The tensind Package for Tensorial Indexes*

Javier Bezos[†]

August 7, 2000

This package provides typographically fine tensorial notation, with the following features:

- Dots filling gaps.
- Symbol subtitution to easy typing (if you are using greek letters, for example).
- Corrected position of indexes: horizontally, to compensate the small displacement in letters like f (look carefully at f_*^*) and vertically, to avoid superscripts too raised.
- Aditional minute corrections are also allowed.

1 User Interface

$\tensordelimiter{\langle tensor-delim \rangle}$

Defines $\langle tensor-delim\rangle$ to be a tensor delimiter. In subsequent examples we will assume

\tensordelimiter{?}

and every instance of ? will actually mean $\langle tensor-delim \rangle$.

 $?[\langle format \rangle] \{\langle nucleous \rangle\} \{\langle special-index \rangle\} \{\langle special-index \rangle\} \dots \\ \langle super-or-sub \rangle \langle super-or-sub \rangle \dots ?$

Creates a tensor. $\langle super-or-sub \rangle$ is either $_{\langle index \rangle}_{\langle index \rangle}$... or $_{\langle index \rangle}_{\langle index \rangle}$. $\langle nucleous \rangle$ is the symbol which indexes will be add to.

^{*}This package is currently at version 1.1.

[†]For bug reports, comments and suggestions go to http://www.tex-tipografia.com. English is not my strong point, so contact me when you find mistakes in the manual. Other packages by the same author: accents, titlesec, dotlessi.

 $\langle special-index \rangle$ is a superscript which is neither covariant nor contravariant (dual, prime...). In one-letter $\langle index \rangle$, $\langle special-index \rangle$ or $\langle nucleous \rangle$, curly braces can be omitted. For example:

?R_ij^kl_\alpha^\beta?	$R_{ij}{}^{kl}{}^{\beta}_{\cdot \cdot \alpha}{}^{\beta}_{\cdot \cdot \cdot \alpha}$
?R^ij_kl^\alpha_\beta?	$R^{ij}_{\cdot\cdotkl\cdot\beta}{}^{\alpha}$
?R**_ij^kl_\alpha^\beta?	$R^{**kl}_{ij\cdots\alpha}{}^{\beta}$
?R**^ij_kl^\alpha_\beta?	$R^{**ij}{}^{\alpha}{}_{\cdot\cdot kl}{}^{\alpha}{}_{\beta}$

(Don't forget the closing ?!) Finally, $\langle format \rangle$ changes the format in a tensor. (See \tensorformat below.)

 $\operatorname{tensorformat}(\langle format \rangle)$

The following letter may be used in format.

- 1 Gaps to the left of the last index are filled with dots.
- **r** Gaps to the right of the first index are filled.
- e If there is no index (empty), gaps are filled.
- **b** Only gaps in subscripts are filled.

Sensible settings are: none (no dots), 1 and lrb. Further options are:

- c Brings index lines closer.
- ${\sf o}$ Opens index lines.
- ${\tt s}$ Styled. ${\tt o}$ in display style and ${\tt c}$ otherwise.

These options are mutually exclusive. If none of them is used, then indexes behave in a similar way to standard ones. This document sets

 \tensorformat{lrb}

?[]f\prime_ij^kl?	$f_{ij}^{\prime \ kl}$
?[e]f^ij?	f^{ij}_{\cdots}
?[l]f*_ij^kl?	$f^{* \cdots kl}_{ij}$
?[c]R^ij_kl?	$R^{ij}{}_{kl}$

\indexdot

This macro is the index dot. Defined to \cdot. You can redefine it with \renewcommand.

Automatically replaces $\langle index \rangle$ (if not enclosed in braces) by $\langle new-index \rangle$ and the additional $\langle commands \rangle$ are executed. For example, if you like to use greek indexes:

\whenindex{a}{\alpha}{}
\whenindex{b}{\beta}{}
\whenindex{g}{\gamma}{}

A \whenindex{'}{\prime}{} is performed by the package. For instance

?R'_ijk^abg? $R'_{ijk} \cdots R'_{ijk} \cdots$

In $\langle commands \rangle$, two command for space fine-tuning are provided: \sbadjust{ $\langle index \rangle$ }{ $\langle comma-space \rangle$ } adds $\langle comma-space \rangle$ times \, before the current subscript index if the last superscript index was $\langle index \rangle$. Similarly, \spadjust adds the space before the current superscript index if the last subscript index was $\langle index \rangle$. For instance, the normal result of ?[]R^ik_lm? is $R^{ij}{}_{kl}$, but with

```
\ \ k}{k}{\lambda j}{-1}
```

is $R^{ij}_{\ kl}$. These commands will be ignored if dots are used.

Two further command allowed in \whenindex are: \omitdot omits the dot for the current index, and \finishdots omits as well all subsequent indexes. For example

?[lr]A*_i^kl;i? $A^{*:kl;i}_{i\cdots}$

tensor

The environment called by ?...?. Useful if for some reason you don't want an equivalent defined with \tensordelimiter. Example:

\begin{tensor}[lr]A*_i^kl;i\end{tensor}