
The docindex package

Lars Hellström

8 July 2003

Abstract

The docindex package implements template-based formatting of indices
and lists of changes/glossaries. In addition to this, the control structures em-
ployed also provide for a couple of new features, such as automatic collapsing
of trivial index levels.

Contents

1 Introduction 1

2 Usage 3
2.1 Straightforward usage . 3
2.2 Multiple indices . 3
2.3 Configuration . 4

3 Implementation 7
3.1 docstrip modules . 7
3.2 Initial stuff . 7
3.3 Index style files . 8
3.4 Template mechanisms . 12
3.5 Templates for index item formatting 14

3.5.1 The indexitem template type 14
3.5.2 The docindex template type 22

4 Notes and acknowledgements 28

1 Introduction

In automatically generated indices with multi-level entries, such as the list of
changes of a doc document, it often happens that some entries are uniquely iden-
tified by their primary level sort keys, although there are sort keys and text for
additional levels. If then the formatting is designed for entries that are uniquely
identified only when their secondary or tertiary sort keys are considered, one ends
up with a couple of entries that look rather peculiar (building a tree which never
branches) and usually take up much more space than they need to. The remedy
for this is of course to make the formatting smart enough to recognise this sit-
uation when it occurs and flexible enough to format the text is a more suitable
manner.

1

An example of this is that if a document contains the index entries1

\index{Bernoulli!Jacob}\index{Bernoulli!Johann}

then it is probably reasonable to format this as

Bernoulli,
Jacob
Johann

but if the index entries instead were

\index{Jacobi!Carl}\index{Bernoulli!Jacob}

then it is probably better to format this as

Bernoulli, Jacob
Jacobi, Carl

than as

Bernoulli,
Jacob

Jacobi,
Carl

The makeindex program has some features in this direction, but they only allow
dependence on the previous item in the index, not the next item, which is what
you need to know when deciding whether ‘Jacob’ should go on the same line as
‘Bernoulli’. Therefore docindex pretty much ignores these features in makeindex
and instead sees to that each command that is to typeset an index item knows
what kind of items were before and after it.

Another reason for writing this package was to try out the template mech-
anisms as provided by the LATEX2ε∗ template package.2 My impression is that
this experiment turned out strikingly well. I have always found the more layout-
oriented aspects of TEX programming a bit cumbersome, but the separation of
layout details from control structures that becomes natural when employing tem-
plate mechanisms seems to have made it much easier. I’m not sure why this is so,
but it could be as simple as that the layout settings are no longer diluted in the
control structures. In any case, I would recommend people creating new LATEX2ε
packages to employ template mechanisms in at least the initial development ver-
sions of the package, for the following reasons: (i) it reduces the work of updating
the package for LATEX2ε∗, (ii) it furthers the development of LATEX2ε∗, and (iii)
it might actually become a better package.

A third reason for writing the docindex package was to get the LATEX document
“back in control” of how the index is formatted. Certainly it is the document
which has the final say about what the command in the .ind file actually do,

1I’m using the default makeindex metacharacters in these examples, but the style file provided
for this package actually uses the same metacharacters as those style files provided by the doc
package—hence the ‘doc’ in ‘docindex’.

2LATEX2ε∗ is the name of the LATEX version after LATEX2ε. Rather than being a completely
different kernel/format, LATEX2ε∗ is (will be) implemented as a collection of LATEX2ε packages
which replace parts of the kernel. More information and package code can be found on the
LATEX-project website [6].

2

but the traditional makeindex style files that are used place severe restrictions on
the formatting of the index simply because they control where the commands are
put. docindex tries to reduce these restrictions by making all texts in the index
arguments of commands. Certainly there is a lot more that could be done in this
direction—in particular, the (page) numbers in the index could be coded as a \do-
type list rather than as an explicitly comma-separated list as is done now—but
what is in docindex at the moment seems to satisfy all my current needs.

2 Usage

2.1 Straightforward usage

To make use of the docindex package in formatting the index and list of changes
of a doc-type LATEX document, you must do the following:

1. Load the docindex package (or probably rather the docidx2e package—see
below).

2. Make sure that the index entries does not use any commands, such as \verb,
that rely on changing catcodes or otherwise need to be executed before the
entire entry text has been tokenized.

3. Generate the .ind and .gls files using docindex.ist as style file for make-
index.

(Item 2 may seem like a monumental task if one considers what the indices of doc
documents traditionally looks like—there’s a \verb for every macro name in the
index—but it is really not that bad. docindex loads the xdoc package [4] which
redefines macro, the cross-referencing mechanism, etc. so that the index entries
generated by these no longer uses \verb. What is left for you to deal with are
merely the possible uses of \verb in explicit \index or \SortIndex commands.)

What advantages are there then for the normal user in having docindex for-
matting the index and list of changes, as opposed to using the default mechanisms
in the doc package? I can only think of two: the index or list of changes may be
typeset in a single column and the same makeindex style file can be used for both
index and list of changes. Neither advantage is significant. Instead the advantage
of docindex lies in that it becomes much simpler to change the formatting, which is
rather an advantage for advanced users which have special needs, and in particular
one can do this without having to supply e.g. extra makeindex style files.

Another important point is that what you will want to use is probably not
the LATEX2ε∗ docindex package, but the “downgraded” LATEX2ε version docidx2e,
as the former uses the galley2 package which currently wrecks pretty much all
justification in all existing document classes. docidx2e provides the same features
as docindex, but configuring it is somewhat more cumbersome since template won’t
do most of the coding for you. It is however rather straightforward to convert a
definition using the docindex package to something which achieves the same results
with the docidx2e package.

2.2 Multiple indices

The docindex package makes it comparatively simple to include several indices
in the same document: all one has to do is use an instance or template of type

3

docindex for each index one wishes to typeset. The syntax for using such an
instance is

\UseInstance{docindex}{〈instance〉}{〈prologue〉}{〈epilogue〉}

The 〈prologue〉 and 〈epilogue〉 are texts which will be printed just before and after
the index, respectively, and either may be empty. The text for the index itself
is read from another file, the name and extentsion of which are specified by the
instance. The std template prints the 〈prologue〉 and 〈epilogue〉 in one-column
mode, whereas the index itself can be printed in one- or multicolumn mode (the
default is three columns).

The doc commands \PrintIndex and \PrintGlossary are redefined to be

\UseInstance{docindex}{index}{\index@prologue}{}

and

\UseInstance{docindex}{changes}{\glossary@prologue}{}

respectively. The index and changes instances of type docindex give the same
formatting as the doc defaults. (The docidx2e definitions even use the doc package
parameters where applicable, but in docindex it is much simpler to redefine the
instance from scratch.)

The format of the sorted index files (.ind, .gls, etc.) that a docindex instance
inputs is rather complicated and I would suggest that the generation of these
files is left to the makeindex program, but the complete syntax is described in
Subsection 3.3. The syntax of the unsorted index files (.idx, .glo, etc.) is
simpler; there are only a few things that are different from the index files of the
doc package.

The foremost difference is that the index entries should begin not with
\indexentry or \glossaryentry, but with \docindexentry. The xdoc package
provides hooks with which one can change these texts in entries generated using
the \index and \glossary commands (as well as higher-level commands built on
these, such as the \SortIndex and \changes commands) and docindex will use
these hooks unless it gets passed the oldkeywords option. If you are creating aoldkeywords option

third unsorted index file then you will have to make sure that the command for
writing to that file uses \docindexentry in the right place.

The other difference concerns the composite page numbers. The string which
separates the parts of a composite page number is not a hyphen ‘-’, but the string
‘\+’. (The \+ command is locally defined for the typesetting of each index by the
docindex template being used, and the default is to typeset a hyphen.) Again the
xdoc package provides a hook for this, and this hook is used by docindex unless it
gets passed the oldkeywords option.

It also deserves to be listed which the metacharacters are that are the same
as in doc indices. The level separator is ‘>’, the sort key/item text separator is
‘=’, and the quote character is ‘!’. All other makeindex metacharacter parameters
have their default values.

2.3 Configuration

Configuration of the layout provided by the docindex package is primarily done by
redefining the index and changes instances of type docindex, since these are the
instances that are used by the \PrintIndex and \PrintChanges commands.

4

The index in the source2e.tex file (the main driver for the LATEX2ε source)
differs from the default in three respects: it is set in two columns rather than three,
there is no seperator character between the parts of a composite page number, and
the pagestyle is set to docindex during the index. This is set up by the redefinition

\DeclareInstance{docindex}{index}{std}{

columns=2, page-compositor={}, pagestyle=docindex

}

(There are however also some changes of parameters related to linebreaking; more
on that in connection to configuration of the changes instance below.)

Another kind of modification can be found in the tclldoc package [3]. Here the
primary level in the index is used for names of procedures and variables, whereas
the secondary level for the namespace of the same (the same name may have
different definitions in different namespaces). If there is only one namespace for
a given name then it is probably overkill to format them as two different index
items, but better to join them. This can be achieved through the redefinition

\DeclareInstance{docindex}{index}{std}{%

item1=fixed-r1a, item2=aloneaccept2

}%

An item handled by the fixed-r1a instance (of type indexitem) always tries to
join with the following item but rejects to join with the preceeding one. An item
handled by the aloneaccept2 instance accepts to join with the preceeding item
if neither that nor the following item is a secondary level item. Thus an item
for a name will join with the following item for a namespace if there is only one
such item. As the reader no doubt realises, this also solves the problem with the
Bernoullis that was described in the introduction.

As for configuring the list of changes formatting, it is instructive to start by
considering its default definition:

\DeclareInstance{docindex}{changes}{std}{

file-extension = gls,

item2 = fixed-r2a-nocomma,

item3 = fixed-a3r,

columns = 2,

letter-format = ,

letter-skip = 0pt

}

In the list of changes a secondary level item (which contains the name of the
macro or whatever which was changed) is joined with the following tertiary level
item (which details the change that was made). There are two columns and letter
groups are not given any special formatting.

The definition of changes that would be used for source2e.tex differs from
the above in only one keyval, namely body-setup, but that contains quite a lot of
material. To begin with there is the default \small which selects the font. Then
there is a \makeatletter which is needed because some \changes entries in the
LATEX sources include commands (e.g. \TeX) that (when written to file) expand to
other commands whose names include the @ character. If these are to be tokenized
correctly, @ must be a letter when the .gls file is being inputted. Last, but not
least, there is a modification of the linebreaking parameters:

\UseTemplate{linebreak}{TeX}{

5

The file source2e.tex explicitly sets hbadness and hfuzz to make TEX shut up
about over- and underfull hboxes.

hbadness=10000, hfuzz=\maxdimen,

In addition to this, there are a couple of parameters that are set by the multicols
environment to values quite different from the defaults of the TeX template and
thus must be set too. Here they are shown with their default values. The value
of emergencystretch could probably be increased.

pretolerance=-1, tolerance=9999, emergencystretch=8pt

}

Summing that up, we arrive at the following definition of the changes instance
for source2e.tex.

\DeclareInstance{docindex}{changes}{std}{

file-extension = gls,

item2 = fixed-r2a-nocomma,

item3 = fixed-a3r,

columns = 2,

letter-format = ,

letter-skip = 0pt,

body-setup = \small\makeatletter

\UseTemplate{linebreak}{TeX}{

hbadness=10000, hfuzz=\maxdimen,

pretolerance=-1, tolerance=9999, emergencystretch=8pt

}

}

Another example can be found in the fisource package3 (v 2.10 or later), which
sets up formatting for the fontinst source. There the list of changes should be set
in one column, with items from the tertiary level being joined with their parent
secondary level items iff the tertiary item is the only one having that particular
parent item. This is achieved through the definition

\DeclareInstance{docindex}{changes}{std}{%

file-extension = gls,

item2 = fixed-r2a-nocomma,

item3 = aloneaccept3,

columns = 1,

letter-format = {},

letter-skip = 0pt

}

where the difference to the default definition is in the values for the item3 and
columns keys.

For details on what they various keys mean, see the declaration of the std
template of type docindex on page 22.

With the docidx2e package, configuration follows the same logic, even though
it is much more technical as one has to define the instances without the help of a
template. The default instance definitions for the docidx2e package are the

3It should probably rather be made a document class, but I haven’t found it that necessary
to change that aspect of it.

6

\@namedef{TP@I{}{docindex}{index}}#1#2{. . . }
\@namedef{TP@I{}{docindex}{changes}}#1#2{. . . }

that begin on pages 25 and 27 respectively.

3 Implementation

3.1 docstrip modules

This file contains a number of docstrip module directives, and many of these guard
code that is not going to be used. In part this mirrors the development of the
code (and may get cleared up eventually), but most of this duplication has to do
with making the code work in many different set-ups (some of which involve other
packages whose interface is rapidly changing).

The modules which control LATEX code are:

pkg Main guard for code that is to end up in some LATEX package.

template Guard for code which uses features of the template package. This code
will end up in the docindex package, whereas the equivalent code which avoids
using templates ends up in the docidx2e package.

default This code protects the default values for template keys. The syntax for
this is changing, so the default values are currently being assigned in the
template bodies instead.

The modules which control makeindex style files are:

ist Code for the main style file docindex.ist.

idx Code for a style file which is like the main one, but the input parameters are
set to the same values as in the standard LATEX gind.ist.

glo Code for a style file which is like the main one, but the input parameters are
set to the same values as in the standard LATEX gglo.ist.

3.2 Initial stuff

1 〈∗pkg〉
2 \NeedsTeXFormat{LaTeX2e}

3 \ProvidesPackage

4 〈template〉 {docindex}

5 〈!template〉 {docidx2e}

6 [2001/04/11 v1.00 doc index formatting package]

Since the multicols environment is used by the std template of type
docindex, the multicol package must have been loaded.
7 \RequirePackage{multicol}

This will probably change in docindex once I get around to check how this kind of
thing is implemented in the LATEX2ε∗ output routine.

Since the docindex pagestyle may be used the xdoc package must have been
loaded. This also loads the doc package which contains the definition of \pfill.
8 \RequirePackage{xdoc2}[2001/03/26]

7

oldkeywords option The oldkeywords option tells the docindex package to not change the index entry
keywords from the doc defaults. The code for this option appears further down.
9 \DeclareOption{oldkeywords}{}

usedocindexps option The usedocindexps option tells the docindex package to set the pagestyle to
docindex (defined by xdoc) when typesetting the index. The code for this op-
tion appears further down.
10 \DeclareOption{usedocindexps}{}

11 \ProcessOptions\relax

12 〈/pkg〉

3.3 Index style files

The makeindex style files uses four commands. The most important command is
\indexitem, which has the two syntaxes\indexitem

\indexitem{〈level〉}{〈text〉}{〈next level〉}
\indexitem{〈level〉}{〈text〉}{9}{〈numbers〉}{〈next level〉}

The 〈level〉 is an integer in the range 1–3, the 〈next level〉 is an integer in the
range 0–3, the 〈text〉 is the item text, and the 〈numbers〉 is a list of (page or the
like) numbers. The reason for this dual syntax is limitations of makeindex: there
is no way of making the text inserted after an item depend on whether there are
any page numbers for this item, so one cannot make 〈numbers〉 a straightforward
optional argument.

The level numbers specify at what level the item is. Level 1 corresponds to
\item, level 2 corresponds to \subitem, and level 3 corresponds to \subsubitem.
The 〈next level〉 number may also be 0, and that denotes non-\indexitem material
such as a space between letter groups or the end of the index. The purpose of the
〈next level〉 argument is to let the formatting of an item depend on what level the
next item has, a feature that makeindex alone doesn’t provide. Since makeindex
only supports putting text in front of things, each new item must begin by inserting
the closing brace on the second last argument and the very last argument of the
previous item before it can do anything for itself. This leads to the following
contents of the makeindex item_. . . parameters.

13 〈∗ist | idx | glo〉
14 item_0 "}{1}\n\\indexitem{1}{"

15 item_1 "}{2}\n \\indexitem{2}{"

16 item_01 "}{2}\n \\indexitem{2}{"

17 item_x1 "}{2}\n \\indexitem{2}{"

18 item_2 "}{3}\n \\indexitem{3}{"

19 item_12 "}{3}\n \\indexitem{3}{"

20 item_x2 "}{3}\n \\indexitem{3}{"

21 delim_0 "}{9}{"

22 delim_1 "}{9}{"

23 delim_2 "}{9}{"

24 delim_n ", "

25 delim_r "--"

26 〈/ist | idx | glo〉

8

\indexitem

\DI@indexitem

\DI@indexitem@

\DI@last@level

The \indexitem command (and its subsidiary macros \DI@indexitem and
\DI@indexitem@ only handle argument grabbing and some elementary process-
ing of level numbers. The formatting of the item is instead handled by the
\DI@indexitem@〈level〉, where 〈level〉 is the roman numeral i, ii, or iii, fam-
ily of control sequences. \indexitem itself doesn’t grab any arguments, instead
it inserts the contents of \DI@last@level as an additional argument in front of
\DI@indexitem. The actual argument structures of the other macros are

\DI@indexitem{〈last〉}{〈this〉}{〈text〉}{〈next/9 〉}
\DI@indexitem@{〈cmd〉}{〈last〉}{9}{〈text〉}\NoValue{〈figures〉}{〈next〉}

where 〈this〉 is the level of this item, 〈next〉 is the level of the next item, 〈text〉 is
the item text, and 〈figures〉 are the (page) numbers for this item. Several of the
arguments of \DI@indexitem@ are immediately gobbled; they are only used when
the original \indexitem did not have a 〈numbers〉 argument.

The \DI@last@level macro stores the level of the last item before the current.
It is set and used by \DI@indexitem@.
27 〈∗pkg〉
28 \newcommand\indexitem{%

29 \relax

30 \expandafter\DI@indexitem \expandafter{\DI@last@level}%

31 }%

32 \def\DI@indexitem#1#2#3#4{%

33 \edef\DI@last@level{\number#2\expandafter}%

34 \ifnum #4=9

35 \expandafter\expandafter \expandafter\DI@indexitem@

36 \fi

37 \csname DI@indexitem@\romannumeral#2\expandafter\endcsname

38 {#1}{#4}{#3}\NoValue

39 }

40 \def\DI@indexitem@#1#2#3#4#5#6#7{#1{#2}{#7}{#4}{#6}}

41 \def\DI@last@level{0}

42 〈/pkg〉

The \DI@indexitem@〈level〉, where 〈level〉 is the lower case roman numeral\DI@indexitem@〈level〉
form of the level number, family of control sequences have the syntax

\DI@indexitem@〈level〉 {〈previous〉}{〈next〉}{〈text〉}{〈figures〉}

where 〈previous〉 and 〈next〉 are the levels of the previous and following index
items, 〈text〉 is the entry text of this item, and 〈figures〉 are the (page) numbers
for this item, if it has any, or the token \NoValue, if it hasn’t.

43 〈∗ist | idx | glo〉
44 group_skip "}{0}\n%^^A\n\\indexnewletter{0}{"

45 heading_prefix ""

46 heading_suffix ""

47 headings_flag 1

48 〈/ist | idx | glo〉

\indexnewletter The \indexnewletter command is placed in front of a new letter group. It has
the syntax

9

\indexnewletter{〈first〉}{〈letter〉}{〈next〉}

where 〈first〉 is a flag (1 if this \indexnewletter is at the very beginning of
the index, 0 otherwise), 〈letter〉 is the letter name (according to the makeindex
program; it can be e.g. the string ‘Symbols’) and 〈next〉 is the level of the next
item (I think this will always be 1 with makeindex). The command takes care of
declining an offer to join with the previous index item, inserts some vertical space
if the 〈first〉 is 0, print the 〈letter〉 using \DI@letter@format, and doesn’t offer
to join with the following item.
49 〈∗pkg〉
50 \@ifundefined{indexnewletter}{}{%

51 \PackageInfo

52 〈template〉 {docindex}

53 〈!template〉 {docidx2e}

54 {Command \protect\indexnewletter\space redefined}

55 }

56 \outer\def\indexnewletter#1#2#3{%

57 \DI@item@nojoin

58 \ifnum #1=\z@ \vspace{\DI@letter@skip}\fi

59 \DI@letter@format{#2}%

60 \def\DI@last@level{0}%

61 \let\DI@item@join\@firstofone

62 \let\DI@item@nojoin\@empty

63 }

64 〈/pkg〉

The index style files also need to set some parameters which aren’t directly
connected to the commands provided by the docindex package. First there’s the
input style parameters:
65 〈∗ist | idx | glo〉
66 actual ’=’

67 quote ’!’

68 level ’>’

Then the page precedence should be changed. This is mainly for the convenience
of use with documents that \DocInclude files, since these by default number the
files using letters.
69 page_precedence "naArR"

In docindex.ist, both the keyword and the page_compositor strings are differ-
ent from their standard values. It turns out to be hard to use a normal command
as page compositor, because makeindex always rejects spaces and braces in the
page number even if they is in the page_compositor parameter!
70 〈ist〉keyword "\\xdocindexentry"

71 〈ist〉page_compositor "\\+"

Finally, in the style file for the list of changes, the keyword must be changed to
\glossaryentry.
72 〈glo〉keyword "\\glossaryentry"

73 〈/ist | idx | glo〉

oldkeywords option

\XD@index@keyword

\XD@glossary@keyword

\XD@page@compositor

To make the contents of the .idx and .glo files compatible with the input pa-
rameter settings of docindex.ist, some macros used by the xdoc package must

10

be redefined. This can however be stopped if the oldkeywords option is passed
to the docindex package.
74 〈∗pkg〉
75 \@ifpackagewith

76 〈template〉 {docindex}

77 〈!template〉 {docidx2e}

78 {oldkeywords}{}{

79 \edef\XD@index@keyword{\@backslashchar xdocindexentry}

80 \let\XD@glossary@keyword\XD@index@keyword

81 \def\XD@page@compositor{\@backslashchar +}

82 }

\docindexguard

\DI@ind@setup

The first line of every docindex style sorted index file is

\docindexguard{\endinput}

If the index file is inputted as a classical sorted index file then this will produce
an undefined command error and no more lines in the index will be read. If
the index file is inputted using the conventions of the docindex package then the
\docindexguard will instead gobble the \endinput so that the file will be read.

One can also have the opposite problem: a classical style index file is be-
ing input using docindex conventions. It is to overcome this problem that the
\DI@ind@setup command has been introduced. Classical style index files be-
gin by a \begin command, so that command is temporarily redefined to print
a warning message and \endinput the file. Should the first command in-
stead be \docindexguard then everything will be reset to normal. To accom-
plish this, \DI@ind@setup opens a group which should be closed by the initial
\docindexguard or \begin.
83 \def\DI@ind@setup{\bgroup

84 \def\docindexguard##1{\egroup}%

85 \def\begin##1{%

86 \egroup

87 \PackageWarningNoLine

88 〈template〉 {docindex}%

89 〈!template〉 {docidx2e}%

90 {Ignoring old style index file}

91 \endinput

92 }%

93 }

94 〈/pkg〉

95 〈∗idx | glo | ist〉
96 preamble "\\docindexguard{\\endinput}\n%^^A\n\\indexnewletter{1}{"

97 postamble "}{0}\n\\endinput"

98 〈/idx | glo | ist〉

In summary, this is the BNF syntax for a sorted index file that is to be typeset
using docindex:

〈sorted index file〉 −→ 〈guard〉〈lettergroups〉\endinput
〈guard〉 −→ \docindexguard{\endinput}
〈lettergroups〉 −→ 〈lettergroup〉 | 〈lettergroup〉〈lettergroups〉
〈lettergroup〉 −→ 〈heading〉〈items〉

11

〈heading〉 −→ \indexnewletter{〈first〉}{〈letter〉}{〈next〉}
〈items〉 −→ 〈empty〉 | 〈item〉〈items〉
〈item〉 −→ \indexitem{〈level〉}{〈text〉}{〈next〉} |

\indexitem{〈level〉}{〈text〉}{9}{〈numbers〉}{〈next〉}

A 〈level〉 is 1, 2, or 3. A 〈next〉 is 0, 1, 2, or 3. Within a 〈lettergroup〉, the 〈next〉
of one 〈item〉 or the 〈heading〉 must equal the 〈level〉 of the next 〈item〉 and the
〈next〉 of the last item must be 0. The 〈first〉 should be 1 in the first 〈lettergroup〉
and 0 in all the others.

3.4 Template mechanisms

The docindex package loads the xhj and galley2 packages to gain access to the
justification type templates. This indirectly loads the xparse and template
packages.
99 〈∗pkg〉

100 〈template〉\RequirePackage{xhj,galley2}
Since the docidx2e package doesn’t use the template mechanisms provided by

the template package, but still is to follow the logic of the docindex package which
does use these mechanisms, it becomes convenient to define fakes for a couple of
template commands. First docidx2e checks if the real template package has been
loaded and emits a warning if it has.

101 〈∗!template〉
102 \@ifpackageloaded{template}{

103 \PackageWarningNoLine{docidx2e}{The docidx2e package is only meant%

104 \MessageBreak for use when LaTeX2e* packages like

105 template\MessageBreak are not available.}

106 }{}

Before continuing with the definitions, some of the data structures used by
the template mechanisms must be explained. A template instance is really only
a macro; what makes instances different from macros in general is that they usu-
ally aren’t explicitly programmed. Instead they are formed by combining two
different pieces of code: one which is the code part of some template, and one
which is a piece of code which sets the container macros/registers/parameters
for the key values of this template. In general, the first piece of code contains
the programming-like aspects of what the instance does, whereas the latter con-
tains those that have to do with lauout and design. The advantage of this model
is that it lets you implement many layouts without requiring you to know every-
thing about LATEX programming that it would take to implement everything using
macros.

Instances are stored in control sequences of the form

\TP@I{〈collection〉}{〈type〉}{〈name〉}\TP@I{〈collection〉}
{〈type〉}{〈name〉}

The 〈type〉 is the primary distinction between instances; for each type there exists
a specification of what all instances of that type must do, and all instances of a type
must be interchangeable. In particular, all instances of a given template type must
have the same argument structure. The 〈name〉 is simply the name used to identify
the instance (amongst all other instances of that type). Finally, the 〈collection〉 is
something which can be used in circumstances where one needs to quickly switch
between different definitions of an instance. If they have different 〈collection〉s

12

then they can exist simutaneously; which of them is used is determined by which
collection is currently active.

Collections are active on a “per type” basis; which collection is active for
instances of type 〈type〉 is determined by the contents of the \TP@T{〈type〉} control\TP@T{〈type〉}
sequences, which are macros with the structure

{〈collection〉}{〈arguments〉}

If there is no instance with the requested name in the currently active collection
then the instance with the same name from the normal collection (whose name
is the empty string) will be used. The 〈arguments〉 part of the macro is simply
the number of arguments of instances of this type; it is only used when declaring
templates.

\UseCollection The \UseCollection command sets the active collection for a given type. It has
the syntax

\UseCollection{〈type〉}{〈collection〉}

This macro was used up to v 1.00 of docindex but a change in the package logic
made it unnecessary.

107 % \providecommand*\UseCollection[2]{%

108 % \expandafter\edef \csname TP@T{#1}\endcsname{%

109 % {#2}%

110 % {\expandafter\expandafter \expandafter\@secondoftwo

111 % \csname TP@T{#1}\endcsname}%

112 % }%

113 % }

\@letinstance The \@letinstance macro \lets the (currently used) instance with given name
and type to the 〈target〉 control sequence. It has the syntax

\@letinstance{〈target〉}{〈type〉}{〈name〉}

114 \def\@letinstance#1#2#3{%

115 \expandafter\let \expandafter#1%

116 \csname TP@I%

117 {\expandafter\expandafter \expandafter\@firstoftwo

118 \csname TP@T{#2}\endcsname}%

119 {#2}{#3}%

120 \endcsname

121 \ifx \relax#1%

122 \expandafter\let \expandafter#1\csname TP@I{}{#2}{#3}\endcsname

123 \fi

124 }

\UseInstance The \UseInstance calls the (currently used) instance with given name and type.
Its syntax is

\UseInstance{〈type〉}{〈name〉} 〈arguments of instance〉

125 \providecommand*\UseInstance[2]{%

126 \@letinstance\@tempa{#1}{#2}%

127 \ifx \relax\@tempa

128 \PackageError{docidx2e}{Instance #2 of type #1 undefined}\@eha

13

129 \else

130 \expandafter\@tempa

131 \fi

132 }

133 〈/!template〉

3.5 Templates for index item formatting

justification type In docidx2e, we have to provide a dummy definition of \TP@T{justification}.
134 〈!template〉\@namedef{TP@T{justification}}{{}{0}}

justification/indexitem1
instance

justification/indexitem2
instance

justification/indexitem3
instance

The indexitem〈level〉 instances of the justification template set up paragraph
indentation etc. for a paragraph containing an index item at that level. The layout
is the same as that used by the doc package, but it is not specified in quite the
same way.

135 〈∗template〉
136 \DeclareInstance{justification}{indexitem1}{single}{

137 leftskip=30pt, rightskip=15pt, startskip=-30pt, parfillskip=-15pt,

138 linefillskip=0pt plus 1fil, parindent=0pt

139 }

140 \DeclareInstance{justification}{indexitem2}{single}{

141 leftskip=30pt, rightskip=15pt, startskip=-15pt, parfillskip=-15pt,

142 linefillskip=0pt plus 1fil, parindent=0pt

143 }

144 \DeclareInstance{justification}{indexitem3}{single}{

145 leftskip=30pt, rightskip=15pt, startskip=-5pt, parfillskip=-15pt,

146 linefillskip=0pt plus 1fil, parindent=0pt

147 }

148 〈/template〉
149 〈∗!template〉
150 \@namedef{TP@I{}{justification}{indexitem1}}{%

151 \leftskip=30\p@

152 \rightskip=15\p@

153 \parindent=-30\p@

154 \parfillskip=-\rightskip

155 }

156 \@namedef{TP@I{}{justification}{indexitem2}}{%

157 \leftskip=30\p@

158 \rightskip=15\p@

159 \parindent=-15\p@

160 \parfillskip=-\rightskip

161 }

162 \@namedef{TP@I{}{justification}{indexitem3}}{%

163 \leftskip=30\p@

164 \rightskip=15\p@

165 \parindent=-5\p@

166 \parfillskip=-\rightskip

167 }

168 〈/!template〉

3.5.1 The indexitem template type

indexitem type

\DI@item@nojoin

\DI@item@join

The argument structure of a template of type indexitem is

14

{〈previous〉}{〈next〉}{〈text〉}{〈figures〉}

〈previous〉 and 〈next〉 are the level codes of the index item before and after the
current item, 〈text〉 is the item text of the current index item, and 〈figures〉 are
the (page) numbers for this item, if it has any, or the token \NoValue, if it hasn’t.

Templates of this type format and typeset one item in an index. In doing so
they may do pretty much anything as long as the other items aren’t affected: they
may start and end paragraphs, change the paragraph justification, . . .

There is however one area in which the rules are rather strict, and that has to
do with when two items can be joined. In a case where item A is followed by item
B, item A can propose to item B that they should be joined and item B can then
accept or decline this offer. Technically the offer consists of defining the two macros
\DI@item@join and \DI@item@nojoin. If item B accepts the offer it will execute
\DI@item@join and if it declines the offer it will execute \DI@item@nojoin. A
typical definition of \DI@item@join might be to insert a punctuation mark and a
typical definition of \DI@item@nojoin might be to end the current paragraph.

There is however also a third case, namely that no offer was given. In this
case \DI@item@nojoin should be \let to \@empty and \DI@item@join should be
\let to \@firstofone. The reason for this last rule is that \DI@item@join has
the syntax

\DI@item@join{〈no-join recovery code〉}

where the 〈no-join recovery code〉 is code that item B needs to have executed if
there is no join although item B would have accepted it. \DI@item@nojoin, on
the other hand, takes no argument.

169 〈template〉\DeclareTemplateType{indexitem}{4}
170 〈!template〉\@namedef{TP@T{indexitem}}{{}{4}}
171 \let\DI@item@join=\@firstofone

172 \let\DI@item@nojoin=\@empty

indexitem/fixed template The fixed template of type indexitem formats an item as the items in doc’s
theindex environment. It is fixed in that it ignores the levels of the surrounding
items.

The keys for this template are:

justification-setup (i) This is a template instance of type justification. It
sets the justification for the paragraph containing the item, unless the item
is being joined with the preceeding item.

pre-join (b) A switch for whether the item should accept to be joined with the
item before. True means “accept”, false means “decline” (which is the de-
fault).

nofig-action (f1) If the 〈figures〉 argument is \NoValue then the 〈text〉 argument
is passed on to this macro for the actual formatting. The default expansion
is precisely the 〈text〉.

fig-action (f2) If the 〈figures〉 argument is not \NoValue then the 〈text〉 and
〈figures〉 arguments are passed on (in that order) to this macro for the actual
formatting. The default expansion is

〈text〉\pfill〈figures〉

15

post-join (b) A switch for whether the item should offer to join with the fol-
lowing item. True means “make offer”, false (which is the default) means
“don’t make offer”. Making the offer is furthermore conditioned by that the
〈figures〉 argument is \NoValue.

nojoin-extra (f0) Extra code which is inserted after the normal code for an item
if the item neither has any figures nor offers to join with the following item.
The default value is a space of length linefillskip followed by a \nopagebreak.

join-extra (f0) Extra text which is inserted after the normal text of the item if
there is a join, by default a comma and a space.

offjoin-extra (f0) Extra code which is inserted after the normal text of the item
if a join is offered but declined. The default value is a space of length line-
fillskip followed by a \nopagebreak (larger than the one from nojoin-extra;
if not for this, the default could have been taken to be \DI@nojoin@extra).

Note that the contents of the nojoin-extra, join-extra, and offjoin-extra keys
must be robust as they may be subjected to a \protected@edef.

173 〈∗template〉
174 \DeclareTemplate{indexitem}{fixed}{4}{

175 justification-setup =i{justification} \DI@item@justification,

176 pre-join =b

177 〈default〉 {false}

178 DI@prejoin@,

179 nofig-action =f1

180 〈default〉 {#1}

181 \DI@nofig,

182 fig-action =f2

183 〈default〉 {#1\pfill#2}

184 \DI@hasfig,

185 post-join =b

186 〈default〉 {false}

187 DI@postjoin@,

188 nojoin-extra =f0

189 〈default〉 {\hspace*{\justification@g}

190 〈default〉 \protect\nopagebreak[2]}

191 \DI@nojoin@extra,

192 join-extra =f0

193 〈default〉 {,\space}

194 \DI@join@extra,

195 offjoin-extra =f0

196 〈default〉 {\hspace*{\justification@g}

197 〈default〉 \protect\nopagebreak[4]}

198 \DI@offjoin@extra

199 }{%

200 〈∗!default〉
201 \let\ifDI@prejoin@\iffalse

202 \let\DI@nofig\@firstofone

203 \def\DI@hasfig##1##2{##1\pfill##2}%

204 \let\ifDI@postjoin@\iffalse

205 \def\DI@nojoin@extra{%

206 \hspace*{\justification@g}\protect\nopagebreak[2]%

207 }%

16

208 \def\DI@join@extra{,\space}%

209 \def\DI@offjoin@extra{%

210 \hspace*{\justification@g}\protect\nopagebreak[4]%

211 }%

212 〈/!default〉
213 \DoParameterAssignments

214 \ifDI@prejoin@

215 \DI@item@join{\DI@item@justification}%

216 \else

217 \DI@item@nojoin\DI@item@justification

218 \fi

219 \let\DI@item@join\@firstofone

220 \let\DI@item@nojoin\@empty

221 \IfNoValueTF{#4}{%

222 \DI@nofig{#3}%

223 \ifDI@postjoin@

224 \protected@edef\DI@item@join##1{\DI@join@extra}%

225 \protected@edef\DI@item@nojoin{\DI@offjoin@extra\protect\par}%

226 \else

227 \DI@nojoin@extra\par

228 \fi

229 }{%

230 \DI@hasfig{#3}{#4}%

231 \par

232 }%

233 \ignorespaces

234 }

indexitem/fixed1 instance

indexitem/fixed2 instance

indexitem/fixed3 instance

The fixed1, fixed2, and fixed3 instances of type indexitem are simply the
fixed template with different values assigned to the justification-setup key.

235 \DeclareInstance{indexitem}{fixed1}{fixed}

236 {justification-setup = indexitem1}

237 \DeclareInstance{indexitem}{fixed2}{fixed}

238 {justification-setup = indexitem2}

239 \DeclareInstance{indexitem}{fixed3}{fixed}

240 {justification-setup = indexitem3}

241 〈/template〉
242 〈∗!template〉
243 \@namedef{TP@I{}{indexitem}{fixed1}}#1#2#3#4{%

244 \@letinstance\DI@item@justification{justification}{indexitem1}%

245 \DI@item@nojoin

246 \DI@item@justification

247 \ifx \NoValue#4%

248 #3\nobreak\hfil\nopagebreak[2]%

249 \else

250 #3\pfill#4%

251 \fi

252 \let\DI@item@join\@firstofone

253 \let\DI@item@nojoin\@empty

254 \par

255 }

256 \@namedef{TP@I{}{indexitem}{fixed2}}#1#2#3#4{%

257 \@letinstance\DI@item@justification{justification}{indexitem2}%

258 \DI@item@nojoin

17

259 \DI@item@justification

260 \ifx \NoValue#4%

261 #3\nobreak\hfil\nopagebreak[2]%

262 \else

263 #3\pfill#4%

264 \fi

265 \let\DI@item@join\@firstofone

266 \let\DI@item@nojoin\@empty

267 \par

268 }

269 \@namedef{TP@I{}{indexitem}{fixed3}}#1#2#3#4{%

270 \@letinstance\DI@item@justification{justification}{indexitem3}%

271 \DI@item@nojoin

272 \DI@item@justification

273 \ifx \NoValue#4%

274 #3\nobreak\hfil\nopagebreak[2]%

275 \else

276 #3\pfill#4%

277 \fi

278 \let\DI@item@join\@firstofone

279 \let\DI@item@nojoin\@empty

280 \par

281 }

282 〈/!template〉

indexitem/fixed-r1a
instance

indexitem/
fixed-r2a-nocomma instance

indexitem/fixed-a3r
instance

The fixed-r1a, fixed-r2a-nocomma, and fixed-a3r instances of type indexitem
are again based on the fixed template, but here they always accept (or offer) to
join with one neighbouring item, whereas they always reject to join with the
other. As before, they differ in their values of the justification-setup key, and the
-nocomma is because that instance only inserts a space, not a comma and a space,
when items are joined.

283 〈∗template〉
284 \DeclareInstance{indexitem}{fixed-r1a}{fixed}

285 {justification-setup = indexitem1, post-join = true}

286 \DeclareInstance{indexitem}{fixed-r2a-nocomma}{fixed}

287 {justification-setup = indexitem2,

288 post-join = true, join-extra = {\space}}

289 \DeclareInstance{indexitem}{fixed-a3r}{fixed}

290 {justification-setup = indexitem3, pre-join = true}

291 〈/template〉
292 〈∗!template〉
293 \@namedef{TP@I{}{indexitem}{fixed-r1a}}#1#2#3#4{%

294 \@letinstance\DI@item@justification{justification}{indexitem1}%

295 \DI@item@nojoin

296 \DI@item@justification

297 \ifx \NoValue#4%

298 #3%

299 \def\DI@item@join##1{, }%

300 \def\DI@item@nojoin{\nobreak\hfil\nopagebreak[4]\par}%

301 \else

302 #3\pfill#4\par

303 \let\DI@item@join\@firstofone

304 \let\DI@item@nojoin\@empty

305 \fi

18

306 \ignorespaces

307 }

308 \@namedef{TP@I{}{indexitem}{fixed-r2a-nocomma}}#1#2#3#4{%

309 \@letinstance\DI@item@justification{justification}{indexitem2}%

310 \DI@item@nojoin

311 \DI@item@justification

312 \ifx \NoValue#4%

313 #3%

314 \def\DI@item@join##1{ }%

315 \def\DI@item@nojoin{\nobreak\hfil\nopagebreak[4]\par}%

316 \else

317 #3\pfill#4\par

318 \let\DI@item@join\@firstofone

319 \let\DI@item@nojoin\@empty

320 \fi

321 \ignorespaces

322 }

323 \@namedef{TP@I{}{indexitem}{fixed-a3r}}#1#2#3#4{%

324 \@letinstance\DI@item@justification{justification}{indexitem3}%

325 \DI@item@join{\DI@item@justification}%

326 \ifx \NoValue#4%

327 #3\hfil\nopagebreak[2]%

328 \else

329 #3\pfill#4%

330 \fi

331 \let\DI@item@join\@firstofone

332 \let\DI@item@nojoin\@empty

333 \par

334 }

335 〈/!template〉

indexitem/aloneaccept
template

The aloneaccept template of type indexitem formats an item as the items in
doc’s theindex environment. It accepts to be joined with the preceeding item if
and only if both that and the following item are at a lower level than the item
itself is.

The keys for this template are:

justification-setup (i) This is a template instance of type justification. It
sets the justification for the paragraph containing the item, unless the item
is being joined with the preceeding item.

ownlevel (C) This is the (nominal) level of this item; it will accept a join with
the preceeding item if and only if the levels of both that and the following
item are different from this number. The default is 2.

nofig-action (f1) If the 〈figures〉 argument is \NoValue then the 〈text〉 argument
is passed on to this macro for the actual formatting. The default expansion
is the 〈text〉 followed by a space of linefillskip.

fig-action (f2) If the 〈figures〉 argument is not \NoValue then the 〈text〉 and
〈figures〉 arguments are passed on (in that order) to this macro for the actual
formatting. The default expansion is

〈text〉\pfill〈figures〉

19

post-join (b) A switch for whether the item should offer to join with the fol-
lowing item. True means “make offer”, false (which is the default) means
“don’t make offer”. Making the offer is furthermore conditioned by that the
〈figures〉 argument is \NoValue.

nojoin-extra (f0) Extra code which is inserted after the normal code for an item
if the item neither has any figures nor offers to join with the following item.
The default value is a space of length linefillskip.

join-extra (f0) Extra text which is inserted after the normal text of the item if
there is a join, by default a comma and a space.

offjoin-extra (f0) Extra code which is inserted after the normal text of the item
if a join is offered but declined, by default the nojoin-extra code followed by
a \nopagebreak.

Note that the contents of the nojoin-extra, join-extra, and offjoin-extra keys
must be robust as they may be subjected to a \protected@edef.

336 〈∗template〉
337 \DeclareTemplate{indexitem}{aloneaccept}{4}{

338 justification-setup =i{justification} \DI@item@justification,

339 ownlevel =C

340 〈default〉 {2}

341 \DI@this@level,

342 nofig-action =f1

343 〈default〉 {#1}

344 \DI@nofig,

345 fig-action =f2

346 〈default〉 {#1\pfill#2}

347 \DI@hasfig,

348 post-join =b

349 〈default〉 {false}

350 DI@postjoin@,

351 nojoin-extra =f0

352 〈default〉 {\hspace*{\justification@g}}

353 \DI@nojoin@extra,

354 join-extra =f0

355 〈default〉 {,\space}

356 \DI@join@extra,

357 offjoin-extra =f0

358 〈default〉 {\DI@nojoin@extra\protect\nopagebreak[4]}

359 \DI@offjoin@extra

360 }{%

361 〈∗!default〉
362 \def\DI@this@level{2}%

363 \let\DI@nofig\@firstofone

364 \def\DI@hasfig##1##2{##1\pfill##2}%

365 \let\ifDI@postjoin@\iffalse

366 \def\DI@nojoin@extra{\hspace*{\justification@g}}%

367 \def\DI@join@extra{,\space}%

368 \def\DI@offjoin@extra{\DI@nojoin@extra\protect\nopagebreak[4]}%

369 〈/!default〉
370 \DoParameterAssignments

371 \ifnum \DI@this@level=#1

20

372 \DI@item@nojoin \DI@item@justification

373 \else\ifnum \DI@this@level=#2

374 \DI@item@nojoin \DI@item@justification

375 \else

376 \DI@item@join{\DI@item@justification}%

377 \fi\fi

378 \let\DI@item@join\@firstofone

379 \let\DI@item@nojoin\@empty

380 \IfNoValueTF{#4}{%

381 \DI@nofig{#3}%

382 \ifDI@postjoin@

383 \protected@edef\DI@item@join##1{\DI@join@extra}%

384 \protected@edef\DI@item@nojoin{\DI@offjoin@extra\protect\par}%

385 \else

386 \DI@nojoin@extra \par

387 \fi

388 }{%

389 \DI@hasfig{#3}{#4}%

390 \par

391 }%

392 \ignorespaces

393 }

394 〈/template〉

indexitem/aloneaccept2
instance

indexitem/aloneaceept3
instance

The aloneaccept2 and aloneaccept3 instances of type indexitem are simply
the aloneaccept template with the levels fixed to two and three, respectively.

395 〈∗template〉
396 \DeclareInstance{indexitem}{aloneaccept2}{aloneaccept}

397 {justification-setup = indexitem2, ownlevel = 2}

398 \DeclareInstance{indexitem}{aloneaccept3}{aloneaccept}

399 {justification-setup = indexitem3, ownlevel = 3}

400 〈/template〉
401 〈∗!template〉
402 \@namedef{TP@I{}{indexitem}{aloneaccept2}}#1#2#3#4{%

403 \@letinstance\DI@item@justification{justification}{indexitem2}%

404 \ifnum #1=\tw@

405 \DI@item@nojoin \DI@item@justification

406 \else\ifnum #2=\tw@

407 \DI@item@nojoin \DI@item@justification

408 \else

409 \DI@item@join{\DI@item@justification}%

410 \fi\fi

411 \ifx \NoValue#4%

412 #3\nobreak\hfil\vadjust{}%

413 \else

414 #3\pfill #4%

415 \fi

416 \let\DI@item@join\@firstofone

417 \let\DI@item@nojoin\@empty

418 \par

419 }

420 \@namedef{TP@I{}{indexitem}{aloneaccept3}}#1#2#3#4{%

421 \@letinstance\DI@item@justification{justification}{indexitem3}%

422 \ifnum #1=\thr@@

21

423 \DI@item@nojoin \DI@item@justification

424 \else\ifnum #2=\thr@@

425 \DI@item@nojoin \DI@item@justification

426 \else

427 \DI@item@join{\DI@item@justification}%

428 \fi\fi

429 \ifx \NoValue#4%

430 #3\nobreak\hfil\vadjust{}%

431 \else

432 #3\pfill #4%

433 \fi

434 \let\DI@item@join\@firstofone

435 \let\DI@item@nojoin\@empty

436 \par

437 }

438 〈/!template〉

3.5.2 The docindex template type

docindex type A template of type docindex takes care of typesetting an index found in a file
(which is \inputted as part of this process), hence using an instance of type
docindex is the same kind of action that the \printindex and \printglossary
commands make.

The template decides from which file the index should be read. It takes two
arguments: the index prologue and the index epilogue. These are two pieces of
text (which may just as well include a sectioning command) that are printed just
before and after the index. Either argument may be empty. Immediately after
the file containing the body of the index has been inputted, the template must
execute \DI@item@nojoin to make sure that the last item is properly typeset.

Templates of type docindex must begin by opening a group and end by closing
it. They must furthermore locally define the following macros before any part of
the index is typeset.

\DI@indexitem@i, \DI@indexitem@ii, and \DI@indexitem@iii Handlers for in-
dex items at level 1, 2, and 3 respectively. These handlers must conform to
the specification for indexitem instances.

\DI@letter@skip, \DI@letter@format These are described in the comments to
the \indexnewletter command.

\+ The command for typesetting the separator between two parts of a composite
(page) number. This is a parameterless macro.

439 〈template〉\DeclareTemplateType{docindex}{2}
440 〈!template〉\@namedef{TP@T{docindex}}{{}{2}}

docindex/std template The std template of type docindex typesets an index while providing all the
formatting parameters of the doc index and list of changes (and a few more).

The keys of the template are:

file-name (n) The base name of the file in which the index is stored, by default
the \jobname.

file-extension (n) The extension of the file in which the index is stored, by
default ind.

22

item1 (i) indexitem instance for level 1 items, by default fixed1.

item2 (i) indexitem instance for level 2 items, by default fixed2.

item3 (i) indexitem instance for level 3 items, by default fixed3.

columns (C) The number of columns in the index, by default 3.

reserved-height (L) The minimal amount of vertical space that must be left on
the current page if the index is to start on it, by default 80 pt.

column-sep (l) The horizontal separation between columns in the index, by
default 10 pt. (This may seem strange in comparison with doc, since
\IndexParms contains the command \columnsep=15pt, but doc doesn’t ex-
ecute \IndexParms until LATEX is already in multi-column mode, and then
it is too late for the changed value to have any effect.)

prologue-setup (f0) Various commands setting layout parameters (e.g. the font)
for the prologue; by default empty.

body-setup (f0) Various commands setting layout parameters (e.g. the font) for
the body of the index; by default \small.

epilogue-setup (f0) Various commands setting layout parameters (e.g. the font)
for the epilogue; by default \normalsize (to counter the \small in the body-
setup).

letter-skip (L) The skip inserted before a new letter group, by default 10 pt plus
2 pt minus 3 pt.

letter-format (f1) The macro which formats new letter groups; the argument is
the heading for the group, as generated by makeindex. By defaults it typesets
the argument in boldface, centered on a line.

pagestyle (n) If this is nonempty then the pagestyle by that name will be se-
lected for the index. By default it is empty.

parskip (l) The value of \parskip to use inside the index, by default 0 pt plus
1 pt. This key value is likely to change as the LATEX2ε∗ interfaces for galleys
evolve.

page-compositor (f0) The text that is typeset to separate two parts of a com-
posite (page) number, by default a hyphen.

441 〈∗template〉
442 \DeclareTemplate{docindex}{std}{2}{

443 file-name =n

444 〈default〉 {\jobname}

445 \DI@file@name,

446 file-extension =n

447 〈default〉 {ind}

448 \DI@file@ext,

449 item1 =i{indexitem}

450 〈default〉 {fixed1}

451 \DI@indexitem@i,

452 item2 =i{indexitem}

23

453 〈default〉 {fixed2}

454 \DI@indexitem@ii,

455 item3 =i{indexitem}

456 〈default〉 {fixed3}

457 \DI@indexitem@iii,

458 reserved-height =L

459 〈default〉 {80pt}

460 \DI@reserved@height,

461 columns =C

462 〈default〉 {3}

463 \DI@columns,

464 column-sep =l

465 〈default〉 {10pt}

466 \columnsep,

467 prologue-setup =f0

468 〈default〉 {}

469 \DI@prologue@setup,

470 body-setup =f0

471 〈default〉 {\small}

472 \DI@body@setup,

473 epilogue-setup =f0

474 〈default〉 {\normalsize}

475 \DI@epilogue@setup,

476 letter-skip =L

477 〈default〉 {10pt plus 2pt minus 3pt}

478 \DI@letter@skip,

479 letter-format =f1

480 〈default〉 {\UseInstance{justification}{center}%

481 〈default〉 \textbf{#1}\nopagebreak\csname par\endcsname}

482 \DI@letter@format,

483 pagestyle =n

484 〈default〉 {}

485 \DI@pagestyle,

486 parskip =l

487 〈default〉 {0pt plus 1pt}

488 \parskip,

489 page-compositor =f0

490 〈default〉 {-}

491 \+

492 }{%

493 \begingroup

494 〈∗!default〉
495 \def\DI@file@name{\jobname}%

496 \def\DI@file@ext{ind}%

497 \@letinstance\DI@indexitem@i{indexitem}{fixed1}%

498 \@letinstance\DI@indexitem@ii{indexitem}{fixed2}%

499 \@letinstance\DI@indexitem@iii{indexitem}{fixed3}%

500 \def\DI@reserved@height{80pt}%

501 \def\DI@columns{3}%

502 \columnsep=10pt%

503 \let\DI@prologue@setup\@empty

504 \def\DI@body@setup{\small}%

505 \def\DI@epilogue@setup{\normalsize}%

506 \def\DI@letter@skip{10pt plus 2pt minus 3pt}%

24

507 \def\DI@letter@format##1{%

508 \UseInstance{justification}{center}%

509 \textbf{##1}\nopagebreak\par

510 }%

511 \parskip=\z@\@plus\p@

512 \let\DI@pagestyle\@empty

513 \def\+{-}%

514 〈/!default〉
515 \DoParameterAssignments

516 \IfFileExists{\DI@file@name.\DI@file@ext}{%

517 \ifnum \DI@columns>\@ne

518 \begin{multicols}{\DI@columns}%

519 [\DI@prologue@setup #1][\DI@reserved@height]%

520 \else

521 \enough@room{\DI@reserved@height}%

522 \DI@prologue@setup #1\par

523 \addvspace\multicolsep

524 \fi

525 \ifx \DI@pagestyle\@empty \else \pagestyle{\DI@pagestyle}\fi

526 \DI@body@setup

527 \DI@ind@setup

528 \input{\DI@file@name.\DI@file@ext}%

529 \DI@item@nojoin

530 \ifx \DI@pagestyle\@empty \else

531 \expandafter\thispagestyle \expandafter{\DI@pagestyle}%

532 \fi

533 \ifnum \DI@columns>\@ne

534 \end{multicols}%

535 \else

536 \enough@room\postmulticols

537 \addvspace\multicolsep

538 \fi

539 \DI@epilogue@setup #2\par

540 }{\typeout{No file \DI@file@name.\DI@file@ext.}}%

541 \endgroup

542 }

docindex/index instance

usedocindexps option

The index instance of the docindex template type prints the normal index (as
opposed to the list of changes). There are two different definitions of the instance:
one which sets the pagestyle in the index, and one which does not; which one
is used depends on whether the usedocindexps option has been passed to the
package or not.

543 \@ifpackagewith{docindex}{usedocindexps}{%

544 \DeclareInstance{docindex}{index}{std}{pagestyle=docindex}%

545 }{%

546 \DeclareInstance{docindex}{index}{std}{}%

547 }

548 〈/template〉
The implementations of the index instance in docidx2e are slightly off in that

they use doc parameters for various settings in the extent such parameters exist.
549 〈∗!template〉
550 \@ifpackagewith{docidx2e}{usedocindexps}{%

551 \@namedef{TP@I{}{docindex}{index}}#1#2{%

25

552 \begingroup

553 \@letinstance\DI@indexitem@i{indexitem}{fixed1}%

554 \@letinstance\DI@indexitem@ii{indexitem}{fixed2}%

555 \@letinstance\DI@indexitem@iii{indexitem}{fixed3}%

556 \columnsep=10pt%

557 \parskip=0pt plus 1pt%

558 \def\DI@letter@skip{10pt plus 2pt minus 3pt}%

559 \def\DI@letter@format##1{%

560 \par

561 \hb@xt@\hsize{\hfil\textbf{##1}\hfil}%

562 \nopagebreak

563 }%

564 \def\+{-}%

565 \IfFileExists{\jobname.ind}{%

566 \ifnum \c@IndexColumns>\@ne

567 \begin{multicols}{\c@IndexColumns}[#1][\IndexMin]%

568 \else

569 \enough@room{\IndexMin}%

570 #1\par

571 \addvspace\multicolsep

572 \fi

573 \pagestyle{docindex}%

574 \small

575 \@nobreakfalse

576 \DI@ind@setup

577 \input{\jobname.ind}%

578 \DI@item@nojoin

579 \thispagestyle{docindex}

580 \ifnum \c@IndexColumns>\@ne

581 \end{multicols}%

582 \else

583 \enough@room\postmulticols

584 \addvspace\multicolsep

585 \fi

586 \normalsize #2\par

587 }{\typeout{No file \jobname.ind.}}%

588 \endgroup

589 }

590 }{%

591 \@namedef{TP@I{}{docindex}{index}}#1#2{%

592 \begingroup

593 \@letinstance\DI@indexitem@i{indexitem}{fixed1}%

594 \@letinstance\DI@indexitem@ii{indexitem}{fixed2}%

595 \@letinstance\DI@indexitem@iii{indexitem}{fixed3}%

596 \columnsep=10pt%

597 \parskip=0pt plus 1pt%

598 \def\DI@letter@skip{10pt plus 2pt minus 3pt}%

599 \def\DI@letter@format##1{%

600 \par

601 \hb@xt@\hsize{\hfil\textbf{##1}\hfil}%

602 \nopagebreak

603 }%

604 \def\+{-}%

605 \IfFileExists{\jobname.ind}{%

26

606 \ifnum \c@IndexColumns>\@ne

607 \begin{multicols}{\c@IndexColumns}[#1][\IndexMin]%

608 \else

609 \enough@room{\IndexMin}%

610 #1\par

611 \addvspace\multicolsep

612 \fi

613 \small

614 \@nobreakfalse

615 \DI@ind@setup

616 \input{\jobname.ind}%

617 \DI@item@nojoin

618 \ifnum \c@IndexColumns>\@ne

619 \end{multicols}%

620 \else

621 \enough@room\postmulticols

622 \addvspace\multicolsep

623 \fi

624 \normalsize #2\par

625 }{\typeout{No file \jobname.ind.}}%

626 \endgroup

627 }

628 }

629 〈/!template〉

docindex/changes instance The changes instance of the docindex template type typesets a doc list of changes.

630 〈∗template〉
631 \DeclareInstance{docindex}{changes}{std}{

632 file-extension = gls,

633 item2 = fixed-r2a-nocomma,

634 item3 = fixed-a3r,

635 columns = 2,

636 letter-format = {},

637 letter-skip = \z@skip

638 }

639 〈/template〉

640 〈∗!template〉
641 \@namedef{TP@I{}{docindex}{changes}}#1#2{%

642 \begingroup

643 \@letinstance\DI@indexitem@i{indexitem}{fixed1}%

644 \@letinstance\DI@indexitem@ii{indexitem}{fixed-r2a-nocomma}%

645 \@letinstance\DI@indexitem@iii{indexitem}{fixed-a3r}%

646 \columnsep=10pt%

647 \parskip=0pt plus 1pt%

648 \def\DI@letter@skip{\z@skip}%

649 \let\DI@letter@format\@gobble

650 \def\+{-}%

651 \IfFileExists{\jobname.gls}{%

652 \ifnum \c@GlossaryColumns>\@ne

653 \begin{multicols}{\c@GlossaryColumns}[#1][\GlossaryMin]%

654 \else

655 \enough@room{\GlossaryMin}%

27

656 #1\par

657 \addvspace\multicolsep

658 \fi

659 \small

660 \makeatletter

661 \@nobreakfalse

662 \DI@ind@setup

663 \input{\jobname.gls}%

664 \DI@item@nojoin

665 \ifnum \c@GlossaryColumns>\@ne

666 \end{multicols}%

667 \else

668 \enough@room\postmulticols

669 \addvspace\multicolsep

670 \fi

671 \normalsize #2\par

672 }{\typeout{No file \jobname.gls.}}

673 \endgroup

674 }

675 〈/!template〉

\PrintIndex

\PrintChanges

The \PrintIndex and \PrintChanges commands are redefined to use the respec-
tive instances of template type docindex.

676 \renewcommand\PrintIndex{%

677 \UseInstance{docindex}{index}{\index@prologue}{}%

678 \global\let\PrintIndex\@empty

679 }

680 \renewcommand\PrintChanges{%

681 \UseInstance{docindex}{changes}{\glossary@prologue}{}%

682 \global\let\PrintChanges\@empty

683 }

684 〈/pkg〉

4 Notes and acknowledgements

The exact descriptions of the parameters of the makeindex program is the paper
[2] by Chen and Harrison, but I have seen claims that there are parameters not
listed there (presumably becuase they were added after this paper was written).
docindex.ist does not change any such undocumented parameter, however.

There are other index sorting programs than makeindex around, such as for
example x̊ındy [5]. Should someone create index style files for such systems that
are equivalent (or superior, for that matter) to docindex.ist then I would be
happy to add them to the docindex distribution.

Most of the actual layout parameter settings used by the docindex package are
not of my design, but copied from various other LATEX packages such as [7, 8]
(mainly by Frank Mittelbach). I have however tried to sort out which parameters
are actually in force under the various conditions—something which turned out
to be less obvious than I originally suspected.

The idea to have the docindex type templates input the sorted index file
(rather than simply setting up the formatting of it as was the case in v 0.03) was
taken from the xindex package [1] by Achim Blumensath.

28

References

[1] Achim Blumensath: The xindex package; http://www-mgi.informatik.
rwth-aachen.de/~blume/.

[2] Pehong Chen, Michael A. Harrison: Index Preparation and Processing, Soft-
ware: practice & experience, vol. 19, no. 9 (1988), 897–915; Computer Science
Tech. Report 87/347, University of California, Berkeley, March 1987; ctan:
indexing/makeindex/paper/ind.tex.

[3] Lars Hellström: The tclldoc package and class, v 2.20 or newer; ctan: macros/
latex/contrib/tclldoc/tclldoc.dtx. Note: At the time of writing, this has
not yet been uploaded to CTAN.

[4] Lars Hellström: The xdoc package — experimental reimplementations of fea-
tures from doc, second prototype, 2000–2003; ctan: macros/latex/contrib/
xdoc/xdoc2.dtx.

[5] Roger Kehr: xindy — A Flexible Indexing System; ctan: indexing/xindy/.

[6] The LATEX3 Project: The LATEX Project Home Page; http://
www.latex-project.org/.

[7] Frank Mittelbach: An environment for multicolumn output ; ctan: macros/
latex/required/tools/multicol.dtx.

[8] Frank Mittelbach, B. Hamilton Kelly, Andrew Mills, Dave Love, and Joachim
Schrod: The doc and shortvrb Packages, The LATEX3 Project; ctan: macros/
latex/base/doc.dtx.

Change History

v 0.03

docindex/changes instance: Added
\@nobreakfalse in docidx2e im-
plementation; the first item in
the index does not directly fol-
low a \section-type heading.
(LH) 27

docindex/std template: Added
parskip keyval. (LH) 23

indexitem/aloneaccept tem-
plate: \protected@edefing the
macros \DI@item@join and
\DI@item@nojoin. (LH) 20

Added the nojoin-extra key.
(LH) 20

indexitem/fixed template:
\protected@edefing the
macros \DI@item@join and
\DI@item@nojoin. (LH) 16

Added the nojoin-extra key.

(LH) 16

Added \nopagebreak from
\efill to default for nojoin-
extra key. (LH) 16

usedocindexps option: Added
\@nobreakfalse in docidx2e im-
plementation; the first item in
the index does not directly fol-
low a \section-type heading.
(LH) 25

v 1.00

General: The index file is no longer
a thedocindex environment—
the layout must instead be set
by the command which \inputs
the index. Introduced the
\docindexguard command to
handle situations with incom-
patible index styles. (LH) . . . 11

Using single template rather

29

than the std template for the
indexitemn instances of type
justification. (LH) 14

docindex/changes instance: Added
\makeatletter in docidx2e im-
plementation; it doesn’t hurt
and it is sometimes necessary
(when commands that expand
to private control sequences
are used in the argument of
\changes). (LH) 27

docindex/std template: Added file-
name and file-extension keys,
removed the default-prologue
and default-epilogue keys. (LH) 22

Made reserved-height work even
when columns is 1 by using the
multicol macro \enough@room.

(LH) 23

Added page-compositor keyval.
(LH) 23

The -font keyvals renamed to
-setup, but the type stayed the
same (f0). (LH) 22

indexitem/aloneaccept template:
Changed condition for accept-
ing a join from “neighbour-
ing item levels are lower” to
“neighbouring item levels are
not equal to”. (LH) 19

\indexnewletter: Made it \outer.
(LH) 9

\XD@page@compositor: Changed it
from \PageCompositor- to \+.
(LH) 10

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols
\+ 71, 491, 513, 564, 604, 650

B
\DI@body@setup 472, 504, 526

C
\c@GlossaryColumns 652, 653, 665
\c@IndexColumns

. 566, 567, 580, 606, 607, 618
\DI@columns . . . 463, 501, 517, 518, 533
\columnsep . . . 466, 502, 556, 596, 646

D
docindex template type 439

changes instance 630
index instance 543
std template 441

body-setup keyval (f0) 23
column-sep keyval (l) 23
columns keyval (C) 23
epilogue-setup keyval (f0) 23
file-extension keyval (n) 22
file-name keyval (n) 22
item1 keyval (i) 23
item2 keyval (i) 23
item3 keyval (i) 23
letter-format keyval (f1) 23

letter-skip keyval (L) 23
page-compositor keyval (f0) . . 23
pagestyle keyval (n) 23
parskip keyval (l) 23
prologue-setup keyval (f0) 23
reserved-height keyval (L) 23

\docindexguard 83, 98

E
\enough@room 521,

536, 569, 583, 609, 621, 655, 668
\DI@epilogue@setup 475, 505, 539

F
\DI@file@ext . . 448, 496, 516, 528, 540
\DI@file@name . 445, 495, 516, 528, 540

G
\glossary@prologue 681
\GlossaryMin 653, 655

H
\DI@hasfig 184, 203, 230, 347, 364, 389

I
\ifDI@postjoin@ . . . 204, 223, 365, 382
\ifDI@prejoin@ 201, 214
\IfFileExists 516, 565, 605, 651

30

\DI@ind@setup . . 83, 527, 576, 615, 662

\index@prologue 677

\indexitem 8, 20, 27

indexitem template type 169

aloneaccept template 336

fig-action keyval (f2) 19

join-extra keyval (f0) 20

justification-setup keyval (i) . . 19

nofig-action keyval (f1) 19

nojoin-extra keyval (f0) 20

offjoin-extra keyval (f0) 20

ownlevel keyval (C) 19

post-join keyval (b) 20

aloneaccept2 instance 395

aloneaceept3 instance 395

fixed template 173

fig-action keyval (f2) 15

join-extra keyval (f0) 16

justification-setup keyval (i) . . 15

nofig-action keyval (f1) 15

nojoin-extra keyval (f0) 16

offjoin-extra keyval (f0) 16

post-join keyval (b) 16

pre-join keyval (b) 15

fixed-a3r instance 283

fixed-r1a instance 283

fixed-r2a-nocomma instance . . . 283

fixed1 instance 235

fixed2 instance 235

fixed3 instance 235

\DI@indexitem 27

\DI@indexitem@ 27

\DI@indexitem@〈level〉 9

\DI@indexitem@i 451, 497, 553, 593, 643

\DI@indexitem@ii 454, 498, 554, 594, 644

\DI@indexitem@iii
. 457, 499, 555, 595, 645

\IndexMin 567, 569, 607, 609

\indexnewletter 48, 49, 98

\input 528, 577, 616, 663

\DI@item@join 61, 169,
215, 219, 224, 252, 265, 278,
299, 303, 314, 318, 325, 331,
376, 378, 383, 409, 416, 427, 434

\DI@item@justification . 175, 215,
217, 244, 246, 257, 259, 270,
272, 294, 296, 309, 311, 324,
325, 338, 372, 374, 376, 403,
405, 407, 409, 421, 423, 425, 427

\DI@item@nojoin 57,
62, 169, 217, 220, 225, 245, 253,
258, 266, 271, 279, 295, 300,
304, 310, 315, 319, 332, 372,

374, 379, 384, 405, 407, 417,
423, 425, 435, 529, 578, 617, 664

J
\DI@join@extra

. 194, 208, 224, 356, 367, 383
justification template type 134

indexitem1 instance 135
indexitem2 instance 135
indexitem3 instance 135

\justification@g
. 189, 196, 206, 210, 352, 366

L
\DI@last@level 27, 60
\@letinstance 114, 126, 244, 257, 270,

294, 309, 324, 403, 421, 497–
499, 553–555, 593–595, 643–645

\DI@letter@format
. 59, 482, 507, 559, 599, 649

\DI@letter@skip
. 58, 478, 506, 558, 598, 648

M
\makeatletter 660
\multicolsep 523,

537, 571, 584, 611, 622, 657, 669

N
\DI@nofig . 181, 202, 222, 344, 363, 381
\DI@nojoin@extra 191,

205, 227, 353, 358, 366, 368, 386

O
\DI@offjoin@extra

. 198, 209, 225, 359, 368, 384
oldkeywords option 4, 9, 74
options:

oldkeywords 4, 9, 74
usedocindexps 10, 543

P
\DI@pagestyle . 485, 512, 525, 530, 531
\pfill 183, 203, 250, 263, 276,

302, 317, 329, 346, 364, 414, 432
\postmulticols 536, 583, 621, 668
\PrintChanges 676
\PrintIndex 676
\DI@prologue@setup . 469, 503, 519, 522

R
\DI@reserved@height 460, 500, 519, 521

T
\@tempa 126, 127, 130

31

\DI@this@level 341, 362, 371, 373
\TP@I{〈collection〉}{〈type〉}{〈name〉} 12
\TP@T{〈type〉} 13
\typeout 540, 587, 625, 672

U
\UseCollection 107

usedocindexps option 10, 543
\UseInstance . . 125, 480, 508, 677, 681

X
\XD@glossary@keyword 74
\XD@index@keyword 74
\XD@page@compositor 74

32

