
The postnotes package

User manual

gusbrs

https://github.com/gusbrs/postnotes
https://www.ctan.org/pkg/postnotes

Version v0.2.8 – 2023-12-12

Abstract

postnotes is an endnotes package for LATEX. Its user interface provides
means to print multiple sections of notes along the document, and to sub-
divide them either automatically – by chapter, by section – or at manually
specified places, thus being able to easily handle both numbered and un-
numbered headings. The package also provides infrastructure for setting
up contextual running headers for printed notes. The default is a simple
but useful one, in the form “Notes to pages N–M”, but more elaborate ones
can be built. When hyperref is loaded, postnotes provides hyperlinked notes,
including back links.

1

https://github.com/gusbrs/postnotes
https://www.ctan.org/pkg/postnotes


Contents

1 Introduction 3

2 Loading the package 3

3 User interface 3

4 Options 4

5 Notes sections 7

6 Headers 11

7 Cross-references 13

8 Localization 14

9 Further examples 14

10 Acknowledgments 16

11 Change history 16

2



1 Introduction

postnotes is an endnotes package for LATEX. Its user interface provides means to print
multiple sections of notes along the document, and to subdivide them either automat-
ically – by chapter, by section – or at manually specified places, thus being able to
easily handle both numbered and unnumbered headings. The package also provides
infrastructure for setting up contextual running headers for printed notes. The default
is a simple but useful one, in the form “Notes to pages N–M”, but more elaborate ones
can be built. When hyperref is loaded, postnotes provides hyperlinked notes, including
back links.

Though this feature set is mostly (albeit not completely) available in one or another
of the existing endnotes packages for LATEX, subsets of it exist in individual packages,
not necessarily compatible with each other. postnotes brings these features together in
one place, with no external dependencies except an up-to-date kernel.

On the technical side, postnotes is peculiar among existing LATEX packages in this
area of functionality by the fact that it does not use an external file to store the notes.
Both the notes’ contents and its metadata are stored in variables which are later retrieved
at the time of printing. In particular, the content of the note is stored and retrieved with
“no manipulation” (as in expl3’s N/n function signatures) and only gets to be expanded
at the time it is meant to be typeset. The .aux file is leveraged to set page labels for the
notes, since that particular information has to be retrieved asynchronously but, other
than that, variables are employed to pass information around.

This has some advantages. First, as is well known, sending arbitrary content to a
file to be read later is not a noiseless process in LATEX. Thus, not doing so makes things
smoother. Second, the external file approach is strictly linear: the notes which were
written to the file get printed as such, in the order they were written. Having the notes
available as a set of variables allows for some more flexibility than that, through the
possibility of pre-processing the notes before printing. It also brings some extra degrees
of freedom in storing note metadata, and in restoring part of the environment where
the note is called to where the note’s content is printed.

2 Loading the package

postnotes can be loaded with the usual:

\usepackage{postnotes}

The package does not accept load-time options, package options must be set using
\postnotesetup (see Section 4, Package options).

3 User interface

\postnote[⟨options⟩]{⟨text⟩}\postnote

Sets a postnote with content ⟨text⟩. A note “mark” is typeset at the place \postnote
is called, and ⟨text⟩ is stored to be typeset later, on the next call to \printpostnotes.

3



The mark is usually determined by the printed representation of the main counter,
postnote, but can be manually set too. \postnote can receive a number of ⟨options⟩,
which are presented in Section 4, Note options.

\postnotesection[⟨options⟩]{⟨text⟩}\postnotesection

Sets a postnote section with content ⟨text⟩. This is the basic interface for making
notes subdivisions, and it places ⟨text⟩ between the notes where it occurs, at the point
the notes are printed by \printpostnotes. For more details and some examples, see
Section 5. Its ⟨options⟩ are presented in Section 4, Section options.

\printpostnotes\printpostnotes

Prints the \postnotes set since the last call of \printpostnotes, or since the begin-
ning of the document. For two basic usage illustrations, see Examples 2 and 8.

\postnoteref⟨*⟩{⟨label⟩}\postnoteref

Typesets a postnote reference to ⟨label⟩. Of course, ⟨label⟩ must have been set to a
particular postnote, which can be done by the standard \label command. The starred
version of the command inhibits hyperlinking. When the zref-user package is loaded, a
corresponding \postnotezref is also provided, and if zref-hyperref is also loaded, it is
hyperlinked as its counterpart.

4 Options

Package options

\postnotesetup{⟨options⟩}\postnotesetup

Package options can be configured by means of \postnotesetup, which receives
options and values in key=value fashion.

The heading option sets the heading for the printed notes or, more generally put,heading

\pnheading that which is printed at the beginning of \printpostnotes. Its default value depends
on the document class in use. If \chapter is defined, the default is:

\chapter*{\pntitle}
\@mkboth{\pnheaderdefault}{\pnheaderdefault}

but otherwise, it is:

\section*{\pntitle}
\@mkboth{\pnheaderdefault}{\pnheaderdefault}

where \pntitle is localizable string, which by default contains “Notes” (see Section 8),
and \pnheaderdefault is a function which takes no arguments, but processes a number
of variables, to set a contextual running header for the printed notes (see Section 6).
\pnheaderdefault produces a header in the form “Notes to pages N–M”, according to

4



the notes in each page. If you prefer, you can redefine \pnheading instead of using the
heading option, to the same effect.

The format option stores formatting instructions for printing the notes. It is calledformat

at \printpostnotes, every time a block of notes is about to start. The default value is
\small.

The listenv option sets the list environment inside which the notes are printed inlistenv

\printpostnotes. This must be the name of an existing list environment, and postnotes
provides two suitable ones for convenience: postnoteslist, which is the default, and
postnoteslisthang which typesets the notes with a hanging indent. You can also create
your own, with enumitem or otherwise, of course. listenv can also receive the special
value none, in which case the notes blocks are not wrapped in a list environment, but
rather typeset as plain paragraphs. listenv=none already sets postprintnote to \par
for that reason but, when using none, you’ll probably also want to set maketextmark,
pretextmark, or posttextmark to values different than the defaults.

The makemark and maketextmark options control how the mark is to be type-makemark

maketextmark

\pnthepage

set, at the point \postnote is called and at the point the note’s text is printed at
\printpostnotes, respectively. They both can receive three arguments: #1 is the mark
itself, and arguments #2 and #3 are, respectively, the start and the end of the hyperlink
(hence they must be used in this order, and always in pair). Their default values are:

makemark = {#2\hbox{\@textsuperscript{\normalfont#1}}#3} ,
maketextmark = {#2#1.#3} ,

At the point maketextmark gets typeset, the \pnthepage variable contains the value of
\thepage where its corresponding note was set.

The options pretextmark, posttextmark, and postprintnote allow to insert addi-pretextmark

posttextmark

postprintnote

tional material in \printpostnotes, respectively, right before the mark, right after the
mark, and after the note’s content. All in all, when listenv is not none, each note in the
list is laid out in the form:

\item[⟨pretextmark⟩⟨mark⟩⟨posttextmark⟩]⟨note content⟩⟨postprintnote⟩

and when listenv is none, each note is laid out in the form:

⟨pretextmark⟩⟨mark⟩⟨posttextmark⟩⟨note content⟩⟨postprintnote=\par⟩

style is just a convenience “meta” option which sets a number of “base” optionsstyle

– such as listenv, format, maketextmark, etc. – in order to emulate known styles of
printing the notes. It accepts the values endnotes or pagenote so that \printpostnotes
works as its counterparts in each of these packages.

The hyperref option controls the use of hyperref by postnotes and takes values auto,hyperref

backlink true or false. The default value, auto, makes postnotes use hyperref if it is loaded.
true does the same thing, but warns if hyperref is not loaded (hyperref is never loaded
for you). false means not to use hyperref regardless of its availability. The backlink
option controls whether only a link from the note’s mark to its respective text at
\printpostnotes is created, or if a back link from the text at \printpostnotes back to
where the note’s mark is placed is also made available. It is a boolean option, defaults
to true, and is only operational if hyperref is not false. These are both preamble only
options.

The sort option controls whether the notes queue is sorted or not at \printpostnotes.sort

Normally, the order the notes should be printed is the one in which the notes were

5



placed along the document. However, in cases where some manual intervention was
required, sorting the notes can be quite useful, and difficult to handle in its absence.
Two typical examples are: a note inside a float which disturbed the sequence of the
postnote counter (see Example 9 in Section 9 for an illustration) and a manually set
mark, in which case postnotes also allows to manually set a sort value with the sortnum
option of \postnote. Sorting does not cross boundaries of notes sections, as set by
\postnotesection, in other words, if notes sections exist, sorting is only ever carried
out within the boundaries of each section. This may be a restriction for cases in which
floats cross sections’ boundaries, but it’s the only reasonable thing to do. sort is a
boolean option, and defaults to true.

Note options

The options accepted by \postnote[⟨options⟩]{⟨text⟩} are the following:

By default, the mark generated by \postnote is determined by the printed repre-mark

markstr sentation of the postnote counter, \thepostnote, which is stepped when \postnote is
called. But the mark and markstr options allow you to manually set it, in case you want,
or need, to do so. When either mark or markstr is manually set, the postnote counter is
not stepped. The difference between them is that mark must receive a number as value,
and uses its value to also set the sortnum option, while markstr, differently from the
optional argument of \footnote, can receive a string as value which is directly used as
the mark, but it does not set sortnum.

Normally, the sort value used for sorting the notes queue (see the sort pack-sortnum

age option above) is determined by the value of the postnote counter (that is, by
\the\c@postnote, and not by its printed representation, \thepostnote). But you may
specify this sort value manually with the sortnum option, typically, when you have also
manually specified the mark. It receives a floating point number as value. So, for exam-
ple, if one needed to insert a note between notes 2 and 3, without disturbing the num-
bering of other notes, one could use \postnote[markstr=2*,sortnum=2.5]{⟨text⟩}.

The nomark option makes \postnote inhibit the typesetting of the mark. Of course,nomark

normally, we do want the visual cue of the mark, but the intended use case for this
option is for a \postnote with nomark to be paired with a \postnoteref, so as to be able
to typeset a note in places where doing so directly may be problematic. For a practical
example and an illustration on how to use it, see Example 10 in Section 9.

The label option sets a standard \label named with the value given to the option.label

When the zref-user package is loaded, a corresponding zlabel option is also provided.
See Section 7 for details about cross-referencing.

Section options

The options accepted by \postnotesection[⟨options⟩]{⟨text⟩} are the following:

For the purposes of building running headers, each \postnotesection can bename

identified by its name. This is mainly intended to support unnumbered headings, but its
mechanism is general. The name of a note section is made available for the first and last
note on a given page through the variables \pnhdnamefirst and \pnhdnamelast at the

6



moment the header of the page is typeset. For details on how to use these variables, see
Section 6.

By default, \postnotesection stores its ⟨text⟩ argument with “no manipulation”.exp

The exp option allows one to fully expand (e-type expansion) ⟨text⟩ in place before
storing it. It is a boolean option, and the option given with no value is equivalent to
exp=true.

5 Notes sections

As mentioned above, \postnotesection is the basic interface for subdividing the notes
when printed. For those familiar with it, this command is postnotes’s equivalent to
endnotes’ \addtoendnotes. It has the same intended use – to add text or commands
along the notes’ sequence at the point it is called – and the way it works is quite similar
to \addtoendnotes. But there are some differences, prominently a \postnotesection
is skipped at \printpostnotes if it contains no notes. In other words, if two (or more)
calls of \postnotesection occur in immediate sequence, with no \postnote in between,
the latter call takes precedence over the former, instead of being accumulated in the
queue. This is intended to facilitate the automation of the subdivision of the notes. So,
one can, for example, use a hook to \chapter and not have to worry if a chapter with
no notes will generate an empty section inside \printpostnotes, e.g., by the call to
\chapter* at the table of contents, and so on. Or, one can use the heading number for
the automated case, but be able to override it manually for an occasional unnumbered
one. For this reason, a more semantic name was chosen for it, instead of the generic
“add to”.

Just like with \postnote, the contents of \postnotesection are not expanded in\pnthechapter

\pnthesection

\pnthechapternextnote

\pnthesectionnextnote

\pnidnextnote

place, but rather stored with “no manipulation” to be typeset later at \printpostnotes.
For this reason, some contextual information is stored at the place \postnotesection is
called, and made available at the point it’s content gets expanded by means of some
variables (you can use \postnotesection[exp] instead, in which case these variables
are of little use). When the content of a notes section gets typeset, \pnthechapter
contains the value of \thechapter where \postnotesection was originally called. Sim-
ilarly, \pnthesection contains the value of \thesection. \pnthechapternextnote and
\pnthesectionnextnote are meant to support the automation of the notes subdivision
by using hooks to sectioning commands, which is a quite natural way to do this. How-
ever, since it may be problematic to hook after sectioning commands – \section, for
example, figures prominently in the documentation of ltcmdhooks as a case of “look
ahead” command for which the after hook is not supported – we will typically want
to hook before them. But, at this point the values of the chapter or section counters
have not yet been stepped, therefore \thechapter and \thesection do not correspond
to what we would like to refer to. For this reason, \pnthechapternextnote contains the
value of \thechapter at the point the “next note” is placed (a \postnote, that is), the
first in the chapter, and already inside it, thus with an expected value of the chapter
counter. Similarly, \pnthesectionnextnote contains the value of \thesection for the
“next note”. \pnidnextnote, in turn, stores the Id number of the “next note”. Of course,
the “next note” variables are proxies, but they are meant to support the automation
of the subdivision of the notes through the use of before hooks to the document’s
sectioning commands, in which case the subdivision of the notes will correspond to

7



the document’s structure and, given empty notes sections are skipped, the values will
be the ones we are interested in. But more complex use cases may require something
different. Either way, it is up to the user to judge whether the proxy is a good one for
their use case, the variables just do what they say, and contain the values of interest for
the “next note”.

This is meant to be simple. Some examples might make things more concrete. At
its most basic, \postnotesection can just be set manually:

Example 2: Basic usage
\documentclass{book}
\usepackage{postnotes}
\usepackage{hyperref}
\begin{document}
\chapter{First chapter}
\postnotesection{\section*{Notes to chapter \pnthechapter}}
Foo.\postnote{Foo note.}
Bar.\postnote{Bar note.}
\chapter{Second chapter}
\postnotesection{\section*{Notes to chapter \pnthechapter}}
\setcounter{postnote}{0}
Baz.\postnote{Baz note.}
Boo.\postnote{Boo note.}
\printpostnotes
\end{document}

The document in Example 2 resets the postnote counter for each chapter, and
manually sets notes sections by chapter, which results in \printpostnotes being corre-
spondingly subdivided. But it is easy to make this automatic:

Example 3: Automating notes subdivision with a hook
\documentclass{book}
\usepackage{postnotes}
\AddToHook{cmd/chapter/before}{%

\postnotesection{\section*{Notes to chapter \pnthechapternextnote}}}
\counterwithin*{postnote}{chapter}
\usepackage{hyperref}
\begin{document}
\tableofcontents
\chapter{First chapter}
Foo.\postnote{Foo note.}
Bar.\postnote{Bar note.}
\chapter{Second chapter}
Baz.\postnote{Baz note.}
Boo.\postnote{Boo note.}
\printpostnotes
\end{document}

Example 3 uses the cmd/chapter/before hook, and thus \pnthechapternextnote
to retrieve the correct chapter number for \postnotesection, as explained above. The
counter is reset every chapter by means of \counterwithin*. Note that the call to
\chapter* inside \tableofcontents does not generate a spurious notes section at

8



\printpostnotes (as long as you don’t place a note in a sectioning command with no
short argument, which you shouldn’t do anyway). But what if we have, among mostly
numbered chapters, an ocasional unnumbered one?1 \pnthechapternextnote wouldn’t
possibly work in this case. Since immediately successive calls to \postnotesection
override the previous ones, it is straightforward to just manually adjust the exception:

Example 4: Fine-tuning automation
\documentclass{book}
\usepackage{postnotes}
\AddToHook{cmd/chapter/before}{%

\postnotesection{\section*{Notes to chapter \pnthechapternextnote}}}
\counterwithin*{postnote}{chapter}
\usepackage{hyperref}
\begin{document}
\tableofcontents
\chapter*{Introduction}
\postnotesection{\section*{Notes to the introduction}}
Intro.\postnote{Intro note.}
\chapter{First chapter}
Foo.\postnote{Foo note.}
Bar.\postnote{Bar note.}
\chapter{Second chapter}
Baz.\postnote{Baz note.}
Boo.\postnote{Boo note.}
\printpostnotes
\end{document}

If one wants to use section names/titles, the technique above (of using something
similar to \pnthechapternextnote) is less useful, since if the first note in the section
occurs within a subsection we would lose the information of interest. So we have a little
more work to do in this case. Example 5 uses the cmd/chapter/before hook to store the
value of \@currentlabelname in a dedicated variable after the next call to \NR@gettitle
(presuming the use of nameref, through hyperref). We then store the value of this variable
for each note using the postnotes/note/store hook and the note’s Id number \l_-
postnotes_note_id_tl. Finally we can retrieve this stored value using \pnidnextnote
inside \postnotesection. Indeed, this example is also meant to illustrate the general
technique for storing/restoring variables of interest for this purpose.

Example 5: Section names
\documentclass{book}
\usepackage{postnotes}
\ExplSyntaxOn
\tl_new:N \g_my_currentname_tl
\prop_new:N \g_my_names_prop
\AddToHook{cmd/chapter/before}{
\AddToHookNext{cmd/NR@gettitle/after}{

\tl_gset:Nv \g_my_currentname_tl { @currentlabelname } } }

1The example here counts on the lucky circumstance of having only a single initial unnumbered section.
But, in general, if that’s not the case, \counterwithin* is insufficient and the resetting of the postnote counter
at unnumbered sections must be handled somehow else.

9



\AddToHook{postnotes/note/store}{
\prop_gput:NeV \g_my_names_prop

{ \l_postnotes_note_id_tl } \g_my_currentname_tl }
\AddToHook{cmd/chapter/before}{

\postnotesection{
\section*{Notes~to~\prop_item:NV \g_my_names_prop \pnidnextnote}}}

\ExplSyntaxOff
\counterwithin*{postnote}{chapter}
\usepackage{hyperref}
\begin{document}
\chapter*{Introduction}
Intro.\postnote{Intro note.}
\chapter{First chapter}
Foo.\postnote{Foo note.}
Bar.\postnote{Bar note.}
\chapter{Second chapter}
Baz.\postnote{Baz note.}
Boo.\postnote{Boo note.}
\printpostnotes
\end{document}

While postnotes goes through great lengths to avoid tampering with sectioning
commands, the fact that in general we cannot use cmd hooks after \chapter or \section
does complicate things. And Example 5 is indeed a good illustration of how a sup-
posedly simple task can become quite convoluted if we are not allowed to observe the
variables of interest after the sectioning commands. However, things are quite different
from the perspective of a user, considering the problem at the document level. In this
case, the definition of the sectioning commands is known, and unique, so that it may
make sense to use of the traditional technique of storing the definition of the sectioning
command, and then redefining it to do what it used to, plus something else.2 In which
case, we can set \postnotesections with full generality and flexibility.

Example 6: Redefining sections
\documentclass{book}
\usepackage{postnotes}
\counterwithin*{postnote}{chapter}
\NewCommandCopy\origlatexchapter\chapter
\RenewDocumentCommand{\chapter}{som}{%
\IfBooleanTF{#1}{%

\origlatexchapter*{#3}%
\setcounter{postnote}{0}%
\postnotesection{\section*{Notes to ``#3''}}%

}{%
\IfNoValueTF{#2}{%

\origlatexchapter{#3}%
}{%

\origlatexchapter[#2]{#3}%

2‘egreg’ commonly applies the technique for the same purpose in answers using endnotes at TeX.SX.
For example: https://tex.stackexchange.com/a/62425, https://tex.stackexchange.com/a/109566, and
https://tex.stackexchange.com/a/85001. But things are somewhat simpler with postnotes, since there’s no
need to handle the case of sections with no notes, given that empty \postnotesections are already skipped.

10

https://tex.stackexchange.com/a/62425
https://tex.stackexchange.com/a/109566
https://tex.stackexchange.com/a/85001


}%
\postnotesection{\section*{Notes to chapter \pnthechapter}}%

}%
}
\usepackage{hyperref}
\begin{document}
\chapter*{Introduction}
Intro.\postnote{Intro note.}
\chapter{First chapter}
Foo.\postnote{Foo note.}
Bar.\postnote{Bar note.}
\chapter{Second chapter}
Baz.\postnote{Baz note.}
Boo.\postnote{Boo note.}
\printpostnotes
\end{document}

Things could easily get fancier, of course. But that’s the basic structure.

6 Headers

postnotes’ support for running headers comprises a basic header, enabled by default,
generating headers in the form “Notes to pages N–M”, but also some infrastructure for
users to build more elaborate ones.

The default headers are generated by the function \pnheaderdefault which, as we
saw in Section 4 is used to set the headers in option heading (with \@mkboth). So, the
default headers are enabled through that particular setting.

Examining the definition of \pnheaderdefault is possibly the most direct way to
explore how the feature is meant to work.

\ExplSyntaxOn
\NewDocumentCommand \pnheaderdefault {}

{
\tl_if_eq:NNTF \pnhdpagefirst \pnhdpagelast

{ \pnhdnotes{} ~ \pnhdtopage{} ~ \pnhdpagefirst }
{ \pnhdnotes{} ~ \pnhdtopages{} ~ \pnhdpagefirst -- \pnhdpagelast }

}
\ExplSyntaxOff

\pnhdnotes, \pnhdtopage, and \pnhdtopages are localizable strings, which by de-
fault respectively contain “Notes”, “to page”, and “to pages” (see Section 8). Let’s
replace them to examine the interesting part of the definition:

\ExplSyntaxOn
\NewDocumentCommand \pnheaderdefault {}

{
\tl_if_eq:NNTF \pnhdpagefirst \pnhdpagelast

{ Notes~to~page~ \pnhdpagefirst }
{ Notes~to~pages~ \pnhdpagefirst -- \pnhdpagelast }

}
\ExplSyntaxOff

11



\pnhdpagefirst and \pnhdpagelast store the value of \thepage for the first and\pnhdpagefirst

\pnhdpagelast

\pnhdchapfirst

\pnhdchaplast

\pnhdsectfirst

\pnhdsectlast

\pnhdnamefirst

\pnhdnamelast

the last notes (where these notes were originally placed) of the current page (at the
point they are being printed). These variables are updated every page along the span
of \printpostnotes to the values corresponding to their respective first and last note
(which start on that page), so that these values are available at the moment the headers
get to be typeset. Hence, what the definition of \pnheaderdefault does is to use these
variables to build a rule in the form: “if the page of the first and last notes are equal,
write a singular form and just one value but, if they are different, write a plural form
and a range of both values”. \pnhdchapfirst, \pnhdchaplast, \pnhdsectfirst, and
\pnhdsectlast provide the same for \thechapter and \thesection. \pnhdnamefirst
and \pnhdnamelast contain the name of the notes section, the one given with the name
option of \postnotesection (and are empty in case no name was provided).

With that in hand, fancier headers can be built. For example, if we’d like headers in
the form “Notes to chapters A–C, pages N–M”, we could define:

\ExplSyntaxOn
\NewDocumentCommand \mypnheader {}

{
\tl_if_eq:NNTF \pnhdchapfirst \pnhdchaplast

{ Notes~to~chapter~\pnhdchapfirst,~ }
{ Notes~to~chapters~\pnhdchapfirst -- \pnhdchaplast,~ }

\tl_if_eq:NNTF \pnhdpagefirst \pnhdpagelast
{ page~\pnhdpagefirst }
{ pages~\pnhdpagefirst -- \pnhdpagelast }

}
\ExplSyntaxOff

and then set heading to use \mypnheader instead of \pnheaderdefault. This definition
should work well as long as all the chapters (containing notes) are numbered, but if
unnumbered ones come into play, again we can fine-tune the automation, adjusting
for the exception. That’s the purpose of the name option for \postnotesection, and of
\pnhdnamefirst and \pnhdnamelast. Example 7 illustrates their use (of course, the use
of lipsum is just for demonstration):

Example 7: Fancy headers
\documentclass{book}
\usepackage{postnotes}
\postnotesetup{

heading = {%
\chapter*{\pntitle}
\markboth{\mypnheader}{\mypnheader}%

} ,
}
\counterwithin*{postnote}{chapter}
\AddToHook{cmd/chapter/before}{%

\postnotesection{\section*{Notes to chapter \pnthechapternextnote}}%
}
\ExplSyntaxOn
\NewDocumentCommand \mypnheader {}

{
\bool_case:nF

12



{
{

\str_if_eq_p:ee { \pnhdnamefirst } { intro } &&
\str_if_eq_p:ee { \pnhdnamelast } { intro }

}
{ Notes~to~the~introduction,~ }
{

\str_if_eq_p:ee { \pnhdnamefirst } { intro } &&
! \str_if_eq_p:ee { \pnhdnamelast } { intro }

}
{ Notes~to~the~introduction~and~chapter~\pnhdchaplast{},~ }

}
{

\tl_if_eq:NNTF \pnhdchapfirst \pnhdchaplast
{ Notes~to~chapter~\pnhdchapfirst{},~ }
{ Notes~to~chapters~\pnhdchapfirst{} -- \pnhdchaplast{},~ }

}
\tl_if_eq:NNTF \pnhdpagefirst \pnhdpagelast

{ page~\pnhdpagefirst{} }
{ pages~\pnhdpagefirst{} -- \pnhdpagelast{} }

}
\ExplSyntaxOff
\usepackage{hyperref}
\usepackage{lipsum}
\ExplSyntaxOn
\NewDocumentCommand \demochapter { m }

{ \prg_replicate:nn { #1 } { \lipsum[1-2]\postnote{\lipsum[3]}\par } }
\ExplSyntaxOff
\begin{document}
\tableofcontents
\chapter*{Introduction}
\postnotesection[name=intro]{\section*{Notes to the introduction}}
\demochapter{12}
\chapter{Chapter 1}
\demochapter{15}
\chapter{Chapter 2}
\demochapter{15}
\printpostnotes
\end{document}

7 Cross-references

Cross-referencing with postnotes works in a pretty standard way: set a label, make
references to it. However, there are two ways to set a label to a note. One can either set
a label with the label option of \postnote, or one can directly set it with the standard
\label as part of the note’s content. They are both valid, but they are not equivalent,
they have different meanings and, accordingly, behave differently.

The label set with the label option is set at the place where \postnote is. The label
set with \label in the note’s content, is just stored, and only gets expanded when this

13



content gets to be typeset, at \printpostnotes. In short, the label option belongs to
the “mark”, while the \label set in the content belongs to the “text”.

Of course, the data stored in each label will correspond to this difference. Even if
the plain \ref to both will get the same value (the mark), a \pageref will be different,
the links to either will point to different places, etc.

8 Localization

postnotes uses a few localized strings, stored in the variables \pntitle, \pnhdnotes,\pntitle

\pnhdnotes

\pnhdtopage

\pnhdtopages

\pnhdtopage, and \pnhdtopages. The first one is used in the default value of the heading
option and defaults to “Notes”. The remaining three are used in \pnheaderdefault (and
thus, indirectly also in the heading option) and their respective defaults are: “Notes”,
“to page”, and “to pages”. So, if you changed the default value of heading and is not
using \pnheaderdefault, you don’t have to worry about them.

These strings will automatically adjust to the document language, set either by
babel or by polyglossia, if the language is supported by postnotes. Currently supported
are English, German, French, and Portuguese. Either way, you can always change these
variables to the values of your preference. If you are not using either babel or polyglossia,
you can do so directly, for example, with:

\renewcommand*{\pntitle}{My title}

However, with babel or polyglossia, and specially in a multi language document, you
must use the appropriate hooks of your language package for this, otherwise, the next
call to \selectlanguage will override your settings. For babel you should use:

\addto\extras⟨language⟩{\renewcommand*{\pntitle}{My title}}

and for polyglossia:

\gappto\captions⟨language⟩{\renewcommand*{\pntitle}{My title}}

9 Further examples

This section collects some further usage examples which did not fit into the previous
sections, but might still be of interest.

Example 8 illustrates a basic procedure of how to obtain a note section for each
chapter of a book, by calling \printpostnotes at the end of each chapter:

Example 8: Notes for each chapter
\documentclass{book}
\usepackage{postnotes}
\postnotesetup{heading={\section*{\pntitle}}}
\usepackage{hyperref}
\begin{document}
\chapter{First chapter}
Foo.\postnote{Foo note.}
Bar.\postnote{Bar note.}

14



\printpostnotes
\chapter{Second chapter}
\setcounter{postnote}{0}
Baz.\postnote{Baz note.}
Boo.\postnote{Boo note.}
\printpostnotes
\end{document}

Example 9 shows a case of a float which disturbs the order of the notes. It
demonstrates a (traditional) technique to deal with the situation, by setting a manual
mark and adjusting the counter where appropriate. It also illustrates the role the sorting
of notes can have, by producing not only correctly ordered note marks (as a result of the
manual adjustments), but also correctly ordered printed notes (as a result of sorting):

Example 9: Sorting and floats
\documentclass{book}
\usepackage{postnotes}
\usepackage{hyperref}
\begin{document}
\chapter{First chapter}
\postnote{1}
\postnote{2}
\begin{table}[p]
\caption{Table}
Table.\postnote[mark=5]{3}

\end{table}
\postnote{4}
\postnote{5}
\stepcounter{postnote}
\clearpage
\postnote{6}
\printpostnotes
\end{document}

Example 10 illustrates a couple of techniques to handle long captions. Captions
pose a problem to \postnote because, if you set a \postnote inside a standard caption,
whose text is long enough to require two lines, the content of the caption ends up
being typeset twice: once to check if it would have fitted in a single line, the second
to typeset the two lines since it didn’t fit in one. This triggers the postnote counter
to be stepped twice (and any other counter that happens to be there too). One way
to handle the situation is, if you know(!) that the caption takes two lines, you can
decrement the counter just before it, and place the note directly in the caption, this will
get you a correctly numbered note. Another way is to use the pairing between a nomark
\postnote and \postnoteref: place a note outside the caption (but close to it, since its
position will determine the anchor for the backlink) with the nomark option, set a label
inside it and, inside the caption make a \postnoteref to the label. In practice:

Example 10: Long caption
\documentclass{article}
\usepackage[textwidth=8cm]{geometry}
\usepackage{postnotes}

15



\usepackage{hyperref}
\begin{document}
\begin{figure}
Figure.
\addtocounter{postnote}{-1}
\caption[Caption for LOF]{A long caption, long enough to require two

lines\postnote{A note.}}
\end{figure}
\begin{figure}
Figure.
\postnote[nomark]{\label{en:1}A note.}%
\caption[Caption for LOF]{A long caption, long enough to require two

lines\postnoteref{en:1}}
\end{figure}
\printpostnotes
\end{document}

10 Acknowledgments

Some people have kindly contributed to postnotes. Suggestions, ideas, insightful com-
ments, solutions to problems, bug reports were generously provided by (in chronological
order): Ulrike Fischer, David Carlisle, Moritz Wemheuer, Joseph Wright, ‘SwitWu’, and
Jonathan P. Spratte (‘Skillmon’).

The package’s language support have been provided or improved thanks to: ‘Pika78’
(French) and Herbert Voß (German).

If I have inadvertently left anyone off the list I apologize, and please let me know,
so that I can correct the oversight.

Thank you all very much!

11 Change history

A change log with relevant changes for each version, eventual upgrade instructions,
and upcoming changes, is maintained in the package’s repository, at https://github.
com/gusbrs/postnotes/blob/main/CHANGELOG.md. The change log is also distributed
with the package’s documentation through CTAN upon release so, most likely, texdoc
postnotes/changelog should provide easy local access to it. An archive of historical ver-
sions of the package is also kept at https://github.com/gusbrs/postnotes/releases.

16

https://github.com/gusbrs/postnotes/blob/main/CHANGELOG.md
https://github.com/gusbrs/postnotes/blob/main/CHANGELOG.md
https://github.com/gusbrs/postnotes/releases

	Contents
	1 Introduction
	2 Loading the package
	3 User interface
	4 Options
	5 Notes sections
	6 Headers
	7 Cross-references
	8 Localization
	9 Further examples
	10 Acknowledgments
	11 Change history

