The metainfo package*

Jonathan Sauer
jonathan.sauer@gmx.de

2004/11/25

Abstract

This file describes the metainfo package that typesets only special com-
ments of a TEX file.

Contents

1

2

Introduction
Macros

Formatting
3.1 Metainfo after a heading L.
3.2 Local metainfo,

Package options
Driver files

Examples

6.1 Exampledriver file
6.2 Example document Lo o
6.3 Example local metainfo formatting

Notes/Limitations

Implementation

8.1 Main environments and macros

8.2 Package customization oL oL

8.3 Packageoptions
8.3.1 Headings e
8.3.2 Index shorthand
8.3.3 Otheroptions

*This document corresponds to metainfo.sty v0.9.1, dated 2004/11/25.

U w

S

NoREN RS BB e >R

\typesetmetainfo

8.4 Internal environments and macros 9

8.4.1 General definitions and flags 9
842 Modes 10
8.4.3 Gobblingtext L . 14
8.4.4 Catcodechanges 15

1 Introduction

Suppose you write a text and include some annotations for yourself that are not
printed, i.e. an explanation of a pun or a short summary of the current chapter
in order to be able to later create a summary of the whole text. Then it would
be nice to be able to extract these annotations and typeset them separately. This
package provides the macro \typesetmetainfo to typeset only these annotations
(herein called ‘metainfo’, as they are information about the information contained
in the text).

2 Macros

Usage: \typesetmetainfo {(file)}.
Typesets the metainfo of the TEX file (file). Anything not a metainfo—text,
preamble—is skipped.

3 Formatting

3.1 Metainfo after a heading

Any comments following a line with a heading are considered a metainfo and are
typeset as if they were normal text. The first line that does not begin with a
percent sign finishes the metainfo.

A heading is started by a macro defined in \\mi@@MIbeginnings. Normally
this macro contains \chapter, \section, \subsection, and \subsubsection,
but you can of course redefine it.

The heading itself is typeset as well, before the metainfo, resulting all metainfo
being typeset using the outline of the normal document. Note that when writing
a heading, some restriction apply:

1. The heading macro must be at the beginning of the line.
2. Any parameters of the macro must be on the same line. (parameters split
over several lines might work, but they are not guaranteed to)

3.2 Local metainfo

There is another way to include metainfo in a document, that is as a local metainfo.
A local metainfo is a metainfo not following a heading; instead they can appear

anywhere in the text. They start with a double percent sign at the beginning of
the line (%%); the line itself is then typeset as a metainfo as well as all the following
lines beginning with a % (just as a metainfo following a heading). The first line
that does not begin with a percent sign finishes the local metainfo.

You can format a local metainfo using three macros. (see section 6.3 on page
5 for an example how to customize them.)

1. \mi@@firstlocalMItext: The contents of this macro is inserted before the
first local metainfo of a chapter.

2. \mi@@lastlocalMItext: The contents of this macro is inserted after the
last local metainfo of a chapter.

3. \mi@@everylocalMItext: The contents of this macro is inserted before ev-
ery local metainfo.

Note If you change these macros in your document preamble or your main doc-
ument opposed to a package file, you must surround them with \makeatletter
and \makeatother, as shown in the example below.

4 Package options
The following package options exist:

compactheadings Changes the section headings to be more compact in order to
save some space.

indexshorthand Provides shorthands for indexing. ~{(text)} indexes and type-
sets (text), ~~{(text)} only indexes it.! For indexing, the standard index
macro \index is used.

These macros only work in text mode; in math mode, ~ is a superscript as
predefined in ETEX.

listlocalmetainfo Changes the macros \mi@@firstlocalMItext, \mi@@lastlocalMItext
and \mi@@everylocalMItext (described in the section above) to itemize
the local metainfo.

5 Driver files

In order to typeset only the metainfo of a document, a special driver file is
needed. This driver loads the packages necessary for typesetting the metainfo
(at least the package metainfo) and inputs the document to be typeset using
\typesetmetainfo.

IThese shorthands have been inspired by Donald E. Knuth’s own index macros used for the

TEXbook.

Note No package of the document processed using \typesetmetainfo is loaded,
as the \usepackage macros are skipped. The same is true for any definitions in
the document preamble or elsewhere: They are skipped, so if the metainfo relies
on these definitions, they have to be included in the driver as well.

6 Examples

6.1 Example driver file

The following driver file typesets the metainfo of the TEX file ‘example.tex’ using
compact headings:

\documentclass{book}
\usepackage [compactheadings] {metainfo}

\begin{document}
\typesetmetainfo{example}
\end{document}

6.2 Example document

If we save the following file as ‘example.tex’ and process it using the driver file in
the example above ...

\documentclass{minimal}
\usepackage{testpackage}

\begin{document}

\chapter{Chapter 1}
% Metainfo for chapter ‘Chapter 1’

\section{Section 1}
% Metainfo for section ‘Section 1°

This is some text.
\chapter{Chapter 2}
\section{Section 2}

% Metainfo for section ‘Section 2’

This is some more text.

%% Local metainfo. This metainfo is a bit longer, but only
% a little bit.

\section{Section 3}
% Metainfo for section ‘Section 3’

\end{document}

... this results in:2

Chapter 1
Metainfo for chapter ‘Chapter 1’

Section 1
Metainfo for section ‘Section 1’

Chapter 2
Section 2
Metainfo for section ‘Section 2’

Annotations:
Local metainfo. This metainfo is a bit longer, but only a little bit.

Section 3
Metainfo for section ‘Section 3’

6.3 Example local metainfo formatting

The following macros prefix local metainfo with ‘Annotations:’ in bold typeface
and typesets the local metainfo in an itemize environment:3

\makeatletter

\def\mi@@firstlocalMItext{%
\addvspace{\baselineskipl}’
\noindent\textbf{Annotations:}%
\begin{itemizel}/,

}

\def\mi@@lastlocalMItext{},
\end{itemizel}},

}

\def\mi@Q@everylocalMItext{/
\item\relax’

}

\makeatother

7 Notes/Limitations

e Any text or macros on the same line as a heading are processed as well, imme-
diately after the heading. Thus you can type \section{foo}\label{sec:foo}

2 Approximately, as the real formatting will differ slightly from the text typeset here.
3Similar to the package option listlocalmetainfo, described in section 4 on page 3 does.

\typesetmetainfo

\mi@@MIbeginnings

\mi@@firstlocalMItext

\mi@@lastlocalMItext

and refer to this section inside a metainfo using the label sec:foo.

e The document included using \typesetmetainfo must be a valid KTEX
document insofar as that it must contain a document environment, because
\end{document} serves as the ending delimiter for typesetting the metainfo.

That also means that any metainfo following \end{document?} is not typeset.

8 Implementation

8.1 Main environments and macros

Usage: \typesetmetainfo {(file)}.
Typesets the metainfo of a document.

1 \newcommand{\typesetmetainfol} [1]{%

2 \bgroup%

\mi@activenewlineY
\mi@emptyactivepercent?
\mi@otherbraces},
\ifmi@indexmacros\mi@activehat\fi%

D Ot~ W

We provide support for the standard BTEX verbatim environment:

7 \let\mi@old@verbatim\@verbatim},
8 \def\@verbatim{%

9 \mi@old@verbatim
10 \mi@verbatimnewline’
11 YA

We use the original TEX definition of \input (saved by ITEX in \@@input),
because we must continue with our special processing immediately after (file) has
been opened. This is a job for the original TEX \input, as it simply switches the
input stream to (file) and expands to nothing.

The \relax delimits the filename.

12 \expandafter\mi@skiplines\@@input#1\relaxy
13 \egroup’
14 }

8.2 Package customization
Stores all the macros that can begin a metainfo.

15 \def\mi@@MIbeginnings{\chapter\section\subsection\subsubsection}

Stores the text inserted before the first local metainfo.

16 \def\mi@@firstlocalMItext{\textbf{Annotations:}\par\noindent}

Stores the text inserted after the last local metainfo.

17 \def\mi@@lastlocalMItext{}

\mi@Q@everylocalMItext

\ifmi@indexmacros

\mi@hat

\mi@hat

Stores the text inserted before every local metainfo.

18 \def\mi@Q@everylocalMItext{}

8.3 Package options
8.3.1 Headings

We provide the possibility of changing the headings to a more compact formatting;:

19 \DeclareOption{compactheadings}{/
20 \@ifundefined{thechapter}{}{/

21 \def\chapter{\@startsection{chapter}{0}{\z@}{-2\baselineskip}%
22 {\baselineskip}{\normalfont\normalsize\bfseries}}/
23}

24 \def\section{\@startsection{section}{1}{\z@}{-2\baselineskipl}/,
25 {\baselineskip}{\normalfont\normalsize\bfseries}}’

26 \def\subsection{\@startsection{subsection}{2}{\z@}{-2\baselineskip}¥%
27 {\baselineskip}{\normalfont\normalsize\bfseries}}%

28 \def\subsubsection{\@startsection{subsubsection}{3}{\z@}}

29 {-2\baselineskip}{\baselineskipl}/,

30 {\normalfont\normalsize\bfseries}}’

31}

8.3.2 Index shorthand

true, if index shorthands specified using the package option indexshorthand are
used, otherwise false:

32 \newif\ifmi@indexmacros
33 \mi@indexmacrosfalse

We provide the possibility of using the shorthand ~ for an index entry that is
typeset, and "~ for an index entry that is not typeset:

34 \DeclareOption{indexshorthand}{%
35 \mi@indexmacrostruel,

We save the original meaning of ~. We do not simply use ~ in the \mi®hat...-
macros, because then we would assume that ~ is not already an active character
before our catcode change (which we will make in \typesetmetainfo). Normally,
~ has catcode 7 (superscript), but if is was active (i.e. because of another package
changing ~), we would store an active ~ in the definition of the \mi@hat. ..-macros.
When later used this ~ would point to our macro \mi@hat, resulting in an endless
loop. So we save the original meaning of ~ instead using \let, which, if ~ is active,
would save the macro = would have been \let to.

36 \let\mi@@@hat "%
Main macro for indexing and first step in deciding how to index:

e Math mode: Expand to the original definition of ~.

\mi@hat®@

\mi@hat@twohats

\mi@hat@twohats

e Otherwise: Check the next token using \mi@hat®@.

37 \def\miGhat{%

38 \ifmmode,

39 \expandafter\mi@@Qhaty

40 \elseY

41 \expandafter\futurelet\expandafter\Q@tempa\expandafter\miGhat@y,
42 \fil

43}

Second step in deciding how to index. We know that we are not in math mode.
The token following the hat has been prefetched and stored in \@tempa. (it has
not been read yet)

o A second hat (~): Check the next token using \mi@hat@twohats.
e Opening brace: Typeset the index word and index it using it \mi@indextypeset.

e Otherwise: Display an error, as =~ must be followed by a parameter in
braces.

44 \def\mi@hat@{%

45 \ifx\@tempa\mi@hat?

46 \expandafter\miGhat@twohatsy

47 \else\ifx\@tempa\bgroup

48 \expandafter\expandafter\expandafter\mi@indextypeset}
49 \else%

50 \mi@hat@errbrace,

51 \fi\fi

52}

First step in deciding how to index a word not typeset. We know we have two
hats in a row (~7), but the second hat is not read yet (only prefetched using
\futurelet). Therefore we gobble it using #1.

53 \def\mi@hat@twohats#1{%
54 \futurelet\@tempa\mi@hat@twohats@}
55 }

Second step in deciding how to index a word not typeset. We know we have two
hats in a row, both read. The token following the two hats has been prefetched
and stored in \@tempa.

Note that we could skip this step and simpy expand to \index, letting \index
take care that a proper parameter follows.

56 \def\mi@hat@twohats@{/,
57 \ifx\@tempa\bgroup’

58 \expandafter\index,
59 \else,

60 \mi@hat@errbrace},
61 \fi%

62 }

\mi@indextypeset

\mi@hat@errbrace

\ifmi@firstlocalMI

Usage: \mi@indextypeset {(word)}. Typesets (word) and indexes it using
\index.

63 \def\mi@indextypeset#1{/,
64 #1\index{#1}/,
65

Error handling when a ~ or =~ is not followed by a left brace.

66 \def\mi@hat@errbrace{’

67 \PackageError{metainfo}{‘\string”’ or ‘\string~\string~’ not %
68 followed by a left brace}\@ehcY
69 }

End of \DeclareOption{index}:

70 }

8.3.3 Other options

71 \DeclareOption{listlocalmetainfol}{/%
72 \def\mi@@firstlocalMItext{’

73 \begin{itemizel}},

74 Y

75 \def\mi@@lastlocalMItext{%
76 \end{itemizel}},

77 Yh

78 \def\mi@@everylocalMItext{}
79 \item\relax’,

80 }%

81 }

82 \ProcessOptions\relax
8.4 Internal environments and macros
8.4.1 General definitions and flags

Strategy for dealing with catcode changes At the beginning of the process-
ing, the catcodes are changed as follows:
""M 13 (active), set in \mi@activenewline

% 13, set in \mi@emptyactivepercent

{ 12 (other), set in \mi@otherbraces

} 12, set in \mi@otherbraces

- 13, optionally set in \mi@activehat

If any macro changes the catcodes of these characters, it must reset them to

these values after processing. If any macro needs the braces { and } for parame-
ter grouping, it should use the macro \mi@normalbraces to change the catcodes
accordingly.

true if this is the first local metainfo, otherwise false. Used to insert
\mi@@firstlocalMItext and \mi@@lastlocalMItext.

83 \newif\ifmi@firstlocalMI
84 \mi@firstlocalMItrue

8.4.2 Modes
Three modes of processing exist:

Skipping text Text is skipped line after line. If two percent signs are found at
the beginning of a new line, a local metainfo is begun and the mode changed
to ‘Typesetting a metainfo’.

Main macro: \mi@skiplines.

Beginning metainfo The appropriate heading is typeset and the remaining line
of text skipped. The mode is then changed to ‘Typesetting a metainfo’.
Main macro: \mi@checkbeginMI.

Typesetting a metainfo The text is typeset. If a line does not start with a

percent sign, the metainfo is done. The mode is then changed to ‘Skipping
text’.

Main macro: \mi@typesetMI.

\mi@skiplines Main macro. Skips lines and checks the first token of a line (stored in #1) for two
special cases:

1. A percent sign %: We check if it starts a local metainfo using \mi@checkbeginlocalMI.
2. A control sequence: We check if it starts a new metainfo using \mi@checkbeginMI.

85 \def\mi@skiplines#1{J

86 \ifx#1\mi@percentempty?,
A percent sign: We check if it starts a local metainfo.

87 \expandafter\mi@checkbeginlocalMI},
88 \else\ifcat\noexpand#i\relax,

A control sequence: We check if it starts a new metainfo.

89 \expandafter\expandafter\expandafter\mi@checkbeginMIy,
90 \else%

Anything else: We skip it and the remaining line of text. Note that it could
be a line ending (~"M), so it may be possible that we gobble only #1, which will
be re-inserted into the stream below. That way we do not have to check if #1 is a
line ending.

91 \expandafter\expandafter\expandafter\mi@gobbletolineendy,
92 \fi\fij

We always insert the first token of a line back into the stream, even though it
is not necessary for \mi@checkbeginlocalMI. But as normally most of the lines
of a text will be skipped, we optimize for this case.

93 #1%
94 }

10

\mi@typesetMI

\mi@typesetMIQcheckend

\mi@typesetMI@checkend@

The following macros require ~~M to be active:
95 \bgroup
96 \catcode ‘\""M=\active,
Prepares the typesetting of a metainfo.

97 \gdef\mi@typesetMI{%
98 \mi@normalbraces},

Every CR we check if the next line continues the metainfo using \mi@typesetMI@checkend.
99 \let”"M\mi@typesetMIQcheckend,

Now we start typesetting the text. We let TEX take completely control instead
of reading one line after the other; we will regain control at the end of each line
using our redefinition of ~~M.

100 \ignorespacesy

101 }

Called at a carriage return. If the token after the CR is equals to \mi@percentempty,
the next line starts with a %, thus continuing the metainfo. Otherwise, the metainfo
is finished.

102 \long\gdef\mi@typesetMI@checkend#1{%
103 \ifx#1\mi@percentempty¥

The next line continues the comment. We check for an empty line:

104 \expandafter\mi@typesetMI@checkend@’,
105 \else}

The next line finishes the comment:

106 \mi@otherbracesy,

107 \let~"M\Q@empty¥

108 \expandafter\mi@skiplines\expandafter#1/,
109 \fij

110 }

Checks if a ~~M (CR) follows immediately after the %. Then we insert a \par. Note
that any spaces between the % and the CR are automatically skipped by using a
non-delimited parameter.

111 \long\gdef\mi@typesetMI@checkend@#1{}

112 \ifx#1\mi@typesetMIQcheckend’

113 \par\expandafter\mi@typesetMI@checkend’
114 \else}

We assume the line is % (text) instead of %{text), thus we insert back a space
that was skipped before:

115 \space’,

116 \expandafter#1/,
117 \fi%

118 }

11

\mi@checkbeginMI

\mi@checkbeginMI@

Usage: \mi@checkbeginMI(cs).
First step in the check for the begin of a metainfo: Checks if (cs) is a control
sequence that can begin a metainfo.

119 \gdef\mi@checkbeginMI#1{}
Handle \end:

120 \ifx#1\end’
121 \expandafter\mi@checkdocumentend
122 \elsel,

We check if (cs) is a relevant control sequence. (these are stored in
\mi@@MIbeginnings) Then we use \mi@checkbeginMI@ to evaluate the result:

123 \def\Qtempa##1#1##2\Cnil{\mi@checkbeginMIQ{##2}#1}}

124 \expandafter\expandafter\expandafter\Qtempal,
125 \expandafter\mi@@MIbeginnings\expandafter#1/,
126 \expandafter\@nily,

127 \fil

128 }

Support macro for \mi@checkbeginMI. Checks if #2 is a relevant control sequence
by checking if #1 is empty (false) or not (true).

129 \gdef\mi@checkbeginMIC#1#2{%
130 \ifx~"M#1~"M}

Not a relevant control sequence: Skip till the end of the line.

131 \expandafter\mi@gobbletolineendy,
132 \else),

A relevant control sequence. If there has been any local metainfo before this
macro, we finish it by inserting \mi@@lastlocalMItext:

133 \ifmi@firstlocalMI\else\mi@@lastlocalMItext\fi%,

We restore all character catcodes except for ~~M, which we use to continue
processing after the control sequence in question has been executed: (this is the
reason a heading must appear on a single line, as otherweise ~ "M is executed more
than once)

134 \let~"M\mi@checkbeginMIQQ},
135 \mi@normalbraces,
136 \mi@normalpercent

In any case, a local metainfo following this macro is the first, so we set the flag
accordingly:

137 \mi@firstlocalMItrue’,
138 \expandafter#2/,

139 \fil

140 }

12

\mi@checkbeginMI@@ Support macro for \mi@checkbeginMI@. Is called via ~"M at the end of a line.

141 \gdef\mi@checkbeginMIQQ{},
142 \let”"M\Qempty%

143 \miQotherbraces},

144 \mi@emptyactivepercent},
145 \mi@checkbeginMI@QQY,
146 }

147 \egroup

\mi@checkbeginMI@e@ Support macro for \mi@checkbeginMI and the second step in the check for the
begin of a metainfo: Checks if the line after the control sequence begins with a
percent sign.

148 \def\mi@checkbeginMIQ@Q#1{%
149 \ifx#1\miG@percentempty?,

A percent sign: It starts a metainfo. Change to metainfo.

150 \par%
151 \expandafter\miQ@typesetMIy,
152 \else},

Anything else: No metainfo follows. Ignore it.

153 \expandafter\mi@skiplines\expandafter#1/,
154 \fij
155 }

\mi@checkbeginlocalMI Usage: \mi@checkbeginlocalMI(dummy)(next token).
(dummy) is the result of an optimization of \mi@skiplines. (see above)

156 \def\mi@checkbeginlocalMI#1#2{J,
157 \ifx#2\mi@percentempty¥

A percent sign: It starts a local metainfo. Change to metainfo.

158 \par’
159 \ifmi@firstlocalMI\mi@@firstlocalMItext\fi/
160 \mi@Q@everylocalMItext,

We have begun to typeset the local metainfo, therefore we take note that any
local metainfo following this one is not the first.

161 \mi@firstlocalMIfalse,
162 \expandafter\miQ@typesetMI’,
163 \else}

Anything else: No, it is just a simple comment. Ignore it.

164 \expandafter\mi@gobbletolineend\expandafter#2y,
165 \fij
166

\mi@checkdocumentend Checks if the \end just read ends the document environment.

167 \def\mi@checkdocumentend{%

13

\mi@checkdocumentend@

\mi@textdocument

\mi@percentempty

\mi@gobbletolineend

\mi@gobbletolineend@any

We change the catcodes of braces back to normal in order to get the name of
the environment as the only parameter of \mi@checkdocumentend®@ and not only
the opening brace.

168 \mi@normalbraces’,
169 \mi@checkdocumentend@Y
170 }

Support macro for \mi@checkdocumentend.

171 \def\mi@checkdocumentend@#1{’,
172 \def\@tempa{#1}/
173 \ifx\Otempa\mi@textdocument?,

If there has been any local metainfo before this macro, we finish it by inserting
\mi@@lastlocalMItext:

174 \ifmi@firstlocalMI\else\mi@@lastlocalMItext\fi%
175 \expandafter\mi@gobbletolineend@any\expandafter\endinputy
176 \elseY

As are not done yet, we better set the catcode of braces to ‘letter’:

177 \mi@otherbracesy

178 \expandafter\mi@skiplines},
179 \fi},

180 }

The text ‘document’ for \mi@checkdocumentend.

181 \def\mi@textdocument{document}

182 \def\mi@percentempty{\Q@empty}

8.4.3 Gobbling text

183 \bgroup
184 \catcode‘\~"M=\active},

Gobbles up any text till the end of the line. Continues with \mi@skiplines.
(specialization of \mi@gobbletolineend@any)

185 \gdef\mi@gobbletolineend{’,
186 \mi@gobbletolineend@any\mi@skiplines
187 }

Usage: \mi@gobbletolineend@any {(macro)}.
Gobbles up any text till the end of the line. Continues with (macro). The
macro is long in case the line (stored in #2) contains a \par.
188 \long\gdef\mi@gobbletolineend@any#1#2"~ "M{},
189 #1%

190 }
191 \egroup

14

8.4.4 Catcode changes

We define the macros for changing catcodes:

\mi@activenewline
\mi@verbatimnewline 193 \bgroup
\mi@emptyactivepercent

We use | as the comment character as we make % active:
\mi@activehat

193 \catcode‘\|[=14 ¥

194 \catcode ‘\""M=\active},

195 \catcode ‘\%=\active|

196 \gdef\miQactivenewline{|
197 \catcode‘\""M=\activel
198 \let~"M\Qempty|

199 31

200 \gdef\mi@verbatimnewline{|
201 \catcode‘\""M=\activel|
202 \def~"M{\par\@gobbletwo}|
203 }|

204 \gdef\mi@emptyactivepercent{|
205 \catcode‘\%=\activel

206 \let’%\mi@percentempty|
207 }|

208 \catcode ‘\"=\activel|

209 \gdef\mi@activehat{|

210 \catcode‘\"\activel

211 \let~\miG@hat|

212 }|

213 \egroup

\mi@normalpercent
214 \def\mi@normalpercent{’,
215 \catcode‘\%=14 %
216 }

\mi@otherbraces
217 \def\mi@otherbraces{/
218 \catcode‘\{=12 ¥
219 \catcode‘\}=12 ¥
220 }

\mi@normalbraces

221 \def\mi@normalbraces{’
222 \catcode‘\{=1 %

223 \catcode‘\}=2 Y

224 }

15

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed, the ones underlined to the code line of the definition, the rest to the code
lines where the entry is used.

Symbols
195, 205, 215
...... 7,8
N o 218, 222
\} o 219, 223
\" ... 96, 184, 194,
197, 201, 208, 210
193

\chapter

\ifmi@firstlocalMI .

83, 133, 159, 174
\ifmi@indexmacros 6, 32
\ignorespaces 100

\mi@@Chat 36, 39
\mi@QeverylocalMItext
18, 78, 160
\mi@@firstlocalMItext
16, 72, 159
\mi@@lastlocalMItext

17, 75, 133, 174
\mi@@MIbeginnings

15, 125
\mi@activehat . 6,192
\mi@activenewline 3, 192
\mi@checkbeginlocalMI

87, 156

\mi@checkbeginMI &89, 119
\mi@checkbeginMI@

123, 129
\mi@checkbeginMIQQ .
134, 141
\mi@checkbeginMI@QQ

145, 148
\mi@checkdocumentend
121, 167
\mi@checkdocumentend@
169, 171
\mi@emptyactivepercent
4, 144, 192
\mi@firstlocalMIfalse
161

\mi@firstlocalMItrue

84, 137
\mi@gobbletolineend

91, 131, 164, 185

\mi@gobbletolineend@any

175, 186, 188

.. 36, 37, 45, 211

41, 44

\mi@hat

\mi@hat®@
\mi@hat@errbrace
50, 60, 66

\mi@hat@twohats

46, 53, 56
\mi@hat@twohats@ 54, 56
\mi@indexmacrosfalse 33
\mi@indexmacrostrue 35
\mi@indextypeset 48, 63

16

\mi@normalbraces
98, 135, 168, 221

\mi@normalpercent
136, 214
7,9

\mi@old@verbatim

\mi@otherbraces . 5,
106, 143, 177, 217

\mi@percentempty

86, 103,
149, 157, 182, 206

\mi@skiplines 12, 85,
108, 153, 178, 186

\mi@textdocument

97, 151, 162

\mi@typesetMIQcheckend
99, 102, 112, 113

\mi@typesetMIQcheckend®@

........ 104, 111
\mi@verbatimnewline
........ 10, 192
S
\section 15, 24
\subsection 15, 26
\subsubsection .. 15,28
T
\typesetmetainfo 1,2

