PMGRAPH.STY: some useful macros which
extends the IXTEX environment picture

Version 1.0

A.S.Berdnikov O.A.Grineva
berd@ianin.spb.su olga@ianin.spb.su

The original TEX/IXTEX possibilities to create pictures are relatively poor,
and there are many extensions (epic/eepic, pictex, drawtex, xypic, mfpic,

etc.)

which were created to extend its possibilities to a higher level. The macro

PMGRAPH.STY (poor-man-graphics) which are described here are not so general
as the ones cited above. They manupulate with the pseudo-graphical fonts which
are used by generic IXTEX without additional extensions — mainly because the
variations of P[CTEX, METAFONT and new graphical font themes are already
realized by other authors and on sufficiently higher level. To some extend the
purpose of our work was to see how far it is possible to move in the development of
new useful graphical primitives for I TEX without the investment of the external
graphical tools.
The style file PMGRAPH.STY includes the following features:

the vectors with a set of slopes which is as general as the line slopes imple-

mented in BKTEX;

the vectors with an arrow at the beginning, at the middle or at the end of
vector with various orientations of the arrow;

the circles and circular arcs with nearly arbitrary diameter using magnified
circle and circlew ITEX fonts;

the 1/4 circular arcs correctly positioned at the centrum or at the corner;

extended set of frames which include various corner style and the optional
multiple frame shadows with a variety of styles;

tools which enable the user to extend the variety of frame styles and the
shadow styles as far as his/her fantasy allows it;

automatic calculation of the picture size in terms of the current text width
— including the picture inserted inside list environments.

1

:‘¢5£;/ \255\\l/:£§;ﬁ
™~

.

Figure 1: ITEX and PMGRAPH vectors

(L,1) | (L,1) | (4,1) | (4,1) | (5,3) | (3,2)
(2,1) | (2,1) | (4,3) | (4,3) || (5,4) | (4,3)
(3,1) | (3,1) || (5,1) | (4,1) || (6,1) | (4,1)
(3,2) 1 (3,2) || (5,2) | (3,1) || (6,5) | (4,3)

Table 1: Relation between line slopes and approximate vector slopes

Even not very complicated, these macros appears to be useful in our work, and
it seems that they can be useful for other TEX-users too.

Vectors

The number of angles for inclined lines which can be used in KTEX is limited
to great extend, but the number of angles for vectors is limited even more. The
variety of vectors can be extended if instead of the strictly inclined arrows at
the end of the inclined line the arrow with the approzimate inclination is added.
Corresponding changes are incorporated in PMGRAPH where the relation between
strict inclinations and approximate inclinations are shown in Table 1. The cor-
rections require the modifications of the internal IXTEX commands \@svector,
\@getlarrow, \Ogetrarrow and the command \vector itself. As a result the
command \vector starts to draw the vectors for all inclinations valid for IXTEX
lines as it is shown on Fig. 1. The vectors are not so ideal as it is required by
TEX standards, but the results are acceptable for all inclinations except (6, 1).

KETEX allows to put an arrow just at the end of the vector. The command
\Vector enables to put along the vector arbitrary arrows with different orienta-
tion (see Fig. 2). The predefined arrow styles assign a letter to each position and
orientation of the arrow along the Vector.

The arrows shown on Fig. 2 are drawn by the commands

\begin{picture}(300,40)
\put (20,5){\Vector [bme] (1,0){100}}
\put (20,30) {\Vector [BME] (1,0){100}}

— <

Figure 2: Multi-arrow vectors

\put (170,5) {\Vector [xmMZ] (1,0){100}}
\put (170,30) {\Vector [XmMz] (1,0){100}}

Letter e corresponds to normally oriented arrow at the end of vector, E — to
reverse oriented arrow, b and B — to (normally and reverse oriented) arrows at
the beginning of the vector, m and M — to the arrows at the middle, etc. The
list of letters as the optional parameter produces the set of arrows along the
Vector. It is possible to create user-defined styles of arrows using the commands
\VectorStyle and \VectorShiftStyle (where the parameters in square brackets
are obligatory, not optional):

\VectorStyle [style-char]l { shift-char}{position}{orientation}

— style-char is the character which is assigned to vector style;

— shift-char is the character which defines the relative shift of the arrow
with respect to position — see command \VectorShiftStyle below;

— position is the real value which defines the relative position of the arrow
along the vector (0.0 means starting point of the vector, 1.0 means end
point of the vector) which usually is in a range 0..1 but can be greater
1 or less 0 as well;

— orientation is the character which defines the orientation of the arrow
with respect to the standard direction of the vecrtor: b means backward
direction, £ (or any other character) means forward direction.

\VectorShiftStyle [style-char] {shift}

— style-char is the character which is assigned to vector-shift-style;

— shift is the relative shift in pt of the arrow along the arrow direction
with respect to the positioning point (it is necessary to note that the
length of the arrow body in TEX is equal to 4pt).

Examples:
e standard vector-shift-styles:

\VectorShiftStyle[e]{Opt} — style ‘e’ means that the end of the ar-
row is positioned strictly at the point, specified by the parameter po-
sition;

\VectorShiftStyle[b]{4pt} — style ‘b’ means that the backside of the
arrow is positioned at the point, specified by the parameter position;

\VectorShiftStyle[m]{3pt} — style ‘m’ means that the middle of the
arrow body is positioned at the point, specified by the parameter po-
sition;

\VectorShiftStyle[E]{-2pt} — style ‘E’ means that the end of the
arrow is positioned a little bit before (i.e., by 2pt) the point, specified
by the parameter position;

\VectorShiftStyle[B]{6pt} — style ‘B’ means that the backside of the
arrow is positioned a little bit after (i.e., by 2pt) the point, specified
by the parameter position.

e standard vector-styles:

\VectorStyle[el{e}{1.0}{f} — style ‘¢’ means that the end of the
arrow is positioned at the end of the vector, and its orientation is
along the vector orientation;

\VectorStyle[E]{b}{1.0}{b} — style ‘E’ means that the backside of
the arrow is positioned at the end of the vector, and its orientation is
rotated by 180° with respect to the vector orientation;

\VectorStyle[bl{b}{0.0}{f} — style ‘b’ means that the backside of
the arrow is positioned at the beginning of the vector, and its orienta-
tion is along the vector orientation;

\VectorStyle[B]{e}{0.0}{b} — style ‘B’ means that the end of the
arrow is positioned at the beginning of the vector, and its orientation
is rotated by 180° with respect to the vector orientation;

\VectorStyle[m]{m}{0.0}{f} — style ‘m’ means that the middle of the
arrow body is positioned at the middle of the vector, and its orientation
is along the vector orientation;

\VectorStyle [M]{m}{0.0}{b} — style ‘M’ means that the middle of the
arrow body is positioned at the middle of the vector, and its orientation
is rotated by 180° with respect to the vector orientation;

\VectorStyle[x]{E}{1.0}{f} — style ‘x’ means that the end of the
arrow is positioned a little bit before the end of the vector, and its
orientation is along the vector orientation;

\VectorStyle[X]{B}{1.0}{b} — style ‘X’ means that the backside of
the arrow is positioned a little bit before the end of the vector, and its
orientation is rotated by 180° with respect to the vector orientation;

\VectorStyle[z]{B}{0.0}{f} — style ‘z’ means that the backside of
the arrow is positioned a little bit after the beginning of the vector,
and its orientation is along the vector orientation;

4

2
N

Figure 3: Magnified circles

\VectorStyle[Z]{E}{0.0}{b} — style ‘Z’ means that the end of the
arrow body is positioned a little bit after the beginning of the vec-
tor, and its orientation is rotated by 180° with respect to the vector
orientation.

Circles

The range of the diameters for circles and disks (black circular blobs) available
in IXTEX is very restricted. It can be enlarged by using the magnified pseudo-
graphical IXTEX fonts if the User does not have something better at his/her dis-
posal like curves.sty, PICTEX or MFP[C. The disadvantage of this method is
that the width of the lines is magnified too which is inconsistent with the rigor-
ous TEX accuracy requirements, but for poor man graphics these circles can be
satisfactory.
The scaling of circular fonts is performed by the commands

\scaledcircle{factor}
\magcircle{magstep}

which are indentical to TEX commands

\font ... scaled factor
\font ... scaled \magstep magstep

The valid magstep values are 0, h, 1, 2, 3, 4, 5. The values factor=1000 and
magstep=0 correspond to one-to-one magnification. The circle magnification like
other TEX commands returns to its previous value outside the group inside which
it was changed.

To calculate properly the circle character code after the magnification it was
necessary to redefine some internal IXTEX commands like \@getcirc and \@circ.
To reflect in magnified fonts the changes of the line thickness, the commands
\thinlines and \thicklines are corrected also.

The example on Fig. 3 is produced by

AN
NEVAENE

Figure 4: 90° circular segments

\setlength{\unitlength}{1pt}
\begin{picture}(200,100) (-100,-50)
\put (-50,0) {\thicklines\circle{80}}
\put (-50,0) {\squareframe{40}}
\magcircle{4}

\put (60,0){\thinlines\circle{80}}
\put (50,0) {\squareframe{40}}
\end{picture}

where \squareframe is the user-defined command which draws the square with
the specified side and the centrum at (0,0). It shows how the usage of the magni-
fied circles enables to overcome the upper limit 40pt of the diameter of the KTEX
cirles. It is necessary to note that the thickness of the \thinline circles after
magnification with \magcircle{4} corresponds approximately to the thickness
of the ordinary \thickline circles (\magstep4 =~ 2000).

Additional macro enable to draw 90° quaters of the circles explicitly without
tricky refinement of the parameters of the command \oval:

\trcircle{diam} — \ovall[tr]...
\brcircle{diam} — \ovall[br]...
\tlcircle{diam} — \ovall[tl]...
\blcircle{diam} — \ovall[bl]...

The centrum of the circular arc is positioned strictly at the point which is the
argument of the corresponding \put. The commands \TRcircle, \BRcircle,
\TLcircle, \BLcircle draw the 90° circular quaters with the reference point
positioned at the corner instead of the centrum. Similarly, the commands

\tlsector, \TLsector, \blsector, \BLsector, ...

draw circular segments together with horizontal and vertical radii. The proper
positioning of the circular segments requires special precausions since it is nec-
essary to take into account the line thickness and the specific alignment of the
circular elements inside the character boxes.

The example on Fig 4 shows the usage of these commands:

‘ octal ’ Eastroj frame
o] (v)

Figure 5: Examples of frame styles

\begin{picture}(200,60) (-100,-30)

\put (-60,10) {\thicklines\tlcircle{50}}
\put (-60,10) {\circlex{1}}

\put (-60,10){\1line (-1,0){25}}

\put (-60,10){\1ine(0,1){25}}

\put (40,10) {\thicklines\BRcircle{50}}
\put (40,10){\circlex{1}}

\put (40,10){\line(-1,0){25}}

\put (40,10){\1ine(0,1){25}}

The actual diameter of the circular segment is adjusted like it is done with the
circles. The commands \scaledcircle and \magcircle affect the thickness and
the diameter of these circular segments also.

Frames

The set of frames which are available in BTEX is enhanced in PMGRAPH — except
solid and dashed rectangular frames it is possible to draw double and tripple
frames in a variety of styles (Fig. 5). The commands \frameBox, \ovalBox,
\octalBox, \astroBox, \parquetBox have the same structure as the command
\framebox, but they draw the corresponding fancy frames:

\put (0,0){\ovalBox(100,50){ovall}}
\put (70,0){\astroBox(100,50){astro}}

The ordinary solid frame is drawn by \frameBox, the double and triple frames
are drawn by \frameBoX and \frameBOX, respectively. Similar commands exist
for double and triple fancy frames. The User can prepare the personal macro
commands to draw frame corners and extend the variety of fancy frames up to
the limit of his/her fantasy.

More exotic variant of a frame can be created using the commands \rombBox,
\rombBoX or \rombBOX as it is shown on Fig. 6. The style (i.e., inclination of the
romb sides) and the distance between multiple rombs are set by the command
\rombboxstyle

Figure 6: Romb-style frames

< <P z

Figure 7: Alignment of romb boxes

\rombboxstyle(Ax,Ay,len) — defines the inclination for the romb boxes
and for the corners of the tt octal frames and shadows. Parameters Ax,
Ay specifies the inclination, and the parameter len — the length of the
inclined corners (for octal frames and shadows only) in a style similar to
the command \line (Az,Ay){len}.

with the default settings as
\rombboxstyle(2,1,2pt)

The alignment of the romb around the box specified for these commands can
be varied using additional optional parameter(see Fig. 7. The full format of the
rombbox commands is:

\rombBox [char] (AX ,AY){text}

where char -is one-character parameter which defines the alignment of the romb
frame with respect to rectangle (AX, AY): x (default value) means that the z-
axis coinsides with the z-axis of the rectangle, y means that the y-axis coinsides
with the y-axis of the rectangle, z means that the corners of the rectangle are at
the sides of the romb frame.

IRTHPj}kO]
——]

Figure 8: Examples of shadows

ﬁ
Shadows l

Figure 9: Multiple shadows

Each rectangular box has the optional parameter which enable to specify the
“shadows” around this box. Each shadow style has a special letter, and the list of
letters as the optional parameter draws a list of shadows. The standard shodow
types are shown on Fig. 8. It is possible to draw several shadows of different
types and around arbitrary corner of the frame as it is shown on Fig. 9:

\unitlength=10pt

\begin{picture}(20,15)

\shadowcorner{B}

\put (0,0) {\frameBoX [oPR...] (10,5){...}}
\end{picture}

The parameter of the shadows — thickness, corner size, additional shift, etc., —
can be varied by the following User commands:

\framesep{dist} — set the distance between double and triple frames. It can
be negative as well as positive. Default value: 2pt}.

\shadowsep{ dist} — set the gap distance between the frame and the shadow
or between multiple shadows. Default value: 1pt}.

\shadowsize{dist} — set the depth of the shadow. Default value: 5pt}.

\shadowshrink{factor} — set the contraction factor for the subsequent shad-
ows. Default value: 1}.

\shadowcorner{char} — set the corner for the shadows. Valid values: A, B,
C, D. Default value: \shadowcorner{A}.

\RoundCorner{radius} — set the radius for the circular arcs at the corners of
oval frames and shadows with rounded corners. Default value: 6pt{5pt}.

\DiskCorner{diam} — set the diameter for the bulbs at the corners of black
shadows with rounded corners. Default value: 8pt{5pt}.

T <

¢ 1 r
Figure 10: Alignment of rombes

\LineCorner{len} — set the length for the inclined corners of octal frames
and shadows. Default value: 10pt{10pt}.

\RectCorner{size} — set the size for the parquette corners of octal frames
and shadows. Default value: 3pt{5pt}.

Rombs

Special command enable to draw rombs (see Fig. 10):
\put (2) () {\romb[pos] (Az,Ay){len}}
where:

(x,y) — position of the romb inside picture;

pos — one-character option which shows the alignment of romb with re-
spect to (z,y): r means right corner, 1 means left corner; ¢ means center
(default);

(Az, Ay) and len are the parameters which define the inclination and the
length of the romb side (similarly to \1line).

Automatically scaled pictures

The idea of the macros which are responsible for these functions is to calculate
the \unitlength value in terms of the relative fraction of the page width instead
of explicit specifying its value in points, centimeters, inches, etc.

The command \pictureunit [percent] {z-size} selects the value of the vari-
able \unitlength so that the picture which is z-size units in width occupies
percent width of the paper. The environment Picture combines the automatic
calculation of the \unitlength with the \begin{picture} — \end{picture}.
By default percent=100 is used which corresponds to 90% of the paper width.
The default percent value can be redefined by the command

\def\defaultpercent{percent}.

10

Examples:

\pictureunit [75] {120}
\begin{picture}(120,80)

\end{picture}
\begin{Picture}[75] (120,80)

\end{Picture}

These macros are inspired by fullpict.sty by Bruce Shawyer. Carefull
examination of the file fullpict.sty shows some bugs/warnings which require
correction:

e each automatic scaling of \unitlength allocates a new counter;

e automatic scaling uses \textwidth as the reference width which results to
improper functioning inside list and minipage environments;

e the environments fullpicture, halfpicture and scalepicture are cen-
tered internally with \begin{center} — \end{center} which prevents the
proper positioning of the picture in most cases.

The PMGRAPH.STY macros calculates the dimension \unitlength using the value
\hsize, and as a result it works corectly also for twocolumn mode, inside the
list environments itemize, enumerate, etc. (for example, all the figures in this
paper are drawn using the environment Picture). The automatic centering and
repeatedly allocation of the registers are corrected as well.

Acknowledgements

The authors are grateful to Dr. Kees van der Laan for the possibility to present
the results of our research at the EUROTEX'95 (Aarnhem, Netherland).

One of the authors (A.S.Berdnikov) would like to express his warmest thanks
to Dr. A.Compagner from the Delft University of Technology who spent a lot of
his time and efforts trying to transform two naive students from Russia (namely,
him and his co-worker Sergey Turtia) into serious scientists.

This research was partially supported by a grant from the Dutch Organization
for Scientific Research (NWO grant No 07-30-007).

11

