iskeyword function and the four class-definition keywords—
which are omitted by the iskeyword function. Because different MATLAB key-
words affect the context in different ways, we use several classes of listings keywords
to handle them.

The following keywords open a block unrelated to class definition.

41 morekeywords=[1]%

42 {%

43 for,

44 if,

45 otherwise,
46 parfor,

47 spmd,

48 switch,

49 try,

50 while,
51},

52 keywordstyle=[1]\processOpRegKW@mlpr,

Most of the following keywords (nicknamed “middle” keywords herein) can only
occur within a block opened by the keywords listed above—function and return
are exceptions, but, as far as I can tell, seem to have the same effects on syntax
highlighting as the others—and are unrelated to class definition.

53 morekeywords=[2]%

54 {%

55 break,

56 case,

57 catch,

58 continue,
59 else,

60 elseif,
61 function,
62 return,
63 I,

64 keywordstyle=[2]\processMidKW@mlpr,
The following two keywords are “standalone”; they don’t open or close any block.

65 morekeywords=[3]%

66 {%

67 global,

68 persistent,
69 3},

70 keywordstyle=[3]\processStdakKWeémlpr,

19

The classdef keyword interacts with other keywords in a unique fashion; there-
fore, we dedicate a whole class of listings keywords to it.

71 morekeywords=[4]{classdef},

72 keywordstyle=[4]\processClassdefKW@mlpr,

We dedicate a class of listings keywords to the four MATLAB keywords that only
occur within a class-definition block, namely events, enumeration, methods, and
properties.

73 morekeywords=[5]%

74 {%

75 enumeration,
76 events,

77 methods,

78 properties,
79 3,

80 keywordstyle=[5]\processMidClassdefKWOmlpr,

The end keyword has a very peculiar behavior and deserves its own keyword class.
81 morekeywords=[6]{end},

82 keywordstyle=[6]\processEndKW@mlpr,

Strings We simply use listings’ built-in mechanism for highlighting MATLAB
quoted string. .. with a twist; more details follow.

83 morestring=[m]’,

84 stringstyle=\processString@mlpr,

Comments & section titles Delimiters for to-end-of-line and block comments
are defined below.

85 morecomment=[1]\%,

86 morecomment=[n]{\N\{\""MH\L\I\""M},

87 commentstyle=\commentStyle@mlpr,

The line-continuation token (...), which starts a to-end-of-line comment, is
treated separately.

88 moredelim=+*[il] [\processDotDotDot@mlpr]l{...},

Section titles, as special comments that get highlighted in a style different to that
of regular comments, must also be treated separately.

89 moredelim=[1] [\processSectionTitle@mlpr]{\%\%\ 1},

System commands System commands are handled in a straightforward man-
ner by an 1-type delimiter.

90 moredelim=[1] [\syscomStyle@mlpr]!,

Required listings aspects We now only need to specify the required listings
“aspects”.

91 }[

92 keywords,

93 strings,

94 comments,

95]

20

\netBracketCount@mlpr

\blkLvl@mlpr

\blkLv1AtClassdef@mlpr

\ifClosingEndKW@mlpr@

\ifInClassdef@mlpr@

\ifInStrOmlpr@

\ifVisCharOccured@mlpr@

\ifInSecTitle@mlpr@

\ifDroppingOutput@mlpr@

\resetEndKWOmlpr

18 State variables

We define a number of TEX counters and switches that will be used as “state
variables”, to keep track of the context.

Counters

This counter is used to keep a net running count of opening and closing brackets—
roughly speaking. When an opening bracket—be it round, square or curly—is
encountered, the counter is incremented; conversely, when a closing bracket is
encountered, the counter is decremented. I write “roughly speaking”, because
that counter gets reset on some occasions; more details follow.

96 \newcount\netBracketCount@mlpr

This counter counter is used to keep track of the block nesting level.
97 \newcount\blkLv1@mlpr

This counter is used to keep track of the block nesting level at which the last
classdef keyword occured.

98 \newcount\blkLvlAtClassdef@mlpr

Switches

This switch determines whether the end keyword acts as a closing keyword or as
last-element keyword in the current context.

99 \newif\ifClosingEndKW@mlpre@ \ClosingEndKW@mlpr@true

This switch determines whether we’'re within a class-definition block or not.
100 \newif\ifInClassdef@mlpr@ \InClassdef@mlpr@false

This switch determines whether we're inside a string or not.
101 \newif\ifInStr@mlpre@ \InStr@mlpr@false

This switch is used to keep track of whether visible characters have occured on
the current line.

102 \newif\ifVisCharOccured@mlpr@\VisCharOccured@mlpr@false

This switch determines whether we're inside a section title or not.
103 \newif\ifInSecTitle@mlpr@ \InSecTitle@mlpr@false

This switch determines whether we're passed the first contiguous block of line
comments (function header).

104 \newif\ifDroppingOutput@mlpr@\DroppingOutput@mlpr@false

Helper macros for resetting state variables The following macros are used
to reset counters and switches.

This macro restores the end keyword as a closing keyword.

105 \newcommand\resetEndKW@mlpr

106 {%

107 \global\ClosingEndKW@mlpr@true’
108 \global\netBracketCount@mlpr=0%
109 }

21

\resetClassdefKWOmlpr

\MoreSelectCharTable@mlpr

\roundBktOp@mlpr

\squareBkt0p@mlpr

\curlyBktOp@mlpr

\roundBktCl@mlpr

\squareBktCl@mlpr

\curlyBktCl@mlpr

\semicolon@mlpr

This macro reinitializes state variables related to class definition.

110 \newcommand\resetClassdefKW@mlpr
111 {%

112 \global\InClassdef@mlpr@false},
113 \global\blkLv1@mlpr=0%

114 \global\blkLvlAtClassdef@mlpr=0%
115 }

19 Processing of syntactic elements

(The overarching algorithm is not documented here; in a future release, perhaps.)

Processing of brackets An opening and or a closing brackets occuring in a
MATLAB listing affects the context; for instance, an end keyword is always inter-
preted as a closing keyword if it is immediately preceded by a closing bracket, no
matter what comes before that. To keep track of the context, we must update our
state variables every time a bracket is encountered.

This macro, which is passed to listings’ MoreSelectCharTable key in the defini-
tion of Matlab-pretty, allows us to dictate what happens when a bracket or a
semicolon is encountered.

116 \newcommand\MoreSelectCharTable@mlpr
117 {%

We store the original definition of “(” from the default character table in a dedi-
cated macro and modify the behavior of that character.

118 \processOpenBracket@mlpr{‘ (}{\roundBktOp@mlpr}%

We store the original definition of “[” from the default character table in a dedi-
cated macro and modify the behavior of that character.

119 \processOpenBracket@mlpr{‘ [}{\squareBktOp@mlpr}i

We store the original definition of “{” from the default character table in a dedi-
cated macro and modify the behavior of that character.

120 \processOpenBracket@mlpr{‘\{}{\curlyBktOp@mlpr}y

We store the original definition of “)” from the default character table in a dedi-
cated macro and modify the behavior of that character.

121 \processCloseBracket@mlpr{‘)}{\roundBktCl@mlprl}y,

We store the original definition of “]1” from the default character table in a dedi-
cated macro and modify the behavior of that character.

122 \processCloseBracket@mlpr{‘]}{\squareBktC1l@mlpr}

We store the original definition of “}” from the default character table in a dedi-
cated macro and modify the behavior of that character.

123 \processCloseBracket@mlpr{‘\}}{\curlyBktCl@mlprl}y,

We store the original definition of “;” from the default character table in a dedi-
cated macro and modify the behavior of that character.

124 \processSemicolon@mlpr{‘;}{\semicolon@mlprl}y,

22

\processOpenBracket@mlpr

\processCloseBracket@mlpr

\processSemicolon@mlpr

125 }

This macro is used to “hook into” opening-bracket characters and update state
variables every time such a character is encountered in listings’ “processing mode”.

126 \newcommand\processOpenBracket@mlpr [2]

127 {%

128 \lst@DefSaveDef{#1}#27,

129 {%

130 #2J,

131 \ifnum\lst@mode=\1st@Pmode\relax},

132 \global\ClosingEndKW@mlpr@falsej,

133 \global\advance\netBracketCount@mlpr by \@ne}
134 \fi

135 Y%

136 }

This macro is used to “hook into” closing-bracket characters and update state
variables every time such a character is encountered in listings’ “processing mode”.

137 \newcommand\processCloseBracket@mlpr [2]

138 {%

139 \lst@DefSaveDef{#1}#27,

140 {%

141 #2

142 \ifnum\lst@mode=\1st@Pmode\relax},

143 \ifClosingEndKW@mlpr@y

144 \netBracketCount@mnlpr=07%

145 \else

146 \global\advance\netBracketCount@mlpr by \m@ne}
147 \ifnum\netBracketCount@mlpr>0%
148 \else

149 \global\ClosingEndKW@mlpr@true
150 \fi

151 \fi

152 \fi

153 Yh

154 }

This macro is used to “hook into” the semicolon character and update state vari-
ables every time such a character is encountered in listings’ “processing mode”.

155 \newcommand\processSemicolon@mlpr [2]

156 {%

157 \1lst@DefSaveDef{#1}#2,

158 {%

159 #2,

160 \ifnum\lst@mode=\1st@Pmode\relax},
161 \resetEndKWOmlpr?,

162 \fi

163}

164

Processing of keywords The following macros are used for updating state
variables every time a keyword is encountered in listings “processing mode”.

23

\processOpRegKWOmlpr

\processMidKWOmlpr

\processStdaKWemlpr

\processClassdefKWOmlpr

\processMidClassdefKW@mlpr

\processEndKWemlpr

This macro updates state variables every time an opening keyword is processed,
and applies keyword style.

165 \newcommand\processOpRegKW@mlpr
166 {%

167 \resetEndKW@mlpry,

168 \globalladvance\blkLvl@mlpr\@ne,
169 \keywordStyle@mlpry

170 }

This macro updates state variables every time a “middle” keyword is processed,
and applies keyword style.

171 \newcommand\processMidKW@mlpr

172 {%

173 \resetEndKW@mlpry,
174 \keywordStyle®@mlpry
175 }

As far as I can tell, “standalone” keywords and “middle” keywords affect the
context in the same way; therefore, we simply reuse \processMidKW@mlpr here.

176 \newcommand\processStdakKW@mlpr\processMidKWomlpr

This macro updates state variables every time the classdef keyword is processed,
and applies keyword style.

177 \newcommand\processClassdefKW@mlpr

178 {%

179 \resetEndKWOmlpry,

180 \global\InClassdef@mlpr@true,

181 \global\blkLvlAtClassdef@mlpr=\blkLv1@mlpr?
182 \globalladvance\blkLv1@mlpr\@ne}

183 \keywordStyle@mlpr

184 }

This macro updates state variables every time one of the four keywords that only
occur within a class-definition block is processed, and applies the appropriate style.

185 \newcommand\processMidClassdefKW@mlpr

186 {%

187 \ifOverridecontext@mlpr@y,
188 \keywordStyle@mlpr?,

189 \else

190 \ifInClassdef@mlpr@j
191 \resetEndKWOmlpr?,

192 \global\advance\blkLv1@mlpr\@ne
193 \keywordStyle®@mlpr?,
194 \fi

195 \fi

196 }

This macro updates state variables every time the end keyword is processed, and
applies the appropriate style.

197 \newcommand\processEndKW@mlpr

198 {%
199 \ifOverridecontext@mlpr@y,
200 \lastElemStyle@mlpry

24

\processString@mlpr

\processDotDotDot@mlpr

\emHeight@mlpr

\jayDepth@mlpr

\sectionRuleOffsetOmlpr

201 \else
202 \1fClosingEndKW@mlpr@%

203 \ifnum\blkLv1@mlpr>0%

204 \global\advance\blkLv1@mlpr\m@ne,
205 \fi

206 \ifnum\blkLv1l@mlpr=\blkLv1lAtClassdef@mlpr
207 \global\InClassdef@mlpr@false,
208 \fi

209 \keywordStyle@mlpr

210 \else

211 \lastElemStyle@mlpry,

212 \fi

213 \fi

214 }

Processing of strings

This macro records that a string has just started by setting the appropriate switch,
and applies string style.

215 \newcommand\processString@mlpr

216 {%

217 \global\InStr@mlpr@true,
218 \stringStyle@mlpr

219 }

Processing of line-continuation tokens

This macro typesets the line-continuation token in the style of our MATLAB key-
words, prohibits any mode changes on the rest of the current line, and applies
comment style to the rest of the current line.

220 \newcommand\processDotDotDot@mlpr

221 {%

222 \lst@CalcLostSpaceAndOutput%
223 {\keywordStyle@mlpr. ..}/

224 \lst@modetrue,

225 \lst@Lmodetrue}

226 \commentStyle@mlpry

227 }

Processing of section titles First, we need to define a few length macros in
order to draw the horizontal rule that MATLAB shows (by default) above each
section title.

We will use this length to store the height of the “M” character in the current
font.

228 \newlength\emHeight@mlpr

We will use this length to store the depth of letter “j” in the current font.
229 \newlength\jayDepth@mlpr

We will use this length to store the result of our calculations for the vertical offset
required.

230 \newlength\sectionRuleOffset@mlpr

25

\processSectionTitle@mlpr

\drawSectionRule@mlpr

Let’s proceed. ..

This macro is invoked when a %% delimiter is encountered.

231 \newcommand\processSectionTitle@mlpr

232 {J}

233 \ifInSecTitle@mlpr@j

234 \sectionTitleStyle®@mlpr?,
235 \else

If visible characters have already been encountered before the %% on the current
line, this line is simply typeset as a to-end-of-line comment.

236 \ifVisCharOccured@mlpr@y,

237 \commentStyle@mlpry

Otherwise, a section title starts here; we update the relevant state variables and,
if the mlshowsectionrules key has been set, we draw a horizontal rule.

238 \else % a section title is starting here
239 \global\InSecTitle@mlpr@truey,

240 \resetEndKW@mlpr?,

241 \ifShowSectRules@mlpraj,

242 \drawSectionRule®@mlpr?,

243 \fi

244 \sectionTitleStyle@mlpry

245 \fi

246 \fi

247 }

This helper macro is used for drawing a horizontal rule just above the current line.

248 \newcommand\drawSectionRule@mlpr

249 {J,

We measure the height of the “M” character and the depth of the “j” character,
which we then use to calculate the required vertical offset.

250 \setlength\emHeight@mlpr{\fontcharht\font ‘M}},

251 \setlength\jayDepth@mlpr{\fontchardp\font‘j}/

252 \setlength\sectionRuleOffset@mlpr?,

253 {

254 \dimexpr.5\emHeight@mlpry

255 +.5\baselineskipy

256 -.5\jayDepth@mlpr\relaxy
257 Y%

We now draw a rule as required (color and dimensions).

258 \bgroup’
259 \color{\sectionRuleColor@mlpr}’

260 \makebox [0Oem] [1]%

261 {4

262 \raisebox{\sectionRuleOffset@mlpr} [Opt] [Optl%

263 {\rule{\1st@linewidth}{\sectionRuleRT@mlpr\baselineskipl}}/
264 Y

265 \egroup’%

266 }

26

\localFontSize@mlpr

\localBaselineskip@mlpr

\scaleInlineCode@mlpr

\dropOutputAfterHeader@mlpr

20 Hooking into listings’ hooks

We apply some necessary patches in a number of listings’ hooks; but first, we
define a few helper macros.

Helper macros related to hooks

This macro will be used to save the current font size.

267 \newcommand\localFontSize@mlpr{}

This macro will be used to save the current value of \baselineskip.

268 \newcommand\localBaselineskip@mlpr{}

This helper macro is for setting the font size of inline code to the local font size
(only if the mlscaleinline key is set).

269 \newcommand\scaleInlineCode®@mlpr

270 {%

271 \1lst@ifdisplaystylel,
272 \else

273 \ifScaleInline@mlpr@y

We save the values of the current font size and of \baselineskip into our dedi-
cated macros. ..

274 \let\localFontSize@mlpr\f@size},
275 \let\localBaselineskip@mlpr\f@baselineskip
...and we use the basic style but we update the font size.
276 \expandafter\def\expandafter\lst@basicstyle\expandaftery,
277 v
278 \1lst@basicstyle¥
279 \fontsize{\localFontSize@mlpr}{\localBaselineskip@mlprl}
280 \selectfont
281 Yh
282 \fi
283 \fi
284 }

This macro detects when the first block (if any) of contiguous of line comments
(function header) ends and drops output thereafter.

285 \newcommand\dropOutputAfterHeader@mlpr

286 {%

287 \ifonlyheader@mlpr@},
288 \ifnum\1lst@lineno>1%
289 \1lst@ifLmode’

290 \else

At this stage, the header has definitely ended. If we’ve already begun dropping
output, we don’t do anything.

291 \ifDroppingOutput@mlpr@y,

Otherwise, we begin dropping output now and we set the switch accordingly.
292 \else

293 \1st@EnterMode\lst@Pmode{}/

294 \1lst@BeginDropOutput\lst@Pmode’

295 \fi

296 \global\DroppingQutput@mlpr@true,

27

\addedToInitVarsEOL@mlpr

\@ddedToInitVarsEOL@mlpr

\addedToEndGroup@mlpr

\@ddedToEndGroup@mlpr

\addedToPostOutput@mlpr

\@ddedToPostOutput@mlpr

297 \fi

298 \fi
299 \fi
300 }

InitVarsEOL (See the listings documentation for more details on this hook.)

We add this macro (initially empty) to listings’ InitVarsEOL hook.

301 \newcommand\addedToInitVarsEOL@mlpr{}
302 \1st@AddToHook{InitVarsEOL}{\addedToInitVarsEOL@mlpr}

The \addedToInitVarsEOLO@mlpr macro is let to this one under certain conditions
(more details follow).
303 \newcommand\@ddedToInitVarsEOLGmlpr
304 {%
listings’ built-in mechanism for handling MATLAB string does not cover the illegal
case in which an opening string delimiter is not followed by any matching (closing)
string delimiter on the same line. More specifically, listings incorrectly highlights
such a broken string literal as a bona-fide MATLAB string. We improve the situa-
tion somewhat, by only highlighting as a string the line containing the unmatched
opening delimiter, not the lines that follow it:
305 \ifInStr@mlpra@j,

306 \global\InStr@mlpr@falsey
307 \1lst@LeaveMode},
308 \fi

Clearly, at the very beginning of a line, we’re not (not yet, anyway) within a
section title, and no visible character has yet occured on that line.

309 \global\InSecTitle@mlpr@false,
310 \global\VisCharOccured@mlpr@false},
311 }

EndGroup (See the listings documentation for more details on this hook.)

We add this macro (initially empty) to listings’ EndGroup hook.

312 \newcommand\addedToEndGroup@mlpr{}
313 \1stQ@AddToHook{EndGroup}{\addedToEndGroup@mlpr}

The \addedToEndGroup@mlpr macro is let to this one under certain conditions
(more details follow). If we were in a string before when EndGroup hook was
called, we’re now exiting it; therefore, the relevant switch must be reset.

314 \newcommand\@ddedToEndGroup@mlpr{\global\InStr@mlpr@false}

PostOutput (See the listings documentation for more details on this hook.)

We add this macro (initially empty) to listings’ PostOutput hook.

315 \newcommand\addedToPostOutput@mlpr{}
316 \1st@AddToHook{PostOutput}{\addedToPostOutput@mlpr}

The \addedToPostOutput@mlpr macro is let to this one under certain conditions
(more details follow). If the last processed character was not white space (this
check is necessary if listings’ keepspaces key is set), we set the relevant switch.

317 \newcommand\@ddedToPostOutput@mlpr

28

http://www.ctan.org/pkg/listings
http://www.ctan.org/pkg/listings
http://www.ctan.org/pkg/listings

\addedToOutput@mlpr

\@ddedToOutput@mlpr

\addedToOutputOther@mlpr

\@ddedToOutputOther@mlpr

\addedToPreInitHook@mlpr

318 {%
319 \lst@ifwhitespace’

320 \else

321 \global\VisCharOccured@mlpr@true
322 \fi

323 }

Output (See the listings documentation for more details on this hook.)

We add this macro (initially empty) to listings’ Output hook.

324 \newcommand\addedToOutput@mlpr{}
325 \1st@AddToHook{Output}{\addedToOutput@mlpr}

The \addedToOutput@mlpr macro is let to this one under certain conditions (more
details follow). If the mlonlyheader is set, we begin dropping output as soon as
we detect that the first contiguous block of line comments has been passed.

326 \newcommand\@ddedToOutput@mlpr{\dropOutputAfterHeader@mlpr}

OutputOther (See the listings documentation for more details on this hook.)

We add this macro (initially empty) to listings’ QutputOther hook.

327 \newcommand\addedToOutputOther@mlpr{}
328 \1stQ@AddToHook{OutputOther}{\addedToOutputOther@mlpr}

The \addedToOutputOther@mlpr macro is let to this one under certain conditions
(more details follow). If the mlonlyheader is set, we begin dropping output as
soon as we detect that the first contiguous block of line comments has been passed.

329 \newcommand\@ddedToOutputOther@mlpr{\dropOutputAfterHeader@mlpr}

PreInit (See the listings documentation for more details on this hook.) Because
the \1st@AddToHook affects hooks globally (i.e. for all listings), we must apply
our patches only when required, i.e. in listings that use Matlab-pretty, and not
in others. The PreInit, which is called at the very beginning of each listing, is
where we do that.

In this macro, which we add to listings’ PreInit hook, we check whether
\1lst@language and \languageNormedDefd@mlpr expand (once) to the same re-
placement text and only apply our patches under that condition.

330 \newcommand\addedToPreInitHook@mlpr

331 {%

332 \ifx\lst@language\languageNormedDefd@mlpry,

333 \scaleInlineCode@mlpr?,

334 \renewcommand\addedToInitVarsEOL@mlpr\@ddedToInitVarsEOL@mlpry
335 \renewcommand\addedToEndGroup@mlpr\@ddedToEndGroup@mlpry,

336 \renewcommand\addedToPostOutput@mlpr\@ddedToPostOutput@mlpry,
337 \renewcommand\addedToOutput@mlpr\@ddedToOutput@mlpry

338 \renewcommand\addedToOutputOther@mlpr\@ddedToOutputOther@mlpry,
339 \DroppingOutput@mlpr@false?,

340 \fi

341 }

342 \1st@AddToHook{PreInit}{\addedToPreInitHook@mlpr}

29

http://www.ctan.org/pkg/listings
http://www.ctan.org/pkg/listings
http://www.ctan.org/pkg/listings

\addedToDeInitHook@mlpr

mlkeywordstyle
\keywordStyle@mlpr

mllastelementstyle
\lastElemStyle@mlpr

mloverride
\ifOverridecontext@mlpr@

mlstringstyle
\stringStyle@mlpr

DeInit (See the listings documentation for more details on this hook.) In the
DelInit hook, which is called at the very end of each listing, we carry out some
housekeeping tasks if the current listing uses Matlab-pretty.

In this macro, which we add to listings’ DeInit hook, we check whether
\1lst@language and \languageNormedDefd@mlpr expand (once) to the same re-
placement text and, under that condition, we reset all state variables.

343 \newcommand\addedToDeInitHook@mlpr

344 {%

345 \ifx\lst@language\languageNormedDefdOmlpr?,
346 \resetEndKW@mlpr

347 \resetClassdefKWOmlpr?,

348 \global\InStr@mlpr@false

349 \global\VisCharOccured@mlpr@false,

350 \global\InSecTitle@mlpr@false,

351 \global\DroppingOutput@mlpr@false’

352 \fi

353 }

354 \1st@AddToHook{DeInit}{\addedToDeInitHook@mlpr}

21 Key-value interface

We extend listings’ key-value interface by defining several additional keys, which we
will use to define three listings styles, and which will allow the user to customize the
style of their MATLAB listings, should they which to do so. All matlab-prettifier keys
are prefixed by “ml”, so that the user can easily distinguish them from “native”
listings keys.

Keywords

In the definition of Matlab-pretty, we used several classes of listings keywords to
handle the different MATLAB keywords; here is a style key to “rule them all”.

355 \newcommand\keywordStyle@mlpr{}
356 \1st@Key{mlkeywordstyle}\relax/
357 {\renewcommand\keywordStyle@mlpr{#1}}

This key determines the style applied to the last-element keyword.

358 \newcommand\lastElemStyle@mlpr{}
359 \lst@Key{mllastelementstyle}\relax¥
360 {\renewcommand\lastElemStyle@mlpr{#1}}

This key overrides the current context, so that context-sensitive keywords be type-
set in the style associated with the alternative context.

361 \lst@Key{mloverride}{falsel}[t]%
362 {\lstKV@SetIf{#1}\ifOverridecontext@mlpr@}

Strings

This key determines the style applied to MATLAB (quoted and unquoted) strings.

363 \newcommand\stringStyle@mlpr{}
364 \1st@Key{mlstringstyle}\relax,
365 {\renewcommand\stringStyle@mlpr{#13}}

30

http://www.ctan.org/pkg/listings

mlcommentstyle
\commentStyle@mlpr

mlsectiontitlestyle
\sectionTitleStyle@mlpr

mlshowsectionrules
\ifShowSectRules@mlpr@

mlsectionrulethickness
\sectionRuleRT@mlpr

mlsectionrulecolor
\sectionRuleColor@mlpr

mlsyscomstyle
\syscomStyle@mlpr

\InstallKeywords@mlpr

Comments

This key determines the style applied to MATLAB (to-end-of-line and block) com-
ments.

366 \newcommand\commentStyle@mlpr{}

367 \1st@Key{mlcommentstyle}\relax

368 {\renewcommand\commentStyle@mlpr{#1}}

Section titles

This key determines the style applied to MATLAB section titles.

369 \newcommand\sectionTitleStyle@mlpr{}
370 \1st@Key{mlsectiontitlestyle}\relax
371 {\renewcommand\sectionTitleStyle@mlpr{#1}}

This key determines whether an horizontal rule gets printed above each section
title.

372 \1st@Key{mlshowsectionrules}{false}[t]%
373 {\1lstKvV@SetIf{#1}\ifShowSectRules@mlpr@}

This key determines the relative thickness of the horizontal rule that gets printed
above each section title.

374 \newcommand\sectionRuleRT@mlpr{.05}

375 \1st@Key{mlsectionrulethickness}\relax%

376 {\renewcommand\sectionRuleRT@mlpr{#1}}

This key determines the color of the horizontal rule that gets printed above each
section title.

377 \newcommand\sectionRuleColor@mlpr{black!15}

378 \1st@Key{mlsectionrulecolor}\relax

379 {\renewcommand\sectionRuleColor@mlpr{#13}}

System commands

This key determines the style applied to system commands.

380 \newcommand\syscomStyle@mlpr{}
381 \1st@Key{mlsyscomstyle}\relax,
382 {\renewcommand\syscomStyle@mlpr{#1}}

Variables with shared scope For convenience, we create a brand new class
of listings keywords for allowing the user to define MATLAB variables with shared
scope.

This helper macro (which is based on listings’ \1st@InstallKeywords), will let us
defines four keys in one go, all prefixed by m1.

383 \gdef\InstallKeywords@mlpr#1#2#3#4#5,

384 {%

385 \lst@Key{ml#2}\relax

386 {\1st@UseFamily{#2} [\@ne]##1\relax\lst@MakeKeywordsl}/

387 \lst@Key{mlmore#2}\relax

388 {\1st@UseFamily{#2} [\@nel ##1\relax\lst@MakeMoreKeywordsl}/,
389 \1lst@Key{mldelete#2}\relax

390 {\1st@UseFamily{#2} [\@ne]##1\relax\lst@eleteKeywords}/

391 \ifx\Q@empty#3\Q@empty\else

31

mlsharedvars
mlmoresharedvars
mldeletesharedvars
mlsharedvarstyle

mlunquotedstringdelim

mlplaceholderstyle
\phStyle@mlpr

mlscaleinline
\ifScaleInline@mlpr@

mlonlyheader
\ifonlyheader@mlpr@

\mlttfamily

392 \1st@Key{#3}{#4}{\Cnamedef{1st@#3}{##1}}%

393 \fi

394 \expandafter\lst@InstallFamily®@

395 \csname\@lst @#2@data\expandafter\endcsname
396 \csname\@lst @#5\endcsname {#1}{#2}{#3}

397 }

We now use \InstallKeywords@mlpr to define the four keys in question:
mlsharedvars, which can be used to define a list of MATLAB variables with shared
scope; mlmoresharedvars, which can be used to add elements to the current list of
such variables; mldeletesharedvars, which can be used to remove elements from
that list; and mlsharedvarstyle, which determines the style applied to variables
with shared scope.

398 \InstallKeywords@mlpr k{sharedvars}{mlsharedvarstyle}\relax

399 {mlsharedvarstyle}{}1d

Delimiters for unquoted strings

This key allows the user to define custom delimiters—which do not get printed in
the output—for unquoted strings.

400 \1st@Key{mlunquotedstringdelim}\relax,
401 {\lst@DelimKey\relax{[is] [\stringStyleOmlpr]{#1}}}

Placeholders

This key determines the style applied to placeholder content; the color of place-
holder delimiters is designed to match that of placeholder content.

402 \newcommand\phStyle@mlpr{}
403 \1st@Key{mlplaceholderstyle}\relax’
404 {\renewcommand\phStyleOmlpr{#1}}

matlab-prettifier currently does not offer a nice interface for customizing code-
snippet placeholder delimiters; in a future release, perhaps.
Automatic scaling of inline code

This key determines whether the font size of inline MATLAB code should match
the local font size.

405 \1st@Key{mlscaleinline}{true}[t]%
406 {\lstKvVe@SetIf{#1}\ifScaleInline@mlpr@}

Printing only a function’s signature and header

This key determines whether output is dropped after the first block of contiguous
line comments.

407 \1st@Key{mlonlyheader}{falsel}[t]/
408 {\lstKve@SetIf{#1}\ifonlyheader@mlpr@}

22 Two user-level macros
This user-level macro can be used for selecting a scaled version of the Bera Mono

font, a typewriter font family which, contrary to typewriter TEX fonts, conve-
niently comes with a boldface version.

32

\mlplaceholder

\itcorr@mlpr

409 \newcommand\mlttfamily

410 {%

411 \def\fvm@Scale{.85}%

412 \fontfamily{fvm}\selectfonty
413 }

Code-snippet placeholders

This user-level macro can be used to typeset placeholders in code snippets.

414 \newcommand\mlplaceholder[1]
415 {%

416 \bgroup%

417 \phStyle@mlpr?,

418 \bgroup%

419 \phDelimStyle@mlpry
420 \phOpDelim@mlpry
421 \egroup%

422 #1\itcorr@mlpry,

423 \bgroup%

424 \phDelimStyle@mlpry
425 \phClDelim@mlpry
426 \egroup%

427 \egroup’

428 }

23 Other helper macros

429 \newcommand\phDelimStyle@mlpr{\rmfamily\upshape}

430 \newcommand\phOpDelim@mlpr{\textlangle}

431 \newcommand\phClDelim@mlpr{\textrangle}

This macro is used for applying italic correction in case the current font shape is
either italic or slanted.

432 \newcommand\itcorr@mlpr

433 {%

We define a (long) macro that expands (once) to the current font shape, for com-
parison purposes.

434 \expandafter\newcommand\expandafter\long@f@shape@mlpr?,

435 \expandafter{\f@shape}’

If the current font shape is either italic or slanted, we apply italic correction.
436 \ifx\long@f@shape@mlpr\itdefault

437 \/%

438 \else

439 \ifx\long@f@shape@mlpr\sldefaulty
440 \/%

441 \fi

442 \fi

443 }

24 matlab-prettifier styles

We now define three listings styles for MATLAB listings.

33

\toks@mlpr

\mlbwphstyle

\mlbwphstyle

Base style This style is used internally to define the three user-level styles. It’s
not meant to be used outside this package file.

We allocate a token list register in which we store settings that we’ll use to define
the style.

444 \newtoks\toks@mlpr
445 \toks@mlpr=j%

446 {

447 language = \languageNormedDefd@mlpr,
448 Dbasicstyle = \color{black}\ttfamily\normalsize,
449 breaklines = true,

450 showspaces = false,

451 showstringspaces = false,

452 upquote = true,

453 rulecolor = \color{black!67},

454 numberstyle = \color{black!33},

455 mlscaleinline = true,

456 mlonlyheader = false,

457 }

458 \ifframed@mlpr@

459 \toks@mlpr=\expandafter{\the\toksOmlpr frame=single,}

460 \fi

461 \ifnumbered@mlpr@

462 \toks@mlpr=\expandafter{\the\toks@mlpr numbers=left,}

463 \fi

464 \begingroup\edef\Q@tempa{\endgroup

465 \noexpand\lstdefinestyle{MatlabBaseStyle@mlpr}{\the\toksOmlpr}
466 }\Q@tempa

Standard style Standard style of the MATLAB editor.

This user macro holds the placeholder style used in the Matlab-editor style.
467 \newcommand\mleditorphstyle{\color [RGB]{209,000,086}\rmfamily\itshape}

468 \lstdefinestyle{Matlab-editor}

469 {

470 style = MatlabBaseStyleC@mlpr,

471 mllastelementstyle = \color{black} s
472 mlkeywordstyle = \color[RGB]{000,000,255} s
473 mlcommentstyle = \color[RGB]{034,139,034} s
474 mlstringstyle = \color[RGB]{160,032,240} s
475 mlsyscomstyle = \color[RGB]{178,140,000} s
476 mlsectiontitlestyle = \commentStyle@mlpr \bfseries,
477 mlsharedvarstyle = \color[RGB]{000,163,163} s
478 mlplaceholderstyle = \mleditorphstyle,

479 }

Black & white style Black & white, printer-friendly style.

This user macro holds the placeholder style used in the Matlab-bw style.
480 \newcommand\mlbwphstyle{\color [gray]l {0} \rmfamily\itshape}

481 \1stdefinestyle{Matlab-bw}
482 {
483 style = MatlabBaseStyle@mlpr,

34

484 mlkeywordstyle = \color([gray]{0} \bfseries s
485 mlcommentstyle \color[grayl{.75} \itshape,
486 mlstringstyle \color[grayl{.5} R
487 mlsyscomstyle \color[gray]l{.25} s
488 mlsectiontitlestyle = \color[grayl{.75}\bfseries\itshape,
489 mlsharedvarstyle \color[gray]l{0} R
490 mlplaceholderstyle \mlbwphstyle,

491 }

Style of Pygments’ MatlabLexer Style that closely mimics that of Pygments’
‘MatlabLexer’.

\mlpyglikephstyle This user macro holds the placeholder style used in the Matlab-Pyglike style.
492 \newcommand\mlpyglikephstyle{\color [RGB]{127,063,127}\rmfamily\itshape}

493 \1stdefinestyle{Matlab-Pyglike}

494 {

495 style = MatlabBaseStyleC@mlpr,

496 mllastelementstyle = \color[RGB]{127,000,000} s
497 mlkeywordstyle = \color[RGB]{000,127,000}\bfseries s
498 mlcommentstyle = \color[RGB]{063,127,127} \itshape,
499 mlstringstyle = \color[RGB]{186,034,034} s
500 mlsyscomstyle = \color[RGB]{000,127,000} s
501 mlsectiontitlestyle = \color [RGB]{063,127,127} \itshape,
502 mlsharedvarstyle = \color[RGB]{034,034,186} s
503 mlplaceholderstyle = \mlpyglikephstyle,

504 }

35

Change History

v0.1
General: Initial release. 1
v0.2
General: Refactor code extensively;
rewrite automatic scaling of in-
line code; implement mlscalein-
line key; implement mlonly-
header. 1
Index
Symbols
\@ddedToEndGroup@mlpr 314, 335
\@ddedToInitVarsEOL@mlpr ... 303, 334
\@ddedToOutput@mlpr 326, 337
\@ddedToOutputOther@mlpr ... 329, 338
\@ddedToPostOutput@mlpr 317, 336
A
\addedToDeInitHook@mlpr 343
\addedToEndGroup@mlpr 312, 335
\addedToInitVarsEOL@mlpr ... 301, 334
\addedToOutput@mlpr 324, 337
\addedToOutputOther@mlpr ... 327, 338
\addedToPostOutput@mlpr 315, 336
\addedToPreInitHook@mlpr 330

\blkLvl@mlpr 97, 113,
168, 181, 182, 192, 203, 204, 206
\blkLv1lAtClassdef@mlpr

98, 114, 181, 206

C
\commentStyle@mlpr
......... 87, 226, 237, 366, 476
\curlyBktCl@mlpr 123
\curlyBktOp@mlpr 120
D
\drawSectionRule®@mlpr 242, 248
\dropOutputAfterHeader@mlpr
............... 285, 326, 329
E
\emHeight@mlpr 228, 250, 254

36

v0.3
General: Change default font from
Bera Mono to Computer Mod-
ern typewriter (for compatibil-
ity reasons); fix bug (end key-
word now gets reset by a semi-
colon); rename placeholder user
macro; mention support for a

subset of Octave’s syntax. 1

I
\ifClosingEndKW@mlpr@ 99, 143, 202
\ifDroppingOutput@mlpre@ 104, 291
\ifframed@mlpr@ 17, 458
\ifInClassdef@mlpr@ 100, 190
\ifInSecTitle@mlpr@ 103, 233
\ifInStr@mlpr@ 101, 305
\ifnumbered@mlpr@ 19, 461
\ifonlyheader@mlpr@ 287, 407
\ifOverridecontext@mlpr@ 187, 199, 361
\ifScaleInline@mlpr®@ 273, 405
\ifShowSectRules@mlpr@ 241, 372
\ifVisCharOccured@mlpr@ 102, 236
\InstallKeywords@mlpr 383, 398
\itcorr@mlpr 422, 432

J
\jayDepth@mlpr 229, 251, 256

K

keys

mlcommentstyle 31
mldeletesharedvars 32
mlkeywordstyle 30
mllastelementstyle 30
mlmoresharedvars 32
mlonlyheader 32
mloverride 30
mlplaceholderstyle 32
mlscaleinline 32
mlsectionrulecolor 31
mlsectionrulethickness 31
mlsectiontitlestyle 31
mlsharedvarstyle 32
mlsharedvars 32
mlshowsectionrules 31

mlstringstyle 30

mlsyscomstyle 31

mlunquotedstringdelim 32
\keywordStyle@mlpr 169,

174, 183, 188, 193, 209, 223, 355

\language@mlpr
\languageNormedDefd@mlpr
33, 332, 345, 447

\lastElemStyle@mlpr ... 200, 211, 358
\localBaselineskip@mlpr 268, 275, 279
\localFontSize@mlpr ... 267, 274, 279
\long@f@shape@mlpr 434, 436, 439
\1lstoptcheck@mlpr 1, 14-16
M
\mlbwphstyle 467, 480, 490
\mleditorphstyle 467, 478
\mlplaceholder 414
\mlpyglikephstyle 492, 503
\mlttfamily 409
\MoreSelectCharTable@mlpr ... 40, 116
N
\netBracketCount@mlpr
..... 96, 108, 133, 144, 146, 147
P
\PassOptionsToPackage 21, 22
\phClDelim@mlpr 425, 431
\phDelimStyle@mlpr 419, 424, 429
\phOpDelim@mlpr 420, 430
\phStyle@mlpr 402, 417
\processClassdefKWOmlpr 72, 177
\processCloseBracket@mlpr
............... 121-123, 137
\processDotDotDot@mlpr 88, 220
\processEndKWe@mlpr 82, 197
\processMidClassdefKW@mlpr .. 80, 185
\processMidKW@mlpr 64, 171, 176
\processOpenBracket@mlpr 118-120, 126
\processOpRegKW@mlpr 52, 165
\processSectionTitle@mlpr ... 89, 231
\processSemicolon@mlpr 124, 155
\processStdaKW@mlpr 70, 176

37

\processString@mlpr 84, 215
R
\resetClassdefKW@mlpr 110, 347

\resetEndKW@mlpr 105,
161, 167, 173, 179, 191, 240, 346
\roundBktCl@mlpr 121
\roundBktOp@mlpr 118
S
\scaleInlineCode@mlpr 269, 333
\sectionRuleColor@mlpr . 259, 377
\sectionRuleOffset@mlpr 230, 252, 262
\sectionRuleRT@mlpr 263, 374
\sectionTitleStyle@mlpr 234, 244, 369
\semicolon@mlpr 124
\squareBktCl@mlpr 122
\squareBktOp@mlpr 119
\stringStyle@mlpr 218, 363, 401
\syscomStyle@mlpr 90, 380
T
\toks@mlpr 444, 459, 462, 465
U
unknown
\mlplaceholder 10
\mlttfamily 11
mlcommentstyle 12
mldeletesharedvars 13, 32
mlkeywordstyle 11, 12
mllastelementstyle 12
mlmoresharedvars 13, 32
mlonlyheader 13, 29
mloverride 12
mlplaceholderstyle 13
mlscaleinline 13, 27
mlsectionrulecolor 13
mlsectionrulethickness 12
mlsectiontitlestyle 12
mlsharedvarstyle 13, 32
mlsharedvars 13, 32
mlshowsectionrules 12, 16, 26
mlstringstyle 12
mlsyscomstyle 13
mlunquotedstringdelim 13, 15

	Introduction
	Why this package?
	Review of alternatives to matlab-prettifier
	Syntactic elements automatically highlighted by matlab-prettifier
	Styles provided by matlab-prettifier
	Other features

	User's guide
	Installation
	Package dependencies
	Installing matlab-prettifier

	Getting started
	Loading matlab-prettifier
	Displayed listings
	Standalone listings
	Inline listings
	Placeholders

	Advanced customization
	Keys from the listings that you should not use
	Changing the font of Matlab listings
	matlab-prettifier's key-value interface

	Tips and tricks

	Miscellaneous
	To-do list
	Missing features and known issues
	Bug reports and feature suggestions
	Acknowledgments

	Implementation
	Preliminary checks
	Package options
	Required packages
	Definition of the Matlab-pretty language
	State variables
	Processing of syntactic elements
	Hooking into listings' hooks
	Key-value interface
	Two user-level macros
	Other helper macros
	matlab-prettifier styles

	Index

