The IATEX

verifycommand
Package

v1.10 — 2024/09/03

© 2024 Brian Dunn
https://github.com/bdtc/verifycommand

Verifies definitions have not changed.

Abstract

For package authors who patch code from other packages.

To improve reliability, the verifycommand package provides a way to verify that
macros or environments have not changed since the patches were last designed.
This may be checked before applying the patch. If a definition is not as expected,
a warning is issued. At the end of the compile, a list of all changed definitions is
displayed.

Conditionals are provided, allowing multiple versions of a definition to be
tested and patched, warning if no known version is found. Conditionals also allow
the package to verify that several macros are unchanged before taking a single
common action.

License:
This work may be distributed and/or modified under the conditions of the LaTeX
Project Public License, either version 1.3 of this license or (at your option) any later
version. The latest version of this license is in http://www.latex-project.org/lppl.txt
and version 1.3 or later is part of all distributions of LaTeX version 2005/12/01 or later.

https://github.com/bdtc/verifycommand

verifycommand 2
Contents
1 Introduction 3
2 How it works 3
3 Warnings 3
4 How to use verifycommand 4
4.1 Theuserinterface 4
4.2 Placingthemacros 5
4.3 Finding the checksums of the current definitions 5
4.4 Assigningthechecksums 7
4.5 Whenadefinitionhaschanged 7
4.6 Testingforchangedmacros 7
4.7 Disablingthepackage 9
5 Code 10
5.1 Packagerequirements oL 10
5.2 Packageoptions e 10
5.3 Supportmacros Lo e e e 10
54 wMp5Shashing 10
5,5 Issuingwarnings oo 11
56 Userinterface. 13
5.7 Verifyinfrastructure 20
6 verifycommand package maintenance 21
Change History 22
Index of Objects 23

verifycommand 3

1 Introduction

Patching a macro or environment from another package risks the possibility that the
other author has made an update and changed something unexpected, breaking your
own package when it tries to apply the patch.

The traditional way to check a definition you wish to modify is to copy the expected
definition into your package under a new name, then compare to see if the current
definition is the same as it was when your package was first created. For a few defini-
tions this may work well, but as the number of patches goes up things get more and
more unwieldy.

The verifycommand package uses MD5 checksums instead of copying entire defini-
tions. If something has changed, a warning is issued telling the name of the defintion,
and optionally telling the name of your own package and the package being modified.
This improves code reliability, and allows package authors to get an early warning
when an author of some other package has made an unexpected change.

In many cases, the patch or replacement may still function correctly even when the
original has changed in some way. For this reason, only a warning is issued, not an
error.

2 How it works

\VerifyCommand and \VerifyEnvironment are used to test whether a definition has
changed. Each definition is given an MD5 checksum, which is compared to the ex-
pected checksum given as arguments of \VerifyCommand and \VerifyEnvironment.
If a checksum does not match, a warning is issued, flagging the definition for attention.

The MD5 checksum is of the text of the code part of the underlying definition, as it
would be displayed by the \meaning command. For environments, the end code is
checked separately. The check detects changes in the replacement text of the definition,
and may or may not detect changes in the number or type of parameters, \1long, or
type of robustness, depending on the type of definition. Some definitions may have
the same checksum if they have the same replacement code but different argument
types, for example a \NewDocumentCommand with two mandatory arguments vs another
with one optional and one mandatory, if they both have the same replacement code.

When something does not match, the current checksum is printed to the termi-
nal, and the author may copy/paste that into the parameter of \VerifyCommand or
\VerifyEnvironment to update the expected values.

3 Warnings

The document IATEX for authors (texdoc usrguide recommends the use of TEX
hooks where possible (texdoc 1thooks).

/N kernel changes

/N optional arguments

\VerifyCommand

\VerifyEnvironment

\IfVerifyCommand

\IfVerifyEnvironmentBegin

verifycommand 4

Commands created with \NewDocumentCommand and related may change their defi-
nitions when the inner workings of \NewDocumentCommand are optimized. When this
occurs, any checksums for these commands will change, even though the associ-
ated patches probably will continue to work. If you use verifycommand for these
commands, expect the checksums to need updates at some point in the future.

Use \NewCommandCopy and \NewEnvironmentCopy to copy commands for reuse. These
work with all kinds of commmand definitions. See texdoc usrguide for details.

Use \ShowCommand or \ShowEnvironment to see an existing definition, which again
works with all forms of commands.

4 How to use verifycommand

4.1 The user interface

In the following, [(yourpackagename)] is the package doing the testing and patching,
and [(theirpackagename)] is the package which defines the original macro. Using
these optional package names make it easier to find where to make changes if needed.

If there is only one optional argument, it is used as [(yourpackagename)], to identify
where to find the \VerifyCommand checksum entry. The second optional argument
identifies what is being patched, in case it has been changed.

[(yourpackagename)] [(theirpackagename)] { (\macroname)} {(MD5 checksumn)}

[(yourpackagename)] [(theirpackagename)] { (envname)}
{(begin MD5 checksum)} {{end MD5 checksum)}

Use one of these macros just before patching a macro or environment, as seen below.
A test is performed to see if the definition is as expected before applying a patch.

Note that there is one checksum for \VerifyCommand, but there are two checksums
for an environment: once for the begin section and one for the end section.

It may be necessary to test for each of several possible versions of a definition, then
patch accordingly. The following test and apply a true or false clause, without issuing
awarning.

[(yourpackagename)] [(theirpackagename)] {(\macroname)}
{(MD5 checksum)}
{(true)} {{false)}

[(yourpackagename)] [(theirpackagename)] { (envname)}
{(begin MD5 checksum)}
{(true)} {{false)}

\IfVerifyEnvironmentEnd

\TestVerifyCommands

\IfVerifyCommandPassed

\IfVerifyCommandFailed

\VERCMDWarning

verifycommand 5

[(yourpackagename)] [(theirpackagename)] { (envname)}
{({end MD5 checksum)}
{(true)} {(false)}

Tests may be done as a group, either to try several versions of the same definition, or
to verify several definitions and act if any of them fail:

Starts a group of tests.

{(true)} {{false)} Actif any of a group passed. May be used to try to patch multiple
versions of a command.

{(true)} {(false)} Actif any of a group failed. May be used to verify several defini-
tions are unchanged.

A warning may be also issued:

{{yourpackage)} { (theirpackage)} {(defn name)} Used to issue a warning that the
macro has changed.

See section 4.6 for examples of conditional tests.

4.2 Placing the macros

When first using verifycommand, use empty checksums, placing \VerifyCommand
or \VerifyEnvironment before each place where something gets patched. This is
probably not required where things are entirely replaced, or prepended or appended.

\VerifyCommand{\LaTeX}{}
(patch \LaTeX here)

\VerifyCommand[mypackagel{\textcolor}{}
(patch \textcolor here)

\VerifyCommand[mypackage][graphics]{\rotatebox}{}
(patch \rotatebox here)

\VerifyEnvironment{tabbing}{3}{3}
(patch tabbing here)

4.3 Finding the checksums of the current definitions

The warnings are issued and the correct checksums are given. The type of warning
depends on the usage:

¢ Verifying \LaTeX would print a warning showing the correct MD5 checksum.

Warning: A definition has changed:
\LaTeX

verifycommand 6

(FAAAC6146C9A80F46AT1F029B67923851)
on input line 464.

e Verifying \textcolor would do the same, but as a \PackageWarning from
mypackage, which is the package doing the testing.

Package mypackage Warning: A definition has changed:

(mypackage) \textcolor
(mypackage) (E1E2B5A908AATBCDDF6BEA®38596A381)
(mypackage) on input line 465.

* Verifying \rotatebox would also issue a warning from mypackage, but also
mention the package being tested, graphics.

Package mypackage Warning: A definition has changed:

(mypackage) graphics: \rotatebox
(mypackage) (2472999B02C97AC847128AF24C55D150)
(mypackage) on input line 466.

* Verifying tabbing issues a separate warning for the begin and end sections.

Warning: A definition has changed:
tabbing
(1AD73B4527AD30969CF3219F2FB1306B)
on input line 518.

Warning: A definition has changed:
(end)tabbing
(E8326AC43EEQAGE922A20F2A798BD177)
on input line 518.

At the end of the compile, a summary is given:

Package verifycommand Warning: Definitions have changed.
Patches for the following macros may need to be updated.
See the previous warnings for line numbers.

Syntax: Patching pkg -> Defining pkg: Macro (checksum)
(verifycommand) \LaTeX
(FAAAC6146C9A80F46A1F029B67923851)
(verifycommand) mypackage -> \textcolor
(ETE2B5A908AA1BCDDF6BEAQ38596A381)
(verifycommand) mypackage -> graphics: \rotatebox
(2472999B0@2C97AC847128AF24C55D150)
(verifycommand) tabbing
(1AD73B4527AD30969CF3219F2FB1306B)
(verifycommand) (end)tabbing
(E8326AC43EEQAGE922A20F2A798BD177)

verifycommand 7

4.4 Assigning the checksums

Copy the checksums from the warnings messages into the source. When this is done,
there are no more verifycommand warnings unless one of these defintions changes:

\VerifyCommand{\LaTeX}{FAAAC6146C9A80F46A1F029B67923851}
(patch \LaTeX here)

\VerifyCommand[mypackage]l{\textcolor}
{ETE2B5A908AA1TBCDDF6BEAQ38596A381}
(patch \textcolor here)

\VerifyCommand[mypackagel[graphics]{\rotatebox}
{2472999B02C97AC847128AF24C55D150}
(patch \rotatebox here)

\VerifyEnvironment{tabbing}
{1AD73B4527AD30969CF3219F2FB1306B}% beginning code
{E8326AC43EEQAG6E922A20F2A798BD177}% endind code

(patch tabbing here)

4.5 When a definition has changed

When something being verified changes at a later time, the resulting warning will let
the user know that the patches may not work as expected. Because the test is done
before the patch, this warning will be issued before the patch is even attempted.

When testing many packages in bulk, a utility such as grep can report which macros
have changed. Search the log file for “(verifycommand)”.

4.6 Testing for changed macros

To test to see if a macro or environment has changed, use \IfVerifyCommand,
\IfVerifyEnvironmentBegin, or \IfVerifyEnvironmentEnd.

Example:

\IfVerifyCommand[mypackage][LaTeX kernell{\LaTeX}{123}{True}{False}

Result: False

Example:

\IfVerifyCommand[mypackage][LaTeX kernel]{\LaTeX}
{FAAAC6146C9A80F46A1F029B67923851}
{True}{False}

verifycommand 8

Result: True (Assuming \LaTeX has not actually changed since this manual was gener-
ated.)

Example:

\IfVerifyEnvironmentEnd[mypackage][LaTeX kernell{tabbing}
{E8326AC43EEQAGE922A20F2A798BD177%
{True}{False}

Result: True
If the verifycommand package is disabled, these tests will always return true.

These tests do not issue warnings if the test fails, so they may be used to test against
several possible definitions, chosing the appropriate patch depending on which match
is found.

To try to patch multiple versions of the same command, and issue a warning if no
match is found:

\TestVerifyCommands

\IfVerifyCommand[mypackage][theirpackagel{\theirmacro}
{12312312312312312321312312312312}
{(Patch an older version of the macro.)}

\IfVerifyCommand[mypackage][theirpackagel{\theirmacro}
{45645645645645645645645645645645%
{(Patch a newer version of the macro.)}

\IfVerifyCommandPassed
{}% One of the patches worked.
{\VERCMDWarning{mypackage}{theirpackage}{\theirmacro}}

To verify several commands have not changed:

\TestVerifyCommands

\VerifyCommand[mypackage][theirpackagel{\firstmacro}
{78978978978978978978978978978978}

\VerifyCommand[mypackage][theirpackagel{\secondmacro}
{27272727272727272727277272727272%

\VerifyCommand[mypackage][theirpackagel{\thirdmacro}
{84838483848384838483848384838483}

\IfVerifyCommandFailed
{Something is not correct. (Warnings have been issued above.)}
{}% All are fine.

verifycommand 9

4.7 Disabling the package

verifycommand relies on knowing the internal structure of various kinds of defini-
tions. It is possible that these may change, causing endless warnings for that kind of
definition. Should that happen, it will be necessary to disable the verifycommand
package until it can be updated. Use the disable option to do so.

\usepackage[disable]{verifycommand}

Package warnings will stop, and the conditional tests will always return true.

If the package is disabled, the boolean VERCMDenable will be false. This may be used
to help decide which patches to apply as a default.

verifycommand 10

5 Code

5.1 Package requirements

1\RequirePackage{etoolbox}
2\RequirePackage{iftex}

5.2 Package options

Package option to disable all functions.

VERCMDenable (bool) Is the package enabled?

3 \newbool{VERCMDenable}
4\booltrue{VERCMDenable}

disable (Opt) Turn off all functions.

5\DeclareOption{disable}{%

6 \boolfalse{VERCMDenable}%

7 \typeout{----3}%

8 \typeout{Package verifycommand: Turned off by option 'disable'.}%
9 \typeout{----3}%

10}

11
12 \ProcessOptions\relax

5.3 Support macros

\VERCMD@backslash The literal \ character.

This is used later because some internal definitions use double \\ as part of their
name.

13 \catcode™ \&=0

14 &catcode™ &\=12

15 &def&VERCMD@backslash{\}
16 &catcode™ &\=0

17 \catcode ™ \&=4

5.4 wMD5 hashing

The MD5 hash is used for 1ateximage filenames for svG math.

The default definition if no MD5 function is found. This will be changed below if an
MDS5 function is available.

18 \newcommand{ \VERCMD@mdfivesum}[11{%

verifycommand 11

19 \PackageError{verifycommand}

20 {No MD5 macro was found}

21 {%

22 Verifycommand must find the macros \protect\pdfmdfivesum\space
23 or \protect\mdfivesum.%

24 }

25}

The default for pDF IXTEX, DvI LTEX, upXTEX, etc:

26 \ifdef{\pdfmdfivesum}
27 {\1let\VERCMD@mdfivesum\pdfmdfivesum}
28 {3

For Lual4TEgX:

29 \ifLuaTeX

30 \RequirePackage{pdftexcmds}

31 \let\VERCMD@mdfivesum\pdf@mdfivesum
32 \fi

For XgIATEX:

33 \ifXeTeX

34 \@ifundefined{pdffivesum}{}

35 {\let\VERCMD@mdfivesum\pdfmdfivesum}
36 \@ifundefined{mdfivesum}{}

37 {\1let\VERCMD@mdfivesum\mdfivesum}

38 \fi

\VERCMD@mdfive {(\macroname)} Compute MD5 checksum, store in \VERCMD@temp.

39 \def\VERCMD@mdfive#1{%
40 \edef\VERCMD@temp{\VERCMD@mdfivesum{\meaning#13}}%
41%

5.5 Issuing warnings

\VERCMD@whatchanged Accumulates a list of changed definitions.

VERCMD@this@ltxcmd (bool)

VERCMD@failed@ltxcmd (bool)

42 \newcommand*{\VERCMD@whatchanged}{}

True if this command is defined by \NewDocumentCommand or related.

43 \newbool{VERCMD@this@ltxcmd}
44 \boolfalse{VERCMD@this@ltxcmd}

True if any command that failed was defined by \NewDocumentCommand or related.

45 \newbool{VERCMD@failed@ltxcmd}
46 \boolfalse{VERCMD@failed@ltxcmd}

verifycommand 12

\VERCMD@addchanged {(MD5sum)} {(text)} Add to the list of changed definitions.
47 \newcommand*{\VERCMD@addchanged}[21{%
Newline control for pretty print.
48 \ifdefempty{\VERCMD@whatchanged}%
49 {3%
50 {\apptocmd{\VERCMD@whatchanged}{**J}{}{}}%

ID the message as from verifycommand, add the text, add the checksum.

51 \apptocmd{\VERCMD@whatchanged}{%

52 (verifycommand)\space\space#2**J%
53 \space\space\space\space\space\space\space\space\space\space’
54 \space\space\space\space\space\space\space\space\space (#1)%

55 3%

Optionally add a * after the checksum if the command was defined with \NewCommand
or related.

56 \ifbool{VERCMD@this@ltxcmd}{%

57 \apptocmd{\VERCMD@whatchanged}{ *}{}{}%
58 \booltrue{VERCMD@failed@ltxcmd}%

59 H3%

60 \boolfalse{VERCMD@this@ltxcmd}%

61}

When the compile is finished, print the accumulated list of changed definitions.

62 \AtEndDocument{

63 \ifdefempty{\VERCMD@whatchanged}{}{%

64 \typeout{-----------—-—--———-——m - 3%

65 \typeout{Package verifycommand Warning: Definitions have changed.}%
66 \typeout{Patches for the following macros may need to be updated.}%
67 \typeout{See the previous warnings for line numbers.}%

68 \typeout{}%

69 \typeout{Syntax:\space\space Patching pkg -> Defining pkg: Macro (checksum)}%
70 \typeout{----- 1%

71 \typeout{\VERCMD@whatchanged}

72 \typeout{----- 1%

73 \typeout{Look for updates to these packages.}

74%

75 \ifbool{VERCMD@failed@ltxcmd}{

76 \typeout{Any of the above marked with a * may be due to changes in LaTeX internals,}
77 \typeout{the most recently known of which was 2023/12/01.}

78 \typeout{If so, look for updates for the LaTeX sytem as well.}

79 X3

80%

81 \typeout{-------——=——-———-———-— - }

82 }

83}

verifycommand 13

\VERCMD@ProgWarning {(text)} Warning without a package name.

84 \def\VERCMD@ProgWarning#1{%

85 \GenericWarning{%

86 % (\jobname)\@spaces\@spaces%
87 \@spaces\@spaces

88 H%

89 Warning: #1%

90 1%

91}

\VERCMDWarning {(yourpackage)} {(theirpackage)} {{defn name)}

If no package names, print a general warning. If package names are given, print a
\PackageWarning. Either way, also add to the summary report.

92 \newcommand*{ \VERCMDWarning}[31{%
93 \ifblank{#13}%

94 {%

95 \VERCMD@ProgWarning{%

96 A definition has changed:\MessageBreak
97 \ifblank{#2}{}{#2: }\string#3\MessageBreak
98 (\VERCMD@temp) \MessageBreak

99 %

100 \expandafter\VERCMD@addchanged%

101 \expandafter{\VERCMD@temp}{\string#33}%
102 Y%

103 {%

104 \PackageWarning{#13}{%

105 A definition has changed:\MessageBreak%
106 \ifblank{#23}{}{#2: }%

107 \string#3\MessageBreak%

108 (\VERCMD@temp) \MessageBreak%

109 Y%

110 \expandafter\VERCMD@addchanged%

111 \expandafter{\VERCMD@temp}{#1 -> \ifblank{#2}{}{#2: }\string#3}%
112 Y%

113 }

114 \ExplSyntaxOn

5.6 User interface

VERCMD@passed (bool) True if any test passed.
115 \newbool{VERCMD@passed}
VERCMD@failed (bool) True if any test failed.

116 \newbool{VERCMD@failed}

verifycommand 14

\TestVerifyCommands Starts a new setof \VerifyCommand tests, after which the booleans will tell if any passed
and if any failed.

117 \newcommand*{\TestVerifyCommands}
118 {

119 \boolfalse{VERCMD@passed}

120 \boolfalse{VERCMD@failed}
121}

\IfVerifyCommandPassed {(true)} {{(false)} If any of the \VerifyCommand tests passed, do the true clause. If
none of them passed, do the false clause.

122 \newcommand*{\IfVerifyCommandPassed}

123 {%

124 \ifbool{VERCMD@passed}%

125 {\1let\VERCMD@tempa\@firstoftwo}%
126 {\1let\VERCMD@tempa\@secondoftwo}%
127 \VERCMD@tempa%

128 }

\IfVerifyCommandFailed {(true)}{(false)}If any of the \VerifyCommand tests failed, do the true clause. If none
of them failed, do the false clause.

129 \newcommand*{\IfVerifyCommandFailed}

130 {%

131 \ifbool{VERCMD@failed}%

132 {\let\VERCMD@tempa\@firstoftwo}%
133 {\let\VERCMD@tempa\@secondoftwo}%
134 \VERCMD@tempa%

135 }

\IfVerifyCommand [(yourpackage)] [(theirpackage)] {(\commandname)} {(MD5 checksum)} {(true)}
{{false)}

Test for various kinds of definitions, and convert them to MD5 checksums.
136 \NewDocumentCommand{\IfVerifyCommand}{0{} O{} m m}{%

Only if the package is enabled:
137 \ifbool{VERCMDenable}{%

Default to an un-detected definition type:
138 \edef\VERCMD@temp{Unknown~definition}%

Will become true if found \NewDocumentCommand or related.

139 \boolfalse{VERCMD@this@ltxcmd}

verifycommand 15

For \NewDocumentCommand, the macro name is “\name code” with a space in the mid-
dle.

140 % % NewDocumentCommand:

141 \ifcsdef{\cs_to_str:N #3~code}%

142 {%

143 \booltrue{VERCMD@this@ltxcmd}%

144 \expandafter\VERCMD@mdfive%

145 \csname \cs_to_str:N #3~code\endcsname%
146 3%

147 {%

”

For \DeclareRobustCommand with an optional argument, the macro name is “\\name
with a two backslashes and a trailing space.

148 % % DeclareRobustCommmand with option:

149 \ifcsdef{\VERCMD@backslash\cs_to_str:N #3~}%

150 {%

151 \expandafter\VERCMD@mdfive%

152 \csname \cs_to_str:N #3~code\endcsname%
153 %

154 {%

For \DeclareRobustCommand, the macro name is “\name ” with a trailing space.

155 % % DeclareRobustCommand:

156 \ifcsdef{\cs_to_str:N #3~}%

157 {%

158 \expandafter\VERCMD@mdfive%

159 \csname \cs_to_str:N #3~\endcsname%
160 }%

161 {%

For \newcommand with an option, the macro name is “\\name”, with two backslashes.

162 % % newcommand w/ option:

163 \ifcsdef{\VERCMD@backslash\cs_to_str:N #3}%
164 {%

165 \expandafter\VERCMD@mdfive%

166 \csname %

167 \VERCMD@backslash%

168 \cs_to_str:N #3%

169 \endcsname%

170 %

For \newcommand, the macro name is “\name”.

If none match, the default unknown definition warning is shown in place of the check-
sum.

171 {%
172% % newcommand:
173 \ifdef{#3}%

verifycommand 16

174
175
176
177
178
179

{\VERCMD@mdfive#3}%
{3%
3%
%
Y%
%

If the checksum matches the expected value, do the following true clause, else do the
following false clause. Also track the true and false tests for \IfVerifyCommandPassed
and \IfVerifyCommandFailed.

180
181
182
183
184
185
186
187
188
189
190
191
192 }

\ifdefstring{\VERCMD@temp}{#4}%
{%
\booltrue{VERCMD@passed}%
\let\VERCMD@tempa\@firstoftwo%
3%
{%
\booltrue{VERCMD@failed}%
\let\VERCMD@tempa\@secondoftwo%
%
}% if package enabled
{\1let\VERCMD@tempa\@firstoftwo}% if package not enabled
\VERCMD@tempa%

\VerifyCommand [(yourpackage)] [(theirpackage)] {(\commandname)} {(MD5 checksum)}

Test for various kinds of definitions, and convert them to MD5 checksums.

193 \NewDocumentCommand{\VerifyCommand}{0{} O{} m m}{%

194
195
196
197
198
199
200
201
202
203
204
205 }

\ifblank{#13}{% #1 blank
\IfVerifyCommand{#3}{#43}{}{\VERCMDWarning{}{}{#33}}%
}% #1 blank
{% #1 given
\ifblank{#2}{% #2 blank
\IfVerifyCommand[#11{#3}{#4}{}{\VERCMDWarning{#13}{}{#3}1%
1% #2 blank
{% #2 given
\IfVerifyCommand[#1][#2]{#3}{#43}{3{\VERCMDWarning{#13}{#23}{#33}}%
}% #2 given
}% #1 given

\IfVerifyEnvironmentBegin [(yourpackage)] [{theirpackage)] {(\commandname)} {(begin MD5 checksum)}

Test the begin section of the environment.

206 \NewDocumentCommand{\IfVerifyEnvironmentBegin}{0{} O{3} m m}{%

Only if the package is enabled:

207

\ifbool{VERCMDenable}{%

verifycommand 17

Default to an un-detected definition type:
208 \edef\VERCMD@temp{Unknown~definition}%

Will become true if found \NewDocumentCommand or related.
209 \boolfalse{VERCMD@this@ltxcmd}

For \NewDocumentEnvironment, the macro name is “\environment name code” with
internal spaces.

210% % NewDocumentEnvironment:

211 \ifcsdef{environment~#3~code}%

212 {%

213 \booltrue{VERCMD@this@ltxcmd}%

214 \expandafter\VERCMD@mdfive%

215 \csname environment~#3~code\endcsname%
216 Y%

217 {%

For \newenvironment with an optional argument, the macro name is “\\name”, with
two backslashes.

218% % newenvironment with option:

219 \ifcsdef{\VERCMD@backslash#3}%

220 {%

221 \expandafter\VERCMD@mdfive%

222 \csname \VERCMD@backslash#3\endcsname%
223 3%

224 {%

For \newenvironment, the macro name is “\name”.

225% % newenvironment:

226 \ifcsdef{#3}%

227 {\expandafter\VERCMD@mdfive\csname #3\endcsname}%
228 {}%

229 }%

230 }%

Do the first or second next argument depending on a match:

231 \ifdefstring{\VERCMD@temp}{#4}%

232 {%

233 \booltrue{VERCMD@passed}%

234 \let\VERCMD@tempa\@firstoftwo%
235 %

236 {%

237 \booltrue{VERCMD@failed}%

238 \1let\VERCMD@tempa\@secondoftwo%

239 }%

verifycommand 18

240 }% if package enabled

241 {\let\VERCMD@tempa\@firstoftwo}% if package not enabled
242 \VERCMD@tempa%

243}

\IfVerifyEnvironmentEnd [(yourpackage)] [(theirpackage)] {(\commandname)} {(end MD5 checksum)}

Test the end section of the environment.
244 \NewDocumentCommand{\IfVerifyEnvironmentEnd}{0{} O{} m m}{%
Only if the package is enabled:
245 \ifbool{VERCMDenable}{%
Default to an un-detected definition type:
246 \edef\VERCMD@temp{Unknown~definition}%
Will become true if found \NewDocumentCommand or related.
247 \boolfalse{VERCMD@this@ltxcmd}

For \NewDocumentEnvironment, the ending macro nameis “\environment name end aux ”,
with spaces and a trailing space.

248 % % end DocumentEnvironment:

249 \ifcsdef{environment~#3~end~aux~1}%

250 {%

251 \booltrue{VERCMD@this@ltxcmd}%

252 \expandafter\VERCMD@mdfive

253 \csname environment~#3~end~aux~\endcsname%
254 }%

255 {%

For \newenvironment, the ending macro name is “\endname”.

256 % % end newenvironment:

257 \ifcsdef{end#3}%

258 {%

259 \expandafter\VERCMD@mdfive%
260 \csname end#3\endcsname%
261 1%

262 {}%

263 }%

Do the first or second next argument depending on a match:

264 \ifdefstring{\VERCMD@temp}{#43}%

265 {%

266 \booltrue{VERCMD@passed}%

267 \let\VERCMD@tempa\@firstoftwo%

verifycommand 19

275
276 }

Y%
{%
\booltrue{VERCMD@failed}%
\1let\VERCMD@tempa\@secondoftwo%
3%
}% if package enabled
{\1let\VERCMD@tempa\@firstoftwo}% if package not enabled
\VERCMD@tempa%

\VerifyEnvironment [(yourpackage)] [(theirpackage)] {(\commandname)} {(begin MD5 checksum)} {{end
MD5 checksum)}

Test both the begin and end section of the environment.

277 \NewDocumentCommand{\VerifyEnvironment}{0{} O{} m m m}{%

278% begin:

279 \ifblank{#13}{% #1 blank

280 \IfVerifyEnvironmentBegin{#3}{#43}%

281 {}%

282 {\VERCMDWarning{}{}{#3}}%

283 }% #1 blank

284 {% #1 given

285 \ifblank{#23}{% #2 blank

286 \IfVerifyEnvironmentBegin[#11{#3}{#4}%
287 {3%

288 {\VERCMDWarning{#1}{}{#33}}%

289 }% #2 blank

290 {% #2 given

291 \IfVerifyEnvironmentBegin[#1][#2]{#3}{#4}%
292 {}%

293 {\VERCMDWarning{#1}{#2}{#3}}%

294 1% #2 given

295 }% #1 given

296% end:

297 \ifblank{#13}{% #1 blank

298 \IfVerifyEnvironmentEnd{#3}{#5}%

299 {}%

300 {\VERCMDWarning{}{}{ (end)#33}3}%

301 }% #1 blank

302 {% #1 given

303 \ifblank{#23}{% #2 blank

304 \IfVerifyEnvironmentEnd[#11{#3}{#5}%
305 {3}%

306 {\VERCMDWarning{#1}{}{(end)#33}}%
307 }% #2 blank

308 {% #2 given

309 \IfVerifyEnvironmentEnd[#1][#2]{#3}{#5}%
310 {}%

311 {\VERCMDWarning{#1}{#23}{ (end)#3}}%
312 1% #2 given

313 }% #1 given

314 }

verifycommand 20

315 \ExplSyntaxOff

5.7 Verify infrastructure

The low-level infrastructure for \NewDocumentCommand and related may change on
occasion, causing a change in the resulting code and a verification error for such code.
The following is done while generating the documentation for the verifycommand
package, and verifies the definitions of the underlying infrastructure and issues a
warning if any has changed.

In the source for the following, 1txcmd. dtx uses @@ which is replaced by __cmd.

(Testing silently occurs here, without adding text to the documentation.)

verifycommand 21

6 verifycommand package maintenance

To compile verifycommand. sty and \verifycommand. pdf from verifycommand.dtx
and verifycommand. ins:

pdflatex verifycommand.ins

pdflatex verifycommand.dtx

pdflatex verifycommand.dtx

makeindex -s gglo.ist -o verifycommand.gls verifycommand.glo
splitindex verifycommand.idx -- -s gind.ist

pdflatex verifycommand.dtx

pdflatex verifycommand.dtx

Change History

v1.00

General: 2024/01/11 Initial version.

v1.10
General: 2024/09/03
Added test groups.
Docs: “Finding checksums”
reorganized.
Docs: Added conditional tests. . .

Docs: Added Warnings section. . . .

Revised summary message.
Tests low-level
\NewDocumentCommand code.
\IfVerifyCommand: Added
conditional tests.
Added test groups.
\IfVerifyCommandFailed: Added
testgroups.

. 20

14
16

14

22

\IfVerifyCommandPassed: Added
testgroups. 14
\IfVerifyEnvironmentBegin: Added

conditional tests. 16
Added testgroups. 17
\IfVerifyEnvironmentEnd: Added
conditional tests. 18
Added test groups. 18
\TestVerifyCommands: Added test
groups. 14
\VERCMD@addchanged: Added ‘*’ if
\NewDocumentCommand or related
isused. 12
Revised summary message. 12
\VERCMDWarning: Revised warning
message. 13

Index of Objects

This is an index of macros, environments, booleans, counters, lengths, packages,
classes, options, keys, files, and various other programming objects. Each is listed by
itself, and also by category. In some cases, they are further subdivided by [class].

Numbers written in italic refer to the page where the corresponding entry is described;
numbers underlined refer to the code line of the definition.

B
Booleans:
VERCMD@failed 13
VERCMD@failed@ltxemd 11
VERCMD@passed 13
VERCMD@this@ltxcmd 11
VERCMDenable 10
D
disable (option) 10
I
\IfVerifyCommand 4,136
\IfVerifyCommandFailed 5,129
\IfVerifyCommandPassed 5,122
\IfVerifyEnvironmentBegin 4, 206
\IfVerifyEnvironmentEnd 5,244
0
Options:
disable 10

T
\TestVerifyCommands 5,117

\'%
\VERCMD@addchanged 47
\VERCMD@backslash 13
VERCMD@failed (boolean) 13
VERCMD@failed@ltxcmd (boolean) 1II
\VERCMD@mdfive 39
VERCMD@passed (boolean) 13
\VERCMD@ProgWarning 84
VERCMD@this@ltxcmd (boolean) 11
\VERCMD@whatchanged 42
VERCMDenable (boolean) 10
\VERCMDWarning 5,92
\VerifyCommand 4,193
\VerifyEnvironment 4,277

23

	1 Introduction
	2 How it works
	3 Warnings
	4 How to use verifycommand
	4.1 The user interface
	4.2 Placing the macros
	4.3 Finding the checksums of the current definitions
	4.4 Assigning the checksums
	4.5 When a definition has changed
	4.6 Testing for changed macros
	4.7 Disabling the package

	5 Code
	5.1 Package requirements
	5.2 Package options
	5.3 Support macros
	5.4 MD5 hashing
	5.5 Issuing warnings
	5.6 User interface
	5.7 Verify infrastructure

	6 verifycommand package maintenance
	Change History
	Index of Objects
	B
	D
	I
	O
	T
	V

