
Qtree, a LATEX tree-drawing package1

Jeffrey Mark Siskind (tree drawing and core package)

Alexis Dimitriadis (parser and extensions)

Version 3.1b, 12 December 2008

1 Overview

The Qtree package consists of QobiTree, a package of tree-drawing macros
written by Jeff Siskind, and a front end that allows trees to be specified
in bracket notation, using whitespace to separate tokens. Tree nodes can
have labels of any size or complexity, and are automatically arranged on the
page, usually with quite good results. Provisions exist for fine-tuning the
default layout. The front end also centers trees (by default) and provides
some other nice features.

A simple tree may look like this,

\Tree [.S This [.VP [.V is] \qroof{a simple tree}.NP]]

which produces:

S

This VP

V

is

NP

a simple tree

The node labels in trees may be quite complicated; they may contain font
changes and math-mode text, line breaks introduced with \\ (which pro-
duce centered lines), etc. The trees produced are constrained to a maximum
depth of 20 levels, with a maximum of five branches at any one node. Qtree
automatically adjusts for the width and height of tree labels, and is pretty
good at arranging nodes on the page.

Trees are defined using a version of the bracket notation familiar to lin-
guists. Tree elements are delimited by white space; braces can be used to
enclose multi-word labels. Qtree does not rely on \catcode changes for
its operation, allowing trees to be included in footnotes and other mov-
ing environments without problems. (But see the discussion of \automath
below).

Thanks to recent improvements in LATEX’s support for PDF, qtree can now
produce good-looking graphics for both DVI/PostScript and PDF output.
By default, qtree will load the package pict2e.sty, which improves the na-
tive picture-drawing facilities of LATEX and transparently supports both

1 Thanks to Jeff Siskind for permission to distribute the QobiTree code. Please direct
comments to Alexis Dimitriadis (alexis@ling.upenn.edu).

1

PostScript and PDF output.2 This version of Qtree also provides hooks for
customization, and contains many small enhancements and corrections of
minor glitches.

Many of the new features were inspired by questions or requests from qtree
users. Thank you all for your contributions to qtree, and keep them coming!

1.1 New features

1. Full PDF and PostScript support using pict2e.sty. This package,
which extends the limited capabilities of the standard picture envi-
ronment, was planned long ago by the LATEX developers but has only
recently been released. It provides enhanced drawing quality for both
DVI and PDF output.

2. Customization hooks allow easy adjustments to the default style of
leaf and branch labels, and to a number of other aspects of tree
appearance.

3. Extraneous whitespace around trees has been removed.

4. Reorganized and rewritten code is easier to customize (with a mod-
erate amount of LATEX hacking skills).

5. The documentation has been extended and reorganized. An FAQ sec-
tion has been added with explanations of various frequently requested
tasks.

6. Several functions have been added, including a “balancing” command
that will produce trees with more evenly sized branches.

7. Qtree is now (finally) available on CTAN.

1.2 Home page

The qtree home page is at:

http://www.ling.upenn.edu/advice/latex/qtree/.

2Earlier versions of qtree loaded eepic.sty, which does not work with PDF. You can
still use qtree with eepic if you wish; see section 2.1.

2

Contents

1 Overview 1

1.1 New features . 2

1.2 Home page . 2

2 Invocation 4

2.1 Package options . 4

2.2 Customization parameters 4

3 Basic usage 5

3.1 Tree syntax . 5

3.2 Label matching . 5

3.3 Roofs . 6

3.4 Branching without labels 6

3.5 Subscripts, superscripts and primes 7

3.6 Customizing text appearance 8

3.7 Escaping the parser . 8

3.8 Adjusting inter-node spacing 8

3.9 “Balanced” trees . 9

4 Using qtree 10

4.1 How to convert a tree to brackets 10

4.2 Placing trees on the page 10

5 Advanced features 11

5.1 Putting a frame around part of a tree 11

5.2 Embedding one tree in another 12

5.3 Overriding branch drawing 12

5.4 Visualising tree construction 13

5.5 The low-level interface . 14

6 How do I . . . ? (The qtree FAQ) 15

7 Troubleshooting 16

3

2 Invocation

Qtree.sty is a LATEX package. It should be installed in a directory of style
files, and included with the LATEX2ε command \usepackage{qtree}.

2.1 Package options

Horizontally center trees on the line. This is the default behavior. (See[center]

also the commands \qtreecentertrue and \qtreecenterfalse, below).

Do not center trees. Trees are positioned on the page like ordinary text,[nocenter]

and can be manually aligned to the left or right (or centered).

Suppress automatic loading of the graphics extensions library pict2e.sty.[noload]

Pict2e supports both PostScript and PDF graphics, but automatic loading
can be inhibited if it causes problems, or if you want to pass your own
options to pict2e.

Earlier versions of qtree used eepic.sty as the graphics enhancement library;
if you want to use it instead of pict2e, invoke qtree with the package option
[noload] and load eepic.sty manually (using \usepackage{eepic}).

2.2 Customization parameters

Trees are horizontally centered on the line by default, but you can turn\qtreecentertrue

\qtreecenterfalse centering on and off at any point with these commands. They obey the
usual scoping rules; if used inside an enumerate environment, for example,
their effect will only last until the end of that environment. (See also the
[(no)center] package options).

Length parameters The following macros can be redefined to customize
various aspects of tree construction. (Note that they are all macros, not
counters).

The amount of whitespace inserted around labels and leaf nodes as the\qtreepadding

tree is built. The default is the value of the LATEX parameter \tabcolsep
(usually set to 6pt). It is safe to change the value of this macro for different
trees, but modifying it in the middle of a tree could lead to somewhat
strange behaviour.

The amount of whitespace inserted around text placed under a roof; that\qroofpadding

is, the width of the “eaves” of the roof that extend beyond the text. The
default is 0.4em.

The height of the line connecting the labels of non-branching nodes to their\qtreeunaryht

leaves. The default is 2ex.

Customization hooks The following macros are empty by default, but
they can be defined to customize the appearance of labels and leaves. They
can safely change font styles etc., since they are invoked inside another
environment.

4

Called at the beginning of each tree, before processing begins. It can be\qtreeinithook

used for definitions or modifications of commands that should only be in
effect during tree construction. (For example, to use the \small font size
for all trees).

Called after the completed tree has been printed out; it might be used, for\qtreefinalhook

example, to end an environment opened with \qtreeinithook.

\qleafhook is called for each leaf node, and \qlabelhook for each non-\qleafhook

\qlabelhook terminal label. They can be used to define default fonts, etc., for text in
these places. Their use is explained in section 3.6.

3 Basic usage

3.1 Tree syntax

The front end of qtree reads a tree description written in the familiar (to\Tree

linguists) bracket notation. Tree labels are delimited by whitespace. To
make a multi-word node label, enclose it in braces. Note also that TEX
discards the spaces immediately after control sequences (commands whose
name consists of a backslash followed by letters); hence if a node label ends
with a control sequence, like \ldots in the following example, you need to
enclose it in braces too.

CP

Spec(CP)

which car

. . .

\Tree [.CP [.{\sc Spec}(CP) {which car}] {\ldots}]

3.2 Label matching

For convenience, a label for a non-terminal node can be written either after
the left bracket or after the right bracket corresponding to that node. Thus
the following are equivalent:

\Tree [.S when [.NP the cat] sleeps]
\Tree [.S when [the cat].NP sleeps]

To help keep braces matched when editing large trees, the front end allows
the option of writing a label after both the left and the right bracket of the
same node, as shown for the node NP below. In this case the two labels
provided must be identical, token for token.

\Tree [.S when [.NP the cat].NP sleeps]

5

3.3 Roofs

The command \qroof draws a triangular “roof” above a phrase that is\qroof

\qroofx

\qroofy

treated as a unit. It can appear anywhere a leaf can appear. The slope of
the roof is equal to the ratio \qroofy / \qroofx (these counters may be
reset to any pair of integers between zero and six; the default is 1/3).

To create a roof labeled NP over the phrase the book, write

\qroof{the book}.NP NP

the book

If the phrase contains line breaks introduced with \\, the resulting lines
are flush left, not centered. Again, it is possible for the “phrase” to be a
construction of arbitrary complexity; but the syntax of \qroof does not
allow further branches of the tree to appear under the roof, since a roof is
meant to cover material that is not analyzed.3 See also the discussion of
roofs in the following section.

3.4 Branching without labels

Sometimes we want to draw an abbreviated tree without a label on some
or all intermediate nodes. Qtree will handle such trees correctly:

CP

Spec(CP)
C0 IP

I0 Comp(IP)

\Tree [.CP Spec(CP) [C^0 [.IP I^0 Comp(IP)]]]

Starting with qtree version 3.1b, a roof without a label will be attached
to the tree branches above it. Note that the period between the roof text
and the label does need to be given. If you use this option, you will prob-
ably want to adjust the roof angles so that they match the slope of the
branch above it. For binary branching, the correct values are \qroofx=2,
\qroofy=1.

\qroofx=2
\qroofy=1
\Tree [.S This [[.V is] \qroof{a simple tree}.]]

NP

This
V

is an unlabeled tree

3Qtree internally implements a roof as a large leaf.

6

3.5 Subscripts, superscripts and primes

Qtree defines the following formatting commands in such a way that they
are only in effect during tree construction. They have their regular meaning
(or none) in the rest of the document.

Trees are constructed in a special environment in which things like NP_i,\automath

\noautomath N^0, automatically format their subscripts or superscripts in math mode,
giving NPi and N0, respectively. The command that arranges this is called
\automath, and can also be enabled outside the tree environment, if de-
sired. (It is turned off with \noautomath).

Because this feature relies on \catcode changes for its operation, \automath
has no effect when called inside footnotes or floats; in such trees, all sub-
or superscripts should be explicitly placed in math mode, as you would
ordinarily do. Alternately, you can turn on \automath before entering the
footnote or float.

As a further convenience, constructions like X$’$, producing X′, can be\0,\1,\2
abbreviated X\1. (If you simply type X’ you get X’, with an apostrophe
rather than a prime). There is also X\2, producing X′′, and X\0, producing
X0. These commands also arrange for subtle improvements in the centering
of labels that use them, by using \rlap to set the superscript.

If you want to use commands like \1 in your text (outside of trees), you\qtreeprimes

can cause all three to be defined by putting the command \qtreeprimes in
your preamble. The version defined in this way does not use \rlap around
the superscripts, since this is inappropriate for running text. Thus you get
X′, X′′, and X0. (Notice the position of the punctuation compared to the
previous paragraph). The versions that use \rlap will still be used inside
trees.

Here is an example using some of these features:

IP

NPi

Roses

I′

I0

are

VP

ti V′

V0

going

PP

out of style

\Tree
[.IP [Roses].NP_i [.I\1 [are].I\0

[.VP t_i [[going].V\0 \qroof{out of style}.PP].V\1].VP
].I\1]

Granted, by the time the examples get this big, the bracketed format isn’t

7

all that readable; but it’s certainly no worse than any other tree format,
and you can add white space to make it a little better.

3.6 Customizing text appearance

The macros \qleafhook and \qlabelhook don’t do anything by default,\qleafhook

\qlabelhook but they can be defined to control the appearance of the text in leaves and
in branch labels, respectively. The macros can be defined either with or
without an argument; the following examples illustrate both options.

\newcommand{\qlabelhook}{\bf}
\newcommand{\qleafhook}[1]{\emph{#1}}
\newcommand{\qlabelhook}{\framebox}

Details: For some effects it is important to know that the argument of
the hook is not just the text of the leaf or label, but a small tabular
environment (which inserts whitespace controlled by \qtreepadding). In
simplified form, the code that uses the hooks looks like this (where #1 is
the text of the branch label).

... \qlabelhook {\begin{tabular}[t]{c} #1 \end{tabular}}

This arrangement makes it possible for leaves and labels to contain line
breaks (\\). But one consequence is that the hooks cannot put their argu-
ment in math mode, since a table cannot appear inside math mode. For-
tunately, there is a simple work-around: We get the same effect by making
qtree use the array environment in place of tabular.4 To put only branch
labels (not leaves) in math mode, define the following hook:

\def\qlabelhook{\let\tabular=\array \let\endtabular=\endarray}

3.7 Escaping the parser

For fine control of the tree-building process, we must sneak certain direc-!-escapes
tives past the front end. If a word begins with an exclamation mark, the
entire word (i.e., up to the next space) will be passed through unchanged,
except for stripping off the “!”. Braces can be used to pass through larger
groups. This is most often used for the manual width-adjustment com-
mands \faketreewidth and \qsetw (see below), but can also be used to
override various qtree settings for part of the tree. Note that \qroof is part
of the tree syntax, and should not be preceded by an exclamation mark.

3.8 Adjusting inter-node spacing

The command \qsetw{〈length〉} (where 〈length〉 might be 0.5in, 36pt,\qsetw

4This works because tabular and array are internally implemented identically, except
for switching on math mode in array.

8

etc.) tells qtree to override its default calculation of the width of the just-
finished node (that’s the leaf or branch ending just to the left of where the
directive was issued), and instead consider that width to be 〈length〉.
Similarly, \faketreewidth{〈text〉} sets the width of the last node to be\faketreewidth

equal to the width of 〈text〉 (which again can contain ‘\\’ commands etc.)
〈text〉 is not actually typeset but is used just to compute the fake width of
the most recently completed leaf or subtree.

For example, the default placement rules would produce tree (a) below. By
setting the width of the subtree headed by B to 1cm, we get tree (b).

a. A

B

a b c d

C

b. A

B

a b c d

C

\Tree [.A [a b c d].B !\qsetw{1cm} C]

When you use \qsetw or \faketreewidth you are on your own. They can
either shrink or enlarge the space taken by the node and may result in trees
with overlapping labels.

3.9 “Balanced” trees

Regular binary-branching trees often end up with smaller and smaller\qbalance

branches as you descend into the tree; you can see an example below.
If you don’t like this look, you can get “balanced” trees by adjusting the
width of the last leaf node. For a balanced tree, this should be exactly
three times as wide as the leaves on its left;5 For binary-branching trees,
the command \qbalance can be used. It sets the width of the node just
before it to be three times the width of the previous node. If it does not
do what you need, you’ll need to set the correct width manually. In the
example below, the width of the leaf “last” is set to be three times the
width of leaf3.

a. X

leaf1 Y

leaf2 Z

leaf3 last

b. X

leaf1 Y

leaf2 Z

leaf3 last

\Tree [.X leaf_1 [.Y leaf_2 [.Z leaf_3 last !{\qbalance}]]]

5The geometrical justification for this is left as an exercise to the reader.

9

4 Using qtree

4.1 How to convert a tree to brackets

Reading or writing a complex tree in bracket notation is not terribly easy
for humans; it helps to have an editor that can show matching braces as
they are typed in. The procedure described here should allow you to easily
convert a tree to bracket notation. If you don’t have any difficulty with
this, just skip this section and do it any way you want!

1. Draw the tree you want to enter on a piece of paper, so you can look
at it.

2. Imagine that the tree is a large peninsula, and your pencil is a boat
sailing around it. Starting just to the left of the root node, move
downwards, following the outline of the tree until you come back
to the root node (on the right side, having moved counterclockwise
around the tree), without crossing any of the tree’s lines.

3. (a) Every time you are at the left side of a non-terminal node, type
a left bracket, and the label for that node.

(b) Every time you are at a leaf node, type in the contents of that
node.

(c) Finally, every time you are on the right of a non-terminal node,
type a right bracket (and the node name again, if you want to
help keep them straight).

To see this in practice, consider the following tree; in the variant on the
right, the numbered subscripts show the order in which the brackets and
labels are written.

A

B

C

one

D

two

E

three

[1A]13

[2B]9

[3C]5

one4

[6D]8

two7

[10E]12

three11

Accordingly, we would generate the tree by typing the following:

\Tree [.A [.B [.C one] [.D two]].B [.E three]].A

4.2 Placing trees on the page

Numbered examples etc. A tree generated with qtree can be placed in
a numbered example environment, in footnotes or \parboxes, inside math
formulas, tables, pictures, etc. The tree nodes can themselves contain

10

arbitrarily complex material—although, unfortunately, it is not possible to
embed a recursive call to qtree. If you need to do this, save the intermediate
tree in a \box. An example is shown in section 5.2.

Trees are centered horizontally on the line by default, but this feature can
be turned off with \qtreecenterfalse (see section 2.2). If you are not
satisfied with the horizontal placement of the tree, you can adjust it by
judicial use of \hskip.6

Qtree attempts to align the topmost label of the tree with the baseline of
the text, similarly to the effect of the [t] option for \parbox alignment. To
center trees vertically on the baseline, enclose the entire tree in a tabular
environment.

Side by side trees Multiple trees, or text and trees, can be arranged
side by side. This can generally be done by just arranging commands one
after another; it usually helps to turn off tree centering. If necessary the
positioning can be adjusted with \hskip.

(2) a. S

NP

él
he

VP

V

hizo
made

V

decir
say

NP

lo
it

NP

a-mi
me

b. S

A T

B
note

cc

D

\begin{enumerate}
\qtreecenterfalse
\item[(2)] a. \Tree [.S [.NP \’el\\he]

[.VP [.V hizo\\made] [.V decir\\say]
[.NP lo\\it] [.NP a-mi\\me]].VP]

\hskip 0.3in
b. \Tree[A [.T {B\\ \em note} cc].T D].S

\end{enumerate}

5 Advanced features

5.1 Putting a frame around part of a tree

The command \qframesubtree will put a rectangular box (“frame”)\qframesubtree

around part of a tree. It should be placed just after the closing bracket of
the subtree that should be boxed.

6Earlier versions of qtree inserted stray spaces in front of trees, requiring frequent use
of \hskip. This problem has now been fixed.

11

IP

NP

Roses
I0

are

VP

t
V0

turning

NP

pink

\Tree [.IP [.NP Roses] [[.I^0 are]
[.VP t [[.V^0 turning] [.NP pink]]].VP !{\qframesubtree}]]

Only complete subtrees can be framed with this method. To enclose a
single label node in a box, use a frame command directly. To box all labels
or leaves, you can use the format customization hooks. For example, the
following will put a box around every label:

\renewcommand{\qlabelhook}[1]{\framebox{#1}}

5.2 Embedding one tree in another

The internal implementation of qtree only supports one tree being built
at one time; hence it does not allow a complete tree to be recursively
embedded as part of another one. This is not actually needed very often
(trees are already recursive, after all); for most constructions that seem to
require it, there’s a simpler way to get the same effect. But it might be
necessary, for example, if you need to put a subtree under a roof.

Fortunately it’s straightforward to embed one tree in another using TEX’s
facilities, without ever calling qtree recursively. We can do this by saving
the first tree in a named box, and then using it as part of the larger tree.
Here’s how:

\newsavebox{\partbox} % Declare this only once, in your preamble!

% Build the subtree and save it in the box
\setbox\partbox=\hbox{\Tree [.DP my pony] }

% Use the subtree in the containing tree
\Tree [how
\qroof{about \usebox{\partbox} ...}.PP

].S

S

how PP

about DP

my pony

...

5.3 Overriding branch drawing

Qtree is designed to produce nice trees automatically; it is not designed
for fine control over their appearance. Nevertheless, technically inclined

12

users could use the ! escape mechanism to temporarily redefine the branch-
drawing routine and draw the branches any way they want, specifying wavy
or dotted lines between selected nodes, arrows at line tips, etc.

The code that draws the lines from a tree node to its daughters is encapsu-\qdraw@branches

lated in the macro \qdraw@branches. It takes one argument, the number
of branches, and uses graphics commands to draw a picture containing the
branched lines. The default drawing is very simple; the actual width of the
picture is controlled through the value of the parameter \unitlength (see
the documentation of the standard LATEX environment {picture}), which
will be set to half the required distance between the branch tips before
\qdraw@branches is called.

In the following simple example we override the macro (and later restore
it), to shorten the line that connects “b” to its parent and add an arrow at
its end (with \vector). Since the custom macro will only be used once, it
supports ternary branching only and ignores its argument.

Top

X Hub

a b c

left right

\makeatletter
\newcommand{\myLines}[1]{% Three-way only
\begin{picture}(4,1)
\put(0,0){\line(2,1){2}}
\put(2,0){\vector(0,1){0.7}}
\put(4,0){\line(-2,1){2}}

\end{picture}}
\let\qdrawReal=\qdraw@branches
\newcommand\brOverride{\let\qdraw@branches=\myLines}
\newcommand\brRestore{\let\qdraw@branches=\qdrawReal}
\makeatother

\Tree [.Top X [.Hub a b [.c left right]
!{\brOverride}].Hub !{\brRestore}].Top

The branch-drawing code above is a simple modification of the commands
found in the style file, but it could be replaced with commands using a
drawing environment of your choice, and inserting arbitrary graphic ele-
ments. Note, however, that the horizontal placement of child nodes on the
page is not affected by what the drawing routine does; drawing wider or
narrower branch lines will not cause the text to move with them.

5.4 Visualising tree construction

If you’re curious about how qtree assembles leaves and labels into a tree,
you can try the command \qtreeshowframes. It causes trees to be drawn
with boxes around their leaf nodes and labels; in the example below we
also add a frame around the entire tree, to show TEX’s idea of its bounding
box:

13

{ \qtreeshowframes
\frame{\Tree [.S This
[.VP [.V is]

[.NP [.D a] [simple tree]]
]] }}

S

This VP

V

is

NP

D

a

simple tree

5.5 The low-level interface

The guts of qtree are the tree macros written by Jeff Siskind, named Qobi-
Tree. Using the original interface (which is still accessible with this package)
the example tree shown on page 11 would be written like this:

S

A T

B
note

cc

D

\begin{center}
\leaf{A}

\leaf{B\\ \em note} \leaf{cc}
\branch{2}{T}

\leaf{D}
\branch{3}{S}
\qobitree
\end{center}

These macros operate like a stack machine. You push TEX boxes onto the
stack of tree nodes, then you pop them off to make branching nodes which
get pushed back on the stack. The qtree front end internally generates
these commands to build trees.

The command\branch requires you to specify the number of stack elements
that will be made into children of the new node. The front end uses an
internal counter, \nbranches, to keep track of how many children a node
has.

It is possible, and in some cases even useful, to write your own commands
that add bits of tree structure to the qtree stack. The command \mylex
in the following example formats a singleton branch label in bold above
lexical items (in italics), while leaving other branch labels in the default
roman font.

\newcommand\mylex[2]{\advance\nbranches by1
\leaf{\emph{#2}}\branch{1}{\bf #1}}

\Tree [.S !\mylex{N}{John}
[.VP !\mylex{V}{saw} !\mylex{N}{Jane}]]

S

N

John

VP

V

saw

N

Jane

We use ! to bypass the front end, in order to manipulate the tree stack
directly. The macro pushes a leaf onto the stack and then includes it
under a singleton branch with a bold label. It also increments the counter

14

\nbranches to let the front end know that the resulting node has been
added to the stack. With some understanding of how qtree works, much
more complicated commands are possible. (In extreme cases, you might
consider bypassing the front end altogether and relying exclusively on the
stack interface).

6 How do I . . . ? (The qtree FAQ)

Make my tree fit in the page? Try one or more of the following:
reduce the font size with \small or another size command, before you
begin the tree; reduce the amount of space between subtrees with \qsetw or
\faketreewidth; abbreviate unimportant parts of your tree with \qroof;
consider placing your tree sideways in the page, using one of the packages
that provide rotation commands.

Draw movement arrows from one node of a tree to another? Use
Emma Pease’s tree-dvips.sty, or some other package for drawing lines be-
tween locations on the page. Despite its name, tree-dvips is not narrowly
tailored to creating trees; its many line- and arrow-drawing commands can
be used to decorate trees drawn with qtree.

Use qtree with pdflatex? Earlier versions of qtree did not have good
pdflatex support. The current version supports it through the package
pict2e.sty. If it is not already available on your system, it is highly recom-
mended that you install it. See section 2 for details.

Place a tree in a footnote, figure, or macro argument? Qtree
does work in floats, but the \automath feature is not available in such
environments. If you’re having problems, you’re probably using sub- or
superscripts without switching to math mode. See section 3.5.

Center my trees vertically on the baseline? Put them inside a
trivial tabular environment. (This can be automated with the hooks
\qtreeinithook, \qtreefinalhook). To avoid extra whitespace around
the tree, use the following column specification (see the documentation of
{tabular} for an explanation):

\begin{tabular}[c]{@{}l@{}} \Tree ...

Line up the text from all the leaf nodes on one horizontal line?
As far as I can tell, qtree’s design is incompatible with this style of tree.
I’d love it if there was an easy way to give qtree this capability, but if there
is, I haven’t figured it out.

15

Draw dashed or dotted branches between certain nodes? This
requires a bit of LATEX hacking skills, but it can be done. See section 5.3
for details.

Automatically select a particular font for branch or leaf labels?
Redefine \qlabelhook and/or \qleafhook. See section 3.6.

Embed one call to qtree inside another? Qtree cannot be called
recursively. If you do need to embed one tree in another (it’s very rarely
necessary), save the smaller tree in a \savebox and insert it into the bigger
one. See section 5.2 for the details.

7 Troubleshooting

Disclaimer: I welcome any comments, feature requests, or reports of
other problems. But as usual, no guarantees, promises, etc. can be made
about the present or future state of this code.

The placement of trees on the page has changed Version 3 of qtree
has fixed some bugs in horizontal spacing (most visibly, extra spaces used to
be inserted before trees), and made countless small adjustments in spacing.
Trees are now centered exactly on the line, and they generate no white
space around them.7 They are thus easy to position and integrate with
other visual objects.

Unfortunately, this creates a compatibility problem, as it was not practical
to provide a “backwardly compatible” spacing option. If you have used a
lot of \hspace commands to adjust the placement of your trees, they will
no longer work properly. On the positive side, it should now be very easy
to arrange trees the way you want them. If you need to process files that
have a lot of old trees with spacing adjustments, you can install the package
qtree221.sty, which contains version 2.21 of qtree. The new commands and
formatting options of qtree version 3 are not available in qtree221.sty.8

The change-over is a one-time incompatibility. Future revisions will retain
the spacing of version 3.

LaTeX says that pict2e.sty “will not be written soon” Pict2e.sty
has finally been written. You need to update your TEX distribution or just
download the package. If you cannot do that for any reason, load qtree
with \usepackage[noload]{qtree} to suppress loading of pict2e.sty.

7If you put a tight box around a tree (using \frame), it will just touch the sides of
the tree.

8qtree221.sty is not available on CTAN. It can be downloaded from the Qtree home
page, http://www.ling.upenn.edu/advice/latex/qtree/.

16

Some very short lines are not drawn This problem is caused by the
limited inventory of line shapes in the original LATEX picture environment.
For example, the tree fragment [.X a b] will produce invisible branch
lines from X to a and b, but the lines will reappear if the labels are made
wider. If you use pict2e, the problem should go away.

Some not-so-short lines are not drawn My dvi previewer (yap) some-
times fails to display some lines; but the lines are really there, and can be
seen at higher magnifications, or when the file is printed or converted to
PostScript. So it’s only a problem with the previewer; if it gets in your
way, suppress loading of pict2e with the package option [noload].

TEX is running out of registers Qtree is a real pig for counter registers:
it uses more than 60 of them. In combination with other packages that use
a lot (e.g., the memoir class), this can go over the limits of the original
TEX engine. Fortunately most distributions have now quietly switched to
using eTEX internally, which makes many more registers available (you still
invoke it simply as latex, so you probably don’t even know you’re using
it). But you need to tell eTEX that the extra registers are there. If you
run out of registers, try including the package etex.sty and see if it fixes the
problem.9

There’s too much space below my trees, but only when I use
pdflatex Qtree should produce identical output for dvi and pdf. The
problem is caused by a bug in older versions of color.sty, which is loaded
internally by many pdf-aware packages.10 Update the package color from
CTAN (the entire directory) and the problem will go away.

Qtree will not work with journal style X Any number of things
could be going wrong, of course, but start by checking if the journal’s style
redefines the tabular environment. Qtree makes internal calls to tabular,
so this is a frequent source of problems. Usually the style’s writer has saved
the original definition of \tabular under a different name, so all you need
to do is arrange for the original definition to be restored during the calls
to \Tree.

You can define \qtreeinithook to carry out the necessary redefinitions.
It is called at the beginning of each call to \Tree, with local scope (so
that any redefinitions it makes are automatically canceled at the end of the
call to \Tree). For example, the JNLE style (nle.sty) saves the standard
commands to begin and end a table as \oldtabular and \endoldtabular,
respectively, and the replacement macros result in r e a l l y w i d e trees.

9If you include etex.sty and strange things start happening, you probably aren’t run-
ning the eTEX engine; in that case, don’t load etex.sty. You’ll have to install a newer
TEX distribution first.

10The bug is in the redefinition of \ usebox in the file pdftex.def.

17

The following will restore the original definitions for calls to \Tree only.

\def\qtreeinithook{\let\tabular=\oldtabular
\let\endtabular=\endoldtabular}

Kluwer’s house style saves the original definitions as \klu@tabular and
\klu@endtabular; they can be restored in the same way. (You’ll need to
use \makeatletter since these names contain an @-sign).

18

	Overview
	New features
	Home page

	Invocation
	Package options
	Customization parameters

	Basic usage
	Tree syntax
	Label matching
	Roofs
	Branching without labels
	Subscripts, superscripts and primes
	Customizing text appearance
	Escaping the parser
	Adjusting inter-node spacing
	``Balanced'' trees

	Using qtree
	How to convert a tree to brackets
	Placing trees on the page

	Advanced features
	Putting a frame around part of a tree
	Embedding one tree in another
	Overriding branch drawing
	Visualising tree construction
	The low-level interface

	How do I …? (The qtree FAQ)
	Troubleshooting

