
T
he

 r
m

A
nn

ot
 M

A
N

U
A

L

AcroTEX.Net

The rmannot Package

Rich Media Annotations

for Acrobat 9 Pro, or later

D. P. Story

© 2008-2021 dpstory@acrotex.net www.acrotex.net
Prepared: January 29, 2021 Version v2.0, 2016/10/09

mailto:dpstory@acrotex.net
www.acrotex.net

T
he

 r
m

A
nn

ot
 M

A
N

U
A

L

Table of Contents

1 Introduction 3

2 Requirements 3
2.1 LATEX Package Requirements . 3
2.2 PDF Creator Requirements . 4
2.3 Supported Media Formats . 4

• Supported Video Formats . 4
• Supported Audio Format . 4

3 Installation 4

4 Setting the Paths and Posters 5
4.1 Setting the Paths . 5
4.2 Creating Posters . 8

5 \rmAnnot and its Options 9
5.1 \rmAnnot Command . 10

• \rmAnnot Options . 10
• Setting the Floating Window Parameters . 15

5.2 Examples . 16
• Posters . 16
• Skin Options . 18

5.3 Third-party Video Players . 19
• JavaScript/ActionScript API for Video Players 20
• Core API . 21
• API of VideoPlayerX . 22

5.4 \rmAnnot and 3D . 24

T
he

 r
m

A
nn

ot
 M

A
N

U
A

L

3

1. Introduction

Beginning with version 9, Adobe Reader and Acrobat contain an embedded Adobe Flash
Player that will play SWF, FLV, and MP3 files. A new annotation type, called a rich media
annotation, was developed to manage these media file types in a PDF file.

The rmannot package supports the creation of rich media annotations (a RichMedia
annotation type), and the embedding of SWF, FLV, and MP3 files in a PDF. SWF anima-
tions, FLV video, and MP3 sound can then be played within a PDF viewed within version 9
(or later) of Adobe Reader or Acrobat.1

Source material for the creation of this package is the document Adobe Supplement
to the ISO 32000, June 2008. This document contains the PDF specification—the so
called, BaseLevel 1.7, ExtensionLevel 3 specification—of the rich media annotation.

b Examples. In addition to the examples that ship with the rmannot package, there are nu-
merous examples of rmannot on my AcroTEX Blog (having tag rmannot-package). There
is also a whole series of articles on the Rich Media Annotation using AeB Pro and
rmannot.

Version 2.0 or later. With this version, we introduce 3D models. Version 9.0 of Ac-
robat introduced the rich media annotation, buried in the specifications for RMA are
references to 3D models. This structure was designed for having 3D model and rich
media (SWF, FLV) in the same annotation. We now support what I am calling the RM3D
annotations What is created is not a 3D annotation, but a rich media annotation with
3D content. See Section 5.4, page 24 for details. A simple example appears on page 28.

2. Requirements

The requirements for your LATEX system, and well as any other software, is highlighted
in this section.

2.1. LATEX Package Requirements

The following packages, in addition to the standard LATEX distribution, are required:

1. The xkeyval package is used to set up the key-value pairs of the \rmAnnot com-
mand. Get a recent version.

2. AeB (AcroTEX eDucation Bundle) The most recent version. In particular the eforms
package and its companion package insdljs. The AeB Pro package is recom-
mended. (All the demo files use AeB Pro.) Get it at ctan.org/pkg/acrotex.

3. The graphicxsp Package. The latest version, I made some slight modifications of
this package for rmannot. This package allows the embedding of poster graphics
for use in the appearances of the annotations when they are not activated. Get it
at ctan.org/pkg/graphicxsp.

4. (Recommended) Many of the demo files use AeB Pro (ctan.org/pkg/aeb-pro) is a
recommended addition to your AcroTEX collection.

1The rmannot package was written, in part, to support the AcroFLeX Graphing package.

http://www.acrotex.net/blog/?p=
http://www.acrotex.net/blog//?tag=rmannot-package
http://www.acrotex.net/blog/?cat=22
http://ctan.org/pkg/acrotex
http://ctan.org/pkg/graphicxsp
http://ctan.org/pkg/graphicxsp

T
he

 r
m

A
nn

ot
 M

A
N

U
A

L

4

The installation instructions for AeB and AeB Pro must be read very closely as there are
certain JavaScript files that must be copied to the correct location on your local hard
drive.

2.2. PDF Creator Requirements

The rmannot package supports Acrobat Distiller 9.0 (or later) as the PDF creator. The
document author must have Acrobat 9.0 Pro and its companion application Distiller.
The document author typically uses dvips to produce a PostScript file, which is then
distilled to obtain a PDF.

2.3. Supported Media Formats

• Supported Video Formats

The resource for video formats is Supported file formats | Acrobat, Reader, see the sec-
tions Video formats (Acrobat X Pro) and Video formats (Acrobat 9 Pro and Pro Ex-
tended). The rmannot package generally supports all formats listed there that have
a ‘Yes’ in the column labeled Direct placement without transcoding; in particular,
rmannot supports SWF, FLV, F4V, MP4, M4V, MOV, 3GP, 3G2, and MP3 files. Some of
these are not supported by version 9. For greatest compatibility, use SWF, FLV (or F4V,
Version 9.2 or later).

• Supported Audio Format

The resource for audio formats is Supported file formats | Acrobat, Reader, see the sec-
tion Audio formats (Acrobat). For assured compatibility, use MP3 files for audio.

3. Installation

The installation is simple enough. Unzip rmannot.zip in a folder that is on your LATEX
search path. Refresh your filename database, if appropriate.

I am perhaps the last one using YandY, but if there is anyone else, there is one other
thing to do. The distribution comes with the default poster file for the MP3 file; the
name of this file is ramp3poster.eps (found in the graphics subfolder). For YandY
users, this file needs to be copied to a folder on the PSPATH. If you don’t know what I’m
talking about, follow the steps below.

Open dviwindo, and go to Preferences > Environment and choose PSPATH from
the drop down menu. Add the path

C:\yandy\tex\latex\contrib\rmannot\graphics\\

at the end of your PSPATH string.2 It is important to have the double backslash at the
end of the path. This tells the YandY System to search all subfolders for the graphics
files. When you are finished, your PSPATH should look something like this:

C:\yandy\ps;C:\yandy\tex\latex\contrib\rmannot\graphics\\

Be sure to separate these paths by a semicolon.

2If your YandY System installation is elsewhere, enter that path.

http://kb2.adobe.com/cps/405/kb405848.html
http://kb2.adobe.com/cps/405/kb405848.html

T
he

 r
m

A
nn

ot
 M

A
N

U
A

L

5

Important: In recent versions of Acrobat, security restrictions have been put in place
to prevent Distiller from reading files (the PostScript file operator does not work). For-
tunately, Distiller has a switch that turns off this particular restriction. To successfully
use this package, therefore, you need to run Distiller by using the -F command line
switch. I personally use the WinEdt application as my text editor,3 and have defined
a Distiller button on my toolbar. The Distiller button executes the following WinEdt
macro.

Run(|"c:\Program Files\Adobe\Acrobat 9.0\Acrobat\acrodist.exe" -F "%P\%N.ps"|,
’%P’,0,0,’%N.ps - Distiller’,1,1);

Note the use of the -F switch for acrodist.exe. If this package is used to create rich
media annotations without the -F switch, you typically get the following error message
in the Distiller log file

%%[Error: undefinedfilename; OffendingCommand: file]%%

This tells you that either you have not started Distiller with the -F command line switch,
or Distiller can’t find one of the files that the file operator was trying to read.

Mac OS Users. The above comments on the -F command line switch are for Windows OS
users, Mac OS users must choose the AllowPSFileOps user preference, this is located
in the plist, possibly located at

/Users/[User]/Library/Preferences/com.adobe.distiller9.plist

You can use Spotlight, the search utility on Mac, to search for com.adobe.distiller.
This finds the file com.adobe.distiller9.plist. Clicking on this find, Spotlight
opens com.adobe.distiller9.plist in the plist editor, see Figure 1. If necessary,
click on the arrow next to the Root to expand the choices, then click the up and down
arrows at the far right in the AllowPSFileOps row to select Yes as the value.

4. Setting the Paths and Posters

The paths to SWF/FLV/MP3 files are required to appear in the preamble, and any poster
graphics are required to appear in the preamble as well.

4.1. Setting the Paths

There are two types of paths: System paths to resources needed by Acrobat Distiller,
and media paths to the files used in the document.

System Paths. This package uses Acrobat Distiller 9.0 (or later), and requires the doc-
ument author to have Acrobat 9 Pro. In the Acrobat program folder is a Multimedia
Skins folder. This folder contains skins (SWF files) used in providing playing con-
trols to FLV video files, and in the Players subfolder you will find VideoPlayer.swf
and AudioPlayer.swf. The former plays FLV files with an appropriate skin for user
controls, the latter plays MP3 files. The document author needs to set these paths to

3WinEdt home page: www.winedt.com

www.winedt.com

T
he

 r
m

A
nn

ot
 M

A
N

U
A

L

Setting the Paths and Posters 6

Figure 1: com.adobe.distiller9.plist

these files, which are passed on to the distiller. This is easily done using the \AcroVer
command.

\AcroVer[win|mac]{〈version〉}

In the preamble, or in the rmannot.cfg configuration, provide the type of operating
system (win or mac) you are using and version of Acrobat you are using to build your
RMA document. When no optional argument is passed, win is assumed (Windows OS).
Possible values for 〈version〉 are DC, a year (2015 or later), or a version number, such
as 9, 10, or 11.4 At the time of this writing, the default is \AcroVer{11}.

The rmannot package, based on the information passed to it by \AcroVer, builds the
appropriated path and passes this path to the \pathToSkins command as its argument.
Should the path be proven to be incorrect, you can hunt down the correct path and
directly enter it in the preamble, or in the rmannot.cfg configuration file. For version
XI (version 11) of Acrobat, for example, the path is,

\pathToSkins{C:/Program Files (x86)/Adobe/%
Acrobat 11.0/Acrobat/Multimedia Skins}

The path for the Mac OS may look like this,

\pathToSkins{/Applications/Adobe\ Acrobat\ XI\ Pro/Adobe\ Acrobat\
Pro.app/Contents/Resources/Multimedia\ Skins}

These paths differ from platform to platform and \AcroVer tries to take all plat-
forms and versions into consideration.

4A value of Beta is also recognized, for those in the Beta Program of Acrobat.

T
he

 r
m

A
nn

ot
 M

A
N

U
A

L

Setting the Paths and Posters 7

☛ The rmannot distribution comes with a rmannot.cfg file. In this file, you can place the
\AcroVer command with its appropriate arguments for your platform and version of
Acrobat. Remember, if you update your Acrobat, update also the 〈version〉 argument
of \AcroVer.

Document Media Paths. Each media file (SWF, FLV, MP3) must be declared in the pream-
ble using the \saveNamedPath command.

\saveNamedPath[〈mime_type〉]{〈name〉}{〈path〉}

The first optional argument 〈mime_type〉 is normally not needed. It is the mime type
of the file. Currently, only SWF, FLV and MP3 files are supported, and the extension of
the file name is isolated to determine the mime type. The second parameter 〈name〉 is
a unique name that will be used to reference this media file. Finally, 〈path〉 is full and
absolute path to the media file. The path includes the file name and extension.

For example,

\saveNamedPath{mySWF}{C:/myMedia/AcroFlex3_demo.swf}
\saveNamedPath{fishing}{C:/myMedia/100_0239.flv}
\saveNamedPath{summertime}{C:/myMedia/Summertime.mp3}

Once the paths are defined in this way, the media files are referenced using their
given names. This has a couple of purposes.

1. The names are used to determine if the media file has already been embedded in
the document. Though the media clip may be used in several rich media annota-
tions, the rmannot attempts to embed a media file only once.

2. The command \saveNamePath uses \hyper@normalise, of the hyperref pack-
age, to “sanitize” special characters, so the path may contain characters that nor-
mally have special meaning to LATEX.

3. Defining the path once leads to a consistent reference to the file paths, and reduces
the chance of typos.

A brief example to illustrate the use of the names assigned by the \saveNamedPath
follows:

\rmAnnot{200bp}{200bp}{mySWF}

See ‘\rmAnnot and its Options’ on page 9 for additional details on the poster key
and the \rmAnnot command.

The above example would use the default poster image to give a visual of the anno-
tation when it is not activated. The next section discusses how to define and implement
your own poster image.

T
he

 r
m

A
nn

ot
 M

A
N

U
A

L

Setting the Paths and Posters 8

Defining a RM Path. The resources (.flv, .swf, .mp3 files, for example) for your Flash
application may reside on your local computer or in the Internet. As a way of reducing
the amount of typing, you can use \defineRMPath to define common paths to your
resources.

\defineRMPath{〈name〉}{〈path〉}

The command uses \hyper@normalise (of hyperref) to “sanitize” the path. The
first argument 〈name〉 is the name of the command to be created, and 〈path〉 is the
path. After the definition, the command \〈name〉 expands to 〈path〉. For example,

\defineRMPath{\myRMFiles}{C:/myMedia}
\saveNamedPath{mySWF}{\myRMFiles/AcroFlex3_demo.swf}
\saveNamedPath{fishing}{\myRMFiles/100_0239.flv}
\saveNamedPath{summertime}{\myRMFiles/Summertime.mp3}

We first define a path to our resources, then save those paths along with the file
names.

You can use \defineRMPath to define URLs as well

\defineRMPath{\myRMURLs}{http://www.example.com/˜dpspeaker/videos}

Now, \myRMURLs points to your common video resources on the Internet.

4.2. Creating Posters

The \rmAnnot command has a poster key that is recognized as part of optional key-
value pairs. The use of the poster key is optional, if you do not specify one, one will
be generated for you. (More on the default poster appearance is presented below.) The
poster image is visible when the rich media annotation is not activated.

To create a poster for your rich media annotation, use a graphics application (Adobe
Illustrator, Adobe Photoshop, etc.), and save as an EPS file. Move this file to your source
file folder. Let’s call this file cool_poster.eps. In the preamble place the command,

\makePoster{myCP}{cool_poster}

The first argument is a unique name for the graphic, the second argument is the
path name of the graphic (without the extension). The name is used as the value of the
poster key.

The command actually has an optional first argument. This argument is passed to
the command \includegraphics (of the graphicx package). The general syntax of
the command is,

\makePoster[〈options〉]{〈name〉}{〈path_to_EPS〉}

The command uses the graphicxsp package to embed the file in the PDF document.
The graphical image can then be used multiple times in many annotations.For example,

T
he

 r
m

A
nn

ot
 M

A
N

U
A

L

9

\rmAnnot[poster=myCP]{200bp}{200bp}{mySWF}

See ‘\rmAnnot and its Options’ on page 9 for additional discussion of the poster key
and \rmAnnot.

The graphic itself should have the same aspect ratio as the rich media annotation;
this is important if the graphic contains text or images that would get otherwise dis-
torted.

Default Poster Image. The rmannot package has default poster appearance. This poster
appearance takes one of two forms. If the media file is MP3, an image of the AudioPlayer
control bar is used; otherwise it is dynamically generated (with the correct dimensions)
using the following PostScript operators:

\defaultPoster
{%

.7529 setgray
0 0 \this@width\space\this@height\space rectfill
10 \adj@measure 10 \adj@measure moveto .4 setgray
/Helvetica \this@height\space 10 div selectfont
(\rma@posternote) show

}

The commands \this@width and \this@height are the width and height of the
annotation. The command \adj@measure converts a measurement to a proportion of
the smaller of the two measurements \this@width and \this@height.5

Note that, in the above code, some text is generated in the lower left corner of the
annotation, the text is \rma@posternote. This command is populated by the value
of the posternote key of the optional argument of \rmAnnot. The default value of
posternote is ‘AcroTeX Flash’ or ‘AcroTeX Video’, depending on the file type of the
media. This can be changed through the posternote key.

The default poster itself can be redefined by a document author who is schooled in
PostScript things, perhaps if only to change colors, or font, or location of the poster
note.

5. \rmAnnot and its Options

The \rmAnnot command creates a rich media annotation, new to version 9 of Acro-
bat/Adobe Reader. Media files (SWF, FLV, or MP3) can be either embedded in the doc-
ument, or linked via a URL, and played. Acrobat/Adobe Reader have a built-in Flash
player that plays SWF, FLV and MP3 files.

Media files in other formats need to be converted to one of these three supported
formats.6

5The code presented here is a simplified version of the actual code found in rmannot.dtx. The definition
of the default poster has a number of macros that can be redefined to change the placement of text, the
color, size of the font, etc. See rmannot.dtx for details.

6The new Acrobat 9 Pro Extended can convert media files to FLV, but embed the converted file in the
PDF, so we cannot really use that re-encoded file with our rmannot package. Adobe Flash Video Encoder

T
he

 r
m

A
nn

ot
 M

A
N

U
A

L

\rmAnnot and its Options 10

5.1. \rmAnnot Command

The primary command of this package is \rmAnnot, which has four arguments, one
optional and three required.

\rmAnnot[〈options〉]{〈width〉}{〈height〉}{〈name〉}

The 〈width〉 and 〈height〉 parameters are what they are, the width and height to be
used in the rich media annotation. The aspect ratio should be the same as the aspect
ratio of the Flash media. The annotation can be resized using either \resizebox or
\scalebox of the graphicx package to get the physical dimensions you want.

For MP3 Files. After a careful measurement, the aspect ratio (width/height) of the
MP3 AudioPlayer control bar is about 9.6. In some of the demo files, I’ve been using a
width of 268bp and a height of 28bp, and resize the annotation to what is desired. Use
268bp and 28bp for the width and height of an MP3 file, and resize.

The 〈name〉 argument references a media file defined by the \saveNamedPath in the
preamble.

The 〈options〉 are discussed in the subsection that follows.

• \rmAnnot Options

The \rmAnnot command has many key-value pairs that are passed to it through its
first optional argument. Most of these key-value pairs correspond to options available
through the user interface of Acrobat. Below is a listing of the key-values, and a brief
description of each.

name=〈string〉 The name (〈string〉) of the annotation. If none is supplied, then
aebRM\therm@Cnt is used, where rm@Cnt is a LATEX counter that is incremented
each time \rmAnnot is expanded.

enabled=〈value〉 The enabled key determines when the annotation is activated, pos-
sible values are onclick, pageopen, and pagevisible.

onclick The annotation is activated when the user clicks on the annotation, or
is activated through JavaScript.

pageopen The annotation is activated when the page containing the annotation
is opened.

pagevisible The annotation is activated when the page containing the annota-
tion becomes visible. (Useful for continuous page mode.)

The default is onclick.

deactivated=〈value〉 The deactivated key determines when the annotation is de-
activated, possible values are onclick, pageclose, and pageinvisible.

converts many movie formats to FLV format, which can, in turn, be used in this package. Other utilities
may be available as shareware or commercialware.

T
he

 r
m

A
nn

ot
 M

A
N

U
A

L

\rmAnnot and its Options 11

onclick The annotation is deactivated by user script or by right-clicking the an-
notation and choosing Disable Content.

pageclose The annotation is deactivated when the page containing the annota-
tion is closed.

pageinvisible The annotation is deactivated when the page containing the an-
notation becomes invisible. (Useful for continuous page mode.)

The default is onclick.

windowed=〈true|false〉 A Boolean, which if true, the media is played in a floating
window. The default is false, the media is played in the annotation on the page.
For information on how to set the floating window parameters, see ‘Setting the
Floating Window Parameters’ on page 15.

url=〈true|false〉 A Boolean, which if true, the media is to be interpreted as an
URL. The default is false, the media is embedded from the local hard drive and
embedded in the PDF file.

borderwidth=〈value〉 The borderwidth determines whether a border is drawn around
the annotation when it is activated. Possible values are none, thin, medium, and
thick. The default is none.

poster=〈name〉 The name of a poster graphic created by \makePoster. See the section
‘Creating Posters’ on page 8 for additional details.

posternote=〈text〉 When the poster key is not given, the default poster is generated.
A short note of text appears in the lower left-corner. The text for that note can
be passed to the default poster appearance through posternote. See ‘Creating
Posters’ on page 8 for additional details.

invisible=〈true|false〉 A Boolean which, if present, rmannot creates a transparent
poster for the RMA. The RMA has not hidden property as form fields do, the best
you can do is to give the RMA a transparent poster and place it in an obscure
corner of the page, or under a form field. Normally, if invisible is specified, the
video content is played in a window (that is, windowed is specified as well).

Note: The invisible option requires that you distill the document with a job op-
tions setting of Standard_transparency, distributed with the graphicxsp pack-
age.

transparentBG=〈true|false〉: This option is available for SWF files only. Quoting
the Adobe Supplement document, “A flag that indicates whether the page content
is displayed through the transparent areas of the rich media content (where the
alpha value is less than 1.0). If true, the rich media artwork is composited over
the page content using an alpha channel. If false, the rich media artwork is drawn
over an opaque background prior to composition over the page content.” The
default is false.

T
he

 r
m

A
nn

ot
 M

A
N

U
A

L

\rmAnnot and its Options 12

passcontext=〈true|false〉 A Boolean, if true, passes right-click context to Flash.
Should be used only if there is a way of deactivating the annotation, perhaps
through JavaScript. Recognized only for SWF files. The default is false.

SWF file developers can select this option to replace the Acrobat context menu
with the context menu of the originating SWF file. When the user right-clicks the
SWF file, the available options are from the originating file.

skin=〈value〉 For playing a FLV file, seven different skins are available for the user to
control the video, skin1, skin2, skin3, skin4, skin5, skin6, and skin7. Another
possible value is none, for no skin. In the latter case, the media is played when
activated, but there is no user interface to control the play. As for the description
of each of the skins,

skin1 All Controls

skin2 Play, Stop, Forward, Rewind, Seek, Mute, and Volume

skin3 Play

skin4 Play and Mute

skin5 Play, Seek, and Mute

skin6 Play, Seek, and Stop

skin7 Play, Stop, Seek, Mute, and Volume

none No Controls

You can add other skins as well. If you have Adobe Flash Professional CS5, you
have access to other skins. Place a new skin in the location Acrobat expect them
to be in (as defined by \PathToSkins, then place a declaration like the following
in the preamble of your document:

\saveNamedPath{skin8}{\PathToSkins/%
MinimaUnderPlayBackSeekCounterVolMuteNoFull.swf}

(Here, I’ve wrapped the line around for display purposes.) Now, when you use
\rmAnnot, you can specify skin=skin8 as a key-value in the optional parameter
list.

skinAutoHide=〈true|false〉 A Boolean, if true, the skin auto hides. Only valid for
video files.

skinBGColor=〈color_hex〉 The color of the skin. The value is a color in hex format.
The default is 0x5F5F5F. Only valid for FLV files.

skinBGAlpha=〈num〉 The alpha level of the skin, a number between 0 and 1. The default
is 0.75. Only valid for FLV files.

volume=〈num〉 The initial volume level of the video file, a number between 0 (muted)
and 1 (max volume). The default is 1.0. Only valid for FLV files.

T
he

 r
m

A
nn

ot
 M

A
N

U
A

L

\rmAnnot and its Options 13

cuepoints=〈list_cuepoints〉 If the video is encoded with cue points, you can asso-
ciate a JavaScript action with each. The value of cuepoints is a comma delimited
list of cue points. See the paragraph ‘On Cue Points’ on page 14 for more details.

resources=〈list〉 Use this key to list all files that are required to run a SWF file. The
value of the resources key is a comma-delimited list of path names created by the
\saveNamedPath command. The files referenced within this key are embedded in
the PDF. Files that are on the Internet—and are played from the Internet—should
not be listed here.

flashvars=〈vars〉 Flash developers can use the flashvars key to add ActionScript
variables for the SWF file. See the discussion of The \Name and \urlName com-
mands in the paragraph below.

The \Name and \urlName commands. Within the optional parameters of the \rmAnnot
command, two convenience commands, \Name and \urlName, are defined. They can
be used, for example, with the flashvars key.

The \Name command may be used to set the value of a flash variable. \Name has one
argument, the symbolic name of a file embedded by \saveNamedPath. The expansion
of \Name{〈name〉} will appear in the Resources tab of the Edit Flash dialog box. For
example, if we define myVid as

\defineRMPath{\myRMFiles}{C:/acrotex/video}
\saveNamedPath{myVid}{\myRMFiles/assets/myVid.flv}

then \Name{myVid} expands to myVid.flv. If the path is grouped with braces, like so,

\saveNamedPath{myVid}{\myRMFiles/{assets/myVid.flv}}

then \Name{myVid} expands to assets/myVid.flv. This latter form corresponds to
adding a directory using the Add Directory button on the Resources tab of the Edit
Flash dialog box.

We can then use \Name as follows:

\rmAnnot[flashvars={source=\Name{myVid}},
resources={myVid}]{320bp}{240bp}{mySWF}

where mySWF is the name of an SWF application that takes a flash variable named source,
the value of the variable is the video to be played.

The \urlName command is designed for resources on the Internet, and which are
passed to the SWF application with a flash variable.

\defineRMPath{\myRMURLs}{http://www.example.com/˜dpspeaker/videos}
\saveNamedPath{myVid}{\myRMURLs/myVid.flv}

The expansion of \urlName{myVid} is

http://www.example.com/˜dpspeaker/videos/myVid.flv

We can then use \urlName as follows:

\rmAnnot[flashvars={source=\urlName{myVid}}]{320bp}{240bp}{mySWF}

Note that we don’t list myVid as a resource, we just pass the URL to mySWF as a flash
variable.

T
he

 r
m

A
nn

ot
 M

A
N

U
A

L

\rmAnnot and its Options 14

Note. The \Name and \urlName commands are defined within the optional parameters
of Acrobat form fields created by the eforms package.

On Cue Points. A cue point is any significant moment in time occurring within a video
clip. Cue points can be embedded in the FLV using Adobe Flash Professional, or some
other video encoder.

The value of the cuepoints key is a list of cue points data, a “typical example” is

\newcommand{\myCuePoints}{%
{type=nav,name=Chapter1,time=0,action={console.println("Chapter1")}},%
{type=nav,name=Chapter2,time=1883,action={console.println("Chapter2")}},%
{type=nav,name=Chapter3,time=5197,action={console.println("Chapter3")}},%
{type=nav,name=Chapter4,time=6817,action={console.println("Chapter4")}},%
{type=nav,name=Chapter5,time=9114,action={console.println("Chapter6")}},%
{type=nav,name=Chapter6,time=12712,action={console.println("Chapter6")}}

}

Comments: Having made such a definition, we then say cuepoints={\myCuePoints},
note that \myCuePoints must be enclosed in braces. Note also in the above example,
that the comment character (%) is used after each comma (,) in a line break. Because
of the way the argument is initially parsed, these comment characters are needed.

Each of the cue points is a comma-delimited list of key-value pairs; the keys are
type, name, time, and action. Each of these are briefly described.

type=〈nav|event〉 Possible values for this key are nav and event, and describes
the type of cue point this is.

type=nav Navigation cue points enable users to seek to a specified part of a
file. Embed Navigation cue points in the FLV stream and FLV metadata
packet when the FLV file is encoded.

Navigation cue points create a keyframe at the specified cue point loca-
tion, so you can use code to move a video player’s playhead to that loca-
tion. You can set particular points in an FLV file where you might want
users to seek. For example, your video might have multiple chapters or
segments, and you can control the video by embedding navigation cue
points in the video file.7

type=event Event cue points can also be embedded in your FLV stream and
FLV metadata packet when video clip is encoded. You can write code
to handle the events that are triggered at specified points during FLV
playback.8

name=〈name〉 The name of the cue point

time=〈time〉 The time in milliseconds the cue point occurs.

action=〈script〉 The JavaScript code that is executed when this cue point is
reached.

7Taken in part from http://www.peachpit.com/articles/article.aspx?p=663087
8Ibid.

http://www.peachpit.com/articles/article.aspx?p=663087

T
he

 r
m

A
nn

ot
 M

A
N

U
A

L

\rmAnnot and its Options 15

• Setting the Floating Window Parameters

When the windowed key is set to true, the rich media annotation appears in a floating
window. Use the \setWindowDimPos command to set the dimensions of the window
and its positioning.

\setWindowDimPos{〈KV-pairs〉}

Command Location: This command may be placed anywhere and will take affect for
the next rich media annotation created by \rmAnnot.

Parameter Description: There are a number of key-value pairs (〈KV-pairs〉) for setting
the floating window; the default values are normally adequate for most applications.

width=〈KV-pairs〉 The width is described by three key-value pairs, default, max,
and min, measured in default user space units. The 〈KV-pairs〉 have the form
〈key〉:〈value〉.
For example, width={default=300,max=600,min=80}.

Default values: default: 288, max:576, min: 72.

height=〈KV-pairs〉 The height is described by three key-value pairs, default, max,
and min, measured in default user space units. The 〈KV-pairs〉 have the form
〈key〉:〈value〉.
For example, height={default=300,max=600,min=80}.

Default values: default: 216, max:432, min: 72.

position=〈halign|valign|hoffset|voffset〉 The position of the floating window
is described by four key-value pairs.

halign=〈near|center|far〉 The halign describes the horizontal alignment of
the window. Valid values are near, center and far. The default is far. For
languages that read from left-to-right, a value of near refers to the left edge
of the viewing window; whereas far refers to the right edge of the viewing
window. (For right-to-left reading languages, the description of near and far
are reversed.)

valign=〈near|center|far〉 The valign parameter describes the vertical align-
ment of the window. Valid values are near, center and far. The default is
near.

hoffset=〈num〉 The description of hoffset is paraphrased from the Adobe Sup-
plement document: The offset from the alignment point specified by the
halign key. A positive value for hoffset, when halign is either near or
center, offsets the position towards the far direction. A positive value for
hoffset, when halign is far, offsets the position towards the near direc-
tion. The default is 18.

T
he

 r
m

A
nn

ot
 M

A
N

U
A

L

\rmAnnot and its Options 16

voffset=〈num〉 The description of voffset is paraphrased from the Adobe Sup-
plement document: The offset from the alignment point specified by the
valign key. A positive value for voffset, when valign is either near or
center, offsets the position towards the far direction. A positive value for
voffset, when valign is far, offsets the position towards the near direc-
tion. The default is 18.

In layman’s terms the combination of halign=far, valign=near puts the floating win-
dow in the upper right corner of the active window of Adobe Reader/Acrobat, assuming
a left-to-right reading language. The values of voffset=18, hoffset=18, moves the
floating window 18 points down and 18 points to the left. That would be its initial
position.

Note : This feature, the positioning of the window, never worked in Version 9, but has
been implemented for Version 10.

The \resetWindowDimPos command can be used to reset the floating window pa-
rameters to their default values.

\resetWindowDimPos

5.2. Examples

In this section, several examples are presented that illustrate the \rmAnnot and some
of the key-value pairs.

• Posters

The poster is an image that is displayed when the rich media annotation is not activated.
If a poster is not specified using the poster key, one is supplied for it. Consider the
following Flash animation.

Above are two rich media annotations, each running the same SWF file. The one on the
left uses the default poster, the one on the right uses a custom poster. In the annotation
on the left, you see the default posternote, this can be changed using the posternote
key.

The custom poster was obtained by viewing the SWF file in Adobe Flash Player 9, then
printing one of the frames to Adobe PDF, cropping the PDF, then saving the resulting
PDF as an EPS file. After you crop the printed image, you can determine its dimensions
by moving your mouse to the lower-left corner; the width and height values should
appear. Use these in setting up your annotation.

The verbatim listing for the two above annotations is found below.

T
he

 r
m

A
nn

ot
 M

A
N

U
A

L

\rmAnnot and its Options 17

\begin{center}
\resizebox{!}{.75in}{\rmAnnot{612bp}{265bp}{AcroAd}}\quad
\resizebox{!}{.75in}{%

\rmAnnot[poster=AcroAd_poster]{612bp}{265bp}{AcroAd}}
\end{center}

The poster AcroAd_poster was defined in the preamble of this document.
Below is the same video, the one on the left is a generic poster created from a LATEX

source file, then saved as an EPS file, the one on the right was obtained from the poster
page generated by Acrobat. (See the paragraph below, page 17, for details on how this
was done.)

The verbatim listing for the two above annotations follows:

\resizebox{2in}{!}{%
\rmAnnot[poster=aebmovie_poster]{209bp}{157bp}{horse1}}\quad

\resizebox{2in}{!}{%
\rmAnnot[poster=horse1_poster]{209bp}{157bp}{horse1}}

Posters and media files are embedded only once, so using the same poster and/or
media file multiple times does not increase the file size significantly.

For MP3 files, the default poster is an EPS file that is an image of the player control
bar, the example below shows the MP3 poster and audio player.

The code for the above annotation follows:

\resizebox{!}{14bp}{\rmAnnot{268bp}{28bp}{trek}}

A custom poster can be inserted using the poster key, as usual.

The Acrobat Pro generated poster. To acquire the same poster image that Acrobat
generates, use the following steps:

1. Open Acrobat

2. Drag and drop your SWF or FLV file onto an empty Acrobat window

null

8.202474

T
he

 r
m

A
nn

ot
 M

A
N

U
A

L

\rmAnnot and its Options 18

3. Press Ctrl-P, or select File > Print

4. Select Adobe PDF as the printer

5. Select Choose paper source by PDF page size

6. Select Use custom paper size when needed

7. Press OK

8. A new PDF should be created, and it should be the same size as the poster image

9. Choose File > Save As, select Encapsulated PostScript (*.eps) as the Save
as type

10. Press Save, and save to an appropriate folder.

• Skin Options

When a FLV video file is used, the video is played by the VideoPlayer.swf and uses one of
the seven standard skins. Customizing information is actually passed using FlashVars.
(For FLV files, the user does not have access to the FlashVars, the application, in this
case, this package, uses the FlashVars.) Customizing options include a choice of skin,
setting the auto hide flag, a choice of the color of the skin, setting the opacity of the
skin and setting the initial volume level. The following illustrates some of the options
on a short FLV video with a horse theme.

The video on the left shows the default settings (default skin, skin alpha, volume level,
etc.), while the same video on the right uses skin6, with skin color of 0xFF0000 (red)
and skin alpha level set to 0.25.

Note, click on the AcroTEX logo to play an MP3 file.

17.91994

T
he

 r
m

A
nn

ot
 M

A
N

U
A

L

\rmAnnot and its Options 19

5.3. Third-party Video Players

When you play an FLV file, the SWF file VideoPlayer.swf is embedded in the PDF. It is
VideoPlayer.swf that plays the FLV file. It is this SWF file that allows us to customize
the look of the RMA, what skin to use, skin color, skin opacity, value, speed, and so on.

The VideoPlayer.swf file, which is shipped with Acrobat Pro, version 9 or later,
lacks several useful features, among these are the ability to play more than one video
in the same rich media annotation (RMA).

In the past year, there have been two extensions to Adobe’s VideoPlayer.swf:

• VideoPlayerX.swf is an extension to the video player shipped by Adobe. This
one is being developed by UVSAR. Full documentation can be found on this page.
Both documentation and the widget itself are found in the videoplayerx folder
of the rmannot package distribution.

• VideoPlayerPlus.swf is available from Joel Geraci’s web site The PDF Devel-
oper Junkie Blog. Joel is a guru at Adobe. Extended features are in the form of
additional JavaScript API to play more than one video in an RMA, change skins,
change skin color, and a few others. Full documentation can be found on the
reference blog page.

Beginning 2016/10/09, the use of VideoPlayerPlus.swf is deprecated, and
defaults to VideoPlayerX.swf.

Installation of third-party players. If you want to use either or both of these video
players, download them from the appropriate web site:

• VideoPlayerX.swf: Also available in the videoplayerx folder.

• VideoPlayerPlus.swf

If you download from UVSAR, rename the SWF widget to VideoPlayerX.swf; or simply
retrieve it from the videoplayerx folder. Place VideoPlayerX.swf into the same
folder that contains Adobe’s VideoPlayer.swf. This is where the rmannot package
will look for it.

Once you have installed the widgets rmannot can use it. If you want to the UVSAR
extension VideoPlayerX.swf, make following declaration in the preamble:

\useVideoPlayerX
(defaults to \useVideoPlayerX)\useVideoPlayerPlus

� On 13 Oct 2011, UVSAR published build VP10.2 of VideoPlayerX. The new widget
subsumes the VideoPlayerPlus of Joel Geraci. The build is targeted at Flash Player 10,
so VideoPlayerX requires Adobe Acrobat or Adobe Reader 9.2, Acrobat is required to
build the document using rmannot, but Reader is only needed to view the document.
Therefore, if extended API is needed for your document, I would recommend the use
of VideoPlayerX.

� On 28 Oct 2014, UVSAR published build VP10.4 of VideoPlayerX; this is the one that
in the videoplayerx folder.

http://www.uvsar.com/projects/acrobat/videoplayerx/
http://blogs.adobe.com/pdfdevjunkie/2010/03/introducing_the_video_player_p.html
http://www.uvsar.com/projects/acrobat/videoplayerx/
http://www.uvsar.com/projects/acrobat/videoplayerx/
http://www.uvsar.com/projects/acrobat/videoplayerx/
http://blogs.adobe.com/pdfdevjunkie/2010/03/introducing_the_video_player_p.html
http://www.uvsar.com/projects/acrobat/videoplayerx/

T
he

 r
m

A
nn

ot
 M

A
N

U
A

L

\rmAnnot and its Options 20

b Articles and examples of the use of these players are found at the AcroTEX Blog, arti-
cles on the rmannot package illustrate each of these players; more generally, there are
multiple articles on rich media annotations.

In addition to AcroTEX Blog articles on the topic, sample files for the VideoPlayerX
that come with the distribution are vpx-btn.tex and vpn-combo.tex.

• JavaScript/ActionScript API for Video Players

Normally, we use \rmAnnot to create a RMA to play a FLV (or SWF or MP3) without any
controls. The user clicks on the RMA and the media content plays. For FLV files, a
skin may be provided to control over the movie once the RMA becomes activated. For
a fancier presentation, you might want to create control buttons to control the movie;
to do that, you need to use the JavaScript API for the RMA.

In this section we document the JavaScript API for RMA. The resources for this
section are the JavaScript for Acrobat API Reference and UVSAR.

The basic methodology for passing a command to the the video player:

1. Get the RMA object. To do this use either the Doc.getAnnotRichMedia() or
Doc.getAnnotsRichMedia() methods. Note that in the latter method the word
Annots is plural, the plural form distinguishes these to methods from each other.
The former gets a single RMA object, while the latter returns an array of RMA
objects. For work with rmannot, I prefer the use of Doc.getAnnotRichMedia().

Doc.getAnnotRichMedia() takes two arguments, the first is the page number,
and second is the name (a string) of the annot. For example

var rma = this.getAnnotRichMedia(this.pageNum, "myCoolRMA");

The first argument is normally this.pageNum, which is a JavaScript property re-
ferring to the current page.

2. Activate the RMA. Use the RMA.activated property, a Boolean:

rma.activated=true;

You can, as an alternative say, if(!rma.activated) rma.activated=true;

3. Make the call(s). Use the callAS method of the RMA object. For example, if you
want to play the video, you might say,

rma.callAS("multimedia_play");

Putting these lines together to play media, we have

var rma = this.getAnnotRichMedia(this.pageNum, "myCoolRMA");
if(!rma.activated) rma.activated=true;
rma.callAS("multimedia_play");

http://www.acrotex.net/blog/?p=
http://www.acrotex.net/blog
http://www.acrotex.net/blog/?tag=rmannot-package
http://www.acrotex.net/blog/?cat=22
http://livedocs.adobe.com/acrobat_sdk/9.1/Acrobat9_1_HTMLHelp/wwhelp/wwhimpl/js/html/wwhelp.htm?href=JS_API_AcroJSPreface.87.1.html&accessible=true
http://www.uvsar.com/projects/acrobat/videoplayerx/

T
he

 r
m

A
nn

ot
 M

A
N

U
A

L

\rmAnnot and its Options 21

Those are the basics of making a call over the “bridge” to the video player widget.
In the rest of the section, we concentrate on the JavaScript APIs, the third line above
rma.callAS("multimedia_play");. The first argument of the callAS method is a
string which names the method to use. Note that this first argument is a string. Addi-
tional argument may be used if the multimedia method requires them.

The Scripting Bridge between JavaScript and ActionScript. When a JavaScript method,
such as rma.callAS("multimedia_play"), is executed on the PDF side, the specified
ActionScript function multimedia_play() is executed in the SWF widget (for example,
in VideoPlayer.swf). The callAS communicates across what is called the “scripting
bridge” to the ActionScript engine. For more information on the scripting bridge, see
the AcroTEX Blog.

• Core API

The following methods are defined for all three players. The first argument of the
callAS method is a string, which names the (ActionScript) method to use in the video
player widget. The rmannot package defines some convenience commands to give the
user a consistent experience between video players (VideoPlayer, VideoPlayerX).

Method/Description Command

multimedia_play():void \mmPlay

Play the video or sound clip from the current location

multimedia_pause():void \mmPause
Pause playback of the current media

multimedia_rewind():void \mmRewind
Rewind the media clip to the beginning. This method does not pause
the clip.

multimedia_nextCuePoint():void \mmNextCuePoint
Move the play head to the next cue (chapter) point

multimedia_prevCuePoint():void \mmPrevCuePoint
Move the play head to the previous (chapter) point

multimedia_seek(time:Number):void \mmSeek
Move the play location to an offset of time from the beginning of the
media, where time is measured in seconds.

multimedia_mute():void \mmMute
Mute the audio of the media

multimedia_volume(volume:Number):void \mmVolume
Set the volume level. The volume is a number between 0 and 1 in-
clusive. A value of 0 mutes the audio, while a volume of 1 sets the
volume level to the maximum level.

http://www.acrotex.net/blog/?tag=scripting-bridge

T
he

 r
m

A
nn

ot
 M

A
N

U
A

L

\rmAnnot and its Options 22

Examples of usage

var rma = this.getAnnotRichMedia(this.pageNum, "myCoolRMA");
if(!rma.activated) rma.activated=true;
rma.callAS(\mmVolume, .5); // half-volume
rma.callAS(\mmPlay); // and play it

• API of VideoPlayerX

The VideoPlayerX redefines many of the core API, which returned void, to methods
that return meaningful information. It also adds many new methods.

In the table below, the functions marked with an ‘∗’ are also core functions that
have been re-defined to have a return value.

Method/Description Command

multimedia_pause():Number∗ \mmPause
Pause playback of the current media.

Returns on success: Playhead time in seconds

multimedia_mute():Number∗ \mmMute
Mute the audio of the media

Returns on success: Previous volume setting.

multimedia_volume(volume:Number):Number∗ \mmVolume
Set the volume level. The volume is a number between 0 and 1 in-
clusive. A value of 0 mutes the audio, while a volume of 1 sets the
volume level to the maximum level.

Returns on success: Previous volume setting.

multimedia_seekCuePoint(cuePointName:String):String \mmSeekCuePoint
Seeks to the named navigation cue point in an FLV video.

Returns on success: Empty string

Returns on error: String ERROR: xxxx where xxx is one of the standard
numeric error codes defined in ActionScript 3.0.

multimedia_setSource(url:String):String \mmSource
Sets the source for the video (a URL or a local file reference).

Returns on success: local= or remote= and the source in string for-
mat.

If the remote source cannot be played for any reason, the player au-
tomatically returns to playing the local source instead.

multimedia_setSkin(skinName:String):void \mmSkin
Sets a new skin file to be used by the player. This should be an em-
bedded resource.

T
he

 r
m

A
nn

ot
 M

A
N

U
A

L

\rmAnnot and its Options 23

Method/Description Command

multimedia_setSkinColor(color:uint):uint \mmSkinColor
Sets a new background color for the player skin in the form of
0xRRGGBB.

multimedia_setSkinAlpha(alpha:uint):uint \mmSkinAlpha
Sets the background alpha for the player skin (will only take effect
where the skin supports alpha changes).

Returns on success: Previous alpha value.

multimedia_useLocal(isLocal:boolean):String \mmUseLocal
Switches to the local source if isLocal is set to true, or to the remote
source if isLocal is false.

Returns on success: source filename/URL in string format.

Returns on error: "NOT AVAILABLE".

multimedia_getMetdata(attribute:String):String \mmGetMetaData
Returns the video metadata associated with the attribute. Valid at-
tribute strings are width, height, audiocodecid, videocodecid,
framerate, videodatarate, and duration.

multimedia_getVideoState():String \mmGetVideoState
Returns the video state. The possible values for the state property
are buffering, connectionError, disconnected, loading, paused,
playing, rewinding, seeking, and stopped.

multimedia_setScaleMode(attribute:String):String \mmSetScaleMode
Sets video scale mode. Valid attribute strings are exactFit, noScale,
and maintainAspectRatio.

Returns on success: Previous value.

Note that if the scale mode is changed to "maintainAspectRatio",
the align mode will be switched to “top left” rather that “center”.

multimedia_getVersion():String \mmGetVersion
Returns a string in the form "NNNN fp=FFFF vp=VVVV", where NNNN
is the name of the Rich Media Annotation, FFFF is the version of Flash
Player being used, and VVVV is the version of the VideoPlayerX code
(currently 10.2). The length of each element is variable.

New API for version 10.2

The two functions vpx_listener() and vpx_init() are listening
and initialization functions. Follow these two links for information
on these functions.

http://www.uvsar.com/projects/acrobat/videoplayerx/listener.php
http://www.uvsar.com/projects/acrobat/videoplayerx/init.php

T
he

 r
m

A
nn

ot
 M

A
N

U
A

L

\rmAnnot and its Options 24

Method/Description Command

multimedia_setStageColor(color:uint):void \mmSetStageColor
Sets the background color for the Stage (the area around the video
when it isn’t scaled to fit the annotation). For example,

var rm=this.getAnnotRichMedia(this.pageNum,"myRMA");
rm.callAS(\mmSetStageColor,0xFF00FF);

multimedia_isLooping():Boolean \mmIsLooping
Sets if the video should loop automatically when it reaches the end of
the timeline. The default is true.

Returns on success: Previous value of the setting.

multimedia_skinAutoHide(state:Boolean):void \mmSkinAutoHide
Sets the auto hide behavior for the player bar.

New API for version 10.4

multimedia_showLoopButton():Boolean \mmShowLoopButton
Determines whether the video loop control button should appear on
mouseover. A value of true shows the button, a value of false hides
the button. This function is ineffective when placed in the vpx_init()
function.

Returns on success: Previous value of the setting.

There are considerably more functions that are not listed here. For a full list, go to
the page VideoPlayerX: Enhanced Video Tool for Adobe Acrobat on the UVSAR web-
site. The documentation is also in the videoplayerx folder.

Examples of usage

var rma = this.getAnnotRichMedia(this.pageNum, "myCoolRMA");
if(!rma.activated) rma.activated=true;
// use embedded video as source
rma.callAS(\mmSource, "myVideo.flv");
// use video on web as source

// rma.callAS(\mmSource, "http://www.example.com/myCool.flv");
rm.callAS(\mmShowLoopButton, false); // no loop button
rma.callAS(\mmPlay); // and play it

5.4. \rmAnnot and 3D

Here is something that I’ve only just come to realize: If you use the user interface (UI)
of Acrobat and you create a 3D annotation in Acrobat, then give it a SWF as a resource,
the 3D annot gets converted into a Rich Media annotation (RMA). Looking through
the specification as described in the Adobe Supplement to ISO 32000, I determined to
implement this feature, and why not since most of the structure (that of an RMA) was

http://www.uvsar.com/projects/acrobat/videoplayerx/

T
he

 r
m

A
nn

ot
 M

A
N

U
A

L

\rmAnnot and its Options 25

already in place by way of my rmannot package. So, this version of rmannot supports
what I’ll call Rich Media 3D annotation (RM3DA).

Initially, it was not a challenge to get a 3D model to appear in a RMA created by
rmannot, some straight forward modifications to rmannot were required with ISO 32000
as a guide. Looking at Alexander Grahn’s very fine and brilliant movie15 package, I
saw the difficulties of defining and creating views through the LATEX interface. With
Alexander’s permission, I gently lifted all the really heavy code from movie15, and
placed it in rmannot. I offer up my great and humble thanks for his kindness in allowing
the use of his code (characterized by commands beginning with @MXV in rmannot.dtx).

If you want to insert an RMA3D annotation into your document, begin by calling the
rmannot package with the use3D option

\usepackage[use3D]{rmannot}

Using this option brings in a large amount of code to support 3D. Regular RMAs can be
created as usual, if you do not use 3D there is no reason to use this option.

The 3D Models support by Acrobat/Adobe Reader are U3D and PRC. To construct a
RM3D, you use one of these filetypes as the fourth argument of \rmannot, for example,

\rmAnnot[〈rmannot_opts〉]{〈width〉}{〈height〉}{〈3dmodel〉}

\rmAnnot files and resources are referred to symbolically, and need to be declared in
the preamble. For example, we might declare

\saveNamedPath{myDice}{c:/.../3dmodels/dice.u3d}

\rmAnnot parses the fourth argument, and looks at its extension. If the extension os
.u3d or .prc, the appropriate 3D structure is generated for this annotation.

The first optional argument of \rmAnnot has two new key-value pairs, both Boolean:
toolbar and modeltree.

• toolbar: A Boolean, which if true (the default), causes the 3D toolbar to appear
when the annot is activated. If toolbar=false, the toolbar does not appear when
the annotation is activated.

• modeltree: A Boolean, which if true causes the Model Tree as viewed in the
Navigation Pane. The default is false, the Model Tree is not displayed when the
annotation is activated.

There are a large number of key-values that support RMA3D annotations, rather than
inserting them into the first optional parameter of \rmAnnot, I’ve created a separate
command, \setRmOptions3D for this purpose. The command may appear appear any-
where before the RMA3D annot it is referencing. The syntax is

1 \setRmOptions3D{〈annot_name〉}
2 {
3 3DOptions={options from movie15},
4 3DResources={%
5 none={rName=〈name1〉},...,
6 foreground={rName=〈name2〉,flashvars=〈vars〉},...,

T
he

 r
m

A
nn

ot
 M

A
N

U
A

L

\rmAnnot and its Options 26

7 background={rName=〈name3〉,flashvars=〈vars〉},...,
8 material={rName=〈name4〉,mName=〈materialName〉,flashvars=〈vars〉},...
9 }

10 }

The command takes two arguments, the first 〈annot_name〉 is the name of the annot,
as declare by the name key in the first optional argument of \rmAnnot, like so,

\rmAnnot[name=my3DDice,...]{4in}{3in}{myDice}

In the above example, we’ve named this annot my3DDice, and it is this name we would
put in as the first argument of \setRmOptions3D in line (1) above.

The second argument of \setRmOptions3D takes key-value pairs, but there are only
two keys: 3DOptions and 3DResources. Each of these will be explained in turn.

3DOptions As noted in line (3), the value of this key are key-value pairs defined in
movie15, appropriate to 3D models. The keys supported are 3Dbg, 3Djscript, 3Dcoo,
3Dc2c, 3Droo, 3Daac, 3Droll, 3Dviews, 3Dlights, and 3Drender. See the movie15
documentation for a description of these keys.

There are a couple of differences. First 3Dviews is the 3Dviews2 of movie15.
Alexander Grahn had deprecated his original 3Dviews key, and later came up with
a better format for storing the views. Since we are beginning anew, 3Dviews uses the
new format as described in the movie15 documentation as 3Dviews2.

Another difference is with the 3Djscript key. The file descriptor must be a symbolic
name, defined by \saveNamedPath command. The value of 3Djscript can be a comma
delimited list of JavaScript files, for example,

3DOptions={%
...,
3Djscript={myScript,myTurntable},
...,
...

}

Again myScript and myTurntable are defined by the \saveNamedPath command. In
theory, one can build a library of general and specific JavaScripts to do 3D work, and
you can concatenate them together in this way.

The 3Dviews key takes as its argument a views file. This is purely a LATEX object (not
used required by Distiller), to the usual filename is needed, for example,

3DOptions={%
...,
3Djscript={myScript,myTurntable},
3Dviews=dice.vws,
...

}

http://mirror.ctan.org/macros/latex/contrib/movie15/doc/movie15.pdf
http://mirror.ctan.org/macros/latex/contrib/movie15/doc/movie15.pdf

T
he

 r
m

A
nn

ot
 M

A
N

U
A

L

\rmAnnot and its Options 27

3DResources This is a key that is new, and separate from the movie15 keys just out-
lined. 3DResources recognizes four keys, these are none, foreground, background,
and material. The names and values found within 3DResources are modeled after
the Resources tab of the Edit 3D dialog box of Acrobat 9 or later.

1 \setRmOptions3D{〈annot_name〉}
2 {
3 3DOptions={options from movie15},
4 3DResources={%
5 none={rName=〈name1〉},...,
6 foreground={rName=〈name2〉,flashvars=〈vars〉},...,
7 background={rName=〈name3〉,flashvars=〈vars〉},...,
8 material={rName=〈name4〉,mName=〈materialName〉,flashvars=〈vars〉},...
9 }

10 }

A resource is usually a SWF file, but can be a FLV, or another 3D model (.u3d, .prc);
rmannot does not support image files are resources (JPG, PNG, etc).

Note: Convert all image files (JPG, PNG, etc) to a SWF for used by rmannot. The conver-
sion can be made by Adobe Flash Professional, or by using SWF Tools (use the jpeg2swf
and png2swf tools).

SWF files may be bound to the background, foreground, a material of the 3D model,
or not bound at all. FLV and 3D models must be not bound, and listed under the none
key.

The keys none, foreground, background, and materialmay appear multiple times.
A brief description of the values of each key follows:

• none: The value of none is a single key-value combination. rName=〈name〉, where
〈name〉 is the symbolic name of a resource file declared by the \saveNamedPath.
These files can be SWF, FLV, or even another model (advanced).

• foreground: This key binds a resource to the foreground of the 3D scene. The
foreground key takes at most two key-value pairs, only rName is required, the
symbolic name of the resource. The flashvars key is used to pass flash variables
to the SWF application.

• background: This key binds a resource to the background canvas of the 3D scene.
The background key takes at most two key-value pairs, only rName is required,
the symbolic name of the resource. The flashvars key is used to pass flash
variables to the SWF application.

• material: This key binds a resource to a material. The resource name is rName
(as defined by \saveNamedPath), the key mName is the name of the material the
resource is to be bound to; flashvars is used to pass variables to the SWF appli-
cation.

If a SWF resource is to be used as background, foreground, or a material using 3D
JavaScript (through the JS file input by the 3Djscript key), it must be listed through
the none key.

http://www.swftools.org/

T
he

 r
m

A
nn

ot
 M

A
N

U
A

L

\rmAnnot and its Options 28

Example. We finish off this section with a simple example,

Notice the nice advertisement playing in the background of the 3D scene. :-{)

The verbatim listing is

\setRmOptions3D{my3DDice}{%
3DOptions={%

3Droo=40,
3Dlights=CAD,
3Drender=Solid,
3Dbg=1 0 0,
3Dviews=views/dice.vws,

},%
3DResources={%

background={rName=AcroAd}
}%

}
\noindent\rmAnnot[name=my3DDice,toolbar]{\linewidth}{2.5in}{myDice}

Further examples will appear, in time, on my AcroTEX Blog.

That’s all for now, I simply must get back to my retirement. DPS

http://www.acrotex.net/blog//?tag=rmannot-package

	Table of Contents
	1 Introduction
	2 Requirements
	2.1 LaTeX Package Requirements
	2.2 PDF Creator Requirements
	2.3 Supported Media Formats
	• Supported Video Formats
	• Supported Audio Format

	3 Installation
	4 Setting the Paths and Posters
	4.1 Setting the Paths
	4.2 Creating Posters

	5 \rmAnnot and its Options
	5.1 \rmAnnot Command
	• \rmAnnot Options
	• Setting the Floating Window Parameters

	5.2 Examples
	• Posters
	• Skin Options

	5.3 Third-party Video Players
	• JavaScript/ActionScript API for Video Players
	• Core API
	• API of VideoPlayerX

	5.4 \rmAnnot and 3D

