NEdit LATEX-MODE

Or BTeX-editing made easy

by Jorg Fischer
Version 0.9.1, April 24, 2005

http://nedit.gmxhome.de

http://nedit.gmxhome.de

Contents

Description
Notational Conventions
1 Motivation

2 Introduction

3 Installation
3.1 Quick Guide (Unix/Linux)
3.2 Detailed Installation
3.21 Uninstalling
3.3 Windows (CygwinPort)
3.3.1 RemarkonXDefaults

4 Qverview

5 Description of the Macros
51 MacroMenu o
5.1.1 spell-check (alpha)

5.2

512 NMacro. o v v i it e e 26
5.1.3 LTXMode — MainFile 26
514 LTXMode — Run... 27
515 LTXMode —Insert. 28
5.1.6 LTXMode — Structures 30
5.1.7 LTXMode —Help 31
5.1.8 Editing — Complete Word 32
519 Bookmarks, 34
5110 Help 34
5.1.11 Expander Macros 34

51111 Remark. 39
5112 KeyBoard 40
Window Background Menu 42
521 Theorems 42
5.22 Equations 42
523 Matrices e 44
524 Lists e 44
5.25 Formatand Sections. 44
526 Snippets 45
527 Comments 45

6 Source Specials

7 Writing German Texts
8 General Remarks

9 Changes — what's new

10 Technical Notes about NEdit.
101 KeyBindings
10.2 Call-tips o

46

47

50

53

Description

The KTEX-MODE is a package or set of macros, i.e. small programs, written
in the NEdit macro or scripting language. It will turn NEdit, the Nirvana text
editor, into an advanced KTgX editor. NEdit version 5.4 is required! NEdit is
a Unix program for the X Window System. It is Free Software in the sense
of the GPL. You can download the latest version from NEdit.org.

Notice that the macros need a redefinition of the key bindings. This
redefinition of the key bindings assumes that you are using a standard
US keyboard layout. If you do not use such a keyboard layout, you prob-
ably have to adapt the key bindings to your situation in order not to get
unexpected results!

Notice that some macros require NEdit to be in server mode, see for
example 5.1.4 and 5.1.7. You run NEdit in server mode by starting it with
nc or nedit -server

Notice that some parts of this manual may not be up to date — please,
be patient. For a short note on what's new, go to 9. Notice also that there
is a set of example files to get you started quickly. It illustrates the ba-
sic features of the IATEX-MODE, containing editing mathematical equations
and multi-file documents (references, sectioning, bookmarks). You should

http://www.nedit.org/ftp/
http://nedit.org

have a look at it!
Finally , these macros are only my personal customizations. Since edit-

ing styles, needs and tastes are completely different, you should adjust
everything to suit your needs, preferences and usage patterns. Make your
text editor work the way you want, rather than the other way round!

Notational Conventions
| will try to keep to the following notations, in order to ease reading:

e Keys are written in small capital letters, e.g., SHIFT+SPACE means
to hit the sPACE key while holding the SHIFT key.

Names of files and directories are enclosed in ‘., e.g., ‘.nedit’".

wn

Names of menu entries are enclosed in “”,e.g., “Run — Preview”.

Commands, variables and generally source code are written in type-
face, e.g., nedit -import .nedit

e Emphasized words are italic and very important points are red.

1. Motivation

Perhaps you are content with the way your text editing tool is working.
More probably you are not. Usually however, you don’t know what to do
about it at first. So you live with it the way it is. However, there are capable
text editing tools that can be adapted to your needs, and these tools are
freely available. Since nobody can know what you need, what you would
like to have, or what your usage patterns are, realistically the only possible
way to get a text editor that does what you want is that you configure it in
such a way yourself. The only questions are how can this be done, how
hard it will be, and how long it will take? This means basically, will it be
worth the effort?

My answer is yes, if you choose the right tool for the job. This means
not only a tool that can do everything what you would like, but also a
tool that you can easily persuade to do so. | have written the IATEX-MODE
mainly for me. It is a collection of macros that evolved over the years and
still evolves. Although these macros follow my usage patterns, | believe it
might be worthwhile to make them publicly available. You will get the most
out of it if you understand it as a kind of practical tutorial of how to adapt
NEdit to your needs.

2. Introduction

At first, | didn’t want to write a manual at all. | don’t like having to read long
manuals to learn how to use something. The point is that individual editing
needs and tastes are so different anyway that it is rather doubtful to try to
invent anything that could serve all needs. The important thing is that you
should be able to easily configure an editing environment to your needs.

I am convinced that useful things have to be easy to use. This is the
way NEdit works and it is the way this macro package is written. You can
start using it without having to learn some awkward handling. Just write
your text, then select it with the mouse and invoke a macro to let it do the
rest. Suppose, for example, that you want to give in a small 2 x 2-matrix
as text-formula with round brackets and the entries a and b in the first row
and c and d in the second row. It looks like this:

o ; b
This is a small matrix (2 4).

You do it in the following way: Directly after “This is a small matrix” you
type once’ $. Then you type A SPACE B RETURN C SPACE D. Then you

LIf “smart indent” is on.

select from a to d with the mouse and click the right mouse button. In the
so called Window Background menu that shows up, you choose Matrices.
A dialog menu pops up, where you see the different types of brackets and
below there is a row of buttons labeled “OK”, “small”, “ltx”, “small-Iltx” and
“Cancel”. Select round brackets and press the button labeled “small”.

In the same way (almost) all the actions are handled, i.e. for equations,
lists, environments, format, snippets and so on. That is all you need to
know to work with these macros!

I think learning by doing is fastest. That is why there is a small example
file named ‘example.tex’, where you can try a few things out for yourself in
order to get you started.

Although you don’t need to read a manual to learn how to work with the
IATEX-MODE macros, there are several other reasons to have a manual.
One reason is that things may not work and the manual can help to figure
out what goes wrong.

Notice further that the example above needs the ApS-ITEX package.
Standardly the macros fill in the A\S-ETEX commands for matrices and
equations. That is because | am working with AAS-IATEX and this is just
another reason to have this manual — the macros are suited to my needs
and probably these will differ from your needs. So you may wonder, why

these macros are doing things this way and not that way. You may even
dislike the way | do editing. Well, please recall that | did not write these
macros for you. | have written them for me. These macros are only my in-
dividual customizations and what you need are your individual customiza-
tions for editing IATeX-files. Hence there is this manual trying to document
everything. Moreover, the source code of the macros is documented, so
that you have a better chance to change things.

These macros are released in the hope that they are helpful. On the one
hand there are things that you possibly will use unchanged or only slightly
adapted, on the other hand you get a tutorial of how to write macros your-
self. Of course, in that case you have to learn a bit about NEdit, about its
macro language and about regular expressions (see 5.1.11.1, for exam-
ple). But you can trust in the fact that | am a lazy type of guy. The amount
of work to get things done with NEdit is considerably lower compared to
other text editing tools.

3. Installation

Recall again that some macros require NEdit version 5.4. If you don’t have
version 5.4, yet, you can download it. NEdit consists only of a single binary,
so there is no need of a special installation. Only execute it.

You are running MS Windows? If you have an X server, you can run
NEdit on MS Windows 95, 98, ME, NT, 2000 and XP, together with MiKTgX.
So do |, sometimes. | recommend, that you use the easy to install package
from my home page. Although NEdit is an X client, it is fully working under
MS Windows with any X server.

There are slight differences in the installation of the IATEX-MODE between
Unix and Windows. Notice that for the Windows part, | assume that you
are using the package from my home page.

3.1. Quick Guide (Unix/Linux)

Unpack the file ‘latexmode-0.9.1.tar.gz’. The easiest way to test the KTEX-
MODE is to create the environment variable NEDIT_HOME pointing to the
‘latexmode-0.9.1’ folder. Assuming that you unpacked the BTEX-MODE into
your home directory, and that you are using bash, the command would be

http://www.nedit.org/ftp/
http://nedit.gmxhome.de

simply:
export NEDIT_HOME="/latexmode-0.9.1

Moreover, notice that the macros need certain key bindings that are con-
tained in the file ‘. Xdefaults’ in the ‘latexmode-0.9.1’ folder. So you need
to issue the command:

xrdb -m latexmode/.Xdefaults

If you have done all of this, you can now simply start NEdit, best in server
mode, to edit some IKTEX document, e. g.

nc latexmode-0.9.1/docs/example.tex
Notice that in some Linux distributions, nc stand for the netcat program.

Then the NEdit-client was renamed to e. g. ncl or something else.

3.2. Detailed Installation

There is no automated installation process for these macros. As a mat-
ter of fact, | consider macros to be an individual thing. | would not even

know, how to do the right thing for everybody automatically. Hence | ex-
plain how things work. First, if you should not know NEdit version 5.4 yet,
you should read the online help about NEdit’s preference files under “Help
— Customizing — Preferences” (perhaps you should read a bit about X
resources, too), and also at least the start of the macro language section
about the file ‘autoload.nm’.

In the ‘latexmode-0.9.1’ directory, there are the three files ‘nedit.rc’, ‘au-
toload.nm’ and ‘. Xdefaults’. The file ‘nedit.rc’ contains the menu definitions
(i.e., what you see under the “Macro” menu), and the file ‘autoload.nm’
contains macro code that gets executed when starting up NEdit. This
code loads the IASTEX-MODE macros, which are located in files that are in
the folder ‘latexmode-0.9.1/nedata’. Finally, the file ‘*.Xdefaults’ contains
important key-bindings for the KTEX-MODE macros.

Now, for this to work NEdit must first find the files ‘nedit.rc’ and ‘au-
toload.nm’, and then, the macro code in ‘autoload.nm’ must find the actual
KTEX-MODE macros. Moreover, your X server must know about the set-
tings for NEdit contained in the file ‘.Xdefaults’. Finally the IATEX-MODE
macros depend on various other data files all located in the directory tree
under ‘nedata’.

As shown in the previous section — assuming that you are on Unix/Linux

and unpack the KTEX-MODE into your home directory — it is not hard to
get all working. Only make NEdit aware of the preference files by setting
an environment variable, make your X server aware about the settings for
NEdit in the file ‘. Xdefaults’ by including them into the X database with
a single command, and you can start up NEdit and use the KTEX-MODE
macros already. It would be simple to write a script for this, but it is impos-
sible to predict what your real needs actually are. So, | let you do these
simple steps yourself to get you learning for more. If you can't, or don't
want to, do the steps in the previous section yourself, I'm afraid to have to
say this IATEX-MODE is not intended for pure consumers. There are better
options for you in this case.

Now, if you would like to include the IETEX-MODE in a preference file of
your own, you can simply import it with

nedit -import nedit.rc

Then check whether everything worked, and in order to make the import
permanent, you have to save the defaults once (“Preferences — Save De-
faults”). The NEdit help contains more about the location of the preference
files. If you have an ‘autoload.nm’ file of your own already, you can add
the macro code of the provided ‘autoload.nm’ to it. The important thing

is the global variable $data that must always point to the ‘nedata’ folder.
There is another global variable $windows that decides whether you are
running on a Unix/Linux system or on MS Windows.

Moreover, you probably want to add the content of ‘. Xdefaults’ to your
real X resource file (depending on your system usually ‘. Xresources’ or
‘.Xdefaults’). Notice again that the key-bindings defined there assume that
you are writing on a standard US keyboard layout. You have to adapt these
bindings, if you should use a different layout. Notice that the KTEX-MODE
macros provide a way to write German texts on a US keyboard layout, like
| do, that is close to writing the text on a German layout, while not losing
the US keys for the commands (e. g. backslash and brackets), cf. 7.

3.2.1. Uninstalling

Notice that there is no complete automatic installation of the KTEX-MODE
after you have imported it into your ‘nedit.rc’ file. But there is the macro
“Macro — NMacro — uninstall” that can remove a list of menu entries from
your preference file. The list of menu entries imported by the XTEX-MODE
is provided in the file ‘latexmode-0.9.1/uninstall.txt’. The uninstall macro
will save a backup copy of your preferences in the file ‘nedit.rc.bak’.

So, to uninstall the ISTEX-MODE, you have to run the macro above, and
to exit NEdit. After restarting you still have to remove the imported syn-
tax highlighting patterns. This can be done from the Syntax Highlighting
Patterns menu with the button Restore Defaults. If you want to remove
a whole language mode like BibTeX or DTX, Data or TeX-Log, you have
to remove the highlighting patterns first, then exit and restart to delete
the mode under “Preferences — Default Settings — Language Modes”.
(Sorry, this is an NEdit feature.)

Finally, you shouldn’t forget to remove the keybindings defined in your X
resources file for the of IATEX-MODE.

3.3. Windows (Cygwin Port)

For this part | assume that you are using the installation package of NEdit
for MS Windows provided on my home page, and that you are using the
the start-up script ‘start-nc.sh’ provided in that package.

While the theory of installing the IXTEX-MODE is the same, there are slight
differences having to do with the integration of NEdit into MS Windows. (If
you should use the full Cygwin/X emulation on top of MS Windows, the
installation is the same as explained before for Unix/Linux systems.)

Unpack the file ‘latexmode-0.9.1.tar.gz’. Then copy the files ‘nedit.rc’,
‘autoload.nm’ and ‘. Xdefaults’ to the NEdit home directory (cf. the instal-
lation of the Cygwin port — if you changed nothing it would be ‘C:\nedit’).

Open the file ‘autoload.nm’ and set the global variable $windows to
"true" . (This is done automatically, if you have installed MiKTEX on
your system.) Finally copy the folder ‘nedata’ to the NEdit home directory.

3.3.1. Remark on X Defaults

If you are a pure MS Windows user, you probably wonder, what this X de-
faults thing is about. NEdit is an application for the X Window system, the
standard graphics system under Unix, which is based on the client/server
model and is indeed independent of operating systems. There are many
X servers for Windows. In order to use NEdit you'll need some X server.
One of the advantages® of the the X Window system is, that you can
have complete control over an application, for example what keyboard

2Depending on the X server the file name may have to be changed. Since there is a dot
at the start, buggy Windows explorer doesn't allow to change the name. So open the file in
an editor and save it under the required name.

3There are also some disadvantages.

handling is concerned. Have a look at the ‘.Xdefaults’ file. It would be
new to me, if one has the same control over keys in MS Word. For a
useful application see 5.1.11.

4. Qverview

After installation you will find the macros located at the Macro and Window
Background menu (which shows up when clicking the right mouse button).
Notice that almost all macros are made language dependent, that means
you will see them only when editing ITgX-files.

You can customize the Macro, Background and Shell menu by going to
“Preferences — Default Settings — Customize Menus” and then select
the type of menu. One of the key definitions in the provided ‘. Xdefaults’
file defines F12 to pop-up the “Macro Commands” dialog.

With the macros contained in the IATEX-MODE you can

e run the TgX-compiler, a previewer (including forward and inverse
search), and other tools (makeindex, bibtex,...),

e control your references and citations,

e display lists of the user-defined commands in, and the sectioning of,
your file,

e define named snippets, for inserting in your text,

e define abbreviations for longer words or commands, that you need
to write often,

e let partly written words or commands and environments be com-
pleted,

e insert matrices and equations in the easy way described in the in-
troduction,

e insert all kinds of environments, formattings, sections, templates,
mathematical symbols, ...,

e put mathematics automatically at separate lines and let closing brack-
ets automatically be inserted.

The macro package contains also improved syntax highlighting patterns
for IKTEX and BibTEX, and a small, not yet fully integrated, mode for Docu-
mented IKTEX Source.

Moreover, a Tcl/Tk script called HelpSystem together with an on-line
help about KTEX was included, since this could (eventually*) be more than
only a browsable on-line help.

41t isn’t so far.

In addition, since you will probably need to adapt the macros to your
needs and taste, there are some macros for use with the NEdit macro
language included. You can see them located at the Macro menu under
“NMacro”, and “Macro — Help — Calltip”, which displays help about the
built-in NEdit macro functions and variables.

Notice in this context that some of the IKTeEX-MODE macros are of gen-
eral use. So expanding abbreviations is certainly not only good for ETEX-
editing. Indeed, the same macro is used to fill in constructs like while- and
for-loops of the NEdit-macro language while editing ** .nm’ files.

Independent from this, editing your files with NEdit will reduce the amount
of your errors dramatically, because there is a capable real-time syntax
highlighting® available.

5Not only keyword coloring, please!

5. Description of the Macros

In NEdit any macro needs a menu entry. You can put macros in the Macro
menu or in the Window Background menu. However, it is sufficient that
the menu entry consists only of a call to a function, where you define the
functions in separate files. In version 0.8 almost all XTEX-MODE macros
are functions defined in files, and the menu entries are merely calls to
these functions.

For the future | will keep this menu structure. Of course, if there are new
macros, | will need to add entries, but | won’t change the menu structure
as such. | describe now first the macros located on the Macro menu and
then those located on the Background menu in the order of appearance in
the menu.

5.1. Macro Menu

Notice that almost all macros are made language dependent, that means
you will see them only when you are in the language mode for which they
are defined. Apart from the core of the ISTEX-MODE macros, which are
of course only active if you are editing IXTeX-files, there are also macros

for DTX, Bib-files, Log-files, and some macros of general use. If NEdit is
in KTEX-mode, you should see the following entries in the Macro menu,
where the entry “LTXMode” contains the core part of the IATEX-moDE. (1l
describe the macros for DTX in a separate section.)

5.1.1. spell-check (alpha)

The problem when trying to spell-check your IETEX-document is, of course,
that there are many commands in. Some spell-checkers, like Ispell, have
a IATEX-mode to avoid the worst, but so far this doesn’t work to well in my
opinion.

I think the natural approach is simply to filter all of mathematics and
other commands from your document before sending it to the spell-checker,
so that the spell-checker only needs to check the real words, which is the
spell-checkers native job. So, the main part of the spell-checker handling
macro is a set of patterns (regular expressions) that are supposed to strip
off (most) of the IATEX-commands from your file.

Notice that you need either Ispell or Aspell installed on your system to
run this macro and that the macro needs to find the spell-checker, cf. the
global variable $spellchecker which contains the command to invoke

the spell-checker.

The spell-checking macro works for English and German texts (wherby
German is chosen by switching with ALT+.). For other languages you have
to edit the macro in ‘spellcheck.nm’ appropriately.

After the document was spell-checked, an assumedly mis-spelled word
is selected and a dialog with a list of suggestions for correcting the word
is shown. Select a suggestion and click on “Correct_all” (or on “Correct”
to correct only this occurrence — then the macro jumps to the next occur-
rence if any). If there is no usable suggestion, simply correct the mistake
manually and select the corrected word. Then click on “manual” to correct
all other instances of the same mistake.

If a correctly spelled word is selected as mis-spelled (because it isn’'t in
the dictionary of the spell-checker) you can skip it. (The dialog entry “Skip”
will only skip the selected mistake.) Or you can add it to the dictionary with
“— Dict". The button “undo” lets you undo the last correction, if you've
done a mistake, and repeat it.

Finally, you can cancel the macro simply by closing the dialog.

5.1.2. NMacro

These macros are not really part of the KTEX-MODE. They are there for
your convenience. Say you would like to change a macro in the KTEX-
MODE. Then you would open the file ‘latexmode.nm’ and edit it. You
needn't restart NEdit in order to get the new macro working. You can run
the “NMacro — Load functions” macro (only visible when you are editing
an NEdit macro file) by hitting the accelerator key ALT+0. Of course when
the macros are reloaded all variables get reset, so you must define your
main IKTeX-document again, for instance, but you needn’t end the editing
session.

Another useful feature is that you can display all accelerator keys cur-
rently defined by running “NMacro — show accelerators”.

5.1.3. LTXMode — Main File

This small macro lets you define a main file. So if you are working on
larger projects, the labels, commands, sectioning, running TgX and pre-
view macros are more comfortable to use. Notice that for some features
you have to define a main file first! There can be only one main file at a
time. The main file is defined through the dialog. In the dialog there is

a list of file names displayed that either are currently open or have been
bookmarked, cf. 5.1.9.

5.1.4. LTXMode — Run...

While it is easily possible to run TgX from a shell, e.g., under Unix you
could set the environment variable

export TEXEDIT=nc -noask -line %d %s

However, many folks find it more convenient to run TgX from within their
editor. All macros for producing and previewing your documents are lo-
cated under “LTXMode — Run”. Notice that these macros run with teTeX
as well as with MiIKTEX. The previewer is defined either as Xdvi or, for
Windows, Yap.

If you have defined a main file, see 5.1.3, invoking “Run — IATEX" will
compile your main file, otherwise the current file is compiled. The same
holds for the preview macro. Invoking “Run — IATeX(+src specials)” will
insert so-called source specials in your Dvi file, see 6. “Run — Next Error”
will jump to the next error line and display a call-tip with the error message.
By default warnings are not considered. You can change this by turning

debug mode on with the switch “Run — Debug on/off”. In the macro itself
you can set a variable for the maximum number of error or warnings to be
considered.

If the Dvi file contains source specials, executing the macro “Run —
Forward Search” will open up the previewer and switch the display to your
current cursor position, so that you needn’t search the part that you would
like to preview yourself. For inverse search you must configure your pre-
viewer, such that it calls NEdit. Notice that you must use NEdit in server
mode, i.e., through the file nc (NEdit client) so that there will not be opened
second instances of files you have already open when the previewer tries
to switch to them.

If you are missing something, such as running BibTgX, makeindex or
a “build” macro, the provided macros have enough information how to do
this yourself.

5.1.5. LTXMode — Insert

These macros simply insert environments, miscellaneous templates of
IKTEX-constructs, symbols, mathematical symbols and BibTgX entries in
your text. If you miss more templates you can simply add them to the data

files.

Special note for the mathematical symbols. There are some editors
that try to impress you with a kind of graphical user interface, i.e., they
show pictures of math symbols that you can click on and the appropriate
command is inserted in your text. This is a rather simple thing. Using
the HelpSystem, see 5.1.7, for such things is more flexible than “Insert —
Greek letters” may look like. (Requires Tcl/Tk!)

Invoking “Insert — quotation marks” by hitting CTRL+’ will insert the right
quotation marks — left or right, also considering whether you are writing
German (ALT+., cf. 7).

“LTXMode — Insert — BG” contains the real function calls of the Back-
ground menu. The entries on the Window Background menu are only calls
to the menu entries here (via macro_menu_command). The reason for this
is that it isn’t possible to define accelerator keys for the menu entries of the
Window Background menu. So having it this way lets you define additional
accelerator keys for these macros, if you wish to do so.

5.1.6. LTXMode — Structures

A common problem with larger files is for example that you need many
text references, which are created with the command \label (or, if we
think of pdf, with \hypertarget). Other examples are that you have
many user-defined macros or environments in your text (\newcommand
and \newenvironment , respectively).

Even if the file is not really large, you are likely to forget what labels you
have already created and where they are. Of course, you can search them
manually or let the TeX-compiler tell you that there are double labels and
then you must search and change the double ones later on. Better is, we
let your computer work. So these macros will search for labels and display
an alphabetically ordered list of the names of your labels (hyper-targets,
sections, user defined commands or whatever you like).

If a main file is defined the macros will search recursively through all
your include files. Notice that the included file names are expected to be
kept in the same folder as the main file. (At least | think so.)

Putting the cursor on a reference or a citation, invoking “Structures —
Show Ref/Cit” will display a call-tip containing the label or bibliographic
entry to which this reference or citation belongs.

Suppose you have a label on a lemma, and througout your text you

reference to this lemma. Later on you decide that the lemma should be
a proposition. Then you would have to change all your references like
“By Lemma...” to “By Proposition...”. Putting the cursor on the label
after you've changed the environment and invoking “Structures — The/Ref
(alpha)” will do this automatically through all your project files (if a main file
is defined).

5.1.7. LTXMode — Help

There is an on-line help for IKTEX included. This is based on a Tcl/Tk-
script of a Russian author, which is under GPL. For the details invoke this
help system from “LTXMode — Help — About Help”. You will need Tcl/Tk
installed on your system. Of course, it works on MS Windows, too.

Another possibility to invoke this help system is from “LTXMode — Insert
— Greek letters”. This displays all Greek letters in the help system and
you can simply click on them in order to insert them in your document. This
insertion is done by an interaction of the Tcl/Tk-script and the NEdit-macro
language on the other side. Read the file ‘latex.tcl’ for details. Notice that
“Smart Indent” has to be turned on and you have to run NEdit in server
mode for this to work!

One of the advantages of the above approach is that it is cross-platform
and doesn’t depend on a particular editor program. The help system, i.e.,
the “*.help’ files are merely HTML-files with some additional directives.
The pictures of the Greek letters are Png-files in base64 encoding (which
is not required to do — | only didn’t want a large collection of single Png-
files. By encoding them you can store them into a single file). You can do
such things simply yourself. You could extract whole formulas of you Dvi
fils as Png-pictures in a automated way and store them for later use. You
can then look through them with a Tcl/Tk script and a simple click on the
formula would insert it into your document.

5.1.8. Editing — Complete Word

In order to help you with your writing, there are the word- or code comple-
tion macros. You write the start of your word, of a command, or of refer-
ences or citations, and invoke the macro with F4. The macro looks through
your current file and through external completion files, that you can define,
and completes the word. A list of English and German top words and a
IKTeX-version of the German top words is already included. There is also
an example of a user-defined word completion file. Moreover, there is a

code completion file for KTeX-commands included.

Notice that the decision whether a word- or a code completion is at-
tempted is simple — if your word starts with a backslash, a code-completion
is done, otherwise it is a word completion. A special case is when you are
writing a reference or citation. For instance if you have written

\cite[Theorem 2.1{Sm}

and the cursor is behind the Sm and before the closing brace, then hitting
F4 tries to complete the Sm with matching entries from your bibliography.
(This requires that you have defined a main file, cf. 5.1.3.)

Notice that for a completion file, a whole line is taken as completion,
so that you can give in several words, where you need only to write the
start of the first word in your file and press F4 to get the whole completion.
If there are several possible completions, you can cycle through them by
pressing repeatedly F4 or you press F5 which will show a list of all possible
completions, where you can choose the wished one. If you have set a main
file, user-defined commands will also be completed.

5.1.9. Bookmarks

Especially, when working with multi-file documents or projects, it will be
comfortable to bookmark some of the files that you regularly need. This
is independent from the ‘Open previous’-list inside NEdit that is constantly
changing. It also allows to easily set the main file, see above. You can
bookmark the current file simply with CTRL+B. You can see a list of the
bookmarked files to open a bookmarked file or to delete an entry from the
list with SHIFT+CTRL+B.

5.1.10. Help

This is the basic call-tip feature. Help about functions (parameters, return
values and the like) are displayed in a small widget at the cursor position,
similar to tooltips. You need tips files for this to work. Provided are tips for
the NEdit macro language. More is available from home page.

5.1.11. Expander Macros

The Expander macros are located at the macro menu. At the entry “Ex-
pander” you can see the macros “Init”, “On”, “Off” and “Edit dat”. Below

http://nedit.gmxhome.de

these is a separator and the macros “lists on” and “lists off”.

In order to check if they work initialize® them with ALT+U or click on
“Init". Then give in 'e and hit space. You should get an \epsilon
now. To see all the already defined abbreviations click on “Edit dat”or hit
CTRL+SHIFT+E. You can add your own abbreviations or edit the given
ones. If you open the file where the abbreviations are stored with the
macro (CTRL+SHIFT+E), edit and save it, the newly defined abbreviations
will be present without re-initialization. Otherwise, you have to re-initialize.

The macros that you see there only initialize the Expander macro, turn
it on or off and edit the data file, where the abbreviations for expansion
are stored. The entries “lists on” and “lists off” turn the lists completion
macro on or off. This is a small macro that automatically inserts \item
or \bibitem , when you are in a list environment such as enumeration
or thebibliography. It is not related to the automatic completion macro and
can be turned on or off separately. There is nothing more to say about it.

What you can't see in the menu are the macros that are doing the work,
i.e., you don't see neither the automatic completion macro nor the list

61f you would like to initialize the expander macro automatically, set the global variable
$C_on at the start of the ‘autoload.nm’ file to one.

macro. This is because you needn’t execute them, so I've hidden them.”

Execution of the completion macro is bound to the sPACE key and the list
macro is bound to SHIFT+RETURN. That means, every time you hit SPACE
Or SHIFT+RETURN, not a blank or newline is inserted in your document, but
one of these macros is run.2 The binding of SPACE is done by way of key
translations®, whereas SHIFT+RETURN is bound as accelerator key. See
10.1 for the technical details about this. If you believe it is dangerous to
bind the completion macro to SPACE you can and should of course change
the key bindings.

The automatic completion macro is generally usable to define abbrevia-
tions that the editor expands. There are several variations of such macros
around, one of them is the so-called expander. The expander is described
in detail at the NEdit home page.’® I've included some of its features in
this version. To see the abbreviations that will be completed, click on “Edit

"This is simple. Set the menu entries for the macros to an undefined language mode (I
chose “@keys”, because the key-bindings have been re-defined for it), so you can never see
them in the menu.

8Don’'t worry. These macros will not forget to insert a blank or newline in your document.

9 For this reason you must add the contents of the ‘dot_Xdefaults’ file to your ‘.Xdefaults’
file.

10Notice, that parts of the expander are external C programs.

dat”. This will open the file ‘expand_$language_mode .dat in the ‘ne-
data’ folder. You can simply edit this file, change abbreviations or add your
own ones. Then save the file and initialize. Note that to run the macro you
must first execute “Init” from the menu or define a short cut for it. Then the
file is load to a string in memory, so that the file need not be opened every
time you hit the space key.

The expander’s features included are that you can recursively'* expand
abbreviations and that you can expand an abbreviation with a selection.
Recursive expansion means the following: If you put an already defined
abbreviation enclosed between |>...<| in the definition of another ab-
breviation, then this field will be recursively expanded. Moreover you can
set the cursor at any place in the expansion by putting an empty field |><|
at the desired position. Also, you can give in fields that aren’t defined as
abbreviations. After expanding, the first such field will be selected, so
that you can type in your text for the field. Afterward you can jump to the
next such field with “Next field” or define a short cut such as cTRL+X, for
example. Expansion with a selection means that you have the following
situation: abbrev _word, where abbrev is the abbreviation to expand

11see the files ‘templates_lat.dat’ and ‘persoenlich.dat’ for one possible application of re-
cursive expansion.

and word is some word. The cursor is directly after word. When you hit
CTRL+SPACE now, then the word is taken as selection and the abbreviation
is expanded. For example, you can define the abbreviation bg as

\begin{|>s<|}
I><
\end{|>s<|}

Then bg verbatim will be expanded — well, | think you understand it.
The |>s<| stands for the selection. But what when you would like to have
more than one word as selection? No problem, select all the words you
want behind the abbreviation and press CTRL+SPACE.

Notice that there is a small problem, because the expansion macro is
bound to the sPACE key. So hitting space directly after bg in the above
example will expand it before you can type in the rest. One solution would
be to have a different key binding and you can change this to your taste.
My solution is that with SHIFT+SPACE there will be inserted a blank without
the call to the expansion macro.

This solution is also useful, because the automatic completion macros
capitalize automatically the first word of a sentence, if you forgot to do so.
This will cause no pain for TeX-editing. If there is an abbreviation, e.g.,

e.g., you normally adjust spacing with ™ or \ _, because TgX interprets a
dot as end of sentence. Or otherwise, again, you can type SHIFT+SPACE
after the abbreviation.

Moreover, you have the option to define abbreviations starting with a @
Then the definition part will not replace directly the abbreviation, but will
be interpreted as shell command and the output of the shell command
will replace the abbreviation. Example: Define the abbreviation @date as
date +%m-%d-%y and it will expand to the current date.

5.1.11.1. Remark A remark on the correction macro above. This is
done with the help of regular expressions. What is this? | think this is best
understood by that easy example. Suppose you want to correct the first
word of a sentence, if you forgot to capitalize it. You could of course easily
search for a dot ending a sentence and also for a dot followed by a space,
but what then. There are quite a few letters in the alphabet. Of course
you could search for . _a and then for . _b and so on. But what you are
really searching for is a dot followed by a space and then a letter. This is
indeed a simple example of a search pattern. And such search patterns
are described with the help of regular expressions. The regular expression
describing this search patternis\. _\l , where the dot is described by \.

the space is described by itself and \I stands for some single letter. Now
have a look at the source of the above macro!

5.1.12. Key Board

To ease editing TgX files, NEdit's standard key bindings are changed by
the KTEX-MODE, for technical details about it see 10.1.

With these changed key bindings, the following will happen when editing
a TeX file:

e Maths environments starting with $ are automatically placed at new
lines and an additional $ is inserted. The cursor will be placed be-
tween the dollar signs.

e Maths environments starting with\[or\(are automatically placed
at new lines. The appropriate closing bracket is inserted and the
cursor is moved in between. You give in your equation that then is
placed at a new line, i.e., you needn't type RETURN, this is done
automatically.

e Generally typing in an open bracket produces the appropriate clos-
ing bracket and the cursor is placed between the two brackets.

e Typing in two underscores in a row will input sub and super indices.

e Hitting ALT+” inserts US or German quotation marks (depending on
language setting, cf. 7).

ALT+4 will insert two dollar signs without a new line. Holding the ALT-
key in addition to the normal key will give you the unchanged key behavior,
e.d., ALT+sHIFT+[will insert a single open brace { .

Notice that, if “Smart Indent” is turned on, you can move through brack-
ets or the dollar sign by just typing in spaces, i.e., typing in two spaces in
front of a closing bracket (including those brackets preceded by an back-
slash) or the dollar sign will move the cursor and the last space behind
the bracket or the dollar sign. You should type in punctuation marks, that
should come after a bracket or a dollar sign, inside the brackets or the
dollar signs — moving through the brackets/dollar will move punctuation
marks behind the brackets/dollar automatically.

Moreover, if sub-/superscripts or another bracket follows superfluous
spaces are removed. So you needn’t move the cursor back, just go on

typing!

5.2. Window Background Menu

The following macros are located on the Window Background menu that
pops up when clicking the right mouse button. Notice that shortcuts for
these macros can only be defined in the Macro menu (not the Window
Background menu).

5.2.1. Theorems

Write your theorem, proposition or the like, slect the text thereafter and
invoke the macro by clicking the right mouse button and choosing “The-
orems” from the Window Background menu. Of course, what you need
to get filled in depends on your \newtheorem -definitions. So you need
the ‘theorem.dat’ data file. Or you could rewrite the macro to look for the
definitions in the file you are editing. (You could use the “label’-macro for
this, see 5.1.6.)

5.2.2. Equations

Only the ApS-TEX versions of equations are supported, because they
are clearly better than the (pure) IXTEX ones. The best way to see how

things work is to try the examples in the ‘example.tex’ file.

Here is a only short description. I've tried to make as much automa-
tion as possible. Normally you fill in only the entries of the equation even
without alignment mark (&). If your single equation doesn't fit on one line
(in the TeX-output) you insert a newline (RETURN key) at the place where
the equation should be split and write the next line and so on. There-
after you select the whole equation and invoke, as usual, the “Equations”
macro from the Window Background menu. Select single equation and
choose “OK” or “No-number”. Then the macro will look first whether there
is more than one line of input, otherwise there isn’t much to do. If there
is more than one line, the macro knows that the equation must be split
and needs alignment. The alignment is done in the following way: Each
line processed separately. First the macro looks for a semicolon. If found
the first semicolon is changed to a &. If no semicolon is found, the macro
checks for a binary relation and inserts a alignment mark (&) in front of
the first binary relation that is found in the line. If neither a semicolon nor
a binary relation (you probably have to add some more binary relations to
the search string) is found, then a & is inserted at the start of the line if it
is not the first line. If nothing is selected, a template is inserted at cursor
position.

5.2.3. Matrices

Just give in the entries of your matrix, separate columns with a blank
space, if this is not possible, define a different separator, e.g., a semicolon.

Tables are supported only with a template under Insert misc-templ. This
is because | don't need them usually. If you do you can take the matri-
ces macro as an example how to program a macro inserting tabulars. If
nothing is selected, a template is inserted at cursor position.

5.2.4. Lists

This is for quick inserting of various lists such as enumerations or descrip-
tions. You needn’t type in \item , that is done automatically. Only hit the
short-cut SHIFT+RETURN for a newline.

5.2.5. Format and Sections

Various font sizes and also the verbatim environments, footnotes and quo-
tation marks are inserted. This is mainly in case you forgot the appropriate
commands and otherwise would need to look them up somewhere.

5.2.6. Snippets

This macro lets you maintain a collection of named snippets. There are
several ways to insert often needed commands or constructs or just parts
of text that you need to write from time to time.

For regularly used commands that you don’t want to write again and
again, the automatic completion macro (expander) or the word-/code com-
pletion macro are probably more adequate and faster. The snippets macro
is more for (longer) parts of text that you only need to write time after time,
so that you are more likely to forget about them. That is why you can give
names to the snippets (instead of just a short abbreviation) and the begin-
ning and ending parts of the snippets are shown together with the names
in the list dialog menu from which you choose them.

5.2.7. Comments

These macros are for quoting or unquoting parts of your file. It is just a
slight variation of default macros included with NEdit. The ‘docstrip’ macro
will delete all comments in a selection or in the whole document.

The “ues2tex” macro has nothing to do with that. It is a macro that
changes the German umlaute to TeX-style and vice versa. This can serve

as an example for other things, too. | just did not know where else to put
it.

6. Source Specials

By source specials is meant, that line numbers and the names of your
source files are included in the Dvi output. This information allows to relate
pieces of output, i.e. paragraphs or formulas, with the place in your source
file that created the output. Thus by clicking in the previewer window, you
can jump to the appropriate place in your source file. This is called inverse
search. Moreover, it is also possible to call the previewer from inside your
editor to show the output related to the current cursor position. This is
called forward search. In order to make use of inverse and forward search,
you need a Dvi file with source specials and a previewer that supports
these. Moreover, for forward search you need at least an editor that can
call external applications.

By now any TgX distribution should contain a compiler that can produce
Dvi files with source specials and a previewer that supports them. So all
you have to do is to tell your previewer (probably either Xdvi or Yap) to

work with NEdit. For Xdvi you should add

xdvi.editor: nc +%l %f

to your ‘.Xdefaults’ file.

For Yap, still assuming that you are using the installation package for
NEdit on Windows provided on my home page, cf. 3.3, there is a small
shell script ‘yap-nc.sh’ included in the ATEX-MODE. This must be copied to
the ‘cygwin\bin’ folder, in order to use inverse search with Yap. Also Yap
has to be set up appropriately, i.e., you find the command line to invoke
the editor in the file ‘yap-com.txt’ also included in the IATEX-MODE.

7. Writing German Texts

You can toggle with ALT+. between writing English and German texts.
If you hit ALT+. the mode is switched and a calltip is flashed shortly to
indicate the current mode. How the special German mode came into be-
ing is explained now (for other languages similar things could apply, i.e.,
you could invent your own Dutch, French, Italian, Spanish,..., whatever
mode).

http://nedit.gmxhome.de

The wish was to write German texts as if using a German keyboard lay-
out, but at the same time | did not want to lose the easy access to the
backslash and the various brackets that the standard US keyboard layout
offers. As a matter of fact, TEX documents are created most easily with
a US keyboard, since the author of TgeX was an American. (One should
also mention, that the German keyboard is very poor for programming.)
So, the idea was to keep using the US keyboard layout for German texts,
but changing the keybindings a bit inside NEdit. The approach that comes
to mind first is probably to define ALT+; to insert ‘®’, SHIFT+ALT+; to in-
sert ‘©’, and so on. However, this does not feel like writing on a German
keyboard at all. Thinking about it some more, | remembered that | could
bind arbitrary keys to arbitrary macros (not only to the simple macro con-
sisting only of a single insert-string action), and that unless | would going
to write some comics, there are no German words that could contain two
subsequent umlaute. Hence the rough idea was to define the key that in
the US layout is the semicolon (and colon if the SHIFT key is held down)
to insert ‘0", and to define SHIFT+; to insert ‘O’, and so on for the other
umlaute and the 3, exactly as it is for the German layout (thus writing texts
as if using a German layout). But if the preceding character is already a
‘0’, then hitting the semicolon again, the ‘0’ is replaced with a semicolon.

This was the first approach, and it felt already better than the solution
with holding the ALT key additionally. However, it was still too rough. So,
the macros had to become smarter. Now you get always the US keys
when editing a command (i.e., a string preceded by a backslash), you
get always a minus, if the preceding character is not a (non-capital) vo-
cal, SHIFT+; inserts a colon if preceded by non-capital letters, inside inline
maths equations you get the US keys (the macro is syntax highlighting
aware), and so on — fantasy is not limited. | know these are very per-
sonalized configurations, but they possibly give you ideas for your own
configurations!

8. General Remarks

These macros are only for use with NEdit. So you could say, that you
and many others are using different editors and therefore it is bad to have
something intended to help with editing KTgX-files, which can only be used
with a special editor. I'm not going to discuss about what is the best editor.
Also, | do not try to sell anything nor to convince anybody of using NEdit
for text editing.

My view is as follows: | had to choose an appropriate tool for the purpose
of making editing KTeX-files easy. | chose this editor, because that purpose
can be achieved with it.'? Perhaps there are other editors around achiev-
ing that purpose, too. But this doesn’t make my choice wrong, because
NEdit makes editing IATEX-files easy. If you stick to your editor, because it
helps with editing KTEX-files, too, then just make your contributions.

Notice that | do not consider the set of macros to be complete or per-
fect. They are perhaps not even good.'® For example although it could
be done the IATEX-MODE contains no macros for formatting your document
(because | think this is useless) and there is no automated re-parsing of

12 And NEdit is GPL, of course.
13 Although there are people around that try to make money out of something lesser.

your documents or the attempt to implement too many automated things
in general (because in my experience you can't get a program to do au-
tomatically what you want — it will mostly do automagically what you don’t
want).

Notice at this point again that | did not program these macros for you.
These macros are mostly as | use them, so they have a strong tendency
toward mathematics, or better that kind of mathematics that | need to write.
There are other things added only to show how to get them. But these
things need probably improvements. So if you are missing something or if
you think some macros or even all are not good enough, do not hesitate.
Add your own macros or improve the existing ones. There is no problem.
You can freely distribute it. I've put the whole package under GPL, but the
reason for that is only that I think that changing and redistributing shouldn’t
be done in a totally disordered way.

The intention of releasing such a set of macros is to give you a start-
ing point, to give you examples of how to do it yourself. You needn't be
afraid. The reason for choosing NEdit is that it is unbeaten for its combina-
tion of functionality and ease-of-use. It's macro language has a learning
curve of about half an hour (or perhaps one hour, if you have never written
programs yourself, as myself until | started with this here), including the

built-in editor library. Please understand these macros more as a tutorial
of how to do it yourself than as ready end product designed specifically to
your needs — how could anyone know about these, unless you tell him so,
and pay him for implementing it!

9. Changes — what’s new

For the latest, see the file changelog.

Version 0.8 was completely restructured. This means all macro code is
contained in files from which the code is loaded. The menu entries contain
only calls to functions defined in the files. This simplifies further mainte-
nance a lot. Moreover there is more support for references and citations.
Notice that there is no upgrade mechanism from previous versions. The
format of the ‘.dat’ files had to be changed, since | had chosen unused (for
German) non-ASCII strings as separators. However these strings were
just normal characters in the Russian encoding as a user from Russia
told me. So now there are unused ASCII strings like Ox1c (‘FS’) used as
separators.

In version 0.6 (was not made publicly available) there are mainly fixes
and enhancements. The expander macro has been fixed and the possibil-
ity to use abbreviations to execute and get the output of shell commands
was added. Notice that for avoiding compatibility problems between differ-
ent operating systems, all data files have now all lower case names. The
TeX-shell, i.e., the macros to run KTgX, has been re-written. If your TeX-
compiler and your previewer support source specials, the shell macros

support them, too. The syntax highlighting patterns for XTEX have been
fixed and improved. The key-bindings have been changed to allow to write
German umlaute on a US keyboard layout (in order not to lose easy ac-
cess of the backslash). Perhaps this idea can be modified to be useful for
other languages, too. Last more code completions have been added and
there are some templates or example files provided.

In version 0.5 there are several improvements. The ‘labels’-routine has
been simplified and ‘sectioning’ has been included. The Word-/Code-
completion macro has been corrected. The HelpSystem has been up-
dated to version 1.4 and more examples have been included. There is
also a corrected version of the IXTEX-highlighting patterns for NEdit. More-
over, the multi-file handling has been improved, see 5.1.3. There are also
some smaller things, e.g., hitting the underscore-key two times in a row
will insert sub- and super indices, hitting ALT+’ inserts German quotation
marks (can be changed to US ones). Also, this documentation was up-
dated.

Notice that some key bindings have changed and that there are changes
in the expander macro, see 5.1.11.

In version 0.3 there are only minor changes to version 0.2. The spell-
checker handling macro is slightly corrected. The assistant system can
give now a first vague impression of what it should become. Have a look
at “LTXMode — Insert — Greek letters”. There is a technical section in
this manual to explain how this is done, see 5.1.7. Moreover, there is an
illustration of the use of the recursive expansion feature of the expander
macro, see 5.1.11.

In version 0.2 there are some more macros of general use included.
For example the word completion macro (that can be used for code com-
pletions, too) and an alpha version of a macro that handles an external
spell-checker like Aspell or Ispell (which you must have installed on your
system). Moreover, the smart indent macros (no good word for what they
are) have been changed almost completely. | have changed the key-
bindings, so that to every opening bracket there will be the appropriate
closing bracket inserted. If you don't like it, you can hold the ALT-key
down, or delete the key-bindings (in the X defaults file).

In addition, there is a macro included, that saves the current cursor
position in a file, when you close it, so that you can go on editing at the
same position next time. This is also done by changing key-bindings, i.e.,

the macro is executed when hitting CRTL-Q or CTRL-W, before the file is
closed.

Finally | decided to include an alpha version of a kind of assistant system
(or it could become something like this), although it is far from completed.
The reason is that | don’'t have much time (actually not even enough time
to update this manual), so | couldn’t bring it to the state that | would like
it to be, but it should be clear from the provided macros, how this can be
done.

Make sure to check out 5.1.11. This macro has been renamed and the
data files that it uses have been renamed, too. It is possible now, to include
several data files for abbrevations and corrections by simply adding their
names to the arrays at the start of the initialization, see the “Expander —
Init” macro.

Notice, that short-cut keys have been changed, too. They are listed in
the file ‘key_bindings.txt'. See also the X defaults settings for NEdit. Finally
this manual isn't up-to-date, thus you may need to read the macros them-
selves.

In version 0.1, the IATEX-MODE runs with MiKTgX. For Windows 95, 98
and ME you should use the binaries from my home page. New macros

are for running KTgX, previewers, showing help files and inserting BibTeX
entries. The automatic completion macros have been improved and the
‘expansion with selection’-feature of the so-called expander was added.
There were also a few slight improvements of other macros. In order to
ease installation, all (proposed) accelerator keys were shifted to the file
‘dot_Xdefaults’, so you have to define key bindings for yourself. | did this
in order to avoid interferences with accelerator keys that you may have
already defined when importing the NEdit-preference file.

10. Technical Notes about NEdit.

These sections cover technical remarks about key bindings in NEdit and
the so-called call-tips. Note again that the KTEX-MODE macros assume
that you are using a US keyboard layout. If you are using a different lay-
out, you will usually get unintended results, so you have to adapt the key-
bindings to your needs.

10.1. Key Bindings

There are two different ways to define key bindings in NEdit. One is by
way of key translations in your X resource file, the other is by defining
accelerator keys in the macro menu and the shell menu. Both ways of
defining key bindings are quite different. The key translations cannot be
changed on the fly, i.e., in order to change them you have to edit your X
resource file, to run xrdb and to restart NEdit. So, if in the X resource
file keys like SPACE, RETURN or the bracket keys are bound to macros (as
is done in the KTEX-MODE) and these macros shouldn’t be in the menu
definitions, NEdit tries to invoke them, when these keys are pressed and
nothing will happen. On the other hand, the definitions of accelerator keys

in the menus can be changed on the fly and they overrule the key trans-
lations. Moreover, these accelerator bindings are only active, when the
respective menu is active. This means that you can bind the same accel-
erator to a lot of macros, if these macros are for different language modes.
Thus the decision seems to be clear: Forget about key translations and
use the accelerator bindings.

However, why are these bindings called accelerator bindings? Can they
not be used to bind SPACE, RETURN or the bracket keys? The answer is:
Yes, they can, but you should not do so, because these bindings are in-
deed only intended for accelerator keys. The problem is that their definition
is global to the window. You can see this, if you bind for example the SPACE
key to a macro by an accelerator binding in the macro menu. Then invoke
the incremental search bar (CTRL+1) and try to give in a blank. This won’t
work, because the macro bound to spACE will be executed. So, binding
normal keys to macros will make the incremental search bar useless (if
you bind RETURN to a macro by an accelerator binding, you can’t even
search incrementally). Moreover, key translations are more flexible in the
sense that you can bind macros to X events. See also the short tutorial
about key bindings that | made available at my home page.

These are the reason to use both type of key bindings. All the bindings

http://nedit.gmxhome.de/macros/keybinding.html

of normal keys such as SPACE and the bracket keys to macros are done
by way of key translations defined in the X resources file. There is also
a definition included in the X resources file to get their original behavior.
Simply hold additionally the ALT key down. Only for the SPACE key you
have to hold a SHIFT key down.

But, of course, you can and should change the key bindings to your
taste and needs! You probably even have to if you are using a non US
keyboard layout! Notice that | even didn’t include accelerator keys for most
macros. So, if you don’t want to invoke the macros through the menu each
time, you have to define accelerator keys for them, which is simply done
in the macro and window background commands menus (“Preferences —
Default Settings — Customize Menus”).

10.2. Call-tips

In order to implement a TeX-shell inside NEdit, we have to display error
messages of the TeX-compiler. There is no buffer concept in NEdit. We
could open a new editing window only to show an error message or we
could show the message in a dialog box. The later choice is bad, because
it will block macro execution and we have no control of the position of the

box. It will probably obscure the editing area. The former choice could
work, if we open a new window through the NEdit-client in order to control
the size and the screen position of the new window. However, then you
have to switch between windows (it is not clear where the editing window is
and where to open the message window) and worse we run into a timing
problem (is the new window already created, before we insert the error
message — this would be ensured when opening the window not through
the client but with the open or new window action, but then we cannot
control the size of the new window, i.e., it will have the default size of an
editing window). Hence it is natural to use call-tips to display the error
message.

	Title Page
	Description
	Notational Conventions
	Motivation
	Introduction
	Installation
	Quick Guide (Unix/Linux)
	Detailed Installation
	Uninstalling

	Windows (Cygwin Port)
	Remark on X Defaults

	Overview
	Description of the Macros
	Macro Menu
	spell-check (alpha)
	NMacro
	LTXMode Main File
	LTXMode Run…
	LTXMode Insert
	LTXMode Structures
	LTXMode Help
	Editing Complete Word
	Bookmarks
	Help
	Expander Macros
	Remark

	Key Board

	Window Background Menu
	Theorems
	Equations
	Matrices
	Lists
	Format and Sections
	Snippets
	Comments

	Source Specials
	Writing German Texts
	General Remarks
	Changes -- what's new
	Technical Notes about NEdit.
	Key Bindings
	Call-tips

