
The lualinalg Package

Chetan Shirore∗ and Ajit Kumar

November 17, 2023

1 Introduction
The lualinalg package is developed to perform operations on vectors and matrices defined over the field
of real or complex numbers inside LaTeX documents. It provides flexible ways for defining and displaying
vectors and matrices. No particular environment of LaTeX is required to use commands in the package. The
package is written in Lua, and tex file is to be compiled with the LuaLaTeX engine. The time required for
calculations is not an issue while compiling with LuaLaTeX. There is no need to install Lua on the user’s
system as TeX distributions (TeXLive or MikTeX) come bundled with LuaLaTeX. It may also save users’
efforts to copy vectors and matrices from other software (which may not be in latex-compatible format) and
to use them in a tex file. The vectors and matrices of reasonable size can be handled with ease. The package
can be modified or extended by writing custom Lua programs (Section 5).

The package supports fractions; numerators and denominators must be integers. A fraction can be specified
with the Lua function: lfrac. This function has the syntax lfrac(n,d,mode): n is an integer and d is a
non-zero integer. The mode is optional. It can be fracs or nofracs. The default mode is fracs. If fractions
are input, the package will display vectors and matrices in fraction mode wherever possible. The package
does not attempt to convert floats into fractions. If fractions are expected, then the input should contain
fractions. If fractions are input and answers are expected in numbers, the mode can be specified as nofracs.

The Lua function lcomplex defines the complex numbers. It has the syntax lcomplex(x,y), where x is a
real part, and y is an imaginary part. x and y can also be fractions (numerators and denominators should be
integers). The package has a command \imUnit which provides typesetting for the imaginary unit. Its default
value is \mathrm{i}. It can be redefined. For example, one can redefine it as \renewcommand{\imUnit}{j}}.

2 Installation and License
The installation of the lualinalg package is similar to the plain latex package, where the .sty file is in the
LaTeX directory of the texmf tree. The package can be included with \usepackage{lualinalg} command
in the preamble of the LaTeX document.

The lualinalg package is released under the LaTeX Project Public License v1.3c or later. The complete
license text is available at http://www.latex-project.org/lppl.txt. It is developed in Lua. Lua is
available as a certified open-source software. Its license is simple and liberal, which is compatible with
GPL. The package makes use of complex.lua file which is available on https://github.com/davidm/
lua-matrix/blob/master/lua/complex.lua. It is available under the same licensing as that of Lua. The
package also loads the luamaths package, which is available under the LaTeX Project Public License v1.3c
or later. This package is loaded to use the standard mathematical functions and for computations on real
numbers while performing operations on vectors and matrices.

∗Email id: mathsbeauty@gmail.com

1

http://www.latex-project.org/lppl.txt
https://github.com/davidm/lua-matrix/blob/master/lua/complex.lua
https://github.com/davidm/lua-matrix/blob/master/lua/complex.lua
https://ctan.org/pkg/luamaths

3 Defining vectors and performing operations on vectors
3.1 Defining Vectors
Vectors are defined with the \vectornew command.

\vectorNew{vector name}{coordinates}

This command has two compulsory arguments: vector name and coordinates. Coordinates of vectors are
enclosed in curly braces. A comma separates coordinates. The following are a few valid ways of defining
vectors.

\vectorNew{v1}{{1,2,3,4,5,6}}
\vectorNew{v2}{{3,6,lcomplex(6,6)}}

The standard vector of dimension n with ith coordinate 1 and zero vectors can also be produced by using
the command \vectorNew. For example, the following commands

\vectorNew{e_1}{3,'e',1}
\(e_1=\left(\vectorPrint{e}\right)\)
\vectorNew{O}{3,'zero'}
\(O=\left(\vectorPrint{O}\right)\)

output to e1 = (1, 0, 0) O = (0, 0, 0)

3.2 Commands for operations on vectors
Table 1 lists commands for operations on vectors.

Command Format Description

\vectorPrint[truncate]{vector}

Prints vector. Accepts one optional argument:
truncate. It specifies the number of digits up to
which vector coordinates must be truncated. The
value of truncate may be 0,1,2,…

\vectorGetCoordinate{vector}{i} Gives the ith coordinate of vector.

\vectorSetCoordinate
{vector}{i}{val} Sets the ith coordinate of vector as val.

\vectorCopy{v}{w} Defines a new vector v obtained by copying coordi-
nates of vector w.

2

\vectorEql{v}{w} Returns true if v = w, otherwise returns false.

\vectorAdd{vector}{v1}{v2}
Defines a new vector as the addition of vectors v1 and
v2. Both vectors v1 and v2 should be of the same
dimension. The addition is done coordinate-wise.

\vectorSub{vector}{v1}{v2}
Defines a new vector as the subtraction of vectors v1
and v2. Both vectors v1 and v2 should be of the same
dimension. The subtraction is done coordinate-wise.

\vectorMulNum{vector}{v}{num}
Defines a new vector obtained by multiplying each co-
ordinate of a vector by number num. It can be a real
or complex number (scalar).

\vectorDot{v}{w}

Gives the dot product of two vectors: v and w. If
v = (v1, . . . , vn) and w = (w1, . . . , wn) are defined
over the field of real numbers, then it is evaluated
as v1 · w1 + · · · + vn · wn. If they are defined over
the field of complex numbers, then it is evaluated as
v1 ·w̄1+· · ·+vn ·w̄n. w̄i denotes the complex conjugate
of complex number wi.

\vectorCross{vector}{v}{w}

Defines a new vector obtained by taking the cross
product of vectors v and w of dimension 3. If
v = (v1, v2, v3) and w = (w1, w2, w3), then the cross
product of these two vectors is the vector (v2w3 −
v3w2, v3w1 − v1w3, v1w2 − v2w1).

\vectorSumNorm{v} Calculates the sum norm of a vector v. If v =
(v1, . . . , vn) then it is given by |v1|+ · · ·+ |vn|.

\vectorEuclidNorm{v} Calculates the Euclidean norm of a vector v. If v =
(v1, . . . , vn) then it is given by

√
|v1|2 + · · ·+ |vn|2.

\vectorpNorm{v} Calculates the p (p > 1) norm of a vector v. If v =
(v1, . . . , vn) then it is given by p

√
|v1|p + · · ·+ |vn|p.

\vectorSupNorm{v} Calculates the sup norm of a vector v. If v =
(v1, . . . , vn) then it is given by max{|v1|, . . . , |vn|}.

3

\vectorCreateRandom{v}{n}{a}{b} Creates a new vector v of dimension n with coordi-
nates as random numbers from the interval [a, b].

\vectorOp{vector}{expression}
Defines a new vector obtained by evaluating an expres-
sion. The expression supports all standard operations
such as +,−, ∗.

\vectorGetAngle{v}{w}

Gives the angle between two vectors v and w in radi-
ans. If v and w are defined over the field of real num-
bers, then it is evaluated as cos−1

(
v·w

|v||w|

)
. If they are

defined over the field of complex numbers, then it is
evaluated as cos−1

(
<(v·w)
|v||w|

)
. Here v · w denotes the

dot product of vectors v and w, <(v · w) denotes real
part of the dot product v · w, and |v| and |w| denote
Euclidean norms of vectors v and w respectively.

\vectorParse{vector}
Parses the coordinates of a vector defined over the field
of real numbers. The command helps to plot vectors
with different packages.

\vectorGramSchmidt[brckt,
truncate]{list of vectors}

Performs Gram Schmidt orthogonalisation process on
a list of vectors. Accepts two optional arguments:
brckt and truncate. The brckt is type of parenthe-
sis to be used for displaying vectors. It can be ‘round’,
‘square’ or ‘curly’. The truncate is number of digits
up to which vector coordinates are to be truncated.
The value of truncate can be 0,1,2,…

\vectorGramSchmidtSteps[brckt,
truncate]{list of vectors}

Performs Gram Schmidt orthogonalisation process on
a list of vectors in a step-by-step manner. Accepts two
optional arguments: brckt and truncate. The brckt
is type of parenthesis to be used for displaying vectors.
It can be ‘round’, ‘square’ or ‘curly’. The truncate is
number of digits up to which vector coordinates are to
be truncated. The value of truncate can be 0,1,2,…

Table 1: Commands for operations on vectors

3.3 Illustrations of commands for operations on vectors
The following commands define vectors v, w, x, and y.

\vectorNew{v}{{1,2,lcomplex(3,3)}}
\vectorNew{w}{{3,6,lcomplex(6,6)}}
\vectorNew{x}{{1.12345678,6,lcomplex(6,6)}}
\vectorNew{y}{{1,2,3}}

Table 2 illustrates various operations on vectors v, w, x and y.

4

Commands Output Produced

\(v=\left(\vectorPrint{v}\right)\)
\(w=\left(\vectorPrint{w}\right)\)

v = (1, 2, 3 + 3i)
w = (3, 6, 6 + 6i)

\(x=\left(\vectorPrint
[truncate=3]{x}\right)\)

x = (1.123, 6, 6 + 6i)

third coordinate of vector
\(v = \vectorGetCoordinate{v}{3}\)

third coordinate of vector v = 3 + 3i

\(\vectorCopy{z}{w}\)
\(z = \left(\vectorPrint{z}\right)\)

z = (3, 6, 6 + 6i)

\vectorEql{z}{w} true

new third coordinate of vector
\(z = \vectorSetCoordinate{z}{3}{9.3}\)
\(z=\left(\vectorPrint{z}\right)\)

new third coordinate of vector z = 9.3
z = (3, 6, 9.3)

\vectorAdd{v1}{v}{w}
\(v1 = v+w =\left(\vectorPrint{v1}\right)\)

v1 = v + w = (4, 8, 9 + 9i)

\vectorSub{v2}{v}{w}
\(v2 = v-w =\left(\vectorPrint{v2}\right)\)

v2 = v − w = (−2,−4,−3− 3i)

\vectorMulNum{v3}{v}{complex('3+i')}
\(v3 = 3v =\left(\vectorPrint{v3}\right)\)

v3 = 3v = (3 + i, 6 + 2i, 6 + 12i)

\(v \cdot w =\vectorDot{v}{w}\) v · w = 51

\vectorCross{v4}{v}{w}
\(v \times w =\left(\vectorPrint{v4}\right)\)

v × w = (−6− 6i, 3 + 3i, 0)

Sum norm of a vector \(v = \vectorSumNorm{v}\) Sum norm of a vector v = 7.2426406871193

Euclidean norm of a vector
\(v = \vectorEuclidNorm{v}\)

Euclidean norm of a vector v =
4.7958315233127

p norm of a vector \(v = \vectorpNorm{v}{3}\) p norm of a vector v = 4.4031577258332

Sup norm of a vector \(v = \vectorSupNorm{v}\) Sup norm of a vector v = 4.2426406871193

\vectorCreateRandom{v5}{3}{9}{90}
\(v5 =\left(\vectorPrint{v5}\right)\)

v5 = (37.687042, 65.095154, 81.239563)

\vectorOp{v6}{v+w-2*v}
\(v6 =\left(\vectorPrint{v6}\right)\)

v6 = (2, 4, 3 + 3i)

angle between vector \(v\) and \(w\) is
\(\vectorGetAngle{v}{w}\).

angle between vector v and w is
0.18391428733893.

\vectorParse{y} (1,2,3)

Table 2: Illustration of commands for operations on vectors

5

The package has commands for performing Gram Schmidt Orthogonalisation process. It can also produce
the computations in a step-by step manner.

Listing 1: Gram Schmidt Orthogonalisation process in the lualinalgpackage
\vectorNew{v1}{{1,2,3}}
\vectorNew{v2}{{4,5,6}}
\vectorNew{v3}{{7,8,90}}
\[v1=\left(\vectorPrint{v1}\right)\]
\[v2=\left(\vectorPrint{v2}\right)\]
\[v3=\left(\vectorPrint{v3}\right)\]
Gram Schmidt on \(v1,v2,v3\):

\vectorGramSchmidt[brckt=round,truncate=3]{{'v1','v2','v3'}}
\vectorGramSchmidtSteps[brckt=round,truncate=3]{{'v1','v2','v3'}}

Listing 1 outputs the following.

v1 = (1, 2, 3)

v2 = (4, 5, 6)

v3 = (7, 8, 90)

Gram Schmidt on v1, v2, v3: (0.267, 0.535, 0.802), (0.873, 0.218,−0.436), (0.408,−0.816, 0.408)
Take given vectors as v1, . . . , v3 in order.
Step 1:

u1 = v1 = (1, 2, 3)

e1 =
u1

||u1||
= (0.267, 0.535, 0.802)

Step 2:

u2 = v2 −
1∑

j=1

projuj
(v2) = (1.714, 0.429,−0.857)

e2 =
u2

||u2||
= (0.873, 0.218,−0.436)

Step 3:

u3 = v3 −
2∑

j=1

projuj
(v3) = (13.5,−27, 13.5)

e3 =
u3

||u3||
= (0.408,−0.816, 0.408)

In addition to \mathRound, the command complexRound is also available. It has the following syntax.

\complexRound{complex number}{number of decimal places}

This command has two compulsory arguments. The complex number and number of decimal places to which
number should be rounded off. For example, \complexRound{lcomplex(3.3333666, 6.777666)}{3} out-
puts to 3.333 + 6.778i. This command can be nested with other commands in the package.

6

x

y

f

g

f + g

x = 3

y = 3

Figure 1: Plotting 2-D Vectors with lualinalg and tikz packages

3.4 Plotting vectors
The lualinalg package can be used with other packages that have facility to plot vectors defined over the
field of real numbers in 2 or 3 dimensions. Listing 2 illustrates plotting of vectors in 2-D plane by using
lualinalg and tikz package.

Listing 2: Plotting vectors in 2-dimensions with the lualinalg and tikz packages
\tdplotsetmaincoords{0}{0}
\begin{tikzpicture}[scale=1,

tdplot_main_coords,
axis/.style={->,blue,thick},
vector/.style={-stealth,red,very thick},
vector guide/.style={dashed,red,thick}]

\vectorNew{o}{{0,0}}
\vectorNew{e1}{{4,0}}
\vectorNew{e2}{{0,4}}
\vectorNew{f}{{2,1}}
\vectorNew{g}{{1,2}}
% Axes
\draw [axis] \vectorParse{o}-- \vectorParse{e1} node [below left] {x};
\draw [axis] \vectorParse{o}-- \vectorParse{e2} node [right] {y};
% Plotting Vectors
\draw [vector] \vectorParse{o} --\vectorParse{f};
\draw [vector] \vectorParse{o} --\vectorParse{g};
\vectorOp{h}{f+g}
\draw [vector] \vectorParse{o} --\vectorParse{h};
\draw [vector,dashed,black] \vectorParse{f} --\vectorParse{h};
\draw [vector,dashed,black] \vectorParse{g} --\vectorParse{h};
% Labels
\node [below right] at \vectorParse{f} {f};
\node [above left] at \vectorParse{g} {g};
\node [above left] at \vectorParse{h} {$f+g$};
\draw[vector guide, black] \vectorParse{h} -- (\vectorGetCoordinate{h}{1},0) node

[below] {$x=\vectorGetCoordinate{h}{1}$};
\draw[vector guide, black] \vectorParse{h} -- (0,\vectorGetCoordinate{h}{2}) node

[left] {$y=\vectorGetCoordinate{h}{2}$};
\end{tikzpicture}

Listing 2 produces figure 1.

7

Listing 3 illustrates plotting of vectors in 3-D plane by using lualinalg and tikz package.

Listing 3: Plotting vectors in 3-dimensions with the lualinalg and tikz packages
\documentclass{article}
\usepackage{tikz,tikz-3dplot,lualinalg}
\begin{document}
\tdplotsetmaincoords{60}{120}
\begin{tikzpicture}[scale=1,

tdplot_main_coords,
axis/.style={->,blue,thick},
vector/.style={-stealth,red,very thick},
vector guide/.style={dashed,red,thick}]

\vectorNew{o}{{0,0,0}}
\vectorNew{e1}{{3,0,0}}
\vectorNew{e2}{{0,5,0}}
\vectorNew{e3}{{0,0,4}}
\vectorNew{f}{{2,2,0}}
\vectorNew{g}{{-1,2,2}}
% Axes
\draw [axis] \vectorParse{o}-- \vectorParse{e1} node [below left] {x};
\draw [axis] \vectorParse{o}-- \vectorParse{e2} node [right] {y};
\draw [axis] \vectorParse{o}-- \vectorParse{e3} node [above] {z};
% Plotting Vectors
\draw [vector] \vectorParse{o} --\vectorParse{f};
\draw [vector] \vectorParse{o} --\vectorParse{g};
\vectorOp{h}{f+g}
\draw [vector] \vectorParse{o} --\vectorParse{h};
% Labels
\node [below right] at \vectorParse{f} {f};
\node [above left] at \vectorParse{g} {g};
\node [right] at \vectorParse{h} {$f+g$};
\draw[vector guide, black] \vectorParse{h} -- (\vectorGetCoordinate{h}{1},0,0) node

[left] {$x=\vectorGetCoordinate{h}{1}$};
\draw[vector guide, black] \vectorParse{h} -- (0,\vectorGetCoordinate{h}{2},0) node

[below] {$y=\vectorGetCoordinate{h}{2}$};
\draw[vector guide, black] \vectorParse{h} -- (0,0,\vectorGetCoordinate{h}{3}) node

[left] {$z=\vectorGetCoordinate{h}{3}$};
\end{tikzpicture}
\end{document}

Listing 3 produces figure 2.

4 Defining matrices and operations on matrices
Matrices are defined with the \matrixNew command.

\matrixNew{matrix name}{row entries}

This command has two compulsory arguments: matrix name and row entries. Each row of the matrix is
enclosed in curly brackets. A comma separates numbers in rows. Rows are also separated by a comma. The
whole matrix is then enclosed in curly brackets. The following are a few valid ways of defining matrices.

\def\n{{{1,2,3},{4,5,6},{7,8,lcomplex(9,3)}}}

8

x
y

z

f

g

f + g

x = 1

y = 4

z = 2

Figure 2: Plotting 3-D Vectors with lualinalg and tikz packages

\def\s{{{1,2,3},{4,5,6},{7,8,10}}}
\matrixNew{m}{\n}
\matrixNew{n}{\s}
% an alternative way
\matrixNew{m}{{{1,2,3},{4,5,6},{7,8,lcomplex(9,3)}}}
\matrixNew{n}{{{1,2,3},{4,5,6},{7,8,10}}}

The identity and zero matrices can be defined as well by using the \matrixNew command. For example, the
following commands

\matrixNew{mtx}{3,'I'}
I = \(\matrixPrint{mtx}\)
\matrixNew{O}{3,4,'zero'}
O = \(\matrixPrint{O}\)

output to I =

1 0 0
0 1 0
0 0 1

 O =

0 0 0 0
0 0 0 0
0 0 0 0


4.1 Commands for operations on matrices
Table 3 lists all commands for operations on matrices in the lualinalg package.

Command Format Description
Printing Matrices

\matrixPrint[type,truncate]{mtx}

Prints matrix. Accepts two optional arguments:
type and truncate. The type may be one of the
values pmatrix,bmatrix, vmatrix,Vmatrix.
The default type is bmatrix. The truncate
specifies the number of digits up to which
matrix entries are to be truncated. The value of
truncate may be 0,1,2,….

Some parameters of defined matrices

9

\matrixNumRows{matrix} Gives the number of rows in a matrix.

\matrixNumCols{matrix} Gives the number of columns in a matrix.

\matrixGetElement{matrix}{i}{j} Gives an entry of matrix in the ith row and the
jth column.

Algebraic operations on matrices

\matrixAdd{matrix}{m1}{m2}
Defines a new matrix as the addition of matrices
m1 and m2. The second matrix may have more
rows and\or columns.

\matrixSub{matrix}{m1}{m2}
Defines a new matrix as the subtraction of ma-
trices m1 and m2. The second matrix may have
more rows and\or columns.

\matrixMulNum{matrix}{number}{m1}
Defines a new matrix obtained by multiplying
each entry of matrix m1 by s real or complex
number.

\matrixMul{matrix}{m1}{m2}

Defines a new matrix obtained by multiplying
matrix m1 by matrix m2. The number of rows
in matrix m2 must equal the number of columns
in matrix m1.

\matrixPow{matrix}{m1}{power}
Defines a new matrix obtained by taking the ith
power of matrix m1 (multiplying matrix m1 i
times with itself).

\matrixInvert{matrix}{matrix1}
Defines a new matrix obtained by taking the in-
verse of matrix1. It throws an error if matrix is
not invertible.

\matrixTrace{matrix}
Gives the trace (sum of diagonal entries) of a
square matrix. It throws an error if the matrix is
not square.

10

\matrixConjugate{matrix}{m1} Defines a new matrix obtained by taking the com-
plex conjugate of each entry of matrix m1.

\matrixConjugateT{matrix}{m1}
Defines a new matrix obtained by taking the
transpose of matrix m1 and then the complex
conjugate of each matrix entry.

\matrixNormOne{matrix}

Calculates the norm1 of a matrix. For matrix A
of size m× n, it is given by

‖A‖1 = max
16j6n

m∑
i=1

|aij |

\matrixNormInfty{matrix}

Calculates the infinity norm of a matrix. For ma-
trix A of size m× n, it is given by

‖A‖∞ = max
16i6m

n∑
j=1

|aij |

\matrixNormMax{matrix}

Calculates the max norm of a matrix. For matrix
A of size m× n, it is given by

‖A‖max = max
i,j

|aij |

\matrixNormF{matrix}

Calculates the Frobenius norm of a matrix. For
matrix A of size m× n, it is given by

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|aij |2

\matrixRank{matrix} Gives the rank of matrix m. It also supports ma-
trices of complex numbers.

\matrixDet{matrix} Gives the determinant of matrix m. It also sup-
ports matrices of complex numbers.

\matrixTranspose{matrix}{m1} Defines a new matrix obtained by taking the
transpose of matrix m1.

11

\matrixSetElement{matrix}{i}{j}{val} Set entry of a matrix in the ith row and jth col-
umn as val.

\matrixSubmatrix{sm}{m}{i}{j}{k}{l}

Defines a new matrix sm obtained by taking a
submatrix of matrix m. Here i, j denotes the start
row and start column, and k, l denotes the end
row and end column for obtaining the submatrix.

\matrixConcatH{matrix}{m1}{m2} Defines a new matrix obtained by augmenting
matrix m1 with matrix m2 horizontally.

\matrixConcatV{matrix}{m1}{m2} Defines a new matrix obtained by augmenting
matrix m1 with matrix m2 vertically.

\matrixOp{matrix}{expression}
Defines a new matrix obtained by evaluating an
expression. The expression supports all standard
operations such as +, ∗, ̂.

\matrixCopy{matrix}{matrix1} Defines a new matrix obtained by copying values
from matrix1.

\matrixEql{m1}{m2} Returns true if m1 = m2, otherwise returns false.

\matrixCreateRandom
{m}{i}{j}{k}{l}

Creates a new matrix m with random numbers.
Here i, j denotes the number of rows and columns,
and k, l denotes the start and end integers be-
tween which random numbers are generated.

Elementary row operations on matrices

\matrixSwapRows{mtx}{m1}{i}{j} Defines a new matrix mtx obtained by swapping
the ith and jth rows of matrix m1.

\matrixMulRow{matrix}{m}{i}{no} Defines a new matrix obtained by multiplying the
ith row of matrix1 by a real or complex number.

12

\matrixMulAddRow{mtx}{m}{i}{no}{j}
Defines a new matrix mtx obtained by multiply-
ing the ith row of matrix1 by a real or complex
number and adding it to the jth row.

Elementary column operations on matrices

\matrixSwapCols{mtx}{m}{i}{j} Defines a new matrix mtx obtained by swapping
the ith and jth columns of matrix m.

\matrixMulCol{matrix}{m}{i}{no}
Defines a new matrix obtained by multiplying the
ith column of matrix1 by a real or complex num-
ber.

\matrixMulAddCol{mtx}{m}{i}{no}{j}
Defines a new matrix mtx obtained by multiply-
ing the ith column of matrix1 by a real or complex
number and adding it to the jth column.

Reduced row echelon form of matrix

\matrixRREF{matrix}{matrix1}
Defines a new matrix obtained by taking the re-
duced row echelon form of matrix1. It supports
matrices of complex numbers as well.

\matrixRREFSteps[type,truncate]
{matrix}

Obtains reduced row echelon form of matrix
in a step-by-step manner. The command has
two optional parameters type and truncate.
It supports matrices with complex numbers
as well. type may be one of the values
pmatrix,bmatrix, vmatrix,Vmatrix. The de-
fault type is bmatrix. truncate specifies num-
ber of digits up to which matrix entries are to be
truncated. truncate may be 0,1,2,….

Gauss-Jordan Elimination

\matrixGaussJordan{matrix}
{m1}{m2}

Defines new matrix obtained by performing
Gauss-Jordan elimination on augmented matrix
m1|m2.

\matrixGaussJordanSteps[type,truncate]
{matrix}{m1}{m2}

Defines new matrix obtained by performing
Gauss-Jordan elimination on augmented matrix
m1|m2 in a step-by-step manner. The com-
mand has two optional parameters type and
truncate. type may be one of the values
pmatrix, bmatrix, vmatrix, Vmatrix. The
default type is bmatrix. truncate specifies num-
ber of digits up to which matrix entries are to be
truncated. truncate may be 0,1,2,….

13

Table 3: Commands for operations on matrices

4.2 Illustrations of matrix operations
The following commands define matrices m,n, and r.

\def\r{{{1,2,3},{4,5,6},{7,8,lcomplex(9,3)}}}
\def\s{{{1,2,3},{4,5,6},{7,8,10}}}
\def\t{{{1,2,3},{4,5,6},{7,8,9}}}
\def\u{{{1},{2},{3}}}
\def\z{{{lfrac(1,2),lcomplex(2,3),3},{4,5,6},{7,8,9}}}

\matrixNew{m}{\r}
\matrixNew{n}{\s}
\matrixNew{p}{\t}
\matrixNew{q}{\u}
\matrixNew{r}{\z}

Table 4 illustrates various operations on matrices m,n, p, and q.

Commands Output Produced
Printing matrices

\(m=\matrixPrint{m}\) m =

1 2 3
4 5 6
7 8 9 + 3i


\(m=\matrixPrint[type=pmatrix]{m}\) m =

1 2 3
4 5 6
7 8 9 + 3i


Some parameters of defined matrices

No. or rows in matrix \(m
= \matrixNumRows{m}\)

No. or rows in matrix m = 3

No. or columns in matrix \(m
= \matrixNumCols{m}\)

No. or columns in matrix m = 3

Element of matrix \(m\) at \((3,3) =
\matrixGetElement{m}{3}{3}\)

Element of matrix m at (3, 3) = 9 + 3i

Algebraic operations on matrices

\matrixAdd{m1}{m}{p}
\(m1 = \matrixPrint{m1}\)

m1 =

 2 4 6
8 10 12
14 16 18 + 3i


\matrixSub{m2}{m}{p}
\(m2 = \matrixPrint{m2}\)

m2 =

0 0 0
0 0 0
0 0 3i


\matrixMulNum{m3}{3}{m}
\(m3 = \matrixPrint{m3}\)

m3 =

 3 6 9
12 15 18
21 24 27 + 9i



14

\matrixMul{m4}{m}{p}
\(m4 = \matrixPrint{m4}\)

m4 =

 30 36 42
66 81 96

102 + 21i 126 + 24i 150 + 27i


\matrixPow{m5}{m}{2}
\(m5 = \matrixPrint{m5}\)

m5 =

 30 36 42 + 9i
66 81 96 + 18i

102 + 21i 126 + 24i 141 + 54i


\matrixInvert{m6}{m}
\(m6 = \matrixPrint[truncate=2]{m6}\)

m6 =

−1.67− 0.33i 0.67 + 0.67i −0.33i
1.33 + 0.67i −0.33− 1.33i 0.67i

−0.33i 0.67i −0.33i


Rank of matrix \(m =\matrixRank{m}\) Rank of matrix m = 3

Determinant of matrix \(m =\matrixDet{m}\) Determinant of matrix m = −9i

\matrixTranspose{m7}{m}
\(m7 = \matrixPrint{m7}\)

m7 =

1 4 7
2 5 8
3 6 9 + 3i


\matrixSetElement{n}{3}{3}{300}
\(n= \matrixPrint{n}\)

n =

1 2 3
4 5 6
7 8 300


\matrixSubmatrix{m8}{m}{1}{2}{2}{3}
\(m8 = \matrixPrint{m8}\)

m8 =

[
2 3
5 6

]
\matrixConcatH{m9}{m}{q}
\(m9= \matrixPrint{m9}\)

m9 =

1 2 3 1
4 5 6 2
7 8 9 + 3i 3



\matrixConcatV{m10}{m}{n}
\(m10= \matrixPrint{m10}\)

m10 =


1 2 3
4 5 6
7 8 9 + 3i
1 2 3
4 5 6
7 8 300


\matrixOp{m11}{m*m+2*m}
\(\matrixPrint[truncate=4]{m11}\)

 32 40 48 + 9i
74 91 108 + 18i

116 + 21i 142 + 24i 159 + 60i


\matrixCopy{m12}{m}
\(m12 = \matrixPrint{m12}\)

m12 =

1 2 3
4 5 6
7 8 9 + 3i


\matrixEql{m12}{m} true

trace of matrix \(m = \matrixTrace{m}\) trace of matrix m = 15 + 3i

\matrixConjugate{mc}{m}
\(mc = \matrixPrint{mc}\)

mc =

1 2 3
4 5 6
7 8 9− 3i


\matrixConjugateT{mct}{m}
\(mct = \matrixPrint{mct}\)

mct =

1 4 7
2 5 8
3 6 9− 3i


\(\matrixNormOne{m}\) 18.486832980505

\(\matrixNormInfty{m}\) 24.486832980505

15

\(\matrixNormMax{m}\) 9.4868329805051

\(\matrixNormF{m}\) 17.146428199482

Elementary row operations on matrices

\matrixSwapRows{m13}{m}{2}{3}
\(m13 = \matrixPrint{m13}\)

m13 =

1 2 3
7 8 9 + 3i
4 5 6


\matrixMulRow{m14}{m}{3}{300}
\(m14 = \matrixPrint{m14}\)

m14 =

 1 2 3
4 5 6

2100 2400 2700 + 900i


\matrixMulAddRow{m15}{m}{2}{10}{3}
\(m15 = \matrixPrint{m15}\)

m15 =

 1 2 3
4 5 6
47 58 69 + 3i


Elementary column operations on matrices

\matrixSwapCols{m16}{m}{2}{3}
\(m16 = \matrixPrint{m16}\)

m16 =

1 3 2
4 6 5
7 9 + 3i 8


\matrixMulCol{m17}{m}{3}{300}
\(m17 = \matrixPrint{m17}\)

m17 =

1 2 900
4 5 1800
7 8 2700 + 900i


\matrixMulAddCol{m18}{m}{2}{10}{3}
\(m18 = \matrixPrint{m18}\)

m18 =

1 2 23
4 5 56
7 8 89 + 3i


Reduced row echelon form of a matrix

\matrixRREF{m19}{p}
\(m19 = \matrixPrint{m19}\)

m19 =

1 0 −1
0 1 2
0 0 0


\matrixRREF{m20}{m}
\(m20 = \matrixPrint{m20}\)

m20 =

1 0 0
0 1 0
0 0 1


Table 4: Illustration of commands for operations on matrices

The package has command \matrixRREFSteps to produce step-by-step computation of reduced row echelon
form of a matrix. The command \matrixRREFSteps{r} outputs the following.

Step 1: Divide row 1 by 1
2 . 

1 4 + 6i 6

4 5 6

7 8 9


Step 2: Multiply row 1 by 4 and subtract it from row 2.

1 4 + 6i 6

0 −11− 24i −18

7 8 9



16

Step 3: Multiply row 1 by 7 and subtract it from row 3.
1 4 + 6i 6

0 −11− 24i −18

0 −20− 42i −33


Step 4: Divide row 2 by −11− 24i. 

1 4 + 6i 6

0 1 198
697 + −432

697 i

0 −20− 42i −33


Step 5: Multiply row 2 by 4 + 6i and subtract it from row 1.

1 0 798
697 + 540

697 i

0 1 198
697 + −432

697 i

0 −20− 42i −33


Step 6: Multiply row 2 by −20− 42i and subtract it from row 3.

1 0 798
697 + 540

697 i

0 1 198
697 + −432

697 i

0 0 −897
697 + −324

697 i


Step 7: Divide row 3 by −897

697 + −324
697 i. 

1 0 798
697 + 540

697 i

0 1 198
697 + −432

697 i

0 0 1


Step 8: Multiply row 3 by 798

697 + 540
697 i and subtract it from row 1.

1 0 0

0 1 198
697 + −432

697 i

0 0 1


Step 9: Multiply row 3 by 198

697 + −432
697 i and subtract it from row 2.

1 0 0

0 1 0

0 0 1



The command \matrixGaussJordan is used to obtain Gauss-Jordan elimination of an augmented matrix.

17

\def\a{{{lfrac(1,2),1,1},{2,-1,-1},{1,-1,1}}}
\def\b{{{3},{3},{9}}}
\matrixNew{S}{\a}
\matrixNew{T}{\b}
\matrixConcatH{W}{S}{T}
$$W = \matrixPrint{W}$$
\matrixGaussJordan{U}{S}{T}
$$U = \matrixPrint{U}$$

The above code produces the following output.

W =


1
2 1 1 3

2 −1 −1 3

1 −1 1 9



U =


1 0 0 12

5

0 1 0 −12
5

0 0 1 21
5



The package also has a command \matrixGaussJordanSteps to produce step-by-step computation of Gauss-
Jordan elimination of an augmented matrix. The command \matrixGaussJordanSteps{S}{T} produces the
following output.

Step 1: Divide row 1 by 1
2 . 

1 2 2 6

2 −1 −1 3

1 −1 1 9


Step 2: Multiply row 1 by 2 and subtract it from row 2.

1 2 2 6

0 −5 −5 −9

1 −1 1 9


Step 3: Multiply row 1 by 1 and subtract it from row 3.

1 2 2 6

0 −5 −5 −9

0 −3 −1 3


Step 4: Divide row 2 by −5. 

1 2 2 6

0 1 1 9
5

0 −3 −1 3



18

Step 5: Multiply row 2 by 2 and subtract it from row 1.
1 0 0 12

5

0 1 1 9
5

0 −3 −1 3


Step 6: Multiply row 2 by −3 and subtract it from row 3.

1 0 0 12
5

0 1 1 9
5

0 0 2 42
5


Step 7: Divide row 3 by 2. 

1 0 0 12
5

0 1 1 9
5

0 0 1 21
5


Step 8: Multiply row 3 by 1 and subtract it from row 2.

1 0 0 12
5

0 1 0 −12
5

0 0 1 21
5



5 Customized usage
The commands available in the package can be used for performing further operations on vectors and
matrices. The command \vectorAdd can be extended to add more than two vectors. The latex document
(listing 4) provides some instances of such usage.

Listing 4: Customized usage of the lualinalg package
\documentclass{article}
\usepackage{lualinalg}
\begin{document}
\begin{luacode*}
function sumcoordinates(v1)
local sum = 0
for i = 1,#v1 do

sum = sum + v1[i]
end

return sum
end

function vector.addmulti(...)
p=table.pack(...)
s=vector(p[1])
for i=2,#p do

19

s=vector.add(s,vector(p[i]))
end
return s

end
\end{luacode*}
\vectorNew{v}{{1,2,lcomplex(3,3)}}
The sum of coordinates of vector
\(v = \directlua{tex.sprint(tostring(sumcoordinates(vectors['v'])))}\).

\newcommand\vectorAddmulti[2]{%
\directlua{%

vectors['#1'] = vector.addmulti(#2)
}%

}
\vectorNew{w}{{3,6,lcomplex(6,6)}}
\vectorNew{x}{{9,12,lcomplex(12,12)}}
\vectorAddmulti{y}{vectors['v'],vectors['w'],vectors['x']}
The sum of vectors \(v,w \text{ and } x =\left(\vectorPrint{y} \right)\).
\end{document}

The latex document (listing 4) outputs the following on compilation.

The sum of coordinates of vector v = 6 + 3i.

The sum of vectors v, w and x = (13, 20, 21 + 21i).

The command \matrixAdd can be extended to add more than two matrices. The latex document (listing 5)
provides some instances of such usage.

Listing 5: Customized usage of the lualinalg package
\documentclass{article}
\usepackage{lualinalg}
\begin{document}
\begin{luacode}
function squareDiagEntries(m1)
if #m1 ~= #m1[1] then error("matrix not square") end
local sum = 0

for i = 1,#m1 do
for j = 1,#m1[1] do
if i == j then sum = sum + (m1[i][j])^2 end
end
end

return complex.round(sum)
end

function matrix.addmulti(...)
p=table.pack(...)
s=matrix(p[1])
for i=2,#p do

s=matrix.add(s,matrix(p[i]))
end
return s

end
\end{luacode}

20

\def\r{{{1,2,3},{4,5,6},{7,8,lcomplex(9,3)}}}
\matrixNew{m}{\r}
The sum of squares of diagonal entries of matrix
\(m = \directlua{tex.sprint(tostring(squareDiagEntries(matrices['m'])))}\).

\def\s{{{1,2,3},{4,5,lcomplex(6,6)}}}
\def\t{{{10,20,30},{40,50,lcomplex(60,60)}}}
\def\u{{{100,200,300},{400,500,lcomplex(600,600)}}}
\matrixNew{m1}{\s}
\matrixNew{m2}{\t}
\matrixNew{m3}{\u}
\newcommand\matrixAddmulti[2]{%

\directlua{%
matrices['#1'] = matrix.addmulti(#2)

}%
}
\matrixAddmulti{m4}{matrices['m1'],matrices['m2'],matrices['m3']}
The sum of matrices \(m1,m2 \text{ and } m3 = \matrixPrint{m4}\).
\end{document}

The latex document (listing 5) outputs the following on compilation.

The sum of squares of diagonal entries of matrix m = 98 + 54i.

The sum of matrices m1,m2 and m3 =

[
111 222 333
444 555 666 + 666i

]
.

21

	Introduction
	Installation and License
	Defining vectors and performing operations on vectors
	Defining Vectors
	Commands for operations on vectors
	Illustrations of commands for operations on vectors
	Plotting vectors

	Defining matrices and operations on matrices
	Commands for operations on matrices
	Illustrations of matrix operations

	Customized usage

