
The “programs.sty” style file∗

Miguel Alabau
LaBRI, Université Bordeaux I (France)

e-mail : Miguel.Alabau@labri.u-bordeaux.fr

June 13, 2005

Abstract

This style file contains a set of definitions that allow a fairly easy pretty-
printing of programs. In particular, text alignement is obtained by simply typing
space characters. Emphasized characters, mathematical symbols and commands
are directly taken into account.

Contents
1 Introduction 1

2 User’s Manual 2
2.1 Environments for typesetting

programs . . . . . . . . . . . . . 2
2.2 Global commands . . . . . . . . . 3
2.3 Commands to be used before a

program environment . . . . . . . 4
2.4 Commands to be used inside a

program environment . . . . . . . 4
2.5 Meta-Commands: how to define

new program environments . . . 4
2.6 The Index File . . . . . . . . . . 5
2.7 The Driver File . . . . . . . . . . 5

2.8 Extracting the documents in-
cluded in the file programs.dtx . 6

3 Description of Macros 7
3.1 Controlling program indentation 7
3.2 Surrounding programs by rules . 8
3.3 Line numbering . . . . . . . . . . 8
3.4 Program default fonts . . . . . . 9
3.5 The real environment . . . . . . . 9
3.6 Meta-commands for defining new

program environments . . . . . . 10
3.7 Predefined environments and

commands . . . . . . . . . . . . . 12
3.8 Old macro names present here for

compatibility reasons . . . . . . . 13

1 Introduction

The LATEX verbatim environment allows
for easy typesetting of text. However it is
sometimes convenient to type programs
that involve some mathematics, some
emphasized text or some boldfaced key-
words. LATEX provides the tabbing envi-
ronment for freely typesetting programs.
But a cumbersome aspect of this environ-
ment is the way tabs are specified: their
presence makes the text to be obscured.
The file programs.sty provides different
environments and commands for typeset-
ting programs. Spaces are interpreted

as in the verbatim environment, avoid-
ing the user to type \= and \> control
characters. Accents, mathematical sym-
bols, emphasized and boldface fonts can
be used. Another useful feature is the
capability to number lines and to put la-
bels on lines (and, of course, to refer to
them).
For instance, you may type something
like

\begin{programf}
function sqrt(x: integer): integer;

(* sqrt(x) = $\sqrt{x}$ *)
∗This file has version number v1.0 dated 95/04/01. The documentation was last revised on

96/01/31.

1



function pow(x,y: real): real;
(* pow(x,y) = $x^y$ *)

\end{programf}

which leads to the following output

1 function sqrt(x: integer): integer;
2 (* sqrt(x) =

√
x *)

3 function pow(x,y: real): real;
4 (* pow(x,y) = xy *)
5

It is also possible to typeset the same pro-
gram in a smaller font, enclosed within
two horizontal lines, and with the lines
unnumbered.

\programsurround
\begin{programt}*
function sqrt(x: integer): integer;

(* sqrt(x) = $\sqrt{x}$ *)
function pow(x,y: real): real;

(* pow(x,y) = $x^y$ *)
\end{programt}

yielding to the following output:

function sqrt(x: integer): integer;
(* sqrt(x) =

√
x *)

function pow(x,y: real): real;
(* pow(x,y) = xy *)

A set of other options is provided, to-
gether with two file inclusion capabilities.

2 User’s Manual

In this section, we describe the environments and commands provided by this style
file (section 2.1). We indicate also three sets of control commands:

• Global commands, i.e. global switches for the commands/environments of sec-
tion 2.1 (section 2.2).

• Commands whose scope is the next program only (section 2.3).

• Commands that are used within a program environment (section 2.4).

The user is provided with two meta-commands that allow to define new program
environments for some other fonts, or to redefine existing program environments.
This section terminates by indicating how to proceed for extracting the different
archives from the file programs.dtx.

2.1 Environments for typesetting programs

The following environments are provided, every one of them corresponding to one of
the LATEX predefined font sizes:

environments sizes
program normalsize
programl large
programL Large
programs small
programf footnotesize
programsc scriptsize
programt tiny

These environments are to be used like the verbatim environment. However they work
differently, since the usual LATEX escapes are allowable from within the environment.
For instance, math mode as well as emphasized characters may be used.
By default, lines are numbered. If someone wants to type an unnumbered text, it is
necessary to put a * just after the beginning of the environment. For instance:

\begin{programL}*

2



<unnumbered text>
\end{programL}

Program indentation obey to the variable \ProgramIndent (see section 2.2). However,
it is possible, for one given environment, not to obey to the global indentation of
programs. This is done by indicating another indentation between square braces just
after entering the environment. For instance, an unnumbered program indented 2cm
from the left margin of the text is:

\begin{programL}[2cm]*
<unnumbered text>

\end{programL}

There is also a set of inclusion commands similar to the \verbatimfile (verbatim
inclusion of a file) and \verbatimlisting (verbatim inclusion of a file, with numbered
lines) commands of the “verbatimfiles.sty” by Chris Rowley. Of course, the files input
by these commands are subject to the same permisive syntax as for the environments
above (math syntax, emphasized text, etc.).

program inclusion commands
unnumbered programs numbered programs sizes
\fprogram \lprogram normalsize
\fprograml \lprograml large
\fprogramL \lProgramL Large
\fprograms \lprograms small
\fprogramf \lprogramf footnotesize
\fprogramsc \lprogramsc scriptsize
\fprogramt \lprogramt tiny

We describe in section 2.5 how to define new program environments.

2.2 Global commands

This command serves to control the default indentation of the programs. It is used as\ProgramIndent
described below:

\ProgramIndent{1cm}

and has the effect to make all the programs to be indented by default one centime-
ter from the left margin, unless this value is changed by another \ProgramIndent
command. Default is no indentation at all.
This macro redefines the macro \ProgramIndent. It is present here for compatibility\programindent
with previous versions of the programs.sty style.
These four commands are self-explanatory. They allow the user to specify that line\LeftMarginNumberLine

\RightMarginNumberLine
\BothMarginsNumberLine
\InBodyLeftNumberLine

numbers must be put in either the left or the right margin, or in both margins, or
that lines must appear inside the body of the text on the left of the program. These
options may be put anywhere in the text, in the preamble as well as in the body. The
effect of one of these commands stands until it is changed by another one of them. Of
course, different commands may be put in several parts of the text, if the user wants
its programs to be numbered differently. The default is for the lines to appear in the
left margin of the text (\LeftMarginNumberLine).
This macro redefines the macro \BothMarginsNumberLine. It is present here for\BothMarginNumberLine

3



compatibility with previous versions of the programs.sty style.
Text of programs are usually typed with a teletype font (like in the verbatim envi-\ttProgram

\rmProgram
\emProgram

ronment). The user has the ability to change this default font to one of the three
predefined fonts: teletype, roman, italicized roman.
The command \ProgramDefaultFont serves to reset the printing to the default font.\ProgramDefaultFont

2.3 Commands to be used before a program environment

Programs are usually typeset as they are. However a user can specify that the next\ProgramSurround
program to be printed will be surrounded by two horizontal lines, as long as the width
of the text. This is done by putting this command in the body of the text before the
program appears.
This macro redefines the macro \ProgramSurround. It is present here for compatibility\programsurround
with previous versions of the programs.sty style.
By default, program lines are counted from 1. It is possible to change the value of the\SetProgramCounter
first line number of the next program by issuing the following command before the
program is included:

\SetProgramCounter{6}

In this example, the lines of the next program will start from 6.
This macro redefines the macro \SetProgramCounter. It is present here for compat-\setprogramcounter
ibility with previous versions of the programs.sty style.
If the user desires that the number of the first line of the next program is equal to\NoResetProgramCounter
the number of the last line of the last previous program, he must issue the command
\NoResetProgramCounter before the next program. This command has no effect if
issued before the first program.
This macro redefines the macro \NoResetProgramCounter. It is present here for\noresetprogramcounter
compatibility with previous versions of the programs.sty style.

2.4 Commands to be used inside a program environment

This command is to be used only within programs. It must appear at the end of a line\UnnumLine
and has the effect not to number the following line. It serves when the user wants to
keep only one unique line number for long statements that span accross several lines.
This macro redefines the macro \UnnumLine. It is present here for compatibility with\unnumline
previous versions of the programs.sty style.

2.5 Meta-Commands: how to define new program environ-
ments

The \NewProgram command serves to define a new program environment. The\NewProgram
\RenewProgram \RenewProgram command is to be used for redefining already defined program en-

vironments. These commands must be used as below:

\NewProgram{name}{font_name}
\RenewProgram{name}{font_name}

The command \NewProgram defines one environment and two commands. Let us
assume that the user issues the following command:

\NewProgram{LittleProg}{smallsize}

4



then an environment called LittleProg will be generated for direct typesetting of
programs, and two commands will be created: fLittleProg and lLittleProg for
inclusion of unnumbered (resp. numbered) text.
These two macros are old names present here for compatibility with previous versions\newprogram

\renewprogram of the programs.sty style. \newprogram redefines \NewProgram, and \renewprogram
redefines \RenewProgram.

2.6 The Index File

In order for the processing of this file to be complete, an index format file is required.
Let us assume that it is named programs.ist, then the following command must be
run and then another compilation of the current file:

1 〈index〉
2 〈index〉%% -----------------------------------------------------------
3 〈index〉%% Assuming this file is named "programs.ist" (after being
4 〈index〉%% generated from "programs.dtx" by running "latex docstrip"),
5 〈index〉%% the following command will produce a well formated index:
6 〈index〉%%
7 〈index〉%% makeindex -s programs.ist programs.idx
8 〈index〉%% -----------------------------------------------------------
9 〈index〉

Another possibility is to set the environment variable INDEXSTYLE to a directory name
where the “.ist” files (index format files) may be found.
A possible index file is given below1:

10 〈index〉actual ’=’
11 〈index〉quote ’!’
12 〈index〉level ’>’
13 〈index〉preamble
14 〈index〉"\n \\begin{theindex} \n \\makeatletter\\scan@allowedfalse\n"
15 〈index〉postamble
16 〈index〉"\n\n \\end{theindex}\n"
17 〈index〉item_x1 "\\efill \n \\subitem "
18 〈index〉item_x2 "\\efill \n \\subsubitem "
19 〈index〉delim_0 "\\pfill "
20 〈index〉delim_1 "\\pfill "
21 〈index〉delim_2 "\\pfill "
22 〈index〉% The next lines will produce some warnings when
23 〈index〉% running Makeindex as they try to cover two different
24 〈index〉% versions of the program:
25 〈index〉lethead_prefix "{\\bf\\hfil "
26 〈index〉lethead_suffix "\\hfil}\\nopagebreak\n"
27 〈index〉lethead_flag 1
28 〈index〉heading_prefix "{\\bf\\hfil "
29 〈index〉heading_suffix "\\hfil}\\nopagebreak\n"
30 〈index〉headings_flag 1

2.7 The Driver File

There is also a driver file, called programs.drv , that is included in the distribution. It
is devoted to control the latex compilation of the documentation. Its code is given
below.

31 〈∗driver〉
1It can be generated by invoquing the compilation of “docstrip” with the “index” option.

5



32 \newif\ifnoprogsfile
33 \openin1 programs.sty
34 \ifeof1 \noprogsfiletrue\else\noprogsfilefalse\fi\closein1
35 \ifnoprogsfile
36 \typeout{*******************************************************}
37 \typeout{To get a more complete documentation, you should}
38 \typeout{copy the current file into ’programs.sty’}
39 \typeout{*******************************************************}
40 \fi
41 \ifnoprogsfile
42 \documentclass{ltxdoc}
43 \else
44 \documentclass{ltxdoc}
45 \usepackage{programs}
46 \fi
47 \MakePercentIgnore%
48 %
49 \setlength{\textwidth}{31pc}%
50 \setlength{\textheight}{54pc}%
51 \setlength{\parindent}{0pt}%
52 \setlength{\parskip}{2pt plus 1pt minus 1pt}%
53 \setlength{\oddsidemargin}{8pc}%
54 \setlength{\marginparwidth}{8pc}%
55 \setlength{\topmargin}{-2.5pc}%
56 \setlength{\headsep}{20pt}%
57 \setlength{\columnsep}{1.5pc}%
58 \setlength{\columnwidth}{18.75pc}%
59 %%
60 \setcounter{IndexColumns}{2}%
61 \EnableCrossrefs%
62 \RecordChanges
63 \CodelineIndex
64 %\OldMakeindex % use if your MakeIndex is pre-v2.9%
65 \begin{document}%
66 \DocInput{programs.dtx}
67 \end{document}
68 〈/driver〉

2.8 Extracting the documents included in the file programs.dtx

There are three documents included in the programs.dtx file: the style file (pro-
grams.sty), the index style file for printing a cross-referenced document (programs.ist),
and the driver file for printing the document: programs.drv .
For file extraction it is necessary to use the docstrip utility, which is part of the doc
distribution [3]. Normally, a file docstrip.tex should exist on the LATEX style files
directory. Extraction is performed by typing:

latex docstrip

This is an interactive program, and the dialogue for generating the style file should
be:

**********************************************************
* This program converts documented macro-files into fast *
* loadable files by stripping off (nearly) all comments! *
**********************************************************

6



****************************************************
* First type the extension of your input file(s): *
\infileext=doc
****************************************************

****************************************************
* Now type the extension of your output file(s) : *
\outfileext=sty
****************************************************

****************************************************
* Now type the name(s) of option(s) to include : *
\Options=style
****************************************************

****************************************************
* Finally give the list of input file(s) without *
* extension seperated by commas if necessary : *
\filelist=programs
****************************************************

For generating the index file it suffices to rerun the docstrip utility and to answer
“ist/index” instead of “sty/style” int the above steps 2 and 3, and in another run to
answer "drv/driver".

The three files may be produced in a single pass, by simply latexing the file pro-
grams.ins which goes along with the file programs.dtx .

Generation of the documentation is then simply performed as follows:

latex programs.drv
latex programs.drv
latex programs.drv
makeindex -s programs.ist programs.idx
latex programs.drv

69 〈∗style〉

3 Description of Macros

\AlreadyDefined@@Programs This macro can be tested by any style file to know if the file “programs.sty” has been
input. But it allows a modular programming style similar to the one used with the
C header files. Hence, the first time the “programs.sty” style file is included all of its
body will be included; the second time, the body will not be included.
70 \expandafter\ifx\csname AlreadyDefined@@Programs\endcsname\relax%
71 \expandafter\def\csname AlreadyDefined@@Programs\endcsname{}%
72 \else\endinput\fi

3.1 Controlling program indentation

\ProgramIndent
\@@programindent

\@@programindent is the amount of program indentation for the left margin of the
text. Initially, it is set to \z@ :
73 〈style〉%% CONTROLLING PROGRAM INDENTATION
74 \newdimen\@@programindent
75 \@@programindent=\z@

7



The \ProgramIndent has the only effect to set the variable of \@@programindent to
the value indicated by its parameter:

76 \def\ProgramIndent#1{\@@programindent=#1}

3.2 Surrounding programs by rules

\ProgramSurround
\if@@surround

By default, a program is printed as is, but it is possible to indicate that it is going to
be enclosed within two \hrule:

77 〈style〉%% SURROUNDING PROGRAMS BY RULES
78 \newif\if@@surround\@@surroundfalse
79 \def\ProgramSurround{\@@surroundtrue}

\@@progline
\@@noprogline

These two macros define the shape of the surrounding lines. The definition of
\@@progline is such that the surrounding lines lengths are always equal to the width
of the current line (even if it is changed from one program to another).

80 \def\@@progline{\def\@@prgln{\rule{\linewidth}{0.1mm}}\@@prgln}
81 \def\@@noprogline{\rule{0pt}{0pt}}

3.3 Line numbering

\@@defaultindent The purpose of this macro is to keep space enough for printing the line numbers of the
programs. I have defined its length for make it easy printing long programs (thousands
of lines).

82 〈style〉%% LINE NUMBERING
83 \newlength{\@@defaultindent}
84 \settowidth{\@@defaultindent}{{\tt{}12345}}

\if@@resetlineno
\if@@unnumline

\if@@CurrentProgIsUnnumbered

These three conditions serve to indicate the printing status of the current program.
More precisely, \if@@resetlineno is a boolean flag to specify if line numbering must
be reset for the next program. It defaults to true. \if@@unnumline is a boolean flag
to specify that the next line to be printed is not to be numbered. It defaults to false
(i.e. every line is numbered, by default). \if@@CurrentProgIsUnnumbered is a global
flag for the program, that indicates if the program being printed is numbered or not.
It defaults to false (i.e. programs are numbered, by default).

85 \newif\if@@resetlineno \@@resetlinenotrue \newif\if@@unnumline
86 \@@unnumlinefalse
87 \newif\if@@CurrentProgIsUnnumbered \@@CurrentProgIsUnnumberedfalse

\NoResetProgramCounter This macro is provided to the user to specify that the first line number of the next
program must be equal to the last line number of the previous program. More precisely,
lines for the next program will be numbered from \@@lineno + 1.

88 \def\NoResetProgramCounter{\@@resetlinenofalse}

\UnnumLine As said in section 2.4, this macro must appear at the end of a program line. Its effect
is to set on the boolean flag \@@unnumlinetrue to prevent the macro \@@xnewprog
from numbering the next line of the program. The “\ ” that appears ahead of the
macro serves to make the command valid even if issued on an empty line.

89 \def\UnnumLine{\ \@@unnumlinetrue}

@@lineno
\SetProgramCounter

This is the definition of a counter for the program lines. Once the macro
\SetProgramCounter called, its effect is to make lines starting from the value in-
dicated as param #1. Of course, if the user issues a \SetProgramCounter command,

8



it is implicitly assumed that he wants the lines to be numbered. That is why the
condition \if@@resetlineno is set to false.

90 \newcounter{@@lineno}\setcounter{@@lineno}{1}
91 \def\SetProgramCounter#1{\setcounter{@@lineno}{#1}\@@resetlinenofalse}

@@dummylineno This little trick is an internal line counter for the unnumbered programs. It is necessary
for making it possible to put labels on lines in unnumbered programs, and refer to
them. Internal numbering of unnumbered programs always begins at 1.

92 \newcounter{@@dummylineno}\setcounter{@@dummylineno}{1}

\LeftMarginNumberLine
\RightMarginNumberLine
\BothMarginsNumberLine
\InBodyLeftNumberLine

\@@PlaceOfNumbers

The first four commands are provided to the user for indicating line number placement.
They have the only effect to change the value of \@@PlaceOfNumbers which is an
internal value whose purpose is to define where the line numbers are to appear on the
text. It is used by the macro \@@xnewprog.

93 \def\LeftMarginNumberLine{\let\@@PlaceOfNumbers\@@LeftMarginNumberLine}
94 \def\RightMarginNumberLine{\let\@@PlaceOfNumbers\@@RightMarginNumberLine}
95 \def\BothMarginsNumberLine{\let\@@PlaceOfNumbers\@@BothMarginsNumberLine}
96 \def\InBodyLeftNumberLine{\let\@@PlaceOfNumbers\@@InBodyLeftNumberLine}
97 \def\@@LeftMarginNumberLine{0} \def\@@RightMarginNumberLine{1}
98 \def\@@BothMarginsNumberLine{2}
99 \def\@@InBodyLeftNumberLine{3}

For more readability, a

100 \LeftMarginNumberLine

command is issued, in order to initialize \@@PlaceOfNumbers.

3.4 Program default fonts

\@@DefaultProgramFont Text of programs is usually typed with a teletype font (like in the verbatim environ-
ment). Default font printing is controlled by this counter. Its value is used in the
macro \@@astyped described elsewhere in this document.

101 〈style〉%% PROGRAM DEFAULT FONTS
102 \def\@@DefaultProgramFont{0}

\ttProgram
\rmProgram
\emProgram

\ProgramDefaultFont

These commands allow the user to change the default font of the programs. This is
performed by redefining the running macros \@@astyped and \@@program.

103 \def\ttProgram{\def\@@DefaultProgramFont{0}\def@@astyped\def@@program}
104 \def\rmProgram{\def\@@DefaultProgramFont{1}\def@@astyped\def@@program}
105 \def\emProgram{\def\@@DefaultProgramFont{2}\def@@astyped\def@@program}
106 \def\ProgramDefaultFont{\ttProgram}

3.5 The real environment

\@@vobeyspaces
\@@xobeysp

We first begin by redefining the space character that will be used in the @@astyped
environment. It is important to let a space after the occurrence of \let below, since
at this point space characters are become active. If \@@xobeysp had been issued on a
different line, a risk would have existed to have space redefined to empty space.

107 〈style〉%% THE REAL ENVIRONMENT
108 {\catcode‘\ =\active\gdef\@@vobeyspaces{\catcode‘\ \active\let \@@xobeysp}}
109 \def\@@xobeysp{\leavevmode\penalty10000\ }

9



\def@@astyped
\@@astyped

\end@@astyped

Then, we define the @@astyped environment by the means of its two macros
\@@astyped and \end@@astyped. It is very strongly related to the astyped envi-
ronment [?]. However, rather than directly using the astyped environment, I have
prefered to make the programs.sty style file independent.
\def@@astyped causes the @@astyped environment to be defined. This is because
we want a different @@astyped environment to be defined for every new program
environment, because fonts may have changed, hence spacing may differ from one
environment to another one.

110 \def\def@@astyped{%
111 \def\@@astyped{%
112 \partopsep\z@%
113 \topsep\z@%
114 \trivlist \item[]%
115 \leftskip\@totalleftmargin%
116 \rightskip\z@%
117 \parindent\z@%
118 \parfillskip\@flushglue%
119 \parskip\z@%
120 \@tempswafalse%
121 \def\par{\if@tempswa\hbox{}\fi\@tempswatrue\@@par}%
122 \obeylines%
123 \ifcase\@@DefaultProgramFont \tt\or \rm\or \em\else \tt\fi
124 \catcode‘‘=13 \@noligs%
125 \let\do\@makeother \do\ \do\^^K\do\^^A%
126 \frenchspacing\@@vobeyspaces%
127 \noindent\hspace{\parindent}%
128 \if@@surround\@@progline\else\@@noprogline\fi%
129 \nopagebreak%
130 }
131 \def\end@@astyped{%
132 \nopagebreak%
133 \noindent\hspace{\parindent}%
134 \if@@surround\@@progline\else\@@noprogline\fi%
135 \endtrivlist%
136 }
137 }

3.6 Meta-commands for defining new program environments

\NewProgram
\RenewProgram

\@@newprog

The command \NewProgram (resp. \RenewProgram) can be used to define (resp.
redefine) new program environments. The first parameter is the name of a program
environment to be created, and the second one is the name of a size for the police (e.g.
smallsize, tiny, etc.). See section 2.5 for an example.
I have defined \RenewProgram same as \NewProgram because I am too lazzy, but it
should test if the environment to be redefined has been previously defined.

138 〈style〉%% META-COMMANDS FOR DEFINING NEW PROGRAM ENVIRONMENTS
139 \def\NewProgram#1#2{\@@newprog{#1}{#2}}
140 \def\RenewProgram#1#2{\@@newprog{#1}{#2}}
141 \def\@@newprog#1#2{%
142 \@namedef{#1}{%
143 \begingroup\def\@@tempa{\@nameuse{#2}}%
144 \def\@@tempb{\baselinestretch}\def\baselinestretch{1}%
145 \@ifundefined{@@tempa}{\normalsize}{\@@tempa}%
146 \def@@astyped\@@astyped%
147 \@ifnextchar[{\@@xnewprog}{\@@xnewprog[\@@programindent]}%
148 }%

10



149 \@namedef{end#1}{%
150 \everypar{}%

The little trick below is necessary because \@@lineno is incremented by 1 at the
beginning of every program environment (see \@@xnewprog below). Hence, when
\NoResetProgramCounter is used, the line numbers of the last line of the previous
program and the first line of the new program would be the same. The condition
below avoids this drawback.

151 \if@@CurrentProgIsUnnumbered \relax%
152 \else%
153 \addtocounter{@@lineno}{1}%
154 \fi%
155 %
156 \end@@astyped%
157 \let\baselinestretch=\@@tempb\endgroup%
158 \global\@@resetlinenotrue%
159 \global\ProgramDefaultFont%
160 \global\@@surroundfalse%
161 }%

At last, if actual value of parameter #1 is FOO, we define two file inclusion commands:
\fFOO and lFOO for inclusion of unnumbered and numbered programs (see section 2.1).

162 \@namedef{f#1}##1{\@nameuse{#1}*\par\input##1\@nameuse{end#1}}%
163 \@namedef{l#1}##1{\@nameuse{#1}\par\input##1\@nameuse{end#1}}%
164 }

\@@numlinelength
\@@xnewprog

The macro \@@xnewprog performs the printing of the lines.

165 \newlength{\@@numlinelength}
166 \def\@@xnewprog[#1]{%

If the first character is the symbol * then no line numbers are printed.

167 \@ifstar{%
168 \@@CurrentProgIsUnnumberedtrue
169 \setcounter{@@dummylineno}{0}%
170 \leavevmode%
171 \everypar{%
172 \refstepcounter{@@dummylineno}%
173 \@@unnumlinefalse%
174 \noindent\hspace{#1}}%
175 }%

Otherwise, this is the normal case:

176 {%
177 \@@CurrentProgIsUnnumberedfalse
178 \if@@resetlineno%
179 \setcounter{@@lineno}{0}%
180 \else%
181 \addtocounter{@@lineno}{-1}%
182 \fi%
183 \leavevmode%
184 \everypar{%
185 \if@@unnumline%

I decided to make a default indentation on the left side of the unnumbered program
if the user has requested a numbering on the left side of the page for the numbered
programs. This is to keep an homogeneous layout.

186 \ifx \@@PlaceOfNumbers\@@InBodyLeftNumberLine%
187 \hspace{\@@defaultindent}%

11



188 \rule{0pt}{0pt}%
189 \fi

Otherwise, for numbered programs, we begin by incrementing the line counter and
making it possible a reference to the line number to be done (see the latex.tex 2 file for
explanations on \refstepcounter).

190 \else%
191 \refstepcounter{@@lineno}%

Then, we look at the placement of the line numbers, which is controlled by the variable
\@@PlaceOfNumbers:

192 \ifx \@@PlaceOfNumbers\@@LeftMarginNumberLine%
193 \llap{{\rm\the@@lineno\ \ }}%
194 \else \ifx \@@PlaceOfNumbers\@@RightMarginNumberLine%
195 \noindent\hspace{\columnwidth}%
196 \rlap{{\rm\ \ \the@@lineno}}%
197 \noindent\hspace{-\columnwidth}%
198 \else \ifx \@@PlaceOfNumbers\@@BothMarginsNumberLine%
199 \noindent\hspace{\columnwidth}%
200 \rlap{{\rm\ \ \the@@lineno}}%
201 \noindent\hspace{-\columnwidth}%
202 \llap{{\rm\the@@lineno\ \ }}%
203 \else \ifx \@@PlaceOfNumbers\@@InBodyLeftNumberLine%
204 \hspace{\@@defaultindent}%
205 \rule{0pt}{0pt}%
206 \llap{{\rm\the@@lineno\ \ }}%
207 \else

Otherwise (default case), numbers are printed on the left margin of the page:

208 \llap{{\rm\the@@lineno\ \ }}%
209 \fi\fi\fi\fi

Then we reset the boolean flag \@@unnumlinefalse in order to make the next line to
be numbered (of course, this is useful only if the program is numbered), and we indent
the program according to what was requested by the user.

210 \fi\@@unnumlinefalse%
211 \noindent\hspace{#1}%
212 }%
213 }%
214 }

3.7 Predefined environments and commands

\def@@program
\ProgramDefaultFont

This command serves to define the environments and commands described in sec-
tion 2.1. It is invoked by the \ProgramDefaultFont command.

215 〈style〉%% PREDEFINED ENVIRONMENTS AND COMMANDS
216 \def\def@@program{%
217 \NewProgram{program}{normalsize}
218 \NewProgram{programl}{large}
219 \NewProgram{programL}{Large}
220 \NewProgram{programs}{small}
221 \NewProgram{programf}{footnotesize}
222 \NewProgram{programsc}{scriptsize}
223 \NewProgram{programt}{tiny}
224 }

2This file is part of the LATEX distribution.

12



Then we terminate by instructing LATEX to switch to the default font for typing pro-
grams (which, in the current implementation is \tt in order to have a behaviour
consistent with the verbatim environment).

225 \ProgramDefaultFont

3.8 Old macro names present here for compatibility reasons

\newprogram
\renewprogram

\noresetprogramcounter
\programindent

\programsurround
\setprogramcounter

\unnumline
\BothMarginNumberLine

These macro names are simple redefinitions of macros defined elsewhere in this docu-
ment style. They are present here because they had been defined in previous versions
of this style.

226 〈style〉%% OLD MACRO NAMES PRESENT HERE FOR COMPATIBILITY REASONS
227 \let\newprogram=\NewProgram \let\renewprogram=\RenewProgram
228 \let\noresetprogramcounter=\NoResetProgramCounter
229 \let\programindent=\ProgramIndent
230 \let\programsurround=\ProgramSurround
231 \let\setprogramcounter=\SetProgramCounter \let\unnumline=\UnnumLine
232 \let\BothMarginNumberLine=\BothMarginsNumberLine

233 〈/style〉

References

[1] D.E. Knuth. Computers & Typesetting (The TEXbook). Addison-Wesley, Vol.
A, 1986.

[2] L. Lamport. LATEX: a Document Preparation System. Addison-Wesley Publishing
Company, 1986.

[3] F. Mittelbach. The doc-option. TUGboat, Vol. 10(2), pp. 245–273, July 1989.

[4] F. Mittelbach, D. Duchier and J. Braams. docstrip.dtx . The file is part
of the DOC package.

13


