
Interpreter Paul Isambert
v.1.2, June 2012 zappathustra AT free DOT fr

Introduction
Interpreter preprocesses input files before their contents is fed to TEX. It is
meant to write document with whatever markup one wishes to define while
using normal TEX macros in the background. As a simple example, suppose
you have a macro \bold to put text in boldface ; then Interpreter lets you
map *text*, or text, or simply !text, or anything
else, to \bold{text}. Interpreter doesn't perform any trickery with active
characters ; instead, it manipulates the strings representing the lines of a
file and search for patterns.

ere are two main advantages : first, TEX documents can be typeset
with a completely non-TEX syntax ; second, if one uses some lightweight
markup language, the source file is much easier to read and might even be
more useful than the typeset PDFfile, e.g. for some technical documentation
you want to read directly in your text editor while writing code (powerful
editors generally have their own documentation in such a format, for a
good reason). A third advantage, not explored in this documentation, is
that while feeding modified lines to TEX you can also translate the original
lines into, say, HTML, and write them to an external file, thus creating
both PDF and HTML output at once.

Interpreter has been rewritten with the Gates package (actually, only
the Lua side) in version 1.1. at hasn't changed anything to its default
behavior, but now it can also be customized quite deeply, since its code is a
collection of small chunks with names that can be externally controlled
and/or augmented. See the Gates documentation for further information.
e last sections of this documentation describe the gates in Interpreter.

Input files
Once Interpreter is loaded with

\input interpreter

in plain TEX or

\usepackage{interpreter}

in LaTEX, files to be processed are input as follows :

\interpretfile{<language>}{<file>}

ere should exist a file i-<language>.lua containing the language used
in ‹file›. For instance, the source of this documentation is interpreter-
doc.txt, input in the master file interpreter-doc.tex with

\interpretfile{doc}{interpreter-doc.txt}

and the interpretation to be used is defined in i-doc.lua. e contents of
such an interpretation file is the object of the rest of this documentation.

Paragraphs
Interpreter doesn't process lines one by one. Instead, it gathers an entire
paragraph and then processes the lines. It is important because you can
manipulate an entire paragraph when a given pattern is detected, and
modify several lines according to what happens in only one. A paragraph in
Interpreter has nothing to do with what TEX considers a paragraph ; instead,
it is defined by the following string.

interpreter.paragraph (Default : blank line with spaces ignored)
A string to be interpreted as a paragraph boundary when Interpreter collects
lines before processing them. e string actually represents a pattern,
so magic characters are obeyed. e default is %s*, i.e. a blank line is
considered a paragraph boundary, spaces notwithstanding. Of course, the
end of the file itself is a paragraph boundary.

Declaring patterns
Once the lines of a paragraph have been collected, Interpreter searches them
trying to match declared patterns, but it doesn't do so indiscriminately :
patterns are searched in a given order, as explained below.

Patterns are searched for in each line only, i.e. no match can occur
across lines. However, since you can manipulate entire paragraphs based
on a match in one line, the limitation easily vanishes.

interpreter.add_pattern(‹table›)

is is the basic function used to defined patterns.e ‹table›may contain
the following entries, along other entries Interpreter won't use but which
can be useful to you, especially with call below. e function returns a
table.

class (Default : intepreter.default_class)
e class of the pattern. See the section on classes.

pattern

e pattern to match. Lua's magic characters are in force and should be
escaped with % if necessary, unless nomagic is true (or the pattern itself is
the result of interpreter.nomagic).

nomagic (Default : false)
A boolean deciding whether the pattern should be transformed with
interpreter.nomagic.

replace

e replacement for the pattern, applied only if there is no call entry.
is may be a string, a table or a function. Interpreter simply executes
something similar to string.gsub(), hence the replacement follows this
function's ordinary syntax. More precisely, if replace is a string, the
pattern is replaced with it ; in this string, %n may be used to denote the nth
capture in the pattern. If replace is a table, the first capture or the entire
match (if there is no capture) is used as the key, and the associated value
is used as the replacement. If replace is a function, it is called with the
captures passed as arguments, or the entire match if there is no capture. For
instance, the following pattern will replace all *text* with \bold{text} :

interpreter.add_pattern{

pattern = "%*(.-)%*",

replace = [[\bold{%1}]]

}

offset (Default : 0)
e number of positions Interpreter should shift to the right after a match
has occurred. Normally, Interpreter starts searching for another occurrence
of the current pattern at the same position where it found the last one.
However, loops might easily occur : the replacement for a pattern may
very well contain another match for the same pattern, so Interpreter will
get stuck. Suppose for instance you want to replace TeX with \TeX. e
first match will do that, but then Interpreter will start searching again at
the backslash, producing \\TeX, then \\\TeX, etc. In this case, if you set
offset to 2 in the pattern, then search will start again at the e and no new
match will occur.

call

is entry shall contain a function to be called if there is a match (if this
entry exists, replace isn't applied). It is meant to perform complex tasks
that aren't amenable to simple string replacement. e function will be
executed as follows :

function (paragraph, line, index, pattern)

paragraph is a table representing the current paragraph ; lines are stored
at successive indices. e last line of this paragraph is always the paragraph
boundary (see interpreter.paragraph), unless the paragraph stopped at
the end of the file. e second argument, line, is a number representing
the index in paragraph containing the line where the pattern was found ;
index is the position in this line where thematch occurred. Finally, pattern
is the entire table declared with interpreter.add_pattern and containing
all the entries discussed here.

e function may return zero, one, or two numbers. If it returns none,
the search for the next occurrence of the pattern will start again on the
same line (rather, on the line with the same position in the paragraph), at
index. If it returns one number, the search will resume at the same line

but at position n, with n the returned number. Finally, if two numbers are
returned, the search will resume at line m at position n, m and n being
the returned values. Specifying which line should be examined when the
search resumes might be necessary if the function adds new lines in the
paragraph before the current line, since Interpreter only keeps count of line
numbers.

e entire paragraph can thus be modified if necessary. For instance,
suppose you want to declare comments in your source file with only
!Comment in the first line, i.e. TEX should ignore a paragraph such as :

!Comment

This should be ignored

by TeX

en the following pattern will do (where the function requires only the
first argument) :

local function comment (paragraph)

for n, l in ipairs(paragraph) do

paragraph[n] = "%" .. l

end

end

interpreter.add_pattern{

pattern = "^!Comment",

call = comment

}

interpreter.nomagic (string)

A function which reverses the usual Lua magic for patterns : ordinary magic
characters are normal characters here, unless they are prefixed with %, in
which case they are magic again. For instance, a pattern like .+ is normally
interpreted as “one or more characters”. If passed to this function, a pattern
is returned meaning “a dot followed by a plus sign”. On the contrary, %.%+
normally has the second interpretation, while with interpreter.nomagic

it has the first one.e functionmakes another transformation : ... is used

to denote a capture (.-). us interpreter.nomagic('*...*') returns
a pattern matching any number of characters surrounded by stars and
capturing those characters ; this would be expressed in ordinary Lua magic
as %*(.-)%*.

Classes
As already alluded to, the search for patterns isn't done at random. Instead,
patterns are organized in classes, which are applied one after the other.
More precisely, the process is as follows : Interpreter searches the entire
paragraph for the first pattern in class 1, then for the second pattern in
the same class, then for the third, etc., then when there is no pattern left
in class 1 it does the same with class 2, up to class n, where n is the highest
class number such that there exists a class n - 1 (in other words, classes
should be numbered consecutively). Finally, the same goes for the patterns
in class 0 (which always exists, even if it contains no pattern).

Inside a class, patterns are ordered by length from long to short, or
alphabetically if two patterns have the same length. is means that if
you use e.g. /text/ for italics and //text// for bold, you don't need to
put the second pattern in a class before the first to avoid //text// being
interpreted as two empty arguments in italics surrounding a text in roman.
Since the way the bold-pattern will be declared, e.g. //(.-)//, is probably
longer than for the italic-pattern, e.g. /(.-)/, it will always match first.

at said, the sorting isn't very clever and simply relies on the
number of symbols, no matter what they mean ; in the patterns above,
the parentheses denote a capture but they still count in the pattern's
length as understood by Interpreter. Alternatively, while .* denotes “zero
or more character” and %+ means “a plus sign” (+ being magic, you have to
escape it to refer to it), in Interpreter's eye the two patterns have the same
length : two. Finally, one should be aware that patterns declared with a
nomagic entry set to true are sorted after they've been transformed (so
that their real length might not be obvious). So classes are needed when
patterns need a proper ordering no matter their lengths. For instance,
some patterns should always be declared first, as they protect input from
Interpreter (see next section), while others might need to be declared last,
as they rely on what previous patterns might have done. Besides, classes
are metatables for the patterns they contain.

interpreter.default_class (Default : 1)
All patterns belong to a class, even though you may omit the class entry
when declaring one. In this case, the pattern is assigned to the class denoted
by this number.

interpreter.set_class(number, table)

Defines class number as table. Classes don't need to be defined beforehand
for patterns to be added to them (rather, Interpreter defines them implicitly
when needed). However, classes are also metatables for the patterns, so
that if there lacks an entry in a pattern's table, the class's entry is used if it
exists. e function returns a table.

Protecting input
Sometimes you want Interpreter to refrain from interpreting ; that is most
useful for verbatim code, for instance. ere are various ways to do that.

interpreter.active (Default : true)
A boolean switching Interpreter on and off. Beware, the switching applies
only starting at the next paragraph.

interpreter.protect([line])

A function protecting all or part of the current paragraph. If line is given, it
should be a number n, and line n in the current paragraph will be protected ;
without line, the entire paragraph is protected. Protecting means that the
patterns not yet searched for will be ignored. For instance, if you want
material to be read verbatim when surrounded with <code> and </code>,
you can declare a pattern as follows :

local function verbatim (buffer)

buffer[1] = "\\verbatim"

buffer[#buffer - 1] = "\\endverbatim"

intepreter.protect()

end

interpreter.add_pattern{

pattern = "^%s*<code>%*s$",

call = verbatim,

class = 1

}

is code is extremely simplified : it assumes that <code> and </code>

starts and ends the paragraph and that </code> isn't the last line of the
file (otherwise it'd also be the last line in the paragraph, whereas here
the last one is the paragraph boundary). An important point is that the
pattern belongs to the first class, so it is called before all other patterns
(provided there is no shorter pattern in class 1) and prevents them from
doing anything, since the entire paragraph is protected. (Typesetting the
material as verbatim material obviously depends on the \verbatim macro,
not on Interpreter.)

interpreter.escape

A character which prevents patterns from being replaced if immediately
preceded by it. As an example, if interpreter.escape = '_', and *text*

denotes italic, then *text* will produce text while _*text* will produce
text. Once a paragraph has been processed, Interpreter removes all escape
characters. Only one character can be an escape character.

interpreter.protector(left[, right]) (right defaults to left)
Defines two characters to protect what they surround. In other words,
Interpreter replaces patterns only if the match isn't found between left

and right. Unlike the escape character, you can define as many protectors
as you wish ; and unlike the escape character again, Interpreter doesn't
remove them once the paragraph has been processed, so you must take
care of them. For instance :

intepreter.protector('"')

interpreter.add_pattern{

pattern = '"(.-)"',

replace = '\\verb`%1`',

class = 0

}

Anything between double quotes will be left untouched ; then, when the
paragraph has been processed for all other classes, a pattern in class 0 calls
the \verb command to take care of the argument. Note that the protectors
should enclose what they protect without coinciding with it ; this is not
the case here, which is why the pattern is applied.

interpreter.direct

(Default : two percent signs then I and at least one space)
A string, actually a pattern, signalling that the line which it begins should
be processed as Lua code. e default is %%%%I%s+, i.e. %%I followed by at
least one space. e pattern shouldn't declare itself as attached to the
beginning of the line (as in ^%%%%I%s+) because they will be matched at
the beginning of the line only anyway. e line is processed with the
loadstring function, and then turned into an empty line. For instance :

%%I interpreter.active = false

This won't be interpreted...

%%I interpreter.active = true

As this example shows, lines flagged with interpreter.direct don't obey
interpreter.active and are always processed as described above.

Technical stuff
You don't have to bother with this section if you don't mind how Interpreter
does its job ; actually you won't learn much anyway.

interpreter.reset()

A function which resets everything to default and deletes classes. It is
used when calling \interpretefile so that new interpretetions start from
zero.

interpreter.register(function)

A function called to put Interpreter's main function into the post_line-
break_filter callback ; you can redefine it at will. If it is undefined,
callback.register() is used, unless luatexbase.add_to_callback() is

detected. (e detection takes place at the first call to \interpretfile, so
there is no need to load Interpreter after luatexbase.)

interpreter.unregister(function)

A function called to remove Interpreter'smain function from the post_line-
break_filter callback. It works similarly to the previous one.

An example : i-doc.lua
Here's a description of i-doc.lua, the file containing the interpretation
used for Interpreter's documentation. Remember that none of the TEX
macros used here is defined by Interpreter ; instead, they are my own and
should be adapted if necessary. Also several options taken here are far
from optimal but are convenient examples.

Shorthands for often used functions.

local gsub, match = string.gsub, string.match

local add_pattern = interpreter.add_pattern

local nomagic = interpreter.nomagic

Class 1 and 2 will be used for verbatim (thus protecting) and “normal”
patterns go into class 3 or higher.

interpreter.default_class = 3

e reader might have observed that interpreter-doc.txt begins
with a table of contents. is table is useful for the source file only, and
isn't typeset by TEX, because the following pattern suppresses it : the entire
paragraph containing TABLE OF CONTENTS on a line of its own is deleted.
Protecting the paragraph is useless, but it makes things a little bit faster
because the paragraph won't be pointlessly searched for other patterns.

local function contents (buffer)

for n in ipairs(buffer) do

buffer[n] = ""

end

interpreter.protect()

end

add_pattern{

pattern = "^%s*TABLE OF CONTENTS%s*$",

call = contents,

class = 1

}

Sections headers are typeset as

====================================== section_tag

=== Section title ====================

======================================

e first and third line are decorations and they are removed. e sec-

tion_tag is meant for the source only again (linking the section to the
table of contents). I could have used it to create PDF destinations, but that
seemed unnecessary in such a small file. e associated pattern is : at least
four equals signs.

add_pattern{

pattern = "^====+.*",

replace = ""

}

e middle line is spotted with the tree equals sign at the beginning
of the line (the previous pattern being longer, the decoration lines have
been already removed and they won't be taken for section titles). e signs
are removed and replaced with \section{ and }.

local function section (buffer, num)

local l = buffer[num]

l = gsub(l, "^===%s*", "\\section{")

l = gsub(l, "%s*=+%s*", "}")

buffer[num] = l

end

add_pattern{

pattern = "^===",

call = section

}

e following pattern simply turns Interpreter into \ital{Inter-

preter}. e meaning of the \ital command is obvious, I suppose. Note
the offset : starting at the backslash, this leads to the n in Interpreter, thus
avoiding matching the pattern again. e Lua notation with double square
brackets is used for strings with no escape character (hence \ital and not
\\ital as would be necessary with a simple string).

add_pattern{

pattern = "Interpreter",

replace = [[\ital{Interpreter}]],

offset = 7

}

Turning TeX into TEX.is illustrates the use of a function as replace ;
the point is that \TeX should be suffixed with a space if initially followed
by anything but a space or end of line (so as not to form a control sequence
with the following letters), and it should be suffixed with a control space if
initially followed by a space or end of line (so as to avoid gobbling the space).
So the function checks the second capture. Note that simply replacing TeX
with \TeX{} would be much simpler, but less instructive !

local function maketex (tex, next)

if next == " " or next == "" then

return [[\TeX\]]

else

return [[\TeX]] .. next

end

end

add_pattern{

pattern = "(TeX)(.?)",

replace = maketex,

offset = 2

}

e following turns <text> into ‹text› and _text_ into text. Setting
a class just so the patterns inherit the nomagic feature is of course an
overkill, but that's an example.

interpreter.set_class(4, {nomagic = true})

add_pattern{

pattern = "<...>",

replace = [[\arg{%1}]],

class = 4

}

add_pattern{

pattern = "_..._",

replace = [[\ital{%1}]],

class = 4

}

I use double quotes as protectors ; they are replaced with a \verb

command at the very end of the processing (with class 0).

interpreter.protector('"')

add_pattern{

pattern = nomagic'"..."',

replace = [[\verb`%1`]],

class = 0

}

e description of functions (in red in the PDF file) are handled with
the \describe macro, which takes the function as its first argument and
additional information as its second one (typeset in italics in the PDF file).
In the source, it is simply marked as

> function (arguments) [Additional information]

with [Additional information] sometimesmissing (i.e. there is no empty
pairs of square brackets). Descriptions of entries in pattern tables follows
the same syntax, except the line begins with >>. So the pattern first spots
lines beginning with >[>] followed by at least one space, adds an empty
pair of brackets at the end if there isn't any, and turn the whole into
\describe. e number of > symbols sets \describe's third argument,
which specifies the level of the bookmark.

local function describe (buffer, num)

local l = buffer[num]

if not match (l, "%[.-%]%s*$") then

l = l .. " []"

end

local le = match(l, ">>") and 4 or 3

buffer[num] = gsub(l, ">+%s+(.-)%s+%[(.-)%]",

[[\describe{%1}{%2}{]] .. le .. "}")

end

add_pattern{

pattern = "^>+%s+",

call = describe

}

Here's how multiline verbatim is handled ; in the source it is simply
marked by indenting the line with ten spaces ; thus code is easily spotted
when reading the source without useless and annoying <code>/</code>
or anything similar to mark it. To be properly processed by TEX, the code
should be surrounded by \verbatim and \verbatim/ (my way of signalling
blocks). ose must be on their own lines, so we insert a line at the
beginning and at the end of the paragraph : for the closing \verbatim/, we
can simply replace the last line of the paragraph, which is the boundary
line, unless we're at the end of the file. But for the opening \verbatim a line
must be added at the beginning of the paragraph ; thus line numbers in the
original source file and in its processed version don't match anymore, and

this might be annoying when TEX reports erros. Besides, blank verbatim
lines aren't handled correctly and create a new verbatim block instead. So
this way of marking verbatim material is good for small documents, but
explicit marking is cleaner and more powerful (albeit not so good-looking
in the source file).

Note that the verbatim pattern belongs to class 2 and the entire
paragraph is protected, so Interpreter leaves it alone afterward (remember
the default class is 3). Of course, the first ten space characters are removed.

local function verbatim (buffer)

for n, l in ipairs(buffer) do

buffer[n] = gsub(l, "%s%s%s%s%s%s%s%s%s%s","", 1)

end

table.insert(buffer, 1, [[\verbatim]])

if gsub(buffer[#buffer],

interpreter.paragraph, "") == "" then

buffer[#buffer] = [[\verbatim/]]

else

table.insert(buffer, [[\verbatim/]])

end

interpreter.protect()

end

add_pattern{

pattern = "^%s%s%s%s%s%s%s%s%s%s",

call = verbatim,

class = 2

}

And now comes the fun part. I wanted i-doc.lua to be self-describing.
e source of what you're reading right now isn't interpreter-doc.txt,
but i-doc.lua itself input in the latter file with

\intepreterfile{doc}{i-doc.lua}

How should code and comment be organized in i-doc.lua ? Well, there

is little choice, since the file is a normal Lua file : comment lines should
be prefixed with -- or surrounded with --[[and --]]. I chose the latter
option, which is simpler. But normal code should also be typeset as verbatim
material ; I could have begun all lines with ten spaces, but that would
have seemed strange. Instead, --]] is turned into \source and \source/

is added at the end of the paragraph (\source is just \verbatim with a
different layout). Which means all paragraphs have the same structure :
comments between --[[and --]] and code immediately following (--[[is
simply removed).e pattern is in class 1 and the paragraph is protected, so
that lines indented with ten spaces or more aren't touched by the previous
verbatim pattern (in class 2).

local function autoverbatim (buffer, line)

buffer[line] = [[\source]]

for n = line + 1, #buffer do

interpreter.protect(n)

end

if gsub(buffer[#buffer],

interpreter.paragraph, "") == "" then

buffer[#buffer] = [[\source/]]

else

table.insert(buffer, [[\source/]])

end

end

add_pattern{

pattern = nomagic"%^--]]",

call = autoverbatim,

class = 1

}

local function remove_comment ()

return ""

end

add_pattern{

pattern = nomagic"%^--[[",

replace = remove_comment

}

e Gates in Interpreter
Interpreter is written with the Gates package (only the Lua side, actually).
It means that it can be hacked down to the core. Here I'll simply list the
gates involved ; you should read the Gates documentation to learn how to
use them.

ere are three gates families : interpreter, associated with the main
interpreter table, contains the user interface ; interpreter_tools, asso-
ciated with interpreter.core.tools table, contains internal functions ; fi-
nally interpreter_reader, associatedwith the interpreter.core.reader
table, contains the main functions used to read the file.

Whenever I mention a conditional or a loop, I mean the local condi-
tionals and loops, relative to the l-gate where the gate appears. Also, the
syntax indicates the arguments a gate uses, not all the arguments that are
passed to it (which are simply what the previous gate has returned).

As an example of customizing Interpreter with Gates, you could very
well add a bit of code which does something to all lines. Inserting a small
gate, say everyline, after check_direct in aggregate_lines below would
do the trick, e.g.:

function interpreter.core.reader.everyline (file, line)

line = dosomething(line)

return file, line

end

interpreter.core.reader.add(

"everyline", "aggregate_lines", "after check_direct")

interpreter.core.reader.conditional(

"everyline", "aggregate_lines", function (f, l) return l end)

(Note that it is important to check that the line really exist, because one
might have hit the end of the file ; hence the conditional, as with others
gates in aggregate_lines).

e interpreter table
All the user functions in interpreter are simple m-gates, so they can be
treated as ordinary functions, except interpreter.add_pattern, which is
an l-gate containing, built as :

add_pattern

. ensure_class

. apply_nomagic

. insert-pattern

. . do_insert

. . sort_class

ensure_class (‹pattern›) (m-gate)
Creates the class of ‹pattern› if necessary, and set it as the metatable for
‹pattern›. Classes themselves are kept in the interpreter.core.classes
table. e gate return ‹pattern› and the class number.

apply_nomagic (‹pattern›, ‹class›) (m-gate)
Transforms the pattern entry in ‹pattern› with intepreter.nomagic ;
tied to a conditional that returns ‹pattern›'s nomagic entry (so the gate
is executed only if nomagic is true) ; autoreturns both arguments.

insert_pattern (‹pattern›, ‹class›) (l-gate)
An autoreturning l-gate containing the following two gates.

do_insert (‹pattern›, ‹class›) (m-gate)
Adds ‹pattern› to ‹class› (i.e. interpreter.core.classes[<class>]).

sort_class (‹pattern›, ‹class›) (m-gate)
Sorts ‹class›with function interpreter.core.tools.sort. is gate can
be skipped to apply the patterns in the order in which they were declared.

e interpreter.core.tools table
All the functions in the interpreter.core.tools all are simple m-gates.

sort (‹patt1›, ‹patt2›) (m-gate)
Returns true if the pattern in patt1 is longer than the one in patt2, or if
they have the same length and the first ranks before the second with respect
to alphabetical order. e gate is used in the interpreter.sort_class

m-gate.

xsub (‹string›, ‹index›, ‹pattern›, ‹replacement›) (m-gate)
Returns ‹string› with ‹pattern› replaced with ‹replacement›, but only
once, and only after ‹index›.

protector (‹string›, ‹index›) (m-gate)
Checks whether ‹index› in ‹string› isn't between characters declared
with interpreter.protector. If that is the case, the function returns nil
and the index of the second protector. Otherwise, it returns ‹index›.

get_index (‹string›, ‹pattern›, ‹index›) (m-gate)
Checks whether ‹pattern› occurs in ‹string›, starting at ‹index›. If it
does, but if ‹index›-1 is interpreter.escape, calls itself with ‹index›+1.
Otherwise, calls interpreter.core.tools.protector to check whether
‹index› is in a protected part of the string. If so, calls itself with ‹right›+1
instead of ‹index›, where ‹right› is the second return value of of in-
terpreter.core.tools.protector, i.e. it searches again after the right
protector. If ‹index› is found, end of story, returns ‹index›, otherwise
returns nothing.

e interpreter.core.tools table also contains magic_characters,
a table with an entry for each magic character in Lua except `.' and `%' ; the
values to those entries are the same characters prefixed with `%'. e table is
used by interpreter.nomagic to spot and replace magic characters, with
the dot and the percent sign dealt with independantly.

e interpreter.core.reader table
Interpreter works by hooking in the open_read_file callback ; the function
registered there is the interpreter.core.reader.input l-gate, built as
follows :

input

. unregister

. . set_unregister

. . use_unregister

. open_file

. set_reader

unregister (‹filename›) (l-gate)
Contains the following two m-gates ; ‹filename› is received from input,
which itself receives it from the callback, i.e. that's the file that's being
input (the second argument to \interpretfile). It is also automatically
returned.

set_unregister () (m-gate)
Sets the function to remove input from the callback, namely inter-

preter.unregister ; the gate is called only if gate interpreter.unregis-
ter doesn't already exits. If luatexbase is detected, the functions there
are used ; otherwise, callback.register is used with nil as the second
argument.

use_unregister () (m-gate)
Calls interpreter.unregister(). (You don't want the next input file to
be processed with Interpreter by default, that's why you remove the callback
function ; not that the current one is nonetheless processed with the
current file, of course.)

open_file (‹filename›) (m-gate)
Returns io.open(<filename>).

set_reader (‹file›) (m-gate)
Returns a table with a reader entry containing a function whose definition
is

function ()

return interpreter.core.reader.read_file(f)

end

at's the convention for the open_read_file callback : it should return
such a table, and the function will be called each time a line is required
from the input file.

Somost of thework is doneby interpreter.core.reader.read_file,
which is why it is so heavy ; it receives a file handle :

read_file

. make_paragraph

. . aggregate_lines

. . . read_line

. . . check_direct

. . . insert_line

. . apply_classes

. . . pass_class

. . . . pass_pattern

. process_lines

. switch

. call

. replace

. protect

. . . unprotect

. . . . undo_protected

. . . . unprotect_lines

. . . remove_escape

. return_line

make_paragraph (‹file›) (l-gate)
e big l-gate that contains everything that follows, barring return_line.
It is called if and only if the interpreter.core.lines table is empty ;
that table is where lines of a paragraph are stored, and it is emptied by
return_line.

aggregate_lines (‹file›, ‹line›) (l-gate)
e main l-gate that reads line from ‹file› and stores them in inter-

preter.core.lines. It loops until ‹line› is nil or equivalent to inter-

preter.paragraph. (Of course, ‹line› is nil on the first iteration, but the
loopuntil conditional is evaluated after that first iteration, during which
the last subgate insert_line will probably returns a line.)

read_line (‹file›) (m-gate)
Reads the next line from ‹file›, and returns ‹file› and that line.

check_direct (‹file›, ‹line›) (m-gate)
If ‹line› begins with interpreter.direct, removes it and use loadstring
on the resulting string. Returns ‹file› and ‹line›, the latter set to an
empty string is the previous operation applied. e gate depends on a con-
ditional : ‹line› should be non-nil (of course), and interpreter.direct

should be defined.

insert_line (‹file›, ‹line›) (m-gate)
Adds ‹line› to interpreter.core.lines. Automatically returns the two
arguments (and if ‹line› isn't nil or equivalent to interpreter.para-

graph, it will be executed again).

apply_classes () (l-gate)
e l-gate that applies transformations to the lines, once the paragraph has
been gathered, with the gates that follow. For each class, it will apply each
pattern on each line. It depends on a conditional : interpreter.core.lines
shouldn't be empty, and interpreter.active should be true.

pass_class () (l-gate)
is gate iterates on all classes in interpreter.core.classes and then on
class 0. On each iteration it checks beforehand whether the paragraph is
protected, i.e. interpreter.core.reader.protected isn't a boolean (see
unprotecte below). On each iteration, the class number and the class itself
are returned. (is behavior is implemented with a Gates iterator.)

pass_pattern (‹ignored›, ‹class›) (l-gate)
Same as pass_class, except it iterates on the patterns in class : it is
executed as long as interpreter.core.reader.protected and returns the
patter number and the pattern itself. (e ‹ignored› argument isn't used ;
it is for the pass_class iterator ; the same holds for the following gates.)

process_lines (‹ignored›, ‹pattern›) (l-gate)
Again, this calls an iterator. It browses each line in interpreter.core.li-

nes and returns the line's number (provided it is valid, i.e. not a table,
see protect below), ‹pattern› and the current index in that line. To keep
track of the current line and index, two internal numbers are used : inter-
preter.core.reader.current_line andinterpreter.core.reader.cur-
rent_index.

switch (‹line›, ‹pattern›, ‹index›) (m-gate)
If ‹pattern›has a call entry, it sets the call gate below to ajar ; otherwise,
if ‹pattern› has a replace entry, it sets the replace gate to ajar.

call (‹line›, ‹pattern›, ‹index›) (m-gate)
is gate is closed by default and set to ajar by switch above. If, starting
at ‹index›, the ‹pattern›'s pattern entry can be found in ‹line› with
interpreter.core.tools.get_index (which makes sure that protectors
are obeyed and returns ‹newindex›, where the pattern is found if it occurs),
the ‹pattern›'s call entry is applied as

<pattern>.call(interpreter.core.lines,

<line>, <newindex>, <pattern>)

is may returned zero, one or two values. If nothing is returned, inter-
preter.core.reader.current_index is set to 0, which makes the pro-

cess_lines iterator consider the next line. If one value is returned, it is
the new current index and process_lines will not update the line number.
If two values are returned, the first is the new current line number and the
second the new current index.

replace (‹line›, ‹pattern›, ‹index›) (m-gate)
is gate is closed by default and set to ajar by switch above. is tries to
find the ‹pattern›'s pattern like call above, and if it is found, it applies
interpreter.core.tools.xsub as :

xsub (interpreter.core.lines[<line>],

<newindex>, <pattern>.pattern, <pattern>.replace)

where ‹newindex› is defined as in call. e return value of xsub is
assigned to interpreter.core.lines[<line>], and the current index is
set to ‹index› plus the ‹pattern›'s offset if any. If the pattern wasn't
found, the current index is set to 0, which makes process_lines turn to
the next line as explained in call.

protect () (m-gate)
e interpreter.protect() function can either protect the whole para-
graph (when no argument is passed) or a single line (when a number is
passed). In the first case, interpreter.core.tools.protected takes the
value true, which is checked in various gates above. In the second case,
interpreter.core.tools.protected is a table with each index indicating
a line to be protected. is gate implements the protection in that case :
it iterates on all entries in the table with pairs and protects the line
with the same index in interpreter.core.lines by transforming it into
a table (with a single entry, the string representing the original line) ; the
type of the line is checked in the process_lines iterator above. e gate's
iterator doesn't take arguments, but the function itself is defined as taking
a number (the line).

unprotect () (l-gate)
Now all the patterns in all the classes have been applied to the entire
paragraph, and protection must be removed. is l-gate contains the
following two gates.

undo_protected () (m-gate)
Simply sets interpreter.core.tools.protected to nil so it is ready for
the next paragraph.

unprotect_lines () (m-gate)
Restores all the lines in interpreter.core.lines as simple strings. e
gate uses an iterator that simply runs ipairs on interpreter.core.lines,
so the function's definition actually takes the line's number and the line
itself as arguments.

remove_escape () (m-gate)
If interpreter.escape is defined, removes all its occurrences in each line
of the paragraph.

is is the end of the big make_paragraph l-gate. It won't be called
again until the paragraph has been fully passed to TEX, i.e. when inter-

preter.core.lines is empty.

return_line () (m-gate)
Pops the first line from interpreter.core.lines and returns it. Since this
is the very last subgate of read_file, the line is passed to TEX.

Typeset with LuaTEX 0.71 in Chaparral Pro and Lucida Console ... nonetheless
this documentation looks dull, I don't know why.

	Introduction
	Input files
	Paragraphs
	interpreter.paragraph

	Declaring patterns
	interpreter.add_pattern
	class
	pattern
	nomagic
	replace
	offset
	call

	interpreter.nomagic

	Classes
	interpreter.default_class
	interpreter.set_class

	Protecting input
	interpreter.active
	interpreter.protect
	interpreter.escape
	interpreter.protector
	interpreter.direct

	Technical stuff
	interpreter.reset
	interpreter.register
	interpreter.unregister

	An example: i-doc.lua
	The Gates in Interpreter
	The interpreter table
	ensure_class
	apply_nomagic
	insert_pattern
	do_insert
	sort_class

	The interpreter.core.tools table
	sort
	xsub
	protector
	get_index

	The interpreter.core.reader table
	unregister
	set_unregister
	use_unregister
	open_file
	set_reader
	make_paragraph
	aggregate_lines
	read_line
	check_direct
	insert_line
	apply_classes
	pass_class
	pass_pattern
	process_lines
	switch
	call
	replace
	protect
	unprotect
	undo_protected
	unprotect_lines
	remove_escape
	return_line

