*

The nccthm package

Alexander I. Rozhenko
rozhenko@oapmg.sscc.ru

2004/12/16

Contents

1

2

Overview

Quod Erat Demonstrandum
Other Package Options

Structure and Types of Theorems
Generate New Theorems

Using Theorems

Apar Sections

Customization Commands

The Implementation

9.1 Q.E.D.Support
9.2 Package Options
9.3 The Kernel
9.4 Apar Sections
9.5 Proofof Theorem
9.6 Generate New Theorem Types
9.7 Generate New Theorems
9.8 Defaults

*This file has version number v1.1, last revised 2004/12/16.

1 Overview

This is yet another extension of the M TEX theorem making environment. Further,
we’ll call the theorem any mathematical statement consisting of one or more para-
graphs, and starting with a header containing an optional number. A theorem
is set off from the main text with an extra space. Its title and body are often
emphasized with a font change.

In comparison with the theorem package by Frank Mittelbach and the amsthm
package by American Mathematical Society, the nccthm package is distinct in the
following:

1 All new theorem environments generated with the nccthm package use the
dynamic counters (see dcounter package from this bungle for more details). As
a result, this allows a package writer to generate predefined theorems and do not
think on how they will be numbered, because the decision is later made by a
user. For example, if you want all theorems to have enumeration subordinated to
sections, you need to write down the command

\countstyle{section}

in the preamble. In this case, counters of all new theorems will be set to zero at
the beginning of every section and their enumeration will be composed from the
section number and the theorem counter number itself. You can also change a
enumeration style for concrete counters (not only for dynamic counters) with the
\countstyle command specifying the list of counters in its optional parameter.
For example, if you prepare a book and want to subordinate the equation and
table counters to sections (they are subordinated to chapters by default), write
down in the preamble the following

\countstyle[equation,table] {section}

The last example: to make a plain enumeration of sections and reject their depen-
dance on any other counter, write down in the preamble \countstyle [section] {}.

2 We have divided all theorem modification features into three orthogonal
groups.

A type defines font shapes used in the theorem. Two types are predefined:
theorem and remark. You can define more types or redefine existing types.

A mode defines the precedence of number in the header. In standard mode,
a number goes after a theorem title. The reverse mode (number starts header),
named here the APAR mode, is special. All theorems using this mode are counted
with the same apar counter. To generate theorems in the standard mode, the
\newtheorem command is used. The \newtheorem* command is used for genera-
tion apar theorems.

A style specifies the appearance of theorems. It consists of three modifiers:
breaking, indentation, and marginal numbering. The breaking modifier determines
the separation of theorem header from theorem body (run-in header or line break

\gedsymbol

\qed
\qef

\qed*

\blackqged
\blackgedsymbol

\whiteqed
\whiteqedsymbol

after header). The indentation modifier has two values: noindent and parindent.
It defines an indentation style of a theorem header. The marginal numbering
modifier affects on apar theorems: in margin style, the number of an apar theorem
is typed on margins; in nomargin style, the number starts a paragraph.

The breaking modifier is controlled with special commands but other modifiers
are specified with package options.

3 We do not base the implementation of theorems on the trivlist environ-
ment. This allows us to use two methods of theorem markup: environment-
like markup (\begin{theorem} ... \end{theorem}) or command-like markup
(\theoren ...\gef). The \gef command is used as the end of any theorem. It
resets the font to the normal font and produces a vertical skip. The command-like
markup is useful in apar theorems.

4 Service commands are introduced. Using package options you can select a
type of Q.E.D. symbol: black or white. You can use both of them. The \proof
command starts a proof of statement. We have no proof environment, because
the proof is prepared in the normal font. To complete a proof, use \ged or \gef
(the first one additionally prints the right adjusted Q.E.D. symbol). You can easy
customize delimiters of theorem and proof headers.

2 Quod Erat Demonstrandum

The Q.E.D. symbol is usually used at the end of proof of a math statement.
Sometimes, another symbol finishes a math statement itself. The package allows
using two types of Q.E.D. symbols: black (M) and white (O).

The default Q.E.D. symbol is white. It is printed with the \gedsymbol com-
mand.

The \ged command is used to finish a proof. It prints right-adjusted Q.E.D.
symbol and applies the \gef command (it finishes this paragraph). The \qef
command finishes a paragraph, changes the current font to the normal font, and
skips a \paragraph-like vertical space. |

The star-form of \ged command prints the Q.E.D. symbol but not applies the
\gef command.

The usage of the above mentioned commands at the end of proof is the follow-
ing: if the proof end with an ordinary paragraph, use the \ged command at its
end; if the proof ends with a list, use the \ged* command at the end of the last
list item and the \gqef command after the end of list; and if the proof ends with
a display formula, use the \qedsymbol command as its tag (\tag*{\qedsymbol}
when use the amsmath package).

If you load the package with the ‘blackqed’ option, two additional commands
are generated, \blackgedsymbol and \blackqed. The default \gedsymbol and
\ged commands are let to be equal to their black versions.

Analogously, the ‘whiteqed’ option generates the \whiteqedsymbol and

3.3

3.4

\whiteged commands and lets the default \qedsymbol and \ged commands to be
equal to their white versions.

If both these options are used, the default \qedsymbol and \qed commands
are let to be equal the version loaded last. For example, the following command
loads both versions of Q.E.D. and lets the white version to be the default version:

\usepackage [blackqed,whiteqed] {nccthm}

3 Other Package Options

The package loads options in the order they are written in the options list. Along
with the ‘blackqed’ and ‘whiteqed’ options described above, the following options
are available:

noindent theorems are typed without indentation;

indent theorems are typed with paragraph indentation;
nomargin numbers for theorems in apar mode are typed normally;
margin numbers for theorems in apar mode are typed on margin.

The default options are noindent and nomargin. The following examples show
how the combinations of (no)indent and (no)margin options interact.

Theorem 1 The standard theorem in the noindent + nomargin style.
3.1 Remark The apar theorem in the noindent + nomargin style.
Theorem 2 The standard theorem in the indent + nomargin style.
3.2 Remark The apar remark in the indent + nomargin style.
Theorem The apar theorem in the noindent + margin style.
Remark The apar remark in the indent + margin style.
As you can see, mixing of all these styles in the same document leads to bad
results. This is the reason why these styles are implemented using options.

As you can also see from the last example, the indent style is ignored for apar
theorems typed in the margin style.

\newtheoremtype
\renewtheoremtype

\like. ..

\liketheorem
\likeremark

4 Structure and Types of Theorems

The structure of a theorem is the following:

theorem) header) (space-or-break) (body)

header) normal-header) | {(apar-header)

normal-header) title) [(number)] [{comment)] (after-char)

((
((
((
(apar-header) (apar-tag) (title) [(comment)] (after-char)

A theorem type controls the appearance of the following elements of theorems:
(title), (comment), and (body). The (number) element inherits the style from
(title). The (after-char) element inherits either the style of (comment) if it presents
or the style of (title) otherwise. The style of (apar-tag) is controlled with the
special way and will be described later.

The package provides the following theorem type generation commands:

\newtheoremtype{ (type) H (title-style) }H{ {comment-style) }{(body-style)}
\renewtheoremtype{(type) H (title-style) }{{comment-style) }{ (body-style)}

The (type) parameter is a type name. Other parameters specify fonts to be used
in the corresponding parts of a theorem. Font style parameters are considered to
be used after the \normalfont command.

When a new theorem type is generated, the \like(type) command is created
for it. It has two forms: normal and starred. The normal version prints a theorem
in the standard mode and the starred version prints an apar theorem. The syntax:

\1like(type){(title) }{ (number)} [{comment)]
\like(type)*{(title)} [(comment)]

The starred version of this command has no (number) argument, because it is

numbered using the apar counter. If the (number) argument in the non-starred

version of this command is empty, the number will be omitted in the theorem

header. If the (comment) argument presents, the comment is typed enclosed in

round brackets. This behaviour can be changed with customization commands.
Two theorem types, ‘theorem’ and ‘remark’, are predefined as follows:

\newtheoremtype{theorem}{\bfseries}{}{\itshapel}
\newtheoremtype{remark}{\itshape}{}{}

Using the \liketheorem and \likeremark commands, you can produce a
theorem of the given type with arbitrary title without generation a special envi-
ronment for it. It is very useful if a theorem with the given title appears in a
document only once.

Note: Type generation commands are available in the preamble only.

\newtheorem

\newtheoremx*

\renewtheorem
\renewtheoremx*

\TheoremBreakStyle
\TheoremNoBreakStyle

5 Generate New Theorems

A standard theorem environment is generated with the \newtheorem command:
\newtheorem{(env-name)} [{counter)]{(title)} [{type)]

In comparison with the standard IXTEX version of this command, the last optional
parameter has another meaning: it specifies a theorem type. This is because
its standard meaning (the base counter) useless here. If the (type) parameter is
omitted, the ‘theorem’ type is used. The optional argument (counter) is a counter
this environment will be counted with. If it is omitted, the counter name equal
to the (env-name) is used. We do not test the (counter) on existence when a new
theorem environment is generated. The theorem counter is declared to be the
dynamic counter. It is defined at the first use and inherits the style declared by
the latest use of the command

\countstyle{(base-counter)}

Its argument contains a name of base-counter for all dynamically created counters.
Dynamically created counter is set to zero when the base counter is stepped. Its
\the command is the following:

\the(base-counter) \arabic{(dynamic-counter)}

If the (base-counter) is empty, a dynamic counter will be numbered in the plain
style.

Note: In contrast with the standard definition, the described \newtheorem
command may be used with all four parameters.

To generate a new apar theorem environment, the starred version of the
\newtheorem command is applied:

\newtheorem*{(env-name)}{(title)} [{type)]

All apar theorems are counted with the ‘apar’ counter.
You can also redefine already defined theorem environments using the com-
mands

\renewtheorem{(env-name)} [{counter)]{(title)} [{type)]
\renewtheorem*{(env-name)}{(title)} [{type)]

While redefinition a theorem environment, you can change values of all other
parameters after (env-name).

When a theorem environment is defined or redefined, a decision what must be
inserted after the theorem header (space or break) is made on the base of current
break style. The \TheoremBreakStyle and \TheoremNoBreakStyle commands
change this style to the ‘break’ and ‘no-break’ respectively. The default style is
‘no-break’.

Note: Theorem generation commands are available in the preamble only.

\breakafterheader
\nobreakafterheader

6 Using Theorems
The syntax of using theorem environments is the following;:
\begin{(env-name)} [{comment)] (body) \end{(env-name)}
You can also use the command-like syntax:
\(env-name) [{comment)] (body) \qef

which is more likely for apar theorems.

You can change a break style for a theorem applying the \breakafterheader
and \nobreakafterheader commands just before using the theorem.

Let us do the following in the preamble:

\countstyle [apar] {section}
\newtheorem{theorem}{Theorem}
\newtheorem*{atheorem}{Theorem}
\TheoremBreakStyle
\newtheorem{definition}{Definition} [remark]
\TheoremNoBreakStyle
\newtheorem{lemma} [theorem] {Lemma}

This code generates 4 theorem environments: the ‘theorem’ provides a standard
Theorem statement; the ‘atheorem’ provides a Theorem statement in the apar
mode with per-section numbering; the ‘definition’ provides a standard Definition
statement prepared as a remark; and the ‘lemma’ provides a standard Lemma
statement counted with the theorem counter. Definitions are printed in the break
style.

\begin{theorem} A theorem. \end{theorem}

\begin{lemma} A lemma. \end{lemma}

\breakafterheader

\begin{theorem}[A comment] A theorem with break.\end{theorem}
\atheorem A theorem in apar mode. \qgef

\begin{definition} A definition. \end{definition}

This code produces the following:

Theorem 1 A theorem.
Lemma 2 A lemma.

Theorem 3 (A comment)
A theorem with break.

6.1 Theorem A theorem in apar mode.

\proof

Definition 1
A definition.

To prepare a theorem without number or having a special number, use the

\like(type) command. Examples:

\liketheorem{Theorem}{A} Special theorem.\gef
\liketheorem{Proposition}{}[Comment] It has no number.\qgef
\breakafterheader

\likeremark{Example}{2.3.5} An example.\qgef
\likeremark*{Remark} An apar remark. \gef

This code produces the following:

Theorem A Special theorem.
Proposition (Comment) It has no number.

Ezxample 2.53.5
An example.

6.2 Remark An apar remark.

The \proof command prints the proof of a math statement. Syntax:

\proof [{of-theorem)] (body) \qed

The optional parameter (of-theorem) contains a text appended to the title of proof.
The break-style change commands can be applied to this command. Examples:

\proof An ordinary proof.\qed

\proof [of Theorem A] A special proof.\ged
\breakafterheader

\proof [of the Pythagor Theorem] A proof.\ged

This code produces the following:

Proof An ordinary proof.
Proof of Theorem A A special proof.

Proof of the Pythagor Theorem
A proof.

\apar

7 Apar Sections

Header of an apar theorem is similar to the header printed by the \paragraph or
\subparagraph command (except paragraph numbering that is usually omitted).
Moreover, from the logical point of view, the apar theorems are specially designed
enumerated paragraphs. Therefore, it is a good idea to use apar markup as some
kind of special sectioning.

The following command supports sectioning in the apar mode:

\apar [(title)]

It produces a new paragraph starting with the (apar-tag) element and having the
optional title. The indentation style and marginal style of apar section is the same
as for apar theorems. The vertical skip before the apar section is just the same as
before theorems. If the nccsect package is loaded, the apar skip is equal to the
skip produced with the \paragraph and \subparagraph commands.

These properties of apar sections are useful in design of articles having short
sections. For example, if an article consists of many short sections prepared with
the \subsection command, it looks very loose, because subsections are produced
in the display style. It will be better to allow subsections run-in paragraph. Using
the \apar command, you can do this very easy: add the following command to
the preamble

\countstyle[apar] {section}
and prepare subsections with the \apar command. Example:

\apar [Subsection title] Subsection body ...

\apar [Next title:] The body ...

\atheorem In fact, this is a special apar section ...
\apar Subsection without title ...

\breakafterheader

\apar [One more title] Break before its body

This code produces the following:

7.1 Subsection title Subsection body ...

7.2 Next title: The body ...

7.3 Theorem In fact, this is a special apar section ...
7.4 Subsection without title ...

7.5 One more title
Break before its body

8 Customization Commands

\NCCerunskip The vertical skips before and after theorems are identic. They are produced with
the \gef command. The length of the skip is coded in the inner command
\NCC@runskip. This command is also used in the nccsect package as a skip
inserted before the \paragraph and \subparagraph commands. Its default value

2.75ex plus lex minus 0.2ex

\TheoremCommentDelimiters The \TheoremCommentDelimiters{(left)}{(right)} command specifies delim-
iters inserted before and after a theorem comment. The default setting is:

\TheoremCommentDelimiters{(}{)}

\AfterTheoremHeaderChar The \AfterTheoremHeaderChar{(after-char)} command specifies an (after-char)
element that ends header of theorem and header of proof. The default setting is
an empty element.

\AfterTheoremHeaderSkip The \AfterTheoremHeaderSkip{(skip-command)} command specifies a com-
mand inserted between theorem header and body. In break style, this command
is ignored. The default setting is:

\AfterTheoremHeaderSkip{\hskip lem plus 0.2em minus O.2em}

\ProofStyleParameters The \ProofStyleParameters{(style)}{(title)} command specifies style pa-
rameters used in the \proof command: the first one is a font style and the last
one is a proof title. The default setting is:

\ProofStyleParameters{\bfseries}{Proof}

\AparStyleParameters The \AparStyleParameters{(style)}{(prefiz)}{(suffiz)} command specifies
the style of apar sections: the (style) is a style of apar section title; the tag of
apar theorems and sections is prepared using (prefix) and (suffiz) specified with
this command as follows (prefiz)\theapar(suffiz). The default setting is:

\AparStyleParameters{\bfseries}{\bfseries}{\enskip}

Note: All customization commands except the \NCC@runskip are allowed in
the preamble only.

9 The Implementation

\NCCesecskip The package shares the following commands with the nccsect package:

\NCC@runskip
\NCC@secskip{(skip)} adds the (skip) before a section,

\NCC@runskip is a skip inserted before run-in sections.

We protect the definitions of these commands with testing the nccsect package
to be already loaded.

1 (xpackage)

10

\NCC@qgedsymbol
\gedsymbol

\qed
\qedx*

\qef

\whiteqedsymbol
\whiteqed

2 \@ifpackageloaded{nccsect}{}{%
\def\NCC@secskip#1{J,
\if@noskipsec \leavevmode \fi \par
\if@nobreak \everypar{l}\else
\addpenalty\@secpenalty
\addvspace{#1}%
\fi
}
10 \def\NCC@runskip{2.75ex \@plus lex \@minus .2ex}
11}

© 0 N O Ut W

9.1 Q.E.D. Support

The \NCC@gedsymbol command is the base implementation of white Q.E.D. sym-
bol. If no Q.E.D. selection options used, the \gedsymbol is equal to the base
version.

12 \DeclareRobustCommand{\NCC@qedsymbol}{%
13 \mbox{\normalsize\normalfont\thinlines \@tempdima 1.5ex

14 \advance\@tempdima-2\@wholewidth

15 \edef\@tempa{\the\@tempdima}y

16 \kern \@wholewidth

17 \raisebox\@wholewidth[1.5ex]{}

18 \frame{\rule\z@\@tempa\rule\Q@tempa\z@}}%
19 \kern \@wholewidth

20 Yh

21

22 \let\gedsymbol\NCCQgqedsymbol

The \ged command produces the flush-right Q.E.D. symbol and applies the \qef
command in the non-starred case.

23 \newcommand{\qed}{\NCC@qed{\gqedsymbol}}

24 \def\NCC@qed#1{\unskip\allowbreak’,

25 \hspace*{lem plus 1fill minus .2em}#1\@ifstar{}{\qef}/

26

The \qef finishes a paragraph, adds the \@secpenalty, and produces the vertical
skip of \NCC@runskip size. If also sets the normal font and removes the no-break
condition suppressing indentation in the next paragraph.

27 \newcommand{\qef}{\NCC@secskip{\NCCO@runskip}\@nobreakfalse\normalfont}

9.2 Package Options

The ‘whiteqed’ option:

28 \DeclareOption{whiteqed}{’

29 \let\whiteqedsymbol\NCC@gedsymbol

30 \newcommand{\whiteqed}{\NCC@qed{\whiteqedsymbol}}
31 \let\gedsymbol\whitegedsymbol

32}

11

\blackgedsymbol The ‘blackqed’ option:

\blackged 33 \DeclareOption{blackqed}{’
34 \DeclareRobustCommand{\blackqedsymbol}{%

35 \begingroup\normalsize\normalfont\thinlines
36 \rule{1l.5ex}{1.5ex}\endgroup
37}

38 \newcommand{\blackqed}{\NCC@qed{\blackqedsymbol}}
39 \let\gedsymbol\blackgedsymbol
40 }

\ifNCC@thmindent Theorem indentation and marginal numbering options are based on two if-macros:
\ifNCCOthmmargin the NCC@thmindent controls the indentation of headers and the NCC@thmmargin

controls the marginal numbering in the apar mode.

41 \newif\ifNCC@thmindent

42 \newif\ifNCCOthmmargin

43 \DeclareOption{noindent}{\NCC@thmindentfalse}

44 \DeclareOption{indent}{\NCC@thmindenttrue}

45 \DeclareOption{nomargin}{\NCC@thmmarginfalse}

46 \DeclareOption{margin}{\NCCO@thmmargintrue}

Set defaults and process all options in the order they appear in the options
list.

47 \ExecuteOptions{noindent ,nomargin}
48 \ProcessOptions*
9.3 The Kernel

We use the \@ifempty command from the amsgen package and dynamic counters
from the dcounter package.

49 \RequirePackage{amsgen}
50 \RequirePackage{dcounter}[1998/12/19]

\NCC@thmbrmode A theorem break mode is controlled with the \NCC@thmbrmode macro and the
\ifNCCethmbr \ifNCC@thmbr. The \NCC@thmbrmode can have three possible values:

\relax undefined mode;
\z@ break mode;
\@ne no-break mode.

If the break mode is undefined, the decision is made on the analyzes of the
NCC@thmbr value: true value means break, false value means no-break.

51 \1let\NCC@thmbrmode\relax
52 \newif\ifNCC@thmbr

\breakafterheader The \breakafterheader and \nobreakafterheader commands test the current
\nobreakafterheader break mode and set an appropriate mode if it is undefined yet. As a result, usage

12

\TheoremBreakStyle
\TheoremNoBreakStyle
\TheoremCommentDelimiters
\AfterTheoremHeaderChar
\AfterTheoremHeaderSkip

\NCC@thmhdr

of these commands before a theorem leads to overriding the default break mode
specified in theorem’s macro.

53 \newcommand\breakafterheader{,

54 \ifx\NCC@thmbrmode\relax \global\chardef\NCC@thmbrmode\z@\fi

55

56 \newcommand\nobreakafterheader{’

57 \i1fx\NCC@thmbrmode\relax \global\chardef\NCC@thmbrmode\@ne\fi

58 }

Theorem customization commands:

59 \newcommand{\TheoremBreakStyle}{\NCCO@thmbrtrue}

60 \newcommand{\TheoremNoBreakStyle}{\NCCOthmbrfalse}

61 \newcommand*{\TheoremCommentDelimiters}[2]{/

62 \def\NCCOthmcmt@##1{#1\ignorespaces##1\unskip#21}/,

63 }

64 \newcommand*{\AfterTheoremHeaderChar} [1] {\def\NCC@thmchar{#1}}
65 \newcommand*{\AfterTheoremHeaderSkip} [1] {\def\NCCOthmskip{#1}}
66 \@onlypreamble\TheoremBreakStyle

67 \@onlypreamble\TheoremNoBreakStyle

68 \@onlypreamble\TheoremCommentDelimiters

69 \@onlypreamble\AfterTheoremHeaderChar

70 \@onlypreamble\AfterTheoremHeaderSkip

The \NCC@thmhdr{(style)}{(header)} prints a theorem header in the required
(style) and implements the current break mode. At the end of macro, the break
mode is reset to \relax. The header is prepared in a group.

71 \def\NCCOthmhdr#1#2{J,

72 \qef

Insert a negative low penalty to increase a chance of page break before the begin-
ning of theorem.

73 \addpenalty{-\@lowpenaltyl}/,

74 \begingroup

75 #1Y,

Test the break mode. If it is undefined, we set it basing on the value of
\ifNCC@thmbr switch.

76 \ifx\NCC@thmbrmode\relax

77 \ifNCC@thmbr \chardef\NCC@thmbrmode\z@
78 \else \chardef\NCC@thmbrmode\@ne

79 \fi

80 \fi

The break case: to implement the break in the vertical mode, it is enough to put
the header in hbox. To allow multi-line header, we prepare it in inner vbox.
81 \ifnum\NCC@thmbrmode=\z@

82 \@tempdima\parindent

83 \hbox{\vbox{\hsize\linewidth\@parboxrestore
84 \ifNCC@thmindent\parindent\@tempdima\fi
85 \leavevmode\strut#2\strut

86 }}\nobreak\noindent

13

\NCC@thmcmt

\NCC@1thm

\NCC@thxhdr

The no-break case: The \ncc@thmskip command

87 \else

88 \ifNCC@thmindent\else\noindent\fi

89 \leavevmode{#2\normalfont\NCC@thmskip}\nobreak
90 \fi

91 \endgroup
Reset the break mode to the initial value:

92 \global\let\NCC@thmbrmode\relax
93 }

The \NCC@thmemt {{comment-style) }{{comment)} tests a comment to be nonempty
and produces it in corresponding style.

94 \def\NCCO@thmcmt#1#2{%

95 \@ifempty{#2}{}{\/\space\normalfont#1\NCCOQthmcmt@{#2}1}7

96 }

Standard mode basic command:

\NCC@1thm{({header-style) }H (comment-style) }{ (body-style) H (title) }
{{number)} [{comment)]

97 \def \NCCQ1thm#1#2#3#4#5{/,

98 \@ifnextchar [{\NCC@1thm@{#1}{#2}{#3}{#4}{#5}}%
99 {\Nccelthme{#1}{#2}{#3}{#41{#5}[1}%
100 }

101 \def \NCCQ1thm@#1#2#3#4#5 [#6] {/,

Prepare theorem header.

102 \NCC@thmhdr{}{%

103 #1#4\Cifempty{#5}{}{\space#5}/,

104 \NCCethmcmt{#2}{#6}\NCC@thmchar

105 Yh

Set the body style and do a small skip to avoid extra space after the \label
command.

106 #3\hskip 0.001\p@ \ignorespaces

107 }

The \NCC@thxhdr{(style)}{(header)} produces an apar theorem header.

108 \def\NCCO@thxhdr#1#2{%
109 \refstepcounter{aparl}y,
110 \NCC@thmhdr{%

In margin style, the indent style is turned off for apar theorems:

111 \ifNCC@thmmargin \NCC@thmindentfalse \fi
112 #17%
113 M

14

Put the (apar-tag) (prepared in the \NCC@thmapar command) before the header
using \1lap or \hbox. Then put the header.

114 \ifNCC@thmmargin \1llap{\NCC@thmapar}\else \hbox{\NCC@thmapar}\fi

115 #2%

116 Yh

117 }

\NCCelthx Apar mode basic command:

\NCC@1thx{(header-style) }H (comment-style) }{ {body-style) H (title)
[(comment)]

118 \def\NCC@1thx#1#2#3#4{Y,

119 \@ifnextchar [{\NCC@lthx@{#1}{#2}{#3}{#4}}Y
120 {\NCColthx@{#1}{#2}{#3}{#4} [1}%
121 }

122 \def\NCC@1thxQ#1#2#3#4 [#5]{%

123 \NCCe@thxhdr{}{%

124 \normalfont#1#4\NCCOQthmcmt{#2}{#5}\NCC@thmchar
125 }%

126 #3\hskip 0.001\p@ \ignorespaces

127 }

\NcCelikethm The base for \like(fype) commands. It passes the control to \NCC@lthm or
\NCC@1thx depending on the star appearing after the third parameter:

\NCC@likethm{(header-style) }{ {comment-style) }{ (body-style) H (title)}
{{number)} [{comment)]

\NCC@likethm{({header-style) }H (comment-style) }{ {body-style) }*{ (title)}
[{comment)]

128 \def\NCC@likethm#1#2#3{%
129 \@ifstar{\NCC@lthx{#1}{#2}{#3}}{\NCC@lthm{#1}{#2}{#3}}%
130 }

9.4 Apar Sections

The counter used in the apar mode is dynamic:

131 \DeclareDynamicCounter{apar}

\AparStyleParameters Apar style parameters provider:
132 \newcommand*{\AparStyleParameters} [3]{%
133 \def\NCC@thmaparstyle{#11}}
134 \def\NCC@thmapar{#2\theapar#3}/,
135 }
136 \@onlypreamble\AparStyleParameters

\apar The \apar [(title)] command starts a new apar-numbered paragraph. If the (title)
is omitted or empty, we must ignore the \NCC@thmskip.

15

\ProofStyleParameters

\proof

\like. ..

\newtheoremtype
\renewtheoremtype

137 \newcommand*{\apar}[1] [1{%

138 \NCC@thxhdr{\NCC@thmaparstyle}

139 {\@ifempty{#1}{\1let\NCC@thmskip\@empty}{\ignorespaces#1\unskip}}/,
140 \hskip 0.001\p@ \ignorespaces

141 }

9.5 Proof of Theorem

Proof style parameters provider:

142 \newcommand*{\ProofStyleParameters}[2]{/
143 \def\NCCOthmproofstyle{#11}/

144 \def\NCC@thmproof{#2}%

145 }

146 \@onlypreamble\ProofStyleParameters

The \proof [{of-theorem)] command:

147 \newcommand*{\proof} [1] [1{/%
148 \NCC@thmhdr{\NCC@thmproofstyle}{/

149 \NCC@thmproof

150 \@ifempty{#1}{}{\space\ignorespaces#1\unskip}%
151 \NCC@thmchar

152 Y

153 \hskip 0.001\p@ \ignorespaces

154 }

9.6 Generate New Theorem Types

New theorem type generation means definition a \1ike(type) command preparing
theorems of corresponding type. The syntax of a \like(type) command is the
following:

\1like(type){(title) }{(number)} [{comment)]
\1like(type)*{(title)} [{comment)]

The first one produces a standard theorem and the last one produces an apar
theorem.

Theorem type generation commands:

\newtheoremtype{(type){ (title-style) }{(comment-style) }H{ (body-style)}
\renewtheoremtyped{(type) H (title-style) }H (comment-style) H {body-style)}

155 \newcommand*{\newtheoremtype} [1]{%

156 \edef\@tempa{\noexpand\newcommand*{\expandafter\noexpand
157 \csname like#1\endcsnamel}}\NCC@nthmtype

158 }

159 \newcommand*{\renewtheoremtype} [1]{%

160 \edef\@tempa{\noexpand\renewcommand*{\expandafter\noexpand
161 \csname like#1\endcsname}}\NCC@nthmtype

162 }

16

163 \def \NCCOnthmtype#1#2#3{\0tempa{\NCCOlikethm{#1}{#2}{#3}}}
164 \@onlypreamble\newtheoremtype

165 \@onlypreamble\renewtheoremtype

166 \@onlypreamble\NCCOnthmtype

9.7 Generate New Theorems

\NCCethmdef DBasic theorem generation command:
\NCC@thmdef {(env-name)}{{action)}{{parameters)} [{type)]

The \@tempa command must contain either \noexpand\newenvironment or
\noexpand\renewenvironment before the call. The (action) is an action applied
at the beginning of theorem. The (parameters) contains parameters passed to the
\1like(type) command.

167 \def \NCCOthmdef#1#2#3{%

168 \@ifnextchar [{\NCC@thmdefe@{#1}{#2}{#3}},

169 {\NCCethmdef@{#1}{#2}{#3} [theorem] }%

170

171 \def \NCC@thmdef @#1#2#3 [#4]{/

Generate an error if the given type is unknown.

172 \@ifundefined{like#4}{},

173 \PackageError{nccthm}{Unknown theorem type ‘#4’}{}%

174 Y%

\@tempa := \[relnewenvironment{(env-name)}{#1\like(type)#23}

175 \edef\Qtempa##1##2{/,

176 \@tempa{#1}{##1\expandafter\noexpand\csname like#4\endcsname##2}J

177 }h

Generate a theorem envirinment:
178 \ifNCC@thmbr

179 \@tempa{#2\breakafterheader}{#3}{\qef\ignorespacesafterend}y,
180 \else

181 \@tempa{#2\nobreakafterheader}{#3}{\qef\ignorespacesafterend},
182 \fi

183 }

184 \@onlypreamble\NCC@thmdef
185 \@onlypreamble\NCC@thmdef@

\newtheorem Theorem generation commands:

\renewtheorem
\newtheorems \newtheorem{(env-name)} [{counter)]{(title)} [{type)]
\renewtheorems \renewtheorem{(env-name)} [{counter)]{(title)} [{type)]

\newtheorem*{{env-name)}{{title)} [{type)]
\renewtheorem*{(env-name)}{(title)} [{type)]

186 \renewcommand*{\newtheorem}{\def\@tempa{\noexpand\newenvironment}y
187 \@ifstar{\NCC@nthx}{\NCC@nthm}}
188 \newcommand*{\renewtheorem}{\def\@tempa{\noexpand\renewenvironment}j,

17

189 \@ifstar{\NCC@nthx}{\NCC@nthm}}

190 \def\NCCenthx#1#2{\NCC@thmdef {#1}{}{*{#2}}}

191 \def\NCCenthm#1{\@ifnextchar [{\NCCenthm@{#1}}{\NCCenthme{#1} [#1]}}
192 \def\NCCOnthm@#1 [#2] #3{7%

193 \DeclareDynamicCounter{#2}/

194 \NCC@thmdef{#1}{\refstepcounter{#2}}{{#3}{\csname the#2\endcsnamel}}/,
195 }

196 \@onlypreamble\newtheorem

197 \@onlypreamble\renewtheorem

198 \@onlypreamble\NCCOnthx

199 \@onlypreamble\NCC@nthm

200 \@onlypreamble\NCC@nthm@

9.8 Defaults

201 \newtheoremtype{theorem}{\bfseries}{}{\itshape}

202 \newtheoremtype{remark}{\itshape}{}{}

203 \TheoremNoBreakStyle

204 \TheoremCommentDelimiters{(}{)}

205 \AfterTheoremHeaderChar{}

206 \AfterTheoremHeaderSkip{\hskip lem \@plus .2em \@minus .2em}
207 \AparStyleParameters{\bfseries}{\bfseries}{\enskip}

208 \ProofStyleParameters{\bfseries}{Proof}

209 (/package)

18

