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Abstract

This is a sample document to illustrate the typesetting of vectors, matrices and ten-
sors according to the matrix tensor notation of Hassenpflug (1993, 1995). The first
section describes the bare basics of the notation and please note that there is much
more to the notation than the little bit described here.

Keywords: vector, matrix, tensor, notation.

N.B.: This document is neither a guide nor a reference document for
the Hassenpflug notation. For any reference to the material in sec-
tion §1.1, please cite the original copyrighted articles (Hassenpflug
1993, 1995).
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1 Matrix tensor notation

1.1 Basic vector notation

All vectors are in the 3-dimensional Euclidean space R3 and tensors in R3×3. Any
other vector space will be explicitly stated. The rest of this section lists the basic
definitions of the notation of Hassenpflug (1993, 1995)

Physical vector: x−→ ≡ −→e1 x1 + −→e2 x2 + −→e3 x3 (1.1)

The physical vector is the general representation of a vector in any coordinate sys-
tem. The unit vectors −→ei, (i = 1,2,3), define the direction of the axes in a right-
handed orthogonal Cartesian system. The components, −→ei xi, are the components
of the vector and the scalar quantities, xi, the elements of the vector.

Column vector: x
a ≡

xa1

xa2

xa3

 (1.2)

The column matrix of the elements of a vector is called a column vector and is the
algebraic representation of a vector. The bar above the symbol of the vector indicates
a column vector and the superscript (a) the index of the specific coordinate system
in which the elements of the vector are expressed.

Row vector: xa ≡ [
x
a]T =

[
xa1 xa2 xa3

]
(1.3)

The row matrix of the elements of a vector is called a row vector. The bar below the
symbol of the vector indicates a row vector and the subscript (a) the index of the
specific coordinate system in which the elements of the vector are expressed. It is
important to note that in general is

[
x
a]T = xT

a for skew and curved coordinates
(see Hassenpflug 1995). The format in equation (1.3) without the transpose sign is
only valid in Cartesian coordinates.

Norm: ∥x−→∥ ≡ x, (1.4a)

∥x∥ ≡ x ≡
√
x · x =

√
x2

1 + x2
2 + x2

3 (1.4b)

The norm of a vector is the algebraic size or length of the vector. The second equa-
tion, (1.4b), in element form, is only valid in Cartesian coordinates or Euclidean
space.

Scalar, dot or inner product: x−→ • y−→ ≡ x−→ · y−→ = xy cosϕ, (1.5a)

x • y ≡ x · y = x1y1 + x2y2 + x3y3 (1.5b)

The scalar product of two vectors results in a scalar. The angle ϕ is the angle in
space between x−→ and y−→.

Dyad or outer product: x ◦ y ≡ x · y =

x1y1 x1y2 x1y3

x2y1 x2y2 x2y3

x3y1 x3y2 x3y3

 (1.6)
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The dyad or outer product of two vectors results in a square matrix. There exists
a well-defined algebra for dyads. It is sometimes convenient to handle second-rank
Cartesian tensors such as inertia tensors as a linear polynomial of dyads, called a
dyadic.

Vector or cross product: x−→× y−→ ≡ (
x2y3 − x3y2

)−→e1

+
(
x3y1 − x1y3

)−→e2

+
(
x1y2 − x2y1

)−→e3 (1.7a)

∥x−→× y−→∥ = xy sinϕ (1.7b)

The cross product of the two vector x−→ and y−→ results in a vector perpendicular to
both x−→ and y−→. This operation is only defined in 3-dimensional Cartesian space.
The angle ϕ is the angle in space between x−→ and y−→. The cross product can also be
defined in terms of a matrix-vector operation x × y ≡ x̃ · y

Cross product tensor: x̃ ≡
 0 −x3 x2

x3 0 −x1

−x2 x1 0

 (1.8)

Various identities for the cross product tensor can be verified. These identities will
be extensively used throughout this dissertation.[

x̃
]T

= −x̃
[
x̃
]2

= x · x − x2I x̃ + u = x̃ + ũ

x̃ · u = −ũ · x
[
x̃
]3

= −x2x̃
˜̃
x · u = x̃ · ũ− ũ · x̃

(1.9)

with I the 3 × 3 identity matrix.

Identity matrix: I ≡
 1 0 0

0 1 0
0 0 1

 (1.10)

1.2 Vector transformations

In this section only a basic overview of vector rotations and transformations is given
to establish the basic nomenclature and definitions. For a more in-depth discussion
refer to Hassenpflug (1993).

Consider two Cartesian axis systems denoted by s and r as shown in figure 1(a).
From the general definition of a vector, equation (1.1), it follows

x−→ =
[−→es1 −→es2 −→es3

] ·
xs1xs2
xs3

 =
−→
E s · xs (1.11)

The quantity,
−→
E s = [−→es1 −→es2 −→es3], is the base of the axis system denoted by s. It

consists of the three orthogonal vectors parallel to the axes. From the outer product,
equation (1.6), follows for the inverse of base

−→
E s:[−→

E s

]T
· −→E s = E−→

s · −→E s = I ⇒
[−→
E s

]T
=

[−→
E s

]−1
= E−→

s
(1.12)
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s1

r1

s2

r2

−→es1

−→er1

−→es2−→er2

x−→

xs1

xr1

xs2

xr1

s1

r1

s2

r2

−→es1

−→es2−→er2

x−→

−→xR

xs1xs1R

xr1R

(a) Transformation (b) Rotations

Figure 1: Vector transformations

We can repeat the procedure of equation (1.11) for the vector x−→ in terms of base−→
E r . The relationship of the elements of vector x−→ in terms of base

−→
E s and base

−→
E r

is then

x−→ =
−→
E r · xr =

−→
E s · xs ⇒

 x
s = E−→

s · −→E r ·xr = E
s

r · xr

x
r = E−→

r · −→E s·xs = E
r

s · xs
(1.13)

The matrix quantities E
s

r and E
r

s are then the transformation matrices of the com-

ponents of a vector between the two bases
−→
E s and

−→
E r . The columns of the transfor-

mation matrix E
s

r are the elements of the unit vector −→esi expressed in base E−→s
and

the rows are the unit vectors −→e
sj expressed in base

−→
E r .

E
s

r =
[ ser1

ser2
ser3
]

=

 re
s1

re
s2

re
s3

 (1.14)

The properties of the transformation matrix are well known, for example[
E
s

r

]T
=

[
E
s

r

]−1
= E

r

s (1.15)

The transformation matrix is often called Direction Cosine matrix

C
r

s = E
r

s = E−→
s · −→E r =

[
−→e
si · −→erj

]
=

[
cosϕij

]
(1.16)

1.3 Vector rotations

Consider the case of a vector in space with initial position x−→. The vector is rotated
to a new position in space, −→xR. Define the rotation tensor1 operation then as

−→xR =
−→
R−→ · x−→ (1.17)

1A large body of literature define the rotation tensor as x−→ =
−→
R−→ · −→xR, where

[−→
R−→

]T
=

−→
R−→.
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If the operation is applied to the rotation of all the direction vectors of a base
−→
E s

to a new rotated base
−→
E r , then

−→
E r =

−→
R−→ · −→E s (1.18)

or

E
s

r = E−→
s · −→R−→ · −→E s = R

s

s (1.19)

With reference to figure 1(b), consider the case of a vector fixed in a rotating
base

−→
E r with initial position x−→ and final position after a rotation of −→xR. If the

initial orientation of
−→
E r corresponds with that of

−→
E s then the numerical values of

the components of x
s and r

xR are equal. From the transformation of −→xR it then
follows that

s
xR = E

s

r · r
xR = R

s

s · xs (1.20)

If the rotation matrix is transformed between bases, then

R
r

r = E
r

s · R
s

s · E
s

r = R
s

s (1.21)

The rotation matrix is therefore identical in terms of both bases and we can thus
denote it without the base indices, except when there is more than one rotation. The
rotation matrix between bases

−→
E s and

−→
E r in terms of the transformation matrix is

given by

R = E
s

r (1.22)[
R
]−1

=
[
R
]T

= E
r

s (1.23)

(a) Single rotation (b) Multiple rotations

Figure 2: General vector rotation
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2 General rotations

2.1 The general rotation matrix (Rodriguez formula)

Euler’s theorem states that the most general displacement of a rigid body with one
point fixed is equivalent to a single rotation about some axis through that point.
With reference to figure 2, consider a vector with initial position x−→. The vector is
rotated about an axis defined by the unit vector a−→, through an angle ϑ. The vector
after rotation is denoted by −→xR. From the geometry in figure 2(a) it can be shown
(e.g., Shabana 1998, §2.1) for the vector components in terms of the stationary base−→
E s that

s
xR = x

s + sin ϑ (as × x
s) + (1 − cos ϑ)

(
a
s × (as × x

s)
)

(2.1)

Rewrite equation (2.1) in terms of the cross product tensor defined in equation (1.8)

s
xR =

[
I + sin ϑ ã

s

s + (1 − cos ϑ) ã
s

s · ã
s

s

]
· xs (2.2)

with I is the 3×3 unit matrix. By comparing equations (2.2) and (1.21), the general
format of the rotation matrix for a rotation through an angle ϑ about an axis a

s

fixed in base
−→
E s is given by

R = I + sin ϑ ã
s

s + (1 − cos ϑ) ã
s

s · ã
s

s (2.3)[
R
]T

= I − sin ϑ ã
s

s + (1 − cos ϑ) ã
s

s · ã
s

s (2.4)

Equation (2.3) is also known as the Rodriguez formula. Note that four scalar param-
eters (ϑ and the three components of a−→) and the constraint ∥a−→∥=1 describe three
degrees of rotational freedom.

If x−→ is fixed to a rotating base
−→
E r , with x

s = r
xR (see figure 1(b)), then E

s

r is the

transformation matrix from base
−→
E r to base

−→
E s and

E
s

r = R and E
r

s =
[
R
]T

(2.5)

Note for the transformation of the cross product tensor associated with the rotation
axis, is ã

s

s = ã
r

r = ã, because the components are identical in both the bases.
Equation (2.3) can also be written in exponential format by expanding sin ϑ and

cos ϑ as Taylor series

sin ϑ = ϑ − ϑ3

3!
+
ϑ5

5!
+ · · ·

cos ϑ = 1 − ϑ2

2!
+
ϑ4

4!
+ · · ·

(2.6)

With the aid of equation (1.9) follows the elegant solution by Argyris (1982)

R = I +
(
ϑ − ϑ3

3!
+
ϑ5

5!
+ · · ·

)
ã +

(
ϑ2

2!
− ϑ4

4!
+ · · ·

)[
ã
]2

= I + ϑ ã +
ϑ2

2!

[
ã
]2

+
ϑ3

3!

[
ã
]3

+ · · · +
ϑn

n!

[
ã
]n

+ · · · (2.7)
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which is the exponential matrix

R = eϑã and
[
R
]T

= e−ϑã (2.8)

For numerical purposes equation (2.3) can be written as a single matrix. Let
c = cos ϑ and s = sin ϑ, then the rotation or transformation matrix is given by

R = E
s

r =

 a2
1(1−c)+c a1a2(1−c)−a3s a1a3(1−c)+a2s

a1a2(1−c)+a3s a2
2(1−c)+c a2a3(1−c)−a1s

a1a3(1−c)−a2s a2a3(1−c)+a1s a2
3(1−c)+c

 (2.9)

Useful rotation matrices are the three rotations ϑ1, ϑ2 and ϑ3 about the unit vectors
in the axis directions e1=[1 0 0]T, e2=[0 1 0]T and e3=[0 0 1]T.

R1 = R(ϑ1, e1) =

1 0 0
0 cos ϑ1 − sin ϑ1

0 sin ϑ1 cos ϑ1

 (2.10a)

R2 = R(ϑ2, e2) =

 cos ϑ2 0 sin ϑ2

0 1 0
− sin ϑ2 0 cos ϑ2

 (2.10b)

R3 = R(ϑ3, e3) =

cos ϑ3 − sin ϑ3 0
sin ϑ3 cos ϑ3 0

0 0 1

 (2.10c)

It is frequently necessary to find the rotation axis a and rotation angle ϑ for a
known transformation matrix, E

s

r = [Eij ]. From equation (2.9) various relation-
ships can be deducted. Two of the more important ones are

2 cos ϑ = E11 + E22 + E33 − 1 (2.11)

2 sin ϑa =

E32 − E23

E13 − E31

E21 − E12

 (2.12)

When ϑ ≈ π equation (2.12) can not be used to find a. Another more general
approach, is to consider the characteristic polynomial of E

s

r .

det[E
s

r − λI ] = (λ2 + 2λ cos ϑ + 1)(1 − λ) = 0 (2.13)

It leads to the eigenvalues λ = eiϑ, e−iϑ, 1. It can therefore be stated that λ = 1 is
always an eigenvalue of E

s

r and that an eigenvector or axis a = a
s = a

r exists that
is unchanged by the rotation. The rotation axis can be obtained with a numerical
method by solving the eigenvector problem E

s

r · a = a.
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2.2 Multiple rotations

For the case of multiple rotations of a vector as shown in figure 2(b), let

s
xR = R1 · xs with R1 = R(ϑ1,

−→a1) (2.14)
s

xRR = R2 · s
xR with R2 = R(ϑ2,

−→a2) (2.15)

then

s
xRR = R2 · s

xR = R2 · R1 · xs = R · xs (2.16)

with

R = R2 · R1 (2.17)

If x−→ is fixed to a rotating base
−→
E r , with x

s = r
xRR, then E

s

r is the transformation

matrix from base
−→
E r to base

−→
E s and

E
s

r = R2 · R1 (2.18)

E
r

s =
[
R2 · R1

]T
=

[
R1

]T
·
[
R2

]T
(2.19)

Note that in general is R1 · R2 ̸= R2 · R1. If we write equation (2.19) in terms of
the exponential representation of equation (2.8) then

R = eϑ1ã1 · eϑ2ã2 ̸= e
(
ϑ1ã1+ϑ2ã2

)
(2.20)

This means that the rotations are not vectors that can be added. The only exception
is when the rotation axes are parallel, a1 ∥ a2.

2.3 Infinitesimal rotations

In case of an infinitesimal rotation ∆ϑ, second and higher order terms in the series
expansion in equation (2.7) can be neglected, resulting in

∆R ≈ I + ∆ϑ ã and
[
∆R

]T
≈ I − ∆ϑ ã (2.21)

In the previous section it was proven that finite rotations are not vector quantities
that can be added. Infinitesimal rotation are vector quantities that can be added to
give a total rotation. Consider two infinitesimal rotations ∆ϑ1 and ∆ϑ2 about axes
a1 and a2

∆R1 = I + ∆ϑ1 ã1 and ∆R2 = I + ∆ϑ2 ã2 (2.22)

For a multiple rotation

∆R1 · ∆R2 =
[
I + ∆ϑ1 ã1

]
·
[
I + ∆ϑ2 ã2

]
= I + ∆ϑ1 ã1 + ∆ϑ2 ã2 + ∆ϑ1 ∆ϑ2 ã1 · ã2

≈ I + ∆ϑ1 ã1 + ∆ϑ2 ã2

(2.23)
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where second and higher order terms were again ignored. This results in

∆R1 · ∆R2 = ∆R2 · ∆R1 (2.24)

proving that two successive infinitesimal rotations about different axes can be added
and that an infinitesimal rotation is a vector. For n successive rotations it can be
shown that

∆R1 · ∆R2 · · · ∆Rn =
n∏
i=1

∆Ri = I + ∆ϑ1 ã1 + ∆ϑ2 ã2 + · · · + ∆ϑn ãn

= I +
n∑
i=1

∆ϑi ãi

= ∆Rn · ∆Rn−1 · · · ∆R1

(2.25)

2.4 Angular velocity

Consider three successive infinitesimal rotations ∆ϑ1, ∆ϑ2 and ∆ϑ3 about the unit
vectors in the axis directions se1=[1 0 0]T, se2=[0 1 0]T and se3=[0 0 1]T.
The total infinitesimal rotation is then from equation (2.25)

∆R = ∆R1 · ∆R2 · ∆R3 = I + ∆ϑ
s

s (2.26)

with

∆ϑ
s

s = ∆ϑ1 ẽ1
s

s
+ ∆ϑ2 ẽ2

s

s
+ ∆ϑ3 ẽ3

s

s
=

 0 −∆ϑ3 ∆ϑ2

∆ϑ3 0 −∆ϑ1

−∆ϑ2 ∆ϑ1 0

 (2.27)

The total infinitesimal rotation of a fixed length vector ξ
s

about three mutually per-
pendicular axes is then

s
ξ∆ = ∆R · ξs =

[
I + ∆ϑ

s

s

]
· ξs = ξ

s
+ ∆ϑ

s

s · ξ
s

(2.28)

The change vector is

∆ξ
s

=
s
ξ∆ − ξ

s
= ∆ϑ

s

s · ξ
s

(2.29)

Divide equation (2.29) by the time increment ∆t during which the rotations take
place. For the limit as ∆t approaches zero follows

lim
∆t→0

∆ξ
s

∆t
=

dξ
s

dt
= ξ̇

s
(2.30)

and

lim
∆t→0

∆ϑ
s

s

∆t
· ξs = ω̃

s

s · ξ
s

= ωs × ξ
s

(2.31)
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so that the time derivative of a rotating vector of fixed length become

ξ̇
s

= ω̃
s

s · ξ
s

= ωs × ξ
s

(2.32)

The vector ω−→ is defined as the angular velocity with components the instantaneous
rotation rate about the three coordinate axes

ωi = lim
∆t→0

∆ϑi
∆t

i = 1,2,3 (2.33)

It must emphasized that the angular velocity is a defined vector and not the
derivative of any quantity. This implies that the angular velocity cannot be integrated
to the obtain the attitude or orientations of a vector or base or any other quantity.

As an application of equation (2.32), the time derivative of a transformation
matrix in equation (1.14) from a static base

−→
E s to a rotating base

−→
E r can be obtained

Ė
s

r =
[˙ser1

˙ser2
˙ser3

]
=

[
ω̃
s

s · ser1 ω̃
s

s · ser2 ω̃
s

s · ser3

]
= ω̃

s

s · E
s

r (2.34)

or for the angular velocity in terms of the rotating base
−→
E r

Ė
s

r =
[
E
s

r · ω̃
r

r · E
r

s

]
· Es

r = E
s

r · ω̃
r

r (2.35)

Define the vectors xs and ẋ
s = dxs/dt as the position and velocity of a particle

or point with components in terms of a static base
−→
E s, while x

r and ẋ
r are the

position and apparent velocity and acceleration in terms of a rotating base
−→
E r .

x
s = E

s

r · xr (2.36)

ẋ
s = E

s

r · ẋr + Ė
s

r · xr = E
s

r ·
[
ẋ
r + E

r

s · Ė
s

r · xr
]

= E
s

r ·
[
ẋ
r + ωr× x

r] (2.37)

ẍ
s = E

s

r ·
[
ẍ
r + 2ωr× ẋ

r + ω̇r× x
r + ωr× (

ωr× x
r)] (2.38)

Note that ω̇s = E
s

r · ω̇r because ωr × ωr = 0 The cross product tensor of the angular
velocity ω−→ is from equation (2.34)

ω̃
r

r = E
r

s · Ė
s

r

ω̃
s

s = E
s

r · ω̃
r

r · E
r

s = Ė
r

s · E
r

s

(2.39)
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2.5 Rotation kinematics

We proceed next to obtain ω−→ as a function of a−→ and ϑ. The following identities
can then be verified from the fact that a−→ is a unit vector, (a · a = 1), implying that
(a · ȧ = 0):

ã · ˙̃
a · ã = −(a · ȧ) ã = 0

ã · ã · ˙̃
a · ã = −(a · ȧ) ã · ã = 0

(2.40)

The angular velocity tensor in equation (2.39), after the differentiation of the
transformation matrix equation (2.3) and algebraic manipulation with the aid of
equations (2.40) and (1.9) is

ω̃
r

r = ϑ̇ ã + sin ϑ ˙̃
a− 2 sin2 ϑ

2

[
ã · ˙̃

a− ˙̃
a · ã

]
= ϑ̇ ã + sin ϑ ˙̃

a− 2 sin2 ϑ
2
˜̃
a · ȧ

(2.41)

From equation (2.41), the vector equation for ωr and ωs (where the latter can be
derived with the same arguments), follows then as

ωr = ϑ̇a + sin ϑ ȧ− 2 sin2 ϑ
2 ã · ȧ

ωs = ϑ̇a + sin ϑ ȧ + 2 sin2 ϑ
2 ã · ȧ

(2.42)

The inner or scalar product of equation (2.42) gives the norm of the angular velocity

ω2 = ωr · ωr = ωs · ωs = ϑ̇2 + 4 sin ϑ
2 ȧ

2 (2.43)

From equation (2.42) the time derivative of the rotation angle ϑ is

ϑ̇ = a · ωr = a · ωs (2.44)

Multiply equation (2.44) with a. With the aid of the triple cross-product identities,
it then follows

ϑ̇a = (a · ωr)a = ωr + ã · ã · ωr

= (a · ωs)a = ωs + ã · ã · ωs
(2.45)

Inspection of equations (2.42) to (2.44) reveals that a−→· ω−→ = ϑ̇ ̸= ω. The angular
velocity vector ω−→ is therefore in general not in the direction of the instantaneous
rotation axis a−→.

The vector ȧ can be obtained from equation (2.42) by the substitution of equa-
tion (2.45) and assuming a solution of the form [ I + α ã + β ã · ã ]. With the aid of
the identities in equations (2.40) and (1.9), it leads to

ȧ = 1
2

[
+ã− cot ϑ2 ã · ã

]
· ωr ≡ Kr · ωr

= 1
2

[
−ã− cot ϑ2 ã · ã

]
· ωs ≡ Ks · ωs

(2.46)
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Note the notation in equation (2.46) for Kr . It is a tensor in a mixed base (see
Hassenpflug 1993), because a

r = a
s. For the transformation between bases it can

also be confirmed that

Kr = Ks · E
s

r (2.47)

The general kinematic equations for a rotating base are given by equations (2.44)
and (2.46). The four scalar equations describe only three degrees of freedom and
are constrained by ∥a∥ = 1. These equations can be integrated to obtain E

s

r as a
functions of time, but equation (2.46) is singular for values of ϑ = 0,±2π, · · · , which
render a general numeric solution impractical.
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3 Attitude determination

3.1 Direct integration

The classic problem in rotation kinematics is that the angular velocity cannot be
integrated to obtain the orientation of a rotating base, because the integral is de-
pendent on the path of integration. The most basic method to find the orientation
of

−→
E r as a function of time is to integrate equation (2.35) directly,

Ė
s

r = ω̃
s

s · E
s

r =
[
ωs × ser1 ωs × ser2 ωs × ser3

]
Ė
r

s = −ω̃r

r · E
r

s = − [
ωr × res1 ωr × res2 ωr × res3

] (3.1)

Only two of the vectors need to be integrated. The third vector can be obtained from
the cross product (e1 × e2 = e3). This method involves six parameters while there
are only three degrees of freedom. With a lot of effort and by careful selection of
elements from the orthogonality constraint requirement E

s

r ·E
r

s = I, it can be refined
to three parameters. It is also advisable that the constraint equation be enforced
through frequent normalization, to compensate for the fact that the constraints are
not taken into account during integration.

φ

θ

ψ

Figure 3: 3-1-3 Euler angle gyroscope representation

3.2 Euler Angles

Three independent coordinates are needed to describe the orientation or attitude of
a rotating rigid body in space. A class of parametrizations that enjoys wide accep-
tance is the Euler Angles. It consists of three successive rotations, see for example
figure 3. There is no general rule for the sequence of the rotations about the differ-
ent axes. In fact there exists twelve distinct combinations of rotations to transform a
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vector from one Cartesian axis system into another (e.g. Wertz 1978): six symmetric
sets, whose labels are written as

1-2-1 1-3-1 2-1-2 2-3-2 3-1-3 3-2-3

and six asymmetric sets, designated by

1-2-3 1-3-2 2-1-3 2-3-1 3-1-2 3-2-1

The Euler angle formulations have kinematic singularities, but their geometrical
significance is apparent. They are especially useful for analytical dynamics formu-
lations to find analytical and perturbation solutions. Because of their geometrical
significance they are often employed to define initial values for the rotation matrices.

Figure 4: 3-1-3 Euler angle scheme

3-1-3 Euler Angle Parametrization

Figure 4 is the representation of the 3-1-3 Euler angle scheme and it consists of three
successive rotations:

(1) A rotation φ about the se3 of base
−→
E s to an intermediate base

−→
E ξ

E
s

ξ

(
φ,

se3

)
= R

s

s

(
φ,

se3

)
=

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 (3.2a)

(2) A rotation θ about the ξe1 of base
−→
E ξ to an intermediate base

−→
E η

E
ξ

η

(
θ,

ξe1

)
= R

ξ

ξ

(
θ,

ξe1

)
=

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 (3.2b)
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(3) A rotation ψ about the e3
η of base

−→
E η to the final base

−→
E r

E
η

r

(
ψ, e3

η) = R
η

η

(
ψ, e3

η) =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 (3.2c)

The three rotations, equations (3.2a) to (3.2c), can be combined to obtain the mul-
tiple rotation matrix in base Es or the transformation matrix from base Er to base
Es

E313
s

r

(
φ, θ, ψ

)
= E

s

ξ

(
φ,

se3

) · Eξ

η

(
θ,

ξe1

) · Eη

r

(
ψ, e3

η) (3.3a)

R313
s

s

(
φ, θ, ψ

)
= R

s

s

(
φ,

se3

) · Rξ

ξ

(
θ,

ξe1

) · Rη

η

(
ψ, e3

η) (3.3b)

For the numerical purposes the transformation matrix, equation (3.3a) can be writ-
ten as a single matrix. Let s = sin and c = cos then

E313
s

r

(
φ, θ, ψ

)
=

cφ −sφ 0
sφ cφ 0
0 0 1

 ·
1 0 0

0 cθ −sθ
0 sθ cθ

 ·
cψ −sψ 0
sψ cψ 0
0 0 1


=

cφ cψ − sφ cθ sψ −cφ sψ − sφ cθ cψ sφ sθ

sφ cψ + cφ cθ sψ −sφ sψ + cφ cθ cψ −cφ sθ
sθ sψ sθ cψ cθ

 (3.4)

3-1-3 Euler angle initial values

It is often necessary to find the Euler angles from a known or given transformation
matrix, E313

s

r

(
φ, θ, ψ

)
=

[
Eij

]
. The Euler angles for the 3-1-3 Euler Angle Scheme

follows then from equation (3.4) as

cos θ = E33

sin θ =
E31

sinψ
=

E32

cosψ
=

E13

sinφ
=

−E23

cosψ

tanφ =
−E13

E23

tanψ =
E31

E32

(3.5)

For θ = 0,±π the angles φ and ψ are not defined. It is also clear from the gyroscope
representation in figure 3 that the outer and inner gimbals are then in the same
plane, resulting in the locking of the gimbals, with a loss of a degree of freedom.
The combined angles φ+ψ and φ−ψ are always defined and can be calculated from
equation (3.4) as

2 sin(φ − ψ) sin2 θ
2 = E21 + E12

2 cos(φ − ψ) sin2 θ
2 = E11 − E22

2 sin(φ + ψ) cos2 θ
2 = E21 − E12

2 cos(φ + ψ) cos2 θ
2 = E11 + E22

(3.6)
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This so called “gimbal lock” is the main disadvantage of the Euler angle scheme.
It is possible for a large number of dynamic problems to avoid these positions by
selecting an Euler angle scheme for the specific problem that would not result in
this singularity.

3-1-3 Euler angle kinematics

The angular velocity in terms of the static base
−→
E s for the 3-1-3 Euler angle param-

eters, follows from figure 4

ωs = φ̇
se3 + θ̇E

s

ξ · ξe1 + ψ̇ E
s

ξ · E
ξ

η · e3
η (3.7)

and in terms of the rotating base
−→
E r , note that se3 = ξe3, ξe1 = e1

η and e3
η = re3

ωr = φ̇E
r

η · E
η

ξ · ξe3 + θ̇E
r

η · e1
η + ψ̇

re3 (3.8)

The rotations are not about perpendicular axes and the resulting equations are there-
fore non-linear. In vector-matrix format

ωr = B313
r ·

φ̇θ̇
ψ̇

 , ωs = B313
s ·

φ̇θ̇
ψ̇

 (3.9)

with

B313
r

=

sin θ sinψ cosψ 0
sin θ cosψ − sinψ 0
cos θ 0 1

 (3.10a)

B313
s

=

0 cosφ sin θ sinφ
0 sinφ − sin θ cosφ
1 0 cos θ

 = E313
s

r
· B313

r
(3.10b)

The time derivatives of the Euler angles are from the inverse of equation (3.10)φ̇θ̇
ψ̇

 =
[
B313

r
]−1

· ωr =
[
B313

s
]−1

· ωs (3.11)

with

[
B313

r
]−1

=
1

sin θ

 sinψ cosψ 0
sin θ cosψ − sin θ sinψ 0

− cos θ sinψ − cos θ cosψ sin θ

 (3.12a)

[
B313

s
]−1

=
1

sin θ

− cos θ sinφ cos θ cosφ sin θ
sin θ cosφ sin θ sinφ 0

sinφ − cosφ 0

 (3.12b)

It is clear from equation (3.12) that the matrix becomes singular and the time
derivatives of the Euler angles are undefined for sin θ = 0. This corresponds with the
gimbal lock situation mentioned earlier and rules out a general numerical method
to obtain the orientation of a base.
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