
Reference manual

The Island of TeX

Version 7.1.5

1

https://gitlab.com/islandoftex/arara
https://gitlab.com/islandoftex/arara

License
arara is licensed under the New BSD License. It is important to observe that the New BSD Li‐

cense has been verified as a GPL-compatible free software license by the Free Software Foun‐

dation, and has been vetted as an open source license by the Open Source Initiative.

New BSD License

Copyright 2012–2023, Island of TeX

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this

list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice,

this list of conditions and the following disclaimer in the documentation

and/or other materials provided with the distribution.

Neither the name of the copyright holder nor the names of its contributors

may be used to endorse or promote products derived from this software

without specific prior written permission.

This software is provided by the copyright holders and contributors “as is” and any

express or implied warranties, including, but not limited to, the implied warranties

of merchantability and fitness for a particular purpose are disclaimed. In no event

shall the copyright holder or contributors be liable for any direct, indirect, inciden‐

tal, special, exemplary, or consequential damages (including, but not limited to,

procurement of substitute goods or services; loss of use, data, or profits; or busi‐

ness interruption) however caused and on any theory of liability, whether in con‐

tract, strict liability, or tort (including negligence or otherwise) arising in any way

out of the use of this software, even if advised of the possibility of such damage.

1.

2.

3.

2

https://opensource.org/licenses/BSD-3-Clause
http://www.fsf.org/%22
http://www.fsf.org/%22
http://www.opensource.org/

8

8

10

12

13

14

14

23

28

30

30

32

40

42

42

43

51

51

52

53

54

57

57

58

60

61

Contents

• Introduction

• What is this tool?

• Core concepts

• Operating system remarks

• Support

• Important concepts

• Rules

• Directives

• Important changes in version 7

• Command line

• User interface design

• Options

• File name lookup

• Configuration file

• File lookup

• Basic structure

• Logging

• System information

• Directive extraction

• Directive normalization

• Rule interpretation

• Projects

• Rationale

• File structure

• Methods

• Files

3

70

73

75

77

78

80

86

89

94

94

95

97

98

99

100

100

101

101

102

104

104

105

106

108

109

109

110

110

111

112

112

113

114

115

116

116

118

• Conditional flow

• Strings

• Operating systems

• Type checking

• Classes and objects

• Dialog boxes

• Commands

• Others

• The official rule pack

• animate

• asymptote

• authorindex

• bib2gls

• biber

• bibtex

• bibtex8

• bibtexu

• clean

• context

• convert

• copy

• csplain

• datatooltk

• detex

• dvipdfm

• dvipdfmx

• dvips

• dvipspdf

• dvisvgm

• etex

• fig2dev

• frontespizio

• ghostscript

• gnuplot

• halt

• indent

• knitr

4

118

120

121

122

123

124

126

127

127

127

128

129

130

130

130

131

131

133

134

135

136

136

137

139

140

140

142

142

142

143

143

144

145

146

147

148

149

• latex

• latexmk

• llmk

• ltx2any

• luahbtex

• lualatex

• luatex

• make

• makeglossaries

• makeglossarieslite

• makeindex

• metapost

• mkdir

• move

• nomencl

• pbibtex

• pdfcrop

• pdfcsplain

• pdflatex

• pdftex

• pdftk

• pdftocairo

• perltex

• platex

• ps2pdf

• pythontex

• qpdf

• rmdir

• sage

• sketch

• songidx

• spix

• tex

• texcount

• texindy

• tikzmake

• upbibtex

5

149

150

151

152

153

154

155

157

157

159

159

160

161

163

163

164

166

170

170

171

173

173

174

174

176

177

177

179

179

180

181

• uplatex

• uptex

• xdvipdfmx

• xelatex

• xetex

• xindex

• xindy

• Building arara

• Requirements

• Compiling the tool

• Fetching the sources

• Building the executable

• Executing the fresh build

• Deploying the tool

• Directory structure

• Defining a location

• Tool wrapping

• Introduction to the YAML format

• Collections

• Scalars

• Tags

• Further reading

• MVEL

• Basic usage

• Inline lists, maps and arrays

• Property navigation

• Flow control

• Projections and folds

• Assignments

• Basic templating

• Further documentation

6

Introduction
Hello there, welcome to arara, the cool TeX automation tool! This chapter is actually a quick in‐

troduction to what you can (and cannot) expect from arara. For now, concepts will be informally

presented and will be detailed later on, in the next chapters.

What is this tool?

Good question! arara is a TeX automation tool based on rules and directives. It is, in some as‐

pects, similar to other well-known tools like latexmk and rubber. The key difference (and

probably the selling point) might be the fact that arara aims at explicit instructions in the

source code (in the form of comments) in order to determine what to do instead of relying on

other resources, such as log file analysis. It is a different approach for an automation tool, and

we have both advantages and disadvantages of such design. Let us use the following file hel‐

lo.tex as an example:

\documentclass{article}

\begin{document}

Hello world!

\end{document}

How would one successfully compile hello.tex with latexmk and rubber, for instance? It is

quite straightforward: it is just a matter of providing the file to the tool and letting it do the

hard work:

$ latexmk -pdf hello.tex

$ rubber --pdf hello.tex

The mentioned tools perform an analysis on the file and decide what has to be done. However,

if one tries to invoke arara on hello.tex, I am afraid nothing will be generated; the truth is,

arara does not know what to do with your file, and the tool will even raise an error message

complaining about this issue:

What is this tool? 8

$ arara hello.tex

__ _ _ __ __ _ _ __ __ _

/ _` | '__/ _` | '__/ _` |

| (_| | | | (_| | | | (_| |

__,_|_| __,_|_| __,_|

Processing "hello.tex" (size: 70 B, last modified: 12/28/2020

07:03:16), please wait.

ERROR

It looks like no directives were found in the provided file. Make

sure to include at least one directive and try again.

Total: 0.04 seconds

Quite surprising. However, this behaviour is not wrong at all, it is completely by design: arara

needs to know what you want. And for that purpose, you need to tell the tool what to do.

A very important concept

That is the major difference of arara when compared to other tools: it is not

an automatic process and the tool does not employ any guesswork on its

own. You are in control of your documents; arara will not do anything unless

you teach it how to do a task and explicitly tell it to execute the task.

Now, how does one tell arara to do a task? That is actually the easy part, provided that you have

everything up and running. We accomplish the task by adding a special comment line, hereafter

known as directive, somewhere in our hello.tex file (preferably in the first lines):

% arara: pdflatex

\documentclass{article}

\begin{document}

Hello world!

\end{document}

For now, do not worry too much about the terms, we will come back to them later on, in Impor‐

tant concepts. It suffices to say that arara expects you to provide a list of tasks, and this is done

by inserting special comments in the source file. Let us see how arara behaves with this updat‐

ed code:

$ arara hello.tex

__ _ _ __ __ _ _ __ __ _

What is this tool? 9

/ _` | '__/ _` | '__/ _` |

| (_| | | | (_| | | | (_| |

__,_|_| __,_|_| __,_|

Processing "hello.tex" (size: 88 B, last modified: 12/28/2020

07:05:05), please wait.

(PDFLaTeX) PDFLaTeX engine SUCCESS

Total: 0.56 seconds

Hurrah, we finally got our document properly compiled with a TeX engine by the inner workings

of our beloved tool, resulting in an expected hello.pdf file created using the very same sys‐

tem call that typical automation tools like latexmk and rubber use. Observe that arara works

practically on other side of the spectrum: you need to tell it how and when to do a task.

Core concepts

When adding a directive in our source code, we are explicitly telling the tool what we want it to

do, but I am afraid that is not sufficient at all. So far, arara knows what to do, but now it needs

to know how the task should be done. If we want arara to run pdflatex on hello.tex, we

need to have instructions telling our tool how to run that specific application. This particular

sequence of instructions is referred as a rule in our context.

Note on rules

Although the core team provides a lot of rules shipped with arara out of the

box, with the possibility of extending the set by adding more rules, some

users might find this decision rather annoying, since other tools have most of

their rules hard-coded, making the automation process even more transpar‐

ent. However, since arara does not rely on a specific automation or compila‐

tion scheme, it becomes more extensible. The use of directives in the source

code make the automation steps more fluent, which allows the specification

of complex workflows much easier.

Despite the inherited verbosity of automation steps not being suitable for small documents,

arara really shines when you have a document which needs full control of the automation

process (for instance, a thesis or a manual). Complex workflows are easily tackled by our tool.

Rules and directives are the core concepts of arara: the first dictates how a task is done, and

the latter is the proper instance of the associated rule on the current document, i.e, when and

where the commands must be executed.

Core concepts 10

The name

Do you like araras? We do, specially our tool which shares the same name of

this colorful bird.

The tool name was chosen as an homage to a Brazilian bird of the same

name, which is a macaw. The word arara comes from the Tupian word a'rara,

which means big bird (much to my chagrin, Sesame Street's iconic character

Big Bird is not a macaw; according to some sources, he claims to be a golden

condor). Araras are colorful, noisy, naughty and very funny. Everybody loves

araras. The name seemed catchy for a tool and, in the blink of an eye, arara

was quickly spread to the whole TeX world.

Now that we informally introduced rules and directives, let us take a look on how arara actually

works given those two elements. The whole idea is pretty straightforward, and I promise to re‐

visit these concepts later on in this manual for a comprehensive explanation (more precisely, in

Important concepts).

First and foremost, we need to add at least one instruction in the source code to tell arara what

to do. This instruction is named a directive and it will be parsed during the preparation phase.

Observe that arara will tell you if no directive was found in a file, as seen in our first interaction

with the tool.

An arara directive is usually defined in a line of its own, started with a comment (denoted by a

percent sign in TeX and friends), followed by the word arara: and task name:

% arara: pdflatex

\documentclass{article}

...

Core concepts 11

Our example has one directive, referencing pdflatex. It is important to observe that the

pdflatex identifier does not represent the command to be executed, but the name of the rule

associated with that directive.

Once arara finds a directive, it will look for the associated rule. In our example, it will look for a

rule named pdflatex which will evidently run the pdflatex command line application. Rules

are YAML files named according to their identifiers followed by the yaml extension and follow a

strict structure. This concept is covered in Important concepts.

Now, we have a queue of pairs (directive, rule) to process. For each pair, arara will map the di‐

rective to its corresponding rule, evaluate it and run the proper command. The execution chain

requires that command i was successfully executed to then proceed to command i + 1, and so

forth. This is also by design: arara will halt the execution if any of the commands in the queue

had raised an error. How does one know if a command was successfully executed? arara checks

the corresponding exit status available after a command execution. In general, a successful exe‐

cution yields 0 as its exit status.

In order to decide whether a command execution is successful, arara relies on exit status

checking. Typically, a command is successful if, and only if, its resulting exit status is 0 and no

other value. However, we can define any value, or even forget about it and make it always return

a valid status regardless of execution (for instance, in a rule that always is successful — see, for

instance, the clean rule).

That is pretty much how arara works: directives in the source code are mapped to rules. These

pairs are added to a queue. The queue is then executed and the status is reported. More details

about the expansion process are presented in Important concepts. In short, we teach arara to

do a task by providing a rule, and tell it to execute it through directives in the source code.

Operating system remarks

The application is written using the Kotlin language, so arara runs on top of a Java virtual ma‐

chine, available on all the major operating systems — in some cases, you might need to install

the proper virtual machine. We tried very hard to keep both code and libraries compatible with

older virtual machines or from other vendors. Currently, arara is known to run on Java 8 to 18,

from any vendor.

Outdated Java virtual machines

Dear reader, beware of outdated software, mainly Java virtual machines! Al‐

though arara offers support for older virtual machines, try your best to keep

your software updated as frequently as possible. The legacy support exists

only for historical reasons, and also due to the sheer fact that we know some

Operating system remarks 12

people that still runs arara on very old hardware. If you are not in this partic‐

ular scenario, get the latest virtual machine.

In Building arara, we provide instructions on how to build arara from sources using Gradle.

Even if you use multiple operating systems, arara should behave the same, including the rules.

There are helper functions available in order to provide support for system-specific rules based

on the underlying operating system.

Support

If you run into any issue with arara, please let us know. We all have very active profiles in the

TeX community at StackExchange, so just use the arara tag in your question and we will help

you the best we can (also, take a look at their starter guide).

We also have a Matrix and Gitter chat rooms, in which we occasionally hang out. Also, if you

think the report is worthy of an issue, open one in our GitLab repository.

We really hope you like our humble contribution to the TeX community. Let arara enhance your

TeX experience, it will help you when you will need it the most. Enjoy the manual.

Support 13

https://tex.stackexchange.com/
https://tex.meta.stackexchange.com/q/1436
https://matrix.to/#/!HfEWIEvFtDplCLSQvz:matrix.org?via=matrix.org
https://gitter.im/Island-of-TeX/arara
https://gitlab.com/islandoftex/arara/issues

Important concepts
Time for our first proper contact with arara! I must stress that is very important to understand a

few concepts in which arara relies before we proceed to the usage itself. Do not worry, these

concepts are easy to follow, yet they are vital to the comprehension of the application and the

logic behind it.

Rules

A rule is a formal description of how arara handles a certain task. For instance, if we want to

use pdflatex with our tool, we should have a rule for that. Directives are mapped to rules, so

a call to a non-existent rule foo, for instance, will indeed raise an error:

__ _ _ __ __ _ _ __ __ _

/ _` | '__/ _` | '__/ _` |

| (_| | | | (_| | | | (_| |

__,_|_| __,_|_| __,_|

Processing "doc1.tex" (size: 31 B, last modified: 12/28/2020

07:37:37), please wait.

ERROR

I could not find a rule named "foo" in the provided rule paths.

Perhaps a misspelled word? I was looking for a file named

"foo.yaml" in the following paths in order of priority:

(/opt/islandoftex/arara/rules)

Total: 0.03 seconds

Once a rule is defined, arara automatically provides an access layer to that rule through direc‐

tives in the source code, a concept to be formally introduced later on. Observe that a directive

reflects a particular instance of a rule of the same name (i.e, a foo directive in a certain source

code is an instance of the foo rule).

Rules 14

A note about rules

From version 6.0 on, rules included in the core distribution have been re‐

named to have a unique prefix in the texmf tree. File names should not be re‐

lied upon.

In short, a rule is a plain text file written in the YAML format, described in YAML. I opted for this

format because back then it was cleaner and more intuitive to use than other markup lan‐

guages such as XML, besides of course being a data serialization standard for programming lan‐

guages.

Animal jokes

As a bonus, the acronym YAML rhymes with the word camel, so arara is heavi‐

ly environmentally friendly. Speaking of camels, there is the programming

reference as well, since this amusing animal is usually associated with Perl

and friends.

The default rules, i.e, the rules shipped with arara, are placed inside a special subdirectory

named rules/ inside another special directory named ARARA_HOME (the place where our tool

is installed). We will learn later on that we can add an arbitrary number of paths for storing our

own rules, in order of priority, so do not worry too much about the location of the default rules,

although it is important to understand and acknowledge their existence. Observe, however, that

rules in the core distribution have a different naming scheme than the ones located in the user

space.

The following list describes the basic structure of an arara rule by presenting the proper ele‐

ments (or keys, if we consider the proper YAML nomenclature). Observe that elements marked

as [M] are mandatory (i.e, the rule has to have them in order to work). Similarly, elements

marked as [O] are optional, so you can safely ignore them when writing a rule for our tool. A key

preceded by context → indicates a context and should be properly defined inside it.

[M] !config: This keyword is mandatory and must be the first line of any arara rule. It

denotes the object mapping metadata to be internally used by the tool. The tool requires

it, so make sure to start all rules with a !config keyword.

[M] identifier: This key acts as a unique identifier for the rule (as expected). It is high‐

ly recommended to use lowercase letters without spaces, accents or punctuation sym‐

bols, as good practice (again). As a convention, if you have an identifier named

pdflatex, the rule filename must be pdflatex.yaml (like our own instance). Please

note that, although yml is known to be a valid YAML extension as well, arara only consid‐

ers files ending with the yaml extension. This is a deliberate decision.

•

•

Rules 15

identifier: pdflatex

[M] name: This key holds the name of the task (a rule instantiated through a directive) as

a plain string. When running arara, this value will be displayed in the output enclosed in

parentheses.

name: PDFLaTeX

[O] authors: We do love blaming people, so arara features a special key to name the rule

authors (if any) so you can write stern electronic communications to them! This key holds

a list of strings. If the rule has just one author, add it as the first (and only) element of

the list.

authors:

- Marco Daniel

- Paulo Cereda

[M] commands: This key denotes a potential list of commands. From the user perspective,

each command is called a subtask within a task (rule and directive) context. A task may

represent only a single command (a single subtask), as well as a sequence of commands

(subtasks). For instance, the frontespizio rule requires at least two commands. So, as

a means of normalizing the representation, a task composed of a single command (single

subtask) is defined as the only element of the list, as opposed to previous versions of

arara, which had a specific key to hold just one command.

In order to properly set a subtask, the keys used in this specification are defined inside

the commands → context and presented as follows.

[O] commands → name: This key holds the name of the subtask as a plain string.

When running arara, this value will be displayed in the output. Subtask names are

displayed after the main task name. By the way, did you notice that this key is en‐

tirely optional? That means that a subtask can simply be unnamed, if you decide

so. However, such practice is not recommended, as it's always good to have a visual

description of what arara is running at the moment, so name your subtasks proper‐

ly.

[M] commands → command: This key holds the action to be performed, typically a

system command. The tool offers two types of returned values:

A Command object: arara features an approach for handling system com‐

mands based on a high level structure with explicit argument parsing named

Command. In order to use this approach, we need to rely on orb tags and use

•

•

•

◦

◦

▪

Rules 16

a helper method named getCommand to obtain the desired result. We will

detail this method later on.

command: "@{ return getCommand('ls') }"

A boolean value: it is also possible to exploit the expressive power of the un‐

derlying scripting language available in the rule context (see MVEL for more

details) for writing complex code. In this particular case, since the computa‐

tion is being done by arara itself and not the underlying operating system,

there will not be a command to be executed, so simply return a boolean val‐

ue — either an explicit true or false value or a logical expression — to indi‐

cate whether the computation was successful.

command: "@{ return 1 == 1 }"

It is also worth mentioning that arara also supports lists of commands represented

as Command objects, boolean values or a mix of them. This is useful if your rule has

to decide whether more actions are required in order to accomplish a task. In this

case, our tool will take care of the list and execute each element in the specified

order.

command: "@{ return [getCommand('ls'), getCommand('ls')] }"

As an example, please refer to the official clean rule for a real scenario where a

list of commands is successfully employed: for each provided extension, the rule

creates a new cleaning command and adds it to a list of removals to be processed

later.

There is at least one variable available in the command context and is described as

follows (note that MVEL variables and orb tags are discussed in MVEL). A variable

will be denoted by ⋄ variable in this list. For each rule argument (defined later

on), there will be a corresponding variable in the command context, directly ac‐

cessed through its unique identifier.

⋄ reference: This variable holds the canonical, absolute path representa‐

tion of the file name as a File object. This is useful if it's necessary to know

the hierarchical structure of a project. Since the reference is a Java object, we

can use methods available in the File class.

Quote handling

The YAML format disallows key values starting with @ without

proper quoting. This is the reason we had to use double quotes

▪

▪

Rules 17

for the value and internally using single quotes for the command

string. Also, we could use the other way around, or even using

only one type and then escaping them when needed. This is ex‐

cessively verbose but needed due to the format requirement.

From version 6.0 on, the <arara> shorthand is not supported

anymore. We encourage the use of a YAML feature named folded

style when writing such values. The idea here is to use the scalar

content in folded style. The new code will look like this:

command: >

 @{

 return getCommand('ls')

 }

Mind the indentation, as YAML requires it to properly identify

blocks. If your code still relies on the <arara> shorthand, please

update it accordingly to use YAML's folded style instead.

[O] commands → exit: This key holds a special purpose, as it represents a custom

exit status evaluation for the corresponding command. In general, a successful exe‐

cution has zero as an exit status, but sometimes we end up with tools or situations

where we need to override this check for whatever reason. For this purpose, simply

write a MVEL expression without orb tags as plain string and use the special vari‐

able ⋄ value if you need the actual exit status returned by the command, avail‐

able at runtime. For example, if the command returns a non-zero value indicating a

successful execution, we can write this key as:

exit: value > 0

If the execution should be marked as successful by arara regardless of the actual

exit status, you can simply write true as the key value and this rule will never fail,

for obvious reasons.

For instance, consider a full example of the commands key, defined with only one com‐

mand, presented as follows. The hyphen denotes a list element, so mind the indentation

for correctly specifying the component keys. Also, note that, in this case, the exit key

was completely optional, as it does the default checking, and it was included for didactic

purposes.

commands:

- name: The PDFLaTeX engine

◦

Rules 18

command: >

 @{

 return getCommand('pdflatex', file)

 }

exit: value == 0

[M] arguments: This key holds a list of arguments for the current rule, if any. The argu‐

ments specified in this list will be available to the user later on for potential completion

through directives. Once instantiated, they will become proper variables in the command

contexts. This key is mandatory, so even if your rule does not have arguments, you need

to specify a list regardless. In this case, use the empty list notation:

arguments: []

In order to properly set an argument, the keys used in this specification are defined in‐

side the arguments → context and presented as follows.

[M] arguments → identifier: This key acts as a unique identifier for the argu‐

ment. It is highly recommended to use lowercase letters without spaces, accents or

punctuation symbols, as a good practice. This key will be used later on to set the

corresponding value in the directive context.

identifier: shell

It is important to mention that not all names are valid as argument identifiers.

arara has restrictions on two names, described as follows, which cannot be used.

Reserved names for rule arguments

Our tool has two names reserved for internal use: files, and

reference. Do not use them as argument identifiers!

[O] arguments → flag: This key holds a plain string and is evaluated when the

corresponding argument is defined in the directive context. After being evaluated,

the result will be stored in a variable of the same name to be later accessed in the

command context. In the scenario where the argument is not defined in the direc‐

tive, the variable will hold an empty list.

Return type

From version 6.0 on, the return value for flag is now trans‐

formed into a proper List<String> type instead of a plain,

•

◦

◦

Rules 19

generic Object reference, as seen in previous versions. The fol‐

lowing rules apply:

If a list is returned, it will be flattened and all values will

be turned into strings.

['a', 1, [2, 'b']] → ['a', '1', '2', 'b']

If a string is returned, a single list with only that string will

be returned.

'hello world' → ['hello world']

If another type is returned, it will be turned into string.

3.1415 → ['3.1415']

Other return types than string or lists are not encouraged. How‐

ever, if such types are used, they will be transformed into a list of

strings, as previously seen. If you need interoperability of com‐

plex command code with older versions, use the following trick to

get the value of previously non-list values:

isList(variable) ? variable[0] : variable

In this way, one can keep a compatibility layer for older versions.

However, it is highly recommended to use the latest version of

arara whenever possible.

flag: >

 @{

 isTrue(parameters.shell, '--shell-escape',

 '--no-shell-escape')

 }

There are two variables available in the flag context, described as follows. Note

that are also several helper methods available in the rule context (for instance,

▪

▪

▪

Rules 20

❖ isTrue presented in the previous example) which provide interesting features

for rule writing. They are detailed later on, in Methods.

⋄ parameters: This variable holds a map of directive parameters available

at runtime. For each argument identifier listed in the arguments list in the

rule context, there will be an entry in this variable. This is useful to get the

actual values provided during execution and take proper actions. If a param‐

eter is not set in the directive context, the reference will still exist in the map,

but it will be mapped to an empty string.

check = parameters.contains("foo");

⋄ reference: This variable holds the canonical, absolute path representa‐

tion of the file name as a File object. This is useful if it is necessary to know

the hierarchical structure of a project. Since the reference is a Java object, we

can use methods available in the File class.

parent = reference.getParent();

In the previous example, observe that the MVEL expression defined in the flag key

checks if the user provided an affirmative value regarding shell escape, through

comparing ⋄ parameters.shell with a set of predefined affirmative values. In

any case, the corresponding command flag is defined as result of such evaluation.

[O] arguments → default: As default behaviour, if a parameter is not set in the

directive context, the reference will be mapped to an empty string. This key exists

for the exact purpose of overriding such behaviour and always expects a string val‐

ue, as if it were provided by the user in the directive context.

No more evaluation and variables

In earlier versions, arara used to evaluate the default key and

return a plain, generic Object reference, which was then for‐

warded directly to the corresponding command context. The

workflow changed for version 6.0 on.

From now on, default always expects a string value, as if it

were provided by the user in the directive context. No variables

are available and no more evaluation is expected from this key.

Consider the following example:

default: "@{ 1 == 1 }"

▪

▪

◦

Rules 21

There is an orb tag expression in this string, which should re‐

solve to true in previous versions of arara. However, from now

on, it will not be evaluated at all and the literal string will be as‐

signed to the default key.

The default key, whenever available and in the scenario in

which the user does not provide an explicit value for the current

argument in the directive context, is forwarded to the flag con‐

text for proper evaluation. Then the workflow proceeds as usual.

Return type

The default key, whenever available, returns a string to be eval‐

uated in the corresponding flag context. However, if the target

evaluation context does not exist (i.e, there is no corresponding

flag key), the value is transformed into a list of strings and then

forwarded directly to the command context. For instance:

- identifier: foo

default: 'bar'

This scenario will directly forward ['bar'] (a list of strings

containing the specified value as single element) as the value for

the ⋄ foo variable in the corresponding command context.

default: 'stable'

[O] arguments → required: There might be certain scenarios in which a rule

could make use of required arguments (for instance, a copy operation in which

source and target must be provided). The required key acts as a boolean switch

to indicate whether the corresponding argument should be mandatory. In this case,

set the key value to true and the argument becomes required. Later on at runtime,

arara will throw an error if a required parameter is missing in the directive.

required: false

Note that setting the required key value to false corresponds to omitting the

key completely in the rule context, which resorts to the default behaviour (i.e, all

arguments are optional).

◦

Rules 22

Note on argument keys

As seen previously, both flag and default are marked as optional,

but at least one of them must occur in the argument specification, oth‐

erwise arara will throw an error, as it makes no sense to have no argu‐

ment handling at all. Please make sure to specify at least one of them

for a consistent behaviour!

For instance, consider a full example of the arguments key, defined with only one argu‐

ment, presented as follows. The hyphen denotes a list element, so mind the indentation

for correctly specifying the component keys. Also, note that, in this case, keys required

and default were completely optional, and they were included for didactic purposes.

arguments:

- identifier: shell

flag: >

 @{

 isTrue(parameters.shell,

 '--shell-escape',

 '--no-shell-escape')

 }

required: false

default: 'false'

This is the rule structure in the YAML format used by arara. Keep in mind that all subtasks in a

rule are checked against their corresponding exit status. If an abnormal execution is detected,

the tool will instantly halt and the rule will fail. Even arara itself will return an exit code differ‐

ent than zero when this situation happens (detailed in Command line).

Directives

A directive is a special comment inserted in the source file in which you indicate how arara

should behave. You can insert as many directives as you want. The tool will read and extract di‐

rectives from beginning of the file by default. See Enabling header mode by default in next sec‐

tion for more info.

There are two types of directives in arara which determine the way the corresponding rules will

be instantiated. They are listed as follows. Note that directives are always preceded by the

arara: pattern.

Empty directive: This type of directive has already been mentioned in Introduction, it

has only the rule name (which refers to the identifier key from the rule of the same

•

Directives 23

name). All rule arguments are mapped to empty lists, except the ones with default val‐

ues, mapped to lists containing single elements.

% arara: pdflatex

Parametrized directive: This type of directive also has the rule name (which refers to the

identifier key from the rule of the same name), and also contains a map of parame‐

ters in order to provide additional information to the corresponding rule. This map is de‐

fined in the YAML format, based on the inline style.

% arara: pdflatex: { shell: yes }

Observe that arara relies on named parameters, so they are mapped by their correspond‐

ing argument identifiers and not by their positions. The syntax for a parameter is de‐

scribed as follows. Please refer to the map definition in YAML.

key : value

Note that virtually any type of data can be used as parameter value, so lists, integers,

booleans, sets and other maps are available as well. However, there must be the correct

handling of such types in the rule context.

When handling parametrized directives, arara always checks if directive parameters and rule ar‐

guments match. If we try to inject a non-existent parameter in a parametrized directive, the tool

will raise an error about it:

__ _ _ __ __ _ _ __ __ _

/ _` | '__/ _` | '__/ _` |

| (_| | | | (_| | | | (_| |

__,_|_| __,_|_| __,_|

Processing "hello.tex" (size: 102 B, last modified: 12/28/2020

10:28:00), please wait.

ERROR

I found these unknown keys in the directive: (foo). This should

be an easy fix, just remove them from your map.

Total: 0.21 seconds

As the message suggests, we need to remove the unknown parameter key from our directive or

rewrite the rule in order to include it as an argument. The first option is, of course, easier.

•

Directives 24

Sometimes, directives can span several columns of a line, particularly the ones with several pa‐

rameters. We can split a directive into multiple lines by using the arara: --> mark (also

known as arrow notation during development) to each line which should compose the directive.

We call it a multiline directive. Let us see an example:

% arara: pdflatex: {

% arara: --> shell: yes,

% arara: --> synctex: yes

% arara: --> }

It is important to observe that there is no need of them to be in contiguous lines, i.e, provided

that the syntax for parametrized directives hold for the line composition, lines can be distrib‐

uted all over the code. In fact, the log file (when enabled) will contain a list of all line numbers

that compose a directive. This feature is discussed later on.

Keep lines together

Although it is possible to spread lines of a multiline directive all over the

code, it is considered good practice to keep them together for easier reading

and editing. In any case, you can always see which lines compose a directive

by inspecting the log file.

arara provides logical expressions, written in the MVEL language, and special operators pro‐

cessed at runtime in order to determine whether and how a directive should be processed. This

feature is named directive conditional, or simply conditional as an abbreviation. The following

list describes all conditional operators available in the directive context.

[a priori] if: The associated MVEL expression is evaluated beforehand, and the directive

is interpreted if, and only if, the result of such evaluation is true. This directive, when the

conditional holds true, is executed at most once.

% arara: pdflatex if missing('pdf') || changed('tex')

[a posteriori] until: The directive is interpreted the first time, then the associated MVEL

expression evaluation is done. While the result holds false, the directive is interpreted

again and again. There are no guarantees of proper halting.

% arara: pdflatex until !found('log', 'undefined references')

[a priori] unless: Technically an inverted if conditional, the associated MVEL expression

is evaluated beforehand, and the directive is interpreted if, and only if, the result is false.

This directive, when the conditional holds false, is executed at most once.

•

•

•

Directives 25

% arara: pdflatex unless unchanged('tex') && exists('pdf')

[a priori] while: The associated MVEL expression is evaluated beforehand, the directive is

interpreted if, and only if, the result is true, and the process is repeated while the result

still holds true. There are no guarantees of proper halting.

% arara: pdflatex while missing('pdf') ||

% arara: --> found('log', 'undefined references')

Several methods are available in the directive context in order to ease the writing of condition‐

als, such as ❖ missing, ❖ changed, ❖ found, ❖ unchanged, and ❖ exists featured in

the previous examples. They will be properly detailed later on.

No infinite loops

Although there are no conceptual guarantees for proper halting of unbound‐

ed loops, we have provided a technical solution for potentially infinite itera‐

tions: arara has a predefined maximum number of loops. The default value is

set to 10, but it can be overridden either in the configuration file or with a

command line flag. We discuss this feature later on.

All directives, regardless of their type, are internally mapped alongside with the reference pa‐

rameter, discussed earlier on, as a special variable in the rule context. When inspecting the log

file, you will find all map keys and values for each extracted directive (actually, there is an en‐

tire log section devoted to detailing directives found in the code). See, for instance, the report

of the directive extraction and normalization process performed by arara when inspecting

doc2.tex, available in the log file. Note that timestamps were deliberately removed in order to

declutter the output, and line breaks were included in order to easily spot the log entries.

% arara: pdflatex

% arara: pdflatex: { shell: yes }

\documentclass{article}

\begin{document}

Hello world.

\end{document}

\end{ncodebox}

Directive: { identifier: pdflatex, parameters:

{reference=/home/islandoftex/doc2.tex},

conditional: { NONE }, lines: [1] }

•

Directives 26

Directive: { identifier: pdflatex, parameters:

{shell=yes, reference=/home/islandoftex/doc2.tex},

conditional: { NONE }, lines: [2] }

The directive context also features another special parameter named files which expects a

non-empty list of file names as plain string values. For each element of this list, arara will repli‐

cate the current directive and point the element being iterated as current reference value

(resolved to a proper absolute, canonical path of the file name). See, for instance, the report of

the directive extraction and normalization process performed by arara when inspecting

doc3.tex, available in the log file.

% arara: pdflatex: { files: [doc1.tex, doc2.tex] }

Hello world.

\bye

Directive: { identifier: pdflatex, parameters:

{reference=/home/islandoftex/doc1.tex},

conditional: { NONE }, lines: [1] }

Directive: { identifier: pdflatex, parameters:

{reference=/home/islandoftex/doc2.tex},

conditional: { NONE }, lines: [1] }

It is important to observe that, in this case, doc3.tex is a plain TeX file, but pdflatex is actu‐

ally being called on two LaTeX documents, first doc1.tex and then, at last, doc2.tex.

Even when a directive is interpreted with a file other than the one being processed by arara

(through the magic of the files parameter), it is possible to use helper methods in the rule

context to get access to the original file and reference. Such methods are detailed later on.

Orb tag expansion in parameter values

From version 6.0 on, arara is able to expand orb tags within a special op‐

tions parameter in the directive context. For instance:

% arara: lualatex: {

% arara: --> options: ['--output-directory=@{getSession().

% arara: --> get("arg:builddir")}'

% arara: -->]

% arara: --> }

This feature supports the following methods with their documented mean‐

ings, as seen in Methods: ❖ getBasename, ❖ getSession and ❖ getO‐

riginalReference.

Directives 27

Keep in mind that this feature is disabled when arara is running in safe

mode, as seen in Command line.

Important changes in version 7

A note to users

If this is your first time using arara or you do not have custom rules in the

old format, you can safely ignore this section. All rules shipped with our tool

are already written in the new format.

Enabling header mode by default

The header mode (parse only the first commented lines of a file) is now en‐

abled by default. You may return to the old behavior disabling header mode

in the configuration file or using the -w/--whole-file command line flag.

Using an own I/O API instead of Java's File objects

In previous versions, arara's rules relied on Java's File API. That was bad for

several reasons. Most importantly, we have switched to Java's Path API quite

a while ago. Hence, what was used internally and what users accessed di‐

verged.

With our general refactoring, there has been a change of strategies: we now

avoid exposing any Java-specific API. The new API which you have access to

when using the toFile("some file.txt") method exposes the following

properties and methods:

The properties isAbsolute, fileName, fileSize, lastModified,

parent, exists, isDirectory, and isRegularFile do what their

names indicate.

The method startsWith(File) checks if the string representation of

the one file is prefix of the other one's.

normalize() turns a path into an absolute path and normalizes it.

resolve(String | File) resolves a child.

resolveSibling(String | File) resolves a sibling.

readLines() reads the file's content into a List<String>.

readText() reads the file's content into a continuous String.

•

•

•

•

•

•

•

Important changes in version 7 28

writeText(String, append? = false) writes the argument to

the file; the optional argument allows appending instead of overwrit‐

ing.

If you use the toFile method in your rules, you do not need to change any‐

thing. All the arara-internal methods like exists(File) have been adjusted

to accept objects of the new format. In the end, the only need to change any‐

thing is in rules where you have accessed Java's File API yourself.

Add projects

arara now supports projects. See Projects for further information on this new

feature.

This section pretty much covered the basics of the changes to this version. Of course, it is highly

advisable to make use of the new features available in arara 7.0 for achieving better results. If

you need any help, please do not hesitate to contact us. See Introduction for more details on

how to get help.

If you are upgrading you may also be interested in reading our changelog or the announce‐

ment blog post of this release in the news section on our website.

•

Important changes in version 7 29

https://gitlab.com/islandoftex/arara/-/blob/master/CHANGELOG.md
https://islandoftex.gitlab.io/arara/news/

Command line
arara is a command line tool. It can be used in a plethora of command interpreter implementa‐

tions, from bash to a Windows prompt, provided that the Java runtime environment is accessi‐

ble within the current session. This chapter covers the user interface design, as well as options

(also known as flags or switches) that modify the underlying application behaviour.

User interface design

The goal of a user interface design is to make the interaction as simple and efficient as possi‐

ble. Good user interface design facilitates finishing the task at hand without drawing unneces‐

sary attention to itself. We redesigned the interface in order to look more pleasant to the eye,

after all, we work with TeX and friends:

__ _ _ __ __ _ _ __ __ _

/ _` | '__/ _` | '__/ _` |

| (_| | | | (_| | | | (_| |

__,_|_| __,_|_| __,_|

Processing 'doc5.tex' (size: 285 B, last modified: 03/01/2020

19:25:40), please wait.

(PDFLaTeX) PDFLaTeX engine SUCCESS

(BibTeX) The BibTeX reference management software SUCCESS

(PDFLaTeX) PDFLaTeX engine SUCCESS

(PDFLaTeX) PDFLaTeX engine SUCCESS

Total: 1.14 seconds

First of all, we have the nice application logo, displayed using ASCII art. The entire layout is

based on monospaced font spacing, usually used in terminal prompts. Hopefully you follow the

conventional use of a monospaced font in your terminal, otherwise the visual effect will not be

so pleasant. First and foremost, arara displays details about the file being processed, including

size and modification status:

User interface design 30

Processing 'doc5.tex' (size: 285 B, last modified: 03/01/2020

19:25:40), please wait.

The list of tasks was also redesigned to be fully justified, and each entry displays both task and

subtask names (the former being displayed enclosed in parentheses), besides of course the

usual execution result:

(PDFLaTeX) PDFLaTeX engine SUCCESS

(BibTeX) The BibTeX reference management software SUCCESS

(PDFLaTeX) PDFLaTeX engine SUCCESS

(PDFLaTeX) PDFLaTeX engine SUCCESS

As previously mentioned in Important concepts, if a task fails, arara will halt the entire execu‐

tion at once and immediately report back to the user. This is an example of how a failed task

looks like:

(PDFLaTeX) PDFLaTeX engine FAILURE

Also, observe that our tool displays the execution time before terminating, in seconds. The exe‐

cution time has a very simple precision, as it is meant to be easily readable, and should not be

considered for command profiling.

Total: 1.14 seconds

The tool has two execution modes: silent, which is the default, and verbose, which prints as

much information about tasks as possible. When in silent mode, arara will simply display the

task and subtask names, as well as the execution result. Nothing more is added to the output.

For instance:

(BibTeX) The BibTeX reference management software SUCCESS

When executed in verbose mode, arara will display the underlying system command output as

well, when applied. In version 4.0 of our tool, this mode was also entirely redesigned in order to

avoid unnecessary clutter, so it would be easier to spot each task. For instance:

(BibTeX) The BibTeX reference management software

This is BibTeX, Version 0.99d (TeX Live 2020)

The top-level auxiliary file: doc5.aux

User interface design 31

The style file: plain.bst

Database file #1: mybib.bib

--- SUCCESS

It is important to observe that, when in verbose mode, arara can offer proper interaction if the

system command requires user intervention. However, when in silent mode, the tool will simply

discard this requirement and the command will almost surely fail.

Options

In order to run arara on your TeX file, the simplest possible way is to provide the file name to

the tool in your favourite command interpreter session, provided that the file has at least one

directive:

$ arara doc6.tex

From version 5.0 on, arara may receive more than one file as parameter. It will compile them se‐

quentially (starting with the leftmost). The process fails on the first failure of these executions.

For the files to be flawlessly compiled by TeX, they should be in the same working directory. If

you process your files with other tools, this requirement could be lifted.

$ arara doc20.tex doc21.tex

__ _ _ __ __ _ _ __ __ _

/ _` | '__/ _` | '__/ _` |

| (_| | | | (_| | | | (_| |

__,_|_| __,_|_| __,_|

Processing 'doc20.tex' (size: 28 B, last modified: 02/28/2020

07:15:02), please wait.

(PDFTeX) PDFTeX engine SUCCESS

Processing 'doc21.tex' (size: 28 B, last modified: 02/28/2020

07:15:10), please wait.

(PDFTeX) PDFTeX engine SUCCESS

Total: 1.20 seconds

Options 32

The tool has a set of command line options (also known as flags or switches) that modify the

underlying execution behaviour or enhance the execution workflow. If you do not provide any

parameters, arara will display the tool usage and the available options:

$ arara

Usage: arara [OPTIONS] file...

__ _ _ __ __ _ _ __ __ _

/ _` | '__/ _` | '__/ _` |

| (_| | | | (_| | | | (_| |

__,_|_| __,_|_| __,_|

The cool TeX automation tool.

arara executes the TeX workflow you tell it to execute. Simply specify your

needs within your TeX file and let arara do the work. These directives

feature conditional execution and parameter expansion.

Options:

-l, --log Generate a log output

-v, --verbose / -s, --silent Print the command output

-n, --dry-run Go through all the motions of running a

command, but with no actual calls

-S, --safe-run Run in safe mode and disable potentially

harmful features. Make sure your projects

uses only allowed features.

-w, --whole-file Extract directives in the file, not only in

the header

-p, --preamble TEXT Set the file preamble based on the

configuration file

-t, --timeout INT Set the execution timeout (in milliseconds)

-L, --language TEXT Set the application language

-m, --max-loops INT Set the maximum number of loops (> 0)

-d, --working-directory PATH Set the working directory for all tools

-P, --call-property VALUE Pass parameters to the application to be

used within the session.

--generate-completion [bash|zsh|fish]

Generate a completion script for arara. Add

'source <(arara --generate-completion

 <shell>)' to your shell's init file.

 -V, --version Show the version and exit

 -h, --help Show this message and exit

Arguments:

 file The file(s) to evaluate and process

The available options for our tool are detailed as follows. Each option contains short and long

variations, which are denoted by -o and --option in the command line, respectively. Addition‐

Options 33

ally, when a parameter is required by the current option, it will be denoted by parameter in

the description.

-h / --help: As the name indicates, this option prints the help message containing the

tool usage and the list of all available options. The tool exits afterwards. When running

arara without any options or a file to be processed, this is the default behaviour. This op‐

tion has the highest priority over the others.

-w / --whole-file: This option changes the mechanics of how arara extracts the direc‐

tives from the code. The tool always reads from the beginning of the file until it reaches a

line that is not empty and it is not a comment. However, by activating this switch, arara

will extract all directives from the entire file (hence the option name). Consider the fol‐

lowing example:

% arara: pdftex

Hello world.

\bye

% arara: pdftex

When running arara without this option, one directive will be extracted (line 1). However,

with -w enabled, the directives in lines 1 and 5 will be extracted. This option can also be

disabled by default in the configuration file.

-l / --log: This option enables the logging feature of our tool. All streams from all sys‐

tem commands will be logged and, at the end of the execution, a consolidated log file

named arara.log will be generated. This option can also be activated by default in the

configuration file. Refer to Logging for more details on the logging feature.

-L / --language: This option sets the language of the current execution of arara ac‐

cording to the language code identified by the code value provided as the parameter. The

language code tries to follow the IETF BCP 47 norm, standardized nomenclature used to

classify languages. For example, this is our tool speaking Dutch:

$ arara -L nl doc5.tex

__ _ _ __ __ _ _ __ __ _

/ _` | '__/ _` | '__/ _` |

| (_| | | | (_| | | | (_| |

__,_|_| __,_|_| __,_|

Verwerken van 'doc5.tex' (grootte: 285 B, laatst gewijzigd:

03/01/2020 19:25:40), een ogenblik geduld.

(PDFLaTeX) PDFLaTeX engine SUCCESVOL

(BibTeX) The BibTeX reference management software SUCCESVOL

(PDFLaTeX) PDFLaTeX engine SUCCESVOL

•

•

•

•

Options 34

(PDFLaTeX) PDFLaTeX engine SUCCESVOL

Totaal: 1,07 seconden

Navis volitans mihi anguillis plena est

At time of writing, arara is able to speak English, German, Dutch, Italian

and Brazilian Portuguese out of the box. There is also a special dialect

named Broad Norfolk, spoken by those living in the county of Norfolk

in England.

Available languages: en for English, de for German, en-QN for Broad

Norfolk, it for Italian, nl for Dutch, and pt-BR for Portuguese (BR).

Would you like to make arara speak your own language? Splendid! We

would love to have you in the team! Just send us an electronic mail,

join our dedicated chatroom or open an issue about it. The localization

process is quite straightforward, we can help you. Any language is wel‐

come!

This option can also be specified in the configuration file. However, one can always over‐

ride this setting by running the tool with an explicit -L option.

Invalid language codes

From version 6.0 on, if you pass an invalid language code, arara will

now run in English and issue a log warning but not fail anymore. Failing

due to the wrong language in the output was considered inappropriate.

-m / max-loops <number>: As a means to avoid infinite iterations, arara has a prede‐

fined maximum number of loops, with the default set to 10, as a technical solution. For

instance, consider the following directive:

% arara: pdftex while true

The --max-loops option is used to redefine the maximum number of loops our tool will

allow for potentially infinite iterations. Any positive integer can be used as the <number>

value for this option. An execution of the previous directive with a lower maximum num‐

ber of loops is shown as follows:

$ arara -m 2 doc8.tex

__ _ _ __ __ _ _ __ __ _

•

Options 35

https://matrix.to/#/!HfEWIEvFtDplCLSQvz:matrix.org?via=matrix.org
https://gitlab.com/islandoftex/arara/issues

/ _` | '__/ _` | '__/ _` |

| (_| | | | (_| | | | (_| |

__,_|_| __,_|_| __,_|

Processing 'doc8.tex' (size: 45 B, last modified: 05/29/2018

12:32:14), please wait.

(PDFTeX) PDFTeX engine SUCCESS

(PDFTeX) PDFTeX engine SUCCESS

Total: 0.58 seconds

This option can also be specified in the configuration file. However, one can always over‐

ride this setting by running the tool with an explicit -m option.

-n / --dry-run: This option makes arara go through all the motions of running tasks

and subtasks, but with no actual calls. It is a very useful feature for testing the sequence

of underlying system commands to be performed on a file. For instance, consider the fol‐

lowing execution:

$ arara -n doc5.tex

__ _ _ __ __ _ _ __ __ _

/ _` | '__/ _` | '__/ _` |

| (_| | | | (_| | | | (_| |

__,_|_| __,_|_| __,_|

Processing "doc5.tex" (size: 360 B, last modified: 12/28/2020

13:03:32), please wait.

[DR] (PDFLaTeX) PDFLaTeX engine

Author: Island of TeX

About to run: [pdflatex, doc5.tex] @ /home/islandoftex/Downloads

[DR] (BibTeX) The BibTeX reference management software

Author: Island of TeX

About to run: [bibtex, doc5] @ /home/islandoftex/Downloads

[DR] (PDFLaTeX) PDFLaTeX engine

Author: Island of TeX

About to run: [pdflatex, doc5.tex] @ /home/islandoftex/Downloads

[DR] (PDFLaTeX) PDFLaTeX engine

Author: Island of TeX

About to run: [pdflatex, doc5.tex] @ /home/islandoftex/Downloads

•

Options 36

Total: 0.18 seconds

Note that the rule authors are displayed (so they can be blamed in case anything goes

wrong), as well as the system command to be executed. It is an interesting approach to

see everything that will happen to your document and in which order.

Conditionals and boolean values

It is very important to observe that conditionals are not evaluated

when our tool is executed in the --dry-run mode, although they are

properly listed. Also, when a rule returns a boolean value, the code is

executed regardless of this mode.

p / --preamble <name>: Some TeX documents require the same automation steps, e.g, a

set of articles. To this end, so as to avoid repeating the same preamble over and over in

this specific scenario, arara has the possibility of setting predefined preambles in a spe‐

cial section of the configuration file identified by a unique key for later use. This com‐

mand line option prepends the predefined preamble referenced by the <name> key to

the current document and then proceeds to extract directives, as usual. For instance:

twopdftex: |

 % arara: pdftex

 % arara: pdftex

Hello world.

\bye

In this example, we have a preamble named twopdftex and a TeX file named doc9.tex

with no directives. Of course, our tool will complain about missing directives, unless we

deliberately inject the two directives from the predefined preamble into the current exe‐

cution:

$ arara -p twopdftex doc9.tex

__ _ _ __ __ _ _ __ __ _

/ _` | '__/ _` | '__/ _` |

| (_| | | | (_| | | | (_| |

__,_|_| __,_|_| __,_|

Processing 'doc9.tex' (size: 18 B, last modified: 05/29/2018

14:39:21), please wait.

(PDFTeX) PDFTeX engine SUCCESS

•

Options 37

(PDFTeX) PDFTeX engine SUCCESS

Total: 0.96 seconds

It is important to note that this is just a directive-based preamble and nothing else, so a

line other than a directive is discarded. Line breaks and conditionals are supported. Try‐

ing to exploit this area for other purposes will not work.

-t / --timeout <number>: This option sets an execution timeout for every task, in mil‐

liseconds. If the timeout is reached before the task ends, arara will kill it and halt the ex‐

ecution. Any positive integer can be used as the <number> value for this option. Of

course, use a sensible value to allow proper time for a task to be executed. For instance,

consider the following recursive call:

% arara: pdftex

\def\foo{\foo}

This will go \foo forever.

\bye

$ arara --timeout 3000 doc9.tex

__ _ _ __ __ _ _ __ __ _

/ _` | '__/ _` | '__/ _` |

| (_| | | | (_| | | | (_| |

__,_|_| __,_|_| __,_|

Processing 'doc10.tex' (size: 63 B, last modified: 05/29/2018

15:24:06), please wait.

(PDFTeX) PDFTeX engine ERROR

The system command execution reached the provided timeout value

and was aborted. If the time was way too short, make sure to

provide a longer value. There are more details available on this

exception:

DETAILS ---

Timed out waiting for java.lang.UNIXProcess@6b53e23f to finish,

timeout: 3000 milliseconds, executed command [pdftex, doc10.tex]

Total: 3.37 seconds

If left unattended, this particular execution would never finish (and probably crash the

engine at a certain point), as expected by the recursive calls without a proper fixed point.

The --timeout option was set at 3000 milliseconds and the task was aborted when the

time limit was reached. Note that the tool raised an error about it.

•

Options 38

d / --working-directory <path> This option allows you to change the working direc‐

tory to <path>. That is, the commands will run from a different directory than the direc‐

tory you launched arara in. This is especially useful when calling a TeX engine as they re‐

solve files against the working direcotry. For that reason, arara will also resolve each file

you pass to it that has no absolute path against the working directory. The working direc‐

tory is fixed for the whole call; passing multiple files to arara will resolve all of them

against and execute all actions within that one working directory.

-V / --version: This option, as the name indicates, prints the current version. It also

prints the current revision and a list of libraries with their corresponding licenses. Finally,

it simply exits the application. Note that this option has the second highest priority over

the others.

-v / --verbose: This option enables the verbose mode of arara. It also enables all

streams to be flushed directly to the terminal, including potential user input interactions

(the exact opposite of silent mode). This option can also be activated by default in the

configuration file.

-s / --silent: This option disables the verbose mode of arara (thus activating the de‐

fault silent mode), if previously enabled by a proper configuration file (see Configuration

file). It is important to note that this command line option has higher priority over the --

verbose counterpart.

-S / --safe-run: This option enables the safe mode of arara, protecting the system by

disallowing certain user actions. Currently, the following features are restricted:

File lookup will only perform explicit file resolution. Wildcard filters are disabled.

❖ unsafelyExecuteSystemCommand will raise an exception and abort the run.

Keep in mind that rules are still allowed to construct arbitrary commands using

Command objects, so this restriction only disallows arbitrary system commands that

would not get logged and are thus invisible to the user.

The --options parameter does not expand orb tags in any directive.

-P / --call-property <entry>: This option forwards the provided <entry>, in the

key=value format, to the session map. For instance, consider the following call:

$ arara -P foo=bar hello.tex

In a rule, you may now retrieve the value associated to the foo key, which is bar, set at

runtime, by calling the following method in your code:

getSession().get('arg:foo')

•

•

•

•

•

◦

◦

◦

•

Options 39

This option may be called multiple times, as a means to provide as many data pairs as

needed. Please refer to ❖ getSession in Methods for more details.

You can combine options, use long or short variations interchangeably and write them in any

order, provided that a file name is given at some point in the command line, otherwise the us‐

age will be printed. Use the provided features in order to enhance and optimize your automa‐

tion workflow.

File name lookup

arara, as a command line application, provides support for a restricted range of file types. In

particular, the tool recognizes five file types based on their extensions. These types are present‐

ed as follows, as well as the lookup order: tex → dtx → ltx → drv → ins.

Note that other extensions can be added through a proper mapping in the configuration file, as

well as modifying the lookup order. This feature is detailed later on. arara employs the follow‐

ing scheme for file name lookup:

First and foremost, if the provided file name already contains a valid extension, the tool

attempts an exact match. If the file exists, it will be selected. This is the best approach if

your working directory contains other files sharing the same base name.

$ arara doc11.tex

__ _ _ __ __ _ _ __ __ _

/ _` | '__/ _` | '__/ _` |

| (_| | | | (_| | | | (_| |

__,_|_| __,_|_| __,_|

Processing 'doc11.tex' (size: 34 B, last modified: 05/29/2018

19:40:35), please wait.

(PDFTeX) PDFTeX engine SUCCESS

Total: 0.69 seconds

If the provided file name has an unsupported extension or no extension at all, the tool it‐

erates through the list of default extensions, appending the current element to the file

name and attempting an exact match. If the file exists, it will be selected.

$ arara doc11

__ _ _ __ __ _ _ __ __ _

/ _` | '__/ _` | '__/ _` |

| (_| | | | (_| | | | (_| |

•

•

File name lookup 40

__,_|_| __,_|_| __,_|

Processing 'doc11.tex' (size: 34 B, last modified: 05/29/2018

19:40:35), please wait.

(PDFTeX) PDFTeX engine SUCCESS

Total: 0.69 seconds

Many shells complete file names that have multiple extensions in the same directory, so

that they end with a period. We try to resolve against them as well!

$ arara doc11.

__ _ _ __ __ _ _ __ __ _

/ _` | '__/ _` | '__/ _` |

| (_| | | | (_| | | | (_| |

__,_|_| __,_|_| __,_|

Processing 'doc11.tex' (size: 34 B, last modified: 05/29/2018

19:40:35), please wait.

(PDFTeX) PDFTeX engine SUCCESS

Total: 0.69 seconds

It is highly recommended to use complete file names with our tool, in order to ensure the cor‐

rect file is being processed. If your command line interpreter features tab completion, you can

use it to automatically fill partially typed file names from your working directory.

Exit status support

arara follows the good practices of software development and provides three

values for exit status, so our tool can be programmatically used in scripts

and other complex workflows: 0 → successful execution, 1 → one of the rules

failed, and 2 → an exception was raised.

Please refer to the documentation of your favourite command line inter‐

preter to learn more about exit status captures. Programming languages also

offer methods for retrieving such information.

•

File name lookup 41

Configuration file
arara provides a persistent model of modifying the underlying execution behaviour or enhanc‐

ing the execution workflow through the concept of a configuration file. This chapter provides

the basic structure of that file, as well as details on the file lookup in the operating system.

Please note that a configuration file is not required for arara to work. If you do not specify one,

arara will use the default values as detailed below. If you specify a configuration file, it will

overwrite the defaults with the options given. Parts that have not been overwritten (omitted

from the configuration file) will follow the default values.

File lookup

Our tool looks for the presence of at least one of four very specific files before execution. These

files are presented as follows. Observe that the directories must have the correct permissions

for proper lookup and access. The lookup order is also presented: .araraconfig.yaml →

araraconfig.yaml → .arararc.yaml → arararc.yaml.

arara provides two approaches regarding the location of a configuration file. They dictate how

the execution should behave and happen from a user perspective, and are described as follows.

Global configuration file: For this approach, the configuration file should be located at

HOME which is the home directory of the current user. All subsequent executions of arara

will read this configuration file and apply the specified settings accordingly. However, it is

important to note that this approach has the lowest lookup priority, which means that a

local configuration, presented as follows, will always supersede a global counterpart.

Local configuration file: For this approach, the configuration file should be located at

USER_DIR which is the working directory associated with the current execution. This di‐

rectory can also be interpreted as the one relative to the processed file. This approach of‐

fers a project-based solution for complex workflows, e.g, a thesis or a book. However,

arara must be executed within the working directory, or the local configuration file lookup

will fail. Observe that this approach has the highest lookup priority, which means that it

will always supersede a global configuration.

•

•

File lookup 42

Beware of empty configuration files

A configuration file should never be empty, otherwise arara will complain

about it. Make sure to populate it with at least one key, or do not write a con‐

figuration file at all. The available keys are described later on.

If the logging feature is properly enabled, arara will indicate in the corresponding arara.log

file whether a configuration file was used during the execution and, if so, the corresponding

canonical, absolute path. Logging is detailed later on, in Logging.

Basic structure

The following list describes the basic structure of an arara configuration file by presenting the

proper elements (or keys, if we consider the proper YAML nomenclature). Observe that ele‐

ments marked as [M] are mandatory (i.e, the configuration file has to have them in order to

work). Similarly, elements marked as [O] are optional, so you can safely ignore them when writ‐

ing a configuration file for our tool.

[M] !config: This keyword is mandatory and must be the first line of a configuration file.

It denotes the object mapping metadata to be internally used by the tool.

[O] (string list) paths: When looking for rules, arara always searches the default rule

path, which consists of a special subdirectory named rules/ inside another special di‐

rectory named ARARA_HOME (the place where our tool is installed). If no rule is found, the

execution halts with an error. The paths key specifies a list of directories, represented as

plain strings, in which our tool should search for rules. The default path is appended to

the list. Then the search happens from the first to the last element, in order.

paths:

- '/home/islandoftex/rules'

- '/opt/islandoftex/rules'

There are three variables available in the paths context and are described as follows

(note that MVEL variables and orb tags are discussed in MVEL). A variable will be denoted

by ⋄ variable in this list.

⋄ user.home: This variable, as the name implies, holds the value of the absolute,

canonical path of HOME which is the home directory of the current user, as plain

string. Note that the specifics of the home directory (such as name and location)

are defined by the operating system involved.

•

•

◦

Basic structure 43

paths:

- '@{user.home}/rules'

⋄ user.name: This variable, as the name implies, holds the value of the current

user account name, as plain string. On certain operating systems, this value is used

to build the home directory structure.

paths:

- '/home/@{user.name}/rules'

⋄ application.workingDirectory: This variable, as the name implies, holds

the value of the absolute, canonical path of the working directory associated with

the current execution, as plain string.

paths:

- '@{application.workingDirectory}/rules'

Observe that the ⋄ user and ⋄ application variables actually holds maps. However,

for didactic purposes, it is easier to use the property navigation feature of MVEL and con‐

sider the map references as three independent variables. You can use property naviga‐

tion styles interchangeably.

Avoid folded and literal styles for scalars in a path

Do not use folded or literal styles for scalars in a path! The orb tag resolution

for a path in plain string should be kept as simple as possible, so always use

the inline style.

[O] (string) language (default: en): This key sets the language of all subsequent execu‐

tions of arara according to the provided language code value, as plain string. The default

language is set to English. Also, it is very important to observe that the --language

command line option can override this setting.

language: nl

[O] (integer) loops (default: 10): This key redefines the maximum number of loops arara

will allow for potentially infinite iterations. Any positive integer can be used as the value

for this variable. Also, it is very important to observe that the --max-loops command

line option can override this setting.

◦

◦

•

•

Basic structure 44

loops: 30

[O] (boolean) verbose (default: false): This key activates or deactivates the verbose

mode of arara as default mode, according to the associated boolean value. Also, it is very

important to observe that the --verbose command line option can override this setting

if, and only if, this variable holds false as the value. Similarly, the --silent command

line option can override this setting if, and only if, this variable holds true as the value.

verbose: true

[O] (boolean) logging (default: false): This key activates or deactivates the logging fea‐

ture of arara as the default behaviour, according to the associated boolean value. Also, it

is very important to observe that the --log command line option can override this set‐

ting if, and only if, this variable holds false as the value.

logging: true

[O] (boolean) header (default: true): This key modifies the directive extraction, accord‐

ing to the associated boolean value. If enabled, arara will extract all directives from the

beginning of the file until it reaches a line that is not empty and it is not a comment. Oth‐

erwise, the tool will resort to the default behaviour and extract all directives from the en‐

tire file. It is very important to observe that the --whole-file command line option can

override this setting if, and only if, this variable holds true as the value.

New default

Prior to version 7.0 the default has been false.

header: false

[O] (string) logname (default: arara): This key modifies the default log file name, accord‐

ing to the associated plain string value, plus the log extension. The value cannot be

empty or contain invalid characters. There is no orb tag evaluation in this specific context,

only a plain string value. The log file will be written by our tool if, and only if, the --log

command line option is used.

Log paths

From version 6.0 on, the log file may now be specified as path any‐

•

•

•

•

Basic structure 45

where on the file system. However, keep in mind that this behavior may

be altered for future updates in safe mode.

logname: mylog

[O] (string) dbname (default: arara): This key modifies the default YAML database file

name, according to the associated plain string value, plus the yaml extension. The value

cannot be empty or contain invalid characters. There is no orb tag evaluation in this spe‐

cific context, only a plain string value. This database is used by file hashing operations.

dbname: mydb

[O] (string) laf (default: none): This key modifies the default look and feel class refer‐

ence, i.e, the appearance of GUI widgets provided by our tool, according to the associated

plain string value. The value cannot be empty or contain invalid characters. There is no

orb tag evaluation in this specific context, only a plain string value. This look and feel set‐

ting is used by UI methods, detailed in Methods. Note that this value is used by the un‐

derlying Java runtime environment, so a full qualified class name is expected.

laf: 'javax.swing.plaf.nimbus.NimbusLookAndFeel'

Special keywords for the look and feel setting

Look and feel values other than the default provided by Java offer a

more pleasant visual experience to the user, so if your rules or direc‐

tives employ UI methods, it might be interesting to provide a value to

the laf key. At the time of writing, arara provides two special keywords

that are translated to the corresponding fully qualified Java class

names: none → default look and feel, and system → system look and

feel.

The system look and feel, of course, offers the best option of all since it

mimics the native appearance of graphical applications in the underly‐

ing system. However, some systems might encounter slow rendering

times when this option is used, so your mileage might vary.

[O] (string map) preambles: This key holds a string map containing predefined pream‐

bles for later use with the --preamble option (see Command line). Note that each map

key must be unique. Additionally, it it is highly recommended to use lowercase letters

•

•

•

Basic structure 46

without spaces, accents or punctuation symbols, as key values. Only directives, line

breaks and conditionals are recognized.

preambles:

twopdftex: |

 % arara: pdftex

 % arara: pdftex

Literal style when defining a preamble

When defining preambles in the configuration file, always use the liter‐

al style for scalar blocks. The reason for this requirement is the proper

retention of line breaks, which are significant when parsing the strings

into proper directive lines. Using the folded style in this particular sce‐

nario will almost surely be problematic.

[O] (string) defaultPreamble: This key allows to specify a preamble for arara to use

even if there are no directives in the file nor preambles specified on the command-line.

Preambles are resolved at execution time, which means that preambles from local config‐

urations will take precedence over global preambles.

defaultPreamble: twopdftex

[O] (boolean) prependPreambleIfDirectivesGiven: This key allows you to specify a

boolean value indicating whether preambles should be applied to all files or only those

without directives. It defaults to true to avoid breaking existing workflows.

prependPreambleIfDirectivesGiven: false

[O] (file type list) filetypes: This key holds a list of file types supported by arara when

searching for a file name, as well as their corresponding directive lookup patterns. In or‐

der to properly set a file type, the keys used in this specification are defined inside the

filetypes → context and presented as follows.

[M] filetypes → extension: This key, as the name implies, holds the file exten‐

sion, represented as a plain string and without the leading dot (unless it is part of

the extension). An extension is an identifier specified as a suffix to the file name

and indicates a characteristic of the corresponding content or intended use. Ob‐

serve that this key is mandatory when specifying a file type, as our tool does not

support files without a proper extension.

•

•

•

◦

Basic structure 47

extension: c

[M|O] filetypes → pattern: This key holds the directive lookup pattern as a

regular expression (which is, of course, represented as a plain string). When intro‐

ducing a new file type, arara must know how to interpret each line and how to

properly find and extract directives, hence this key. Observe that this key is marked

as optional and mandatory. The reason for such an unusual indication highly de‐

pends on the current scenario and is illustrated as follows.

The pattern key is entirely optional for known file types (henceforth named

default file types), in case you just want to modify the file name lookup order.

It is important to observe that default file types already have their directive

lookup patterns set, which incidentally are the same, presented as follows.

^\s*%\s+

The pattern key is mandatory for new file types and for overriding existing

patterns for default file types. Make sure to provide a valid regular expression

as key value. It is very important to note that, regardless of the underlying

pattern (default or provided through this key), the special arara: keyword is

immutable and thus included by our tool in every directive lookup pattern.

pattern: ^\s*//\s*

For instance, let us reverse the default file name lookup order presented in Com‐

mand line. Since the default lookup patterns will be preserved, the corresponding

pattern keys can be safely omitted. Now it is just a matter of rearranging the en‐

tries in the desired order, presented as follows.

filetypes:

- extension: ins

- extension: drv

- extension: ltx

- extension: dtx

- extension: tex

If a default file type is included in the filetypes list but others from the same

tier are left out, these file types not on the list will implicitly have the lowest priori‐

ty over the explicit list element during the file name lookup, although still respect‐

ing their original lookup order modulo the specified file type. For instance, consider

the following list:

◦

▪

▪

Basic structure 48

filetypes:

- extension: ins

- extension: drv

According to the previous example, three out of five default file types were deliber‐

ately left out of the filetypes list. As expected, the two default file types provid‐

ed to this list will have the highest priority during the file name lookup. It is impor‐

tant to note that arara will always honour the original lookup order for omitted de‐

fault file types, yet favouring the explicit elements. The following list is semantically

equivalent to the previous example.

filetypes:

- extension: ins

- extension: drv

- extension: tex

- extension: dtx

- extension: ltx

The following example introduces the definition of a new file type to support c

files. Observe that, for this specific scenario, the pattern key is mandatory, as pre‐

viously discussed. The resulting list is presented as follows, including the corre‐

sponding regular expression pattern.

filetypes:

- extension: c

pattern: ^\s*//\s*

It is important to note that, if no default file type is explicitly specified, as seen in

previous example, the original list of default file types will have the highest priority

over the filetypes values during the file name lookup. The following list is se‐

mantically equivalent to the previous example.

filetypes:

- extension: tex

- extension: dtx

- extension: ltx

- extension: drv

- extension: ins

- extension: c

pattern: ^\s*//\s*

Basic structure 49

Do not escape backslashes

When writing a file type pattern, there is no need for escaping

backslashes as one does for strings in a typical programming

language (including MVEL expressions). In this specific scenario,

key values are represented as plain, literal strings.

However, please note that character escaping might be required

by the underlying regular expression in some scenarios (i.e, a lit‐

eral dot in the pattern). It is highly recommended to consult a

proper regular expression documentation for a comprehensive

overview.

Since arara allows four different names for configuration files, as well as global and local ap‐

proaches, it is highly advisable to run our tool with the --log command line option enabled, in

order to easily identify which file was considered for that specific execution. The logging feature

is discussed later on, in Logging.

Basic structure 50

Logging
The logging feature of arara, as discussed earlier on, is activated through either the --log com‐

mand line option or the equivalent key in the configuration file. This chapter covers the basic

structure of a typical log file provided by our tool, including the important blocks that can be

used to identify potential issues. The following example is used to illustrate this feature:

% arara: pdftex

% arara: clean: { extensions: [log] }

Hello world.

\bye

When running our tool on the previous example with the --log command line option (other‐

wise, the logging framework will not provide a file at all), we will obtain the expected

arara.log log file containing the most significant events that happened during this particular

execution, as well as details regarding the underlying operating system. The contents of this file

are discussed below. Note that timestamps were deliberated removed from the log entries in

order to declutter the output, and line breaks were included in order to easily spot each entry.

System information

The very first entry to appear in the log file is the current version of arara.

Welcome to arara 7.0.0!

The following entries in the log file are the absolute path of the current deployment of arara

(line 1), details about the current Java virtual machine (namely, vendor and absolute path, in

lines 2 and 3, respectively), the underlying operating system information (namely, system name,

architecture and eventually the kernel version, in line 4), home and working directories (lines 5

and 6, respectively), and the absolute path of the applied configuration file, if any (line 7). This

block is very important to help with tracking possible issues related to the underlying operating

system and the tool configuration itself.

System information 51

::: arara @ /opt/islandoftex/arara

::: Java 1.8.0_171, Oracle Corporation

::: /usr/lib/jvm/java-1.8.0-openjdk-1.8.0.171-4.b10.fc28.x86_64/jre

::: Linux, amd64, 4.16.12-300.fc28.x86_64

::: user.home @ /home/islandoftex

::: CF @ [none]

A privacy note

We understand that the previous entries containing information about the

underlying operating system might pose as a privacy threat to some users.

However, it is worth noting that arara does not share any sensitive informa‐

tion about your system, as entries are listed in the log file for debugging pur‐

poses only, locally in your computer.

From experience, these entries greatly help our users to track down errors in

the execution, as well as learning more about the underlying operating sys‐

tem. However, be mindful of sharing your log file! Since the log file contains

structured blocks, it is highly advisable to selectively choose the ones rele‐

vant to the current discussion.

It is important to observe that localized messages are also applied to the log file. If a language

other than English is selected, either through the --language command line option or the

equivalent key in the configuration file, the logging framework will honour the current setting

and entries will be available in the specified language. Having a log file in your own language

might mitigate the traumatic experience of error tracking for TeX newbies. From version 6.0 on,

if you pass an invalid language code (for instance, -L foo in the command line), arara will de‐

fault to English and issue a log warning:

Language foo not available; defaulting to English.

Directive extraction

The following block in the log file refers to file information and directive extraction. First, as

with the terminal output counterpart, the tool will display details about the file being pro‐

cessed, including size and modification status:

Directive extraction 52

Processing 'doc12.tex' (size: 74 B, last modified:

06/02/2018 05:36:40), please wait.

The next entries refer to finding potential directive patterns in the code, including multiline

support. All matching patterns contain the corresponding line numbers. Note that these num‐

bers might refer to incorrect lines in the code if the --preamble command line option is used.

I found a potential pattern in line 1: pdftex

I found a potential pattern in line 2: clean: { extensions: [log] }

When all matching patterns are collected from the code in the previous phase, arara composes

the directives accordingly, including potential parameters and conditionals. Observe that all di‐

rectives have an associated list of line numbers from which they were originally composed. This

phase is known as directive extraction.

I found a potential directive: Directive: { identifier: pdftex,

parameters: {}, conditional: { NONE }, lines: [1] }

I found a potential directive: Directive: { identifier: clean,

parameters: {extensions=[log]}, conditional: { NONE }, lines: [2] }

In this phase, directives are correctly extracted and composed, but are yet to be validated re‐

garding invalid or reserved parameter keys. The tool then proceeds to validate parameters and

normalize such directives.

Directive normalization

Once all directives are properly composed, the tool checks for potential inconsistencies, such

as invalid or reserved parameter keys. Then all directives are validated and internally mapped

with special parameters.

All directives were validated. We are good to go.

After validation, all directives are listed in a special block in the log file, including potential pa‐

rameters and conditionals. This phase is known as directive normalization. Note that the special

parameters are already included, regardless of the directive type. This particular block can be

used specially for debugging purposes, since it contains all details regarding directives.

-------------------------- DIRECTIVES ---------------------------

Directive: { identifier: pdftex, parameters:

Directive normalization 53

{reference=/home/islandoftex/Documents/doc12.tex},

conditional: { NONE }, lines: [1] }

Directive: { identifier: clean, parameters: {extensions=[log],

reference=/home/islandoftex/Documents/doc12.tex},

conditional: { NONE }, lines: [2] }

Note, however, that potential errors in directive conditionals, as well as similar inconsistencies

in the corresponding rules, can only be caught at runtime. The next phase covers proper inter‐

pretation based on the provided directives.

Rule interpretation

Once all directives are normalized, arara proceeds to interpret the potential conditionals, if any,

and the corresponding rules. Note that, when available, the conditional type dictates whether

the rule should be interpreted first or not. For each rule, the tool informs the identifier and the

absolute path of the corresponding YAML file. In this specific scenario, the rule is part of the de‐

fault rule pack released with our tool:

I am ready to interpret rule 'pdftex'.

Rule location: '/opt/islandoftex/arara/rules'

For each task (or subtask, as it is part of a rule task) defined in the rule context, arara will inter‐

pret it and return the corresponding system command. The return types can be found in Impor‐

tant concepts. In this specific scenario, there is just one task associated with the pdftex rule.

Both task name and system command are shown:

I am ready to interpret task 'PDFTeX engine' from rule 'PDFTeX'.

System command: [pdftex, doc12.tex]

After proper task interpretation, the underlying execution library of arara executes the provided

system command and includes the output from both output and error streams in an output

buffer block inside the log file.

---------------------- BEGIN OUTPUT BUFFER ----------------------

This is pdfTeX, Version 3.14159265-2.6-1.40.19 (TeX Live 2018)

(preloaded format=pdftex)

restricted \write18 enabled.

entering extended mode

(./doc12.tex [1{/usr/local/texlive/2018/texmf-var/fonts/map/

pdftex/updmap/pdfte

Rule interpretation 54

x.map}])</usr/local/texlive/2018/texmf-dist/fonts/type1/

public/amsfonts/cm/cmr

10.pfb>

Output written on doc12.pdf (1 page, 11849 bytes).

Transcript written on doc12.log.

----------------------- END OUTPUT BUFFER -----------------------

Observe that the above output buffer block contains the relevant information about the pdf‐

tex execution on the provided file. It is possible to write a shell script to extract these blocks

from the log file, as a means to provide individual information on each execution. Finally, the

task result is shown:

Task result: SUCCESS

The execution proceeds to the next directive in the list and then interprets the clean rule. The

same steps previously described are applied in this scenario. Also note that the output buffer

block is deliberately empty due to the nature of the underlying system command, as removal

commands such as rm do not provide output at all when successful.

I am ready to interpret rule 'clean'.

Rule location: '/opt/islandoftex/arara/rules'

I am ready to interpret task 'Cleaning feature' from rule 'Clean'.

System command: [rm, -f, doc12.log]

---------------------- BEGIN OUTPUT BUFFER ----------------------

----------------------- END OUTPUT BUFFER -----------------------

Task result: SUCCESS

Empty output buffer

If the system command is simply a boolean value, the corresponding block

will remain empty. Also note that not all commands from the underlying op‐

erating system path provide proper stream output, so the output buffer block

might be empty in certain corner scenarios. This is the case, for example, of

the provided clean rule.

Finally, as the last entry in the log file, the tool shows the execution time, in seconds. As previ‐

ously mentioned, the execution time has a very simple precision and should not be considered

for command profiling.

Total: 0.33 seconds

Rule interpretation 55

The logging feature provides a consistent framework for event recording. It is highly recom‐

mended to include at least the --log command line option (or enable it in the configuration

file) in your typical automation workflow, as relevant information is gathered into a single con‐

solidated report.

Log paths

From version 6.0 on, the log file may now be specified as path anywhere on

the file system. However, keep in mind that this behavior may be altered for

future updates in safe mode. Please refer to Configuration for more details.

Rule interpretation 56

Projects

Compatibility information

The project feature has been introduced in version 7 of arara and is still ex‐

perimental. It will not vanish in the next versions but it might receive major

changes based on user feedback. If you have certain use cases or ideas for

projects, please open an issue in our repo.

Instead of passing one or multiple files with directives to the arara command-line you may pass

one .lua file (the exact extension is important) with a project specification. arara will process

the Lua script and then execute all the projects as specified in the Lua script.

Important remark: If arara encounters a single Lua file as its argument, it tries to parse it as a

project. If it fails for any reason (e.g. malformed Lua), it will treat the Lua file as regular input

file and scan it for directives which will fail if you did not define a Lua input file type. However,

that allows to continue using Lua files as input files to arara.

Rationale

Projects have been identified as the sweet spot between arara's already make-like directive sys‐

tem and actual external specification of directives and dependencies. Though currently unable

to express dependencies between single files, arara is able to handle dependencies between

projects.

We have built projects with the following use cases in mind:

You have dependencies between files and want to avoid abusing the files parameter of

arara's directives.

You want to compile multiple documents whenever you compile and want to avoid speci‐

fying all of them on the command-line.

You want to use specific settings for some file but not for others (e.g. another pattern for

the same file type).

•

•

•

Rationale 57

https://gitlab.com/islandoftex/arara

However, the basic idea is to be explicit about what belongs to a project and what does not. In

that sense, a declarative notion of a project spanning multiple files is what should be covered

by this feature.

File structure

A project specification file is a Lua file which contains a script returning a list/table of project

specfications or a project specification itself (if it is too technical at this point, stay with us, ex‐

amples will follow). A single project minimally requires a list of files, so a minimal

project.lua could look like

return {

files = { ["file.tex"] = { } }

}

There are a number of optional parameters:

name: The project's name which is used to identify the project e.g. when depending on it.

Otherwise, it is used for display purposes on the command-line only. If not specified,

there will be a placeholder name for untitled projects.

workingDirectory: The working directory to execute the project in. Specifying a work‐

ing directory with this option overrides any working directory given using the command-

line option -d/--working-directory.

dependencies: Other projects a project depends on. Make sure this project is actually

specified. Project specification files with invalid dependencies will be treated as invalid.

A more complete example showcasing the list of project specifications approach would be

return {

 {

name = "My awesome book",

workingDirectory = "book",

files = {

 ["a.mp"] = {

directives = { "% arara: metapost" },

priority = 1

 },

 ["file.tex"] = { }

 }

 },

 {

name = "My awesome book vol. 2",

workingDirectory = "bookv2",

•

•

•

File structure 58

files = { ["file.tex"] = { } },

dependencies = { "My awesome book" }

 }

}

Note how the second project depends on the first one and the a.mp file has additional parame‐

ters. For files, there are the following additional options:

priority: An integer value that specifies a priority within the project. The default priori‐

ty is 0. If a file A has higher priority than file B it means that A will be executed before B.

directives: Specify a list of directives that will be used instead of the directives speci‐

fied in the file. They have to correspond to the file type's directives, i.e. they will be ac‐

cepted if they would be accepted by the patterns of the file type.

fileType: Specify the file type of the file. The same rules as for specifying a file type in

the configuration file apply. The extension is mandatory. If the extension is not among

the default set of extensions, a pattern is mandatory as well.

Apart from the return expression you are free to use Lua code to perform computations or oth‐

er actions within the project specification file. Please note that for technical reasons arara's Lua

interpreter only accepts Lua 5.2.

•

•

•

File structure 59

Methods
arara features several helper methods available in directive conditional and rule contexts which

provide interesting features for enhancing the user experience, as well as improving the auto‐

mation itself. This chapter provides a list of such methods. It is important to observe that virtu‐

ally all classes from the Java runtime environment can be used within MVEL expressions, so

your mileage might vary.

A note on writing code

As seen in MVEL, Java and MVEL code be used interchangeably within expres‐

sions and orb tags, including instantiation of classes into objects and invoca‐

tion of methods. However, be mindful of explicitly importing Java packages

and classes through the classic import statement, as MVEL does not auto‐

matically handle imports, or an exception will surely be raised. Alternatively,

you can provide the full qualified name to classes as well.

A file by any other name

As of version 7, we now avoid exposing any Java-specific API. When you see a

mention to File, keep in mind that this is actually a wrapper to our new in‐

ternal representation.

Methods are listed with their complete signatures, including potential parameters and corre‐

sponding types. Also, the return type of a method is denoted by type and refers to a typical

Java data type (either class or primitive). Do not worry too much, as there are illustrative exam‐

ples. A method available in the directive conditional context will be marked by [C] next to the

corresponding signature. Similarly, an entry marked by [R] denotes that the corresponding

method is available in the rule context. At last, an entry marked by [E] denotes that the corre‐

sponding method is available in the orb tag expansion within a special options parameter in

the directive context.

File structure 60

Files

This section introduces methods related to file handling, searching and hashing. It is important

to observe that no exception is thrown in case of an anomalous method call. In this particular

scenario, the methods return empty references, when applied.

[R] getOriginalFile(): String This method returns the original file name, as plain

string, regardless of a potential override through the special files parameter in the di‐

rective mapping, as seen in Important concepts.

if (file == getOriginalFile()) {

System.out.println("The 'file' variable

 was not overridden.");

}

[C|E|R] getOriginalReference(): File This method returns the original file refer‐

ence, as a File object, regardless of a potential reference override indirectly through the

special files parameter in the directive mapping, as seen in Important concepts.

if (reference.equals(getOriginalReference())) {

System.out.println("The 'reference' variable

 was not overridden.");

}

[C|R] currentFile(): File This method returns the file reference, as a File object,

for the current directive. It is important to observe that arara replicates the directive

when the special files parameter is detected amongst the parameters, so each instance

will have a different reference.

% arara: pdflatex if currentFile().getName() == 'thesis.tex'

[C|R] toFile(String reference): File This method returns a file (or directory) ref‐

erence, as a File object, based on the provided string. Note that the string can refer to

either a relative entry or a complete, absolute path. It is worth mentioning that, in Java,

despite the curious name, a File object can be assigned to either a file or a directory.

f = toFile('thesis.tex');

[C|E|R] getBasename(File file): String This method returns the base name (i.e,

the name without the associated extension) of the provided File reference, as a string.

•

•

•

•

•

Files 61

Observe that this method ignores a potential path reference when extracting the base

name. Also, this method will throw an exception if the provided reference is not a proper

file.

basename = getBasename(toFile('thesis.tex'));

[R] getBasename(String reference): String This method returns the base name

(i.e, the name without the associated extension) of the provided String reference, as a

string. Observe that this method ignores a potential path reference when extracting the

base name.

basename = getBasename('thesis.tex');

[R] getFiletype(File file): String This method returns the file type (i.e, the as‐

sociated extension specified as a suffix to the name, typically delimited with a full stop)

of the provided File reference, as a string. This method will throw an exception if the

provided reference is not a proper file. An empty string is returned if, and only if, the pro‐

vided file name has no associated extension.

extension = getFiletype(toFile('thesis.pdf'));

[R] getFiletype(String reference): String This method returns the file type (i.e,

the associated extension specified as a suffix to the name, typically delimited with a full

stop) of the provided String reference, as a string. An empty string is returned if, and

only if, the provided file name has no associated extension.

extension = getFiletype('thesis.pdf');

[C|R] exists(File file): boolean This method, as the name implies, returns a

boolean value according to whether the provided File reference exists. Observe that the

provided reference can be either a file or a directory.

% arara: bibtex if exists(toFile('references.bib'))

[C|R] exists(String extension): boolean This method returns a boolean value

according to whether the base name of the ❖ currentFile reference (i.e, the name

without the associated extension) as a string concatenated with the provided String ex‐

tension exists. This method eases the checking of files which share the current file name

modulo extension (e.g, log and auxiliary files). Note that the provided string refers to the

extension, not the file name.

•

•

•

•

•

Files 62

% arara: pdftex if exists('tex')

[C|R] missing(File file): boolean This method, as the name implies, returns a

boolean value according to whether the provided File reference does not exist. It is im‐

portant to observe that the provided reference can be either a file or a directory.

% arara: pdftex if missing(toFile('thesis.pdf'))

[C|R] missing(String extension): boolean This method returns a boolean value

according to whether the base name of the ❖ currentFile reference (i.e, the name

without the associated extension) as a string concatenated with the provided String ex‐

tension does not exist. This method eases the checking of files which share the current

file name modulo extension (e.g, log and auxiliary files). Note that the provided string

refers to the extension, not the file name.

% arara: pdftex if missing('pdf')

[C|R] changed(File file): boolean This method returns a boolean value according

to whether the provided File reference has changed since last verification, based on a

traditional cyclic redundancy check. The file reference, as well as the associated hash, is

stored in a YAML database file named arara.yaml located in the same directory as the

current file (the database name can be overridden in the configuration file. The method

semantics (including the return values) is presented as follows.

File exists? Entry exists? Has changed? DB action Result

Yes Yes Yes Update Yes

Yes Yes No — No

Yes No — Insert Yes

No No — — No

No Yes — Remove Yes

It is important to observe that this method always performs a database operation, either

an insertion, removal or update on the corresponding entry. When using ❖ changed

within a logical expression, make sure the evaluation order is correct, specially regarding

the use of short-circuiting operations. In some scenarios, order does matter.

% arara: pdflatex if changed(toFile('thesis.tex'))

•

•

•

Files 63

Short-circuit evaluation

According to the Wikipedia entry, a short-circuit evaluation is the se‐

mantics of some boolean operators in some programming languages in

which the second argument is executed or evaluated only if the first ar‐

gument does not suffice to determine the value of the expression. In

Java (and consequently MVEL), both short-circuit and standard boolean

operators are available.

CRC as a hashing algorithm

arara internally relies on a CRC32 implementation for file hashing. This

particular choice, although not designed for hashing, offers an interest‐

ing trade-off between speed and quality. Besides, since it is not com‐

putationally expensive as strong algorithms such as MD5 and SHA1,

CRC32 can be used for hashing typical TeX documents and plain text

files with little to no collisions.

[C|R] changed(String extension): boolean This method returns a boolean value

according to whether the base name of the ❖ currentFile reference (i.e, the name

without the associated extension) as a string concatenated with the provided String ex‐

tension has changed since last verification, based on a traditional cyclic redundancy

check. The file reference, as well as the associated hash, is stored in a YAML database file

named arara.yaml located in the same directory as the current file (the database name

can be overridden in the configuration file, as discussed in Configuration. The method

semantics (including the return values) is presented as follows.

File exists? Entry exists? Has changed? DB action Result

Yes Yes Yes Update Yes

Yes Yes No — No

Yes No — Insert Yes

No No — — No

No Yes — Remove Yes

It is important to observe that this method always performs a database operation, either

an insertion, removal or update on the corresponding entry. When using ❖ changed

within a logical expression, make sure the evaluation order is correct, specially regarding

the use of short-circuiting operations. In some scenarios, order does matter.

% arara: pdflatex if changed('tex')

•

Files 64

https://en.wikipedia.org/wiki/Short-circuit_evaluation

[C|R] unchanged(File file): boolean This method returns a boolean value accord‐

ing to whether the provided File reference has not changed since last verification, based

on a traditional cyclic redundancy check. The file reference, as well as the associated

hash, is stored in a YAML database file named arara.yaml located in the same directory

as the current file (the database name can be overridden in the configuration file, as dis‐

cussed in Configuration. The method semantics (including the return values) is present‐

ed as follows.

File exists? Entry exists? Has changed? DB action Result

Yes Yes Yes Update No

Yes Yes No — Yes

Yes No — Insert No

No No — — Yes

No Yes — Remove No

It is important to observe that this method always performs a database operation, either

an insertion, removal or update on the corresponding entry. When using ❖ unchanged

within a logical expression, make sure the evaluation order is correct, specially regarding

the use of short-circuiting operations. In some scenarios, order does matter.

% arara: pdflatex if !unchanged(toFile('thesis.tex'))

[C|R] unchanged(String extension): boolean This method returns a boolean val‐

ue according to whether the base name of the ❖ currentFile reference (i.e, the name

without the associated extension) as a string concatenated with the provided String ex‐

tension has not changed since last verification, based on a traditional cyclic redundancy

check. The file reference, as well as the associated hash, is stored in a YAML database file

named arara.yaml located in the same directory as the current file (the database name

can be overridden in the configuration file, as discussed in Configuration. The method

semantics (including the return values) is presented as follows.

File exists? Entry exists? Has changed? DB action Result

Yes Yes Yes Update No

Yes Yes No — Yes

Yes No — Insert No

No No — — Yes

No Yes — Remove No

It is important to observe that this method always performs a database operation, either

an insertion, removal or update on the corresponding entry. When using ❖ unchanged

•

•

Files 65

within a logical expression, make sure the evaluation order is correct, specially regarding

the use of short-circuiting operations. In some scenarios, order does matter.

% arara: pdflatex if !unchanged('tex')

[R] writeToFile(File file, String text, boolean append): boolean This

method performs a write operation based on the provided parameters. In this case, the

method writes the String text to the File reference and returns a boolean value ac‐

cording to whether the operation was successful. The third parameter holds a boolean

value and acts as a switch indicating whether the text should be appended to the existing

content of the provided file. Keep in mind that the existing content of a file is always

overwritten if this switch is disabled. Also, note that the switch has no effect if the file is

being created at that moment. It is important to observe that this method does not raise

any exception.

result = writeToFile(toFile('foo.txt'), 'hello world', false);

Read and write operations in Unicode

arara always uses Unicode as the encoding format for read and write

operations. This decision is deliberate as a means to offer a consistent

representation and handling of text. Unicode can be implemented by

different character encodings. In our case, the tool relies on UTF-8,

which uses one byte for the first 128 code points, and up to 4 bytes for

other characters. The first 128 Unicode code points are the ASCII char‐

acters, which means that any ASCII text is also UTF-8 text.

File system permissions

Most file systems have methods to assign permissions or access rights

to specific users and groups of users. These permissions control the

ability of the users to view, change, navigate, and execute the contents

of the file system. Keep in mind that read and write operations depend

on such permissions.

[R] writeToFile(String reference, String text, boolean append): bool‐

ean This method performs a write operation based on the provided parameters. In this

case, the method writes the String text to the String reference and returns a boolean

value according to whether the operation was successful. The third parameter holds a

boolean value and acts as a switch indicating whether the text should be appended to

the existing content of the provided file. Keep in mind that the existing content of a file is

always overwritten if this switch is disabled. Also, note that the switch has no effect if the

•

•

Files 66

file is being created at that moment. It is important to observe that this method does not

raise any exception.

result = writeToFile('foo.txt', 'hello world', false);

[R] writeToFile(File file, List<String> lines, boolean append): bool‐

ean This method performs a write operation based on the provided parameters. In this

case, the method writes the List<String> lines to the File reference and returns a

boolean value according to whether the operation was successful. The third parameter

holds a boolean value and acts as a switch indicating whether the text should be ap‐

pended to the existing content of the provided file. Keep in mind that the existing content

of a file is always overwritten if this switch is disabled. Also, note that the switch has no

effect if the file is being created at that moment. It is important to observe that this

method does not raise any exception.

result = writeToFile(toFile('foo.txt'),

 ['hello world', 'how are you?'], false);

[R] writeToFile(String reference, List<String> lines, boolean ap‐

pend): boolean This method performs a write operation based on the provided pa‐

rameters. In this case, the method writes the List<String> lines to the String refer‐

ence and returns a boolean value according to whether the operation was successful. The

third parameter holds a boolean value and acts as a switch indicating whether the text

should be appended to the existing content of the provided file. Keep in mind that the

existing content of a file is always overwritten if this switch is disabled. Also, note that the

switch has no effect if the file is being created at that moment. It is important to observe

that this method does not raise any exception.

result = writeToFile('foo.txt', ['hello world',

'how are you?'], false);

[R] readFromFile(File file): List<String> This method performs a read opera‐

tion based on the provided parameter. In this case, the method reads the content from

the File reference and returns a List<String> object representing the lines as a list

of strings. If the reference does not exist or an exception is raised due to access permis‐

sion constraints, the ❖ readFromFile method returns an empty list. Keep in mind that,

as a design decision, UTF-8 is always used as character encoding for read operations.

lines = readFromFile(toFile('foo.txt'));

•

•

•

Files 67

[R] readFromFile(String reference): List<String> This method performs a

read operation based on the provided parameter. In this case, the method reads the con‐

tent from the String reference and returns a List<String> object representing the

lines as a list of strings. If the reference does not exist or an exception is raised due to

access permission constraints, the ❖ readFromFile method returns an empty list. Keep

in mind that, as a design decision, UTF-8 is always used as character encoding for read

operations.

lines = readFromFile('foo.txt');

[R] listFilesByExtensions(File file, List<String> extensions, boolean

recursive): List<File> This method performs a file search operation based on the

provided parameters. In this case, the method list all files from the provided File refer‐

ence according to the List<String> extensions as a list of strings, and returns a

List<File> object representing all matching files. The leading full stop in each exten‐

sion must be omitted, unless it is part of the search pattern. The third parameter holds a

boolean value and acts as a switch indicating whether the search must be recursive, i.e,

whether all subdirectories must be searched as well. If the reference is not a proper di‐

rectory or an exception is raised due to access permission constraints, the ❖ list‐

FilesByExtensions method returns an empty list.

files = listFilesByExtensions(toFile('/home/islandoftex/Documents'),

 ['aux', 'log'], false);

[R] listFilesByExtensions(String reference, List<String> extensions,

boolean recursive): List<File> This method performs a file search operation

based on the provided parameters. In this case, the method list all files from the provided

String reference according to the List<String> extensions as a list of strings, and re‐

turns a List<File> object representing all matching files. The leading full stop in each

extension must be omitted, unless it is part of the search pattern. The third parameter

holds a boolean value and acts as a switch indicating whether the search must be recur‐

sive, i.e, whether all subdirectories must be searched as well. If the reference is not a

proper directory or an exception is raised due to access permission constraints, the ❖

listFilesByExtensions method returns an empty list.

files = listFilesByExtensions('/home/islandoftex/Documents',

 ['aux', 'log'], false);

[R] listFilesByPatterns(File file, List<String> patterns, boolean re‐

cursive): List<File> This method performs a file search operation based on the

provided parameters. In this case, the method lists all files from the provided File refer‐

ence according to the List<String> patterns as a list of strings, and returns a

•

•

•

•

Files 68

List<File> object representing all matching files. The pattern specification is described

below. The third parameter holds a boolean value and acts as a switch indicating

whether the search must be recursive, i.e, whether all subdirectories must be searched as

well. If the reference is not a proper directory or an exception is raised due to access per‐

mission constraints, the ❖ listFilesByPatterns method returns an empty list. It is

very important to observe that this file search operation might be slow depending on the

provided directory. It is highly advisable to not rely on recursive searches whenever possi‐

ble.

Patterns for file search operations

arara employs wildcard filters as patterns for file search operations.

Testing is case sensitive by default. The wildcard matcher uses the

characters ? and * to represent a single or multiple wildcard charac‐

ters. This is the same as often found on typical terminals.

files = listFilesByPatterns(toFile('/home/islandoftex/Documents'),

 ['*.tex', 'foo?.txt'], false);

[R] listFilesByPatterns(String reference, List<String> patterns,

boolean recursive): List<File> This method performs a file search operation

based on the provided parameters. In this case, the method lists all files from the provid‐

ed String reference according to the List<String> patterns as a list of strings, and

returns a List<File> object representing all matching files. The pattern specification

follows a wildcard filter. The third parameter holds a boolean value and acts as a switch

indicating whether the search must be recursive, i.e, whether all subdirectories must be

searched as well. If the reference is not a proper directory or an exception is raised due

to access permission constraints, the ❖ listFilesByPatterns method returns an

empty list. It is very important to observe that this file search operation might be slow

depending on the provided directory. It is highly advisable to not rely on recursive

searches whenever possible.

files = listFilesByPatterns('/home/islandoftex/Documents',

 ['*.tex', 'foo?.txt'], false);

As the methods presented in this section have transparent error handling, the writing of rules

and conditionals becomes more fluent and not too complex for the typical user.

•

Files 69

Conditional flow

This section introduces methods related to conditional flow based on natural boolean values,

i.e, words that semantically represent truth and falsehood signs. Such concept provides a

friendly representation of boolean values and eases the use of switches in directive parame‐

ters. The tool relies on the following set of natural boolean values:

True: yes, true, 1, on

False: no, false, 0, off

All elements from the provided set of natural boolean values can be used interchangeably in

directive parameters. It is important to observe that arara throws an exception if a value absent

from the set is provided to the methods described in this section.

[R] isTrue(String string): boolean This method returns a boolean value accord‐

ing to whether the provided String value is contained in the sub-set of natural true

boolean values. It is worth mentioning that the verification is case insensitive, i.e, upper

case and lower case symbols are treated as equivalent. If the provided value is an empty

string, the method returns false.

result = isTrue('yes');

[R] isFalse(String string): boolean This method returns a boolean value accord‐

ing to whether the provided String value is contained in the sub-set of natural false

boolean values. It is worth mentioning that the verification is case insensitive, i.e, upper

case and lower case symbols are treated as equivalent. If the provided value is an empty

string, the method returns false.

result = isFalse('off');

[R] isTrue(String string, Object yes): Object This method checks if the first

parameter is contained in the sub-set of natural true boolean values. If the result holds

true, the second parameter is returned. Otherwise, an empty string is returned. It is worth

mentioning that the verification is case insensitive, i.e, upper case and lower case sym‐

bols are treated as equivalent. If the first parameter is an empty string, the method re‐

turns an empty string.

result = isTrue('on', ['ls', '-la']);

•

•

•

•

•

Conditional flow 70

[R] isFalse(String string, Object yes): Object This method checks if the first

parameter is contained in the sub-set of natural false boolean values. If the result holds

true, the second parameter is returned. Otherwise, an empty string is returned. It is worth

mentioning that the verification is case insensitive, i.e, upper case and lower case sym‐

bols are treated as equivalent. If the first parameter is an empty string, the method re‐

turns an empty string.

result = isFalse('0', 'pwd');

[R] isTrue(String string, Object yes, Object no): Object This method

checks if the first parameter is contained in the sub-set of natural true boolean values. If

the result holds true, the second parameter is returned. Otherwise, the third parameter is

returned. It is worth mentioning that the verification is case insensitive, i.e, upper case

and lower case symbols are treated as equivalent. If the first parameter is an empty

string, the method returns the third parameter.

result = isTrue('on', ['ls', '-la'], 'pwd');

[R] isFalse(String string, Object yes, Object no): Object This method

checks if the first parameter is contained in the sub-set of natural false boolean values. If

the result holds true, the second parameter is returned. Otherwise, the third parameter is

returned. It is worth mentioning that the verification is case insensitive, i.e, upper case

and lower case symbols are treated as equivalent. If the first parameter is an empty

string, the method returns the third parameter.

result = isFalse('0', 'pwd', 'ps');

[R] isTrue(String string, Object yes, Object no, Object fallback):

Object This method checks if the first parameter is contained in the sub-set of natural

true boolean values. If the result holds true, the second parameter is returned. Otherwise,

the third parameter is returned. It is worth mentioning that the verification is case insen‐

sitive, i.e, upper case and lower case symbols are treated as equivalent. If the first param‐

eter is an empty string, the method returns the fourth parameter as default value.

result = isTrue('on', 'ls', 'pwd', 'who');

[R] isFalse(String string, Object yes, Object no, Object fallback):

Object This method checks if the first parameter is contained in the sub-set of natural

false boolean values. If the result holds true, the second parameter is returned. Other‐

wise, the third parameter is returned. It is worth mentioning that the verification is case

•

•

•

•

•

Conditional flow 71

insensitive, i.e, upper case and lower case symbols are treated as equivalent. If the first

parameter is an empty string, the method returns the fourth parameter as default value.

result = isFalse('0', 'pwd', 'ps', 'ls');

[R] isTrue(boolean value, Object yes): Object This method evaluates the first

parameter as a boolean expression. If the result holds true, the second parameter is re‐

turned. Otherwise, an empty string is returned.

result = isTrue(1 == 1, 'yes');

[R] isFalse(boolean value, Object yes): Object This method evaluates the

first parameter as a boolean expression. If the result holds false, the second parameter is

returned. Otherwise, an empty string is returned.

result = isFalse(1 != 1, 'yes');

[R] isTrue(boolean value, Object yes, Object no): Object This method

evaluates the first parameter as a boolean expression. If the result holds true, the second

parameter is returned. Otherwise, the third parameter is returned.

result = isTrue(1 == 1, 'yes', 'no');

[R] isFalse(boolean value, Object yes, Object no): Object This method

evaluates the first parameter as a boolean expression. If the result holds false, the sec‐

ond parameter is returned. Otherwise, the third parameter is returned.

result = isFalse(1 != 1, 'yes', 'no');

Supported by the concept of natural boolean values, the methods presented in this section

ease the use of switches in directive parameters and can be adopted as valid alternatives for

traditional conditional flows, when applied.

•

•

•

•

Conditional flow 72

Strings

String manipulation constitutes one of the foundations of rule interpretation in our tool. This

section introduces methods for handling such types, as a means to offer high level constructs

for users.

[R] isEmpty(String string): boolean This method returns a boolean value accord‐

ing to whether the provided String value is empty, i.e, the string length is equal to zero.

result = isEmpty('not empty');

[R] isNotEmpty(String string): boolean This method returns a boolean value ac‐

cording to whether the provided String value is not empty, i.e, the string length is

greater than zero.

result = isNotEmpty('not empty');

[R] isEmpty(String string, Object yes): boolean This method checks if the

first parameter is empty, i.e, if the string length is equal to zero. If the result holds true,

the second parameter is returned. Otherwise, an empty string is returned.

result = isEmpty('not empty', 'ps');

[R] isNotEmpty(String string, Object yes): boolean This method checks if

the first parameter is not empty, i.e, if the string length is greater than zero. If the result

holds true, the second parameter is returned. Otherwise, an empty string is returned.

result = isNotEmpty('not empty', 'ls');

[R] isEmpty(String string, Object yes, Object no): boolean This method

checks if the first parameter is empty, i.e, if the string length is equal to zero. If the result

holds true, the second parameter is returned. Otherwise, the third parameter is returned.

result = isEmpty('not empty', 'ps', 'ls');

[R] isNotEmpty(String string, Object yes, Object no): boolean This

method checks if the first parameter is not empty, i.e, if the string length is greater than

zero. If the result holds true, the second parameter is returned. Otherwise, the third pa‐

rameter is returned.

•

•

•

•

•

•

Strings 73

result = isNotEmpty('not empty', 'ls', 'ps');

[R] buildString(Object... objects): String This method returns a string based

on the provided array of objects, separating each element by one blank space. It is impor‐

tant to observe that empty values are not considered. Also, note that the object array is

denoted by a comma-separated sequence of elements in the actual method call, result‐

ing in a variable number of parameters.

result = buildString('a', 'b', 'c', 'd');

[R] trimSpaces(String string): String This method trims spaces from the pro‐

vided parameter, i.e, leading and trailing spaces in the String reference are removed,

and returns the resulting string. It is important to observe that non-boundary spaces in‐

side the string are not removed at all.

result = trimSpaces(' hello world ');

[R] replicatePattern(String pattern, List<Object> values):

List<Object> This method replicates the provided pattern to each element of the sec‐

ond parameter and returns the resulting list. The pattern must contain exactly one place‐

holder. For instance, \%s denotes a string representation of the provided argument.

Please refer to the Formatter class reference in the Java documentation for more infor‐

mation on placeholders. This method raises an exception if an invalid pattern is applied.

names = replicatePattern('My name is %s', ['Brent', 'Nicola']);

[C|R] found(File file, String regex): boolean This method returns a boolean

value according to whether the content of the provided File reference contains at least

one match of the provided String regular expression. It is important to observe that this

method raises an exception if an invalid regular expression is provided as the parameter

or if the provided file reference does not exist.

% arara: pdflatex while found(toFile('article.log'),

% arara: --> 'undefined references')

[C|R] found(String extension, String regex): boolean This method returns a

boolean value according to whether the content of the base name of the ❖ current‐

File reference (i.e, the name without the associated extension) as a string concatenated

with the provided String extension contains at least one match of the provided String

regular expression. It is important to observe that this method raises an exception if an

•

•

•

•

•

Strings 74

https://docs.oracle.com/javase/7/docs/api/java/util/Formatter.html

invalid regular expression is provided as the parameter or if the provided file reference

does not exist.

% arara: pdflatex while found('log', 'undefined references')

The string manipulation methods presented in this section constitute an interesting and

straightforward approach to handling directive parameters without the usual verbosity in writ‐

ing typical Java constructs.

Operating systems

This section introduces methods related to the underlying operating system detection, as a

means of providing a straightforward approach to writing cross-platform rules.

[R] isWindows(): boolean This method returns a boolean value according to whether

the underlying operating system vendor is Microsoft Windows.

if (isWindows()) { System.out.println('Running Windows.'); }

[R] isLinux(): boolean This method returns a boolean value according to whether

the underlying operating system vendor is a Linux instance.

if (isLinux()) { System.out.println('Running Linux.'); }

[R] isMac(): boolean This method returns a boolean value according to whether the

underlying operating system vendor is Apple Mac OS.

if (isMac()) { System.out.println('Running Mac OS.'); }

[R] isUnix(): boolean This method returns a boolean value according to whether the

underlying operating system vendor is any Unix variation.

if (isUnix()) { System.out.println('Running Unix.'); }

[R] isCygwin(): boolean This method returns a boolean value according to whether

the underlying operating system vendor is Microsoft Windows and arara is being executed

inside a Cygwin environment.

•

•

•

•

•

Operating systems 75

if (isCygwin()) { System.out.println('Running Cygwin.'); }

Cygwin paths

It is worth mentioning that Cygwin has its own path handling which is

not reliable when (JVM) applications need to invoke system commands.

For instance, the following invocation does not work:

% arara: pdflatex

Since pdflatex is a symbolic link to pdftex with the proper format,

we encourage Cygwin users to rely on the following trick:

% arara: pdftex: { options: ['--fmt=pdflatex'] }

The same trick can be employed by other TeX engines with appropriate

--fmt flags as well. We are still investigating this issue and looking for

potential alternatives.

[R] isWindows(Object yes, Object no): Object This method checks if the under‐

lying operating system vendor is Microsoft Windows. If the result holds true, the first pa‐

rameter is returned. Otherwise, the second parameter is returned.

command = isWindows('del', 'rm');

[R] isLinux(Object yes, Object no): Object This method checks if the underly‐

ing operating system vendor is a Linux instance. If the result holds true, the first parame‐

ter is returned. Otherwise, the second parameter is returned.

command = isLinux('rm', 'del');

[R] isMac(Object yes, Object no): Object This method checks if the underlying

operating system vendor is Apple Mac OS. If the result holds true, the first parameter is

returned. Otherwise, the second parameter is returned.

command = isMac('ls', 'dir');

•

•

•

Operating systems 76

[R] isUnix(Object yes, Object no): Object This method checks if the underlying

operating system vendor is any Unix variation. If the result holds true, the first parameter

is returned. Otherwise, the second parameter is returned.

command = isUnix('tree', 'dir');

[R] isCygwin(Object yes, Object no): Object This method checks if the under‐

lying operating system vendor is Microsoft Windows and if arara is being executed inside

a Cygwin environment. If the result holds true, the first parameter is returned. Otherwise,

the second parameter is returned.

command = isCygwin('ls', 'dir');

The methods presented in the section provide useful information to help users write cross-plat‐

form rules and thus enhance the automation experience based on specific features of the un‐

derlying operating system.

Type checking

In certain scenarios, a plain string representation of directive parameters might be inadequate

or insufficient given the rule requirements. To this end, this section introduces methods related

to type checking as a means to provide support and verification for common data types.

[R] isString(Object object): boolean This method returns a boolean value ac‐

cording to whether the provided Object object is a string or any extended type.

result = isString('foo');

[R] isList(Object object): boolean This method returns a boolean value accord‐

ing to whether the provided Object object is a list or any extended type.

result = isList([1, 2, 3]);

[R] isMap(Object object): boolean This method returns a boolean value according

to whether the provided Object object is a map or any extended type.

result = isMap(['Paulo' : 'Palmeiras', 'Carla' : 'Inter']);

•

•

•

•

•

Type checking 77

[R] isBoolean(Object object): boolean This method returns a boolean value ac‐

cording to whether the provided Object object is a boolean or any extended type.

result = isBoolean(false);

[R] checkClass(Class clazz, Object object): boolean This method returns a

boolean value according to whether the provided Object object is an instance or a sub‐

type of the provided Class class. It is interesting to note that all methods presented in

this section internally rely on ❖ checkClass for type checking.

result = checkClass(List.class, ['a', 'b']);

The methods presented in this section cover the most common types used in directive parame‐

ters and should suffice for expressing the rule requirements. If a general approach is needed,

please refer to the ❖ checkClass method for checking virtually any type available in the Java

environment.

Classes and objects

arara can be extended at runtime with code from JVM languages, such as Groovy, Scala, Clojure

and Kotlin. The tool can load classes from class and jar files and even instantiate them. This

section introduces methods related to class loading and object instantiation.

Ordered pairs

According to the Wikipedia entry, in mathematics, an ordered pair (a, b) is a

pair of objects. The order in which the objects appear in the pair is signifi‐

cant: the ordered pair (a, b) is different from the ordered pair (b, a) unless a =

b. In the ordered pair (a, b), the object a is called the first entry, and the ob‐

ject b the second entry of the pair. arara relies on this concept with the

helper Pair<A, B> class, in which A and B denote the component classes,

i.e, the types associated to the pair elements. In order to access the pair en‐

tries, the class provides two property accessors:

❖ first: A: This property accessor, as the name implies, returns the

first entry of the ordered pair, as an A object.

❖ second: B: This property accessor, as the name implies, returns

the second entry of the ordered pair, as a B object.

•

•

•

•

Classes and objects 78

https://en.wikipedia.org/wiki/Ordered_pair

Keep in mind that the entries in the Pair class, once defined, cannot be

modified to other values. The initial values are set during instantiation and,

therefore, only entry getters are available to the user during the object life

cycle.

Status for class loading and instantiation

The class loading and instantiation methods provided by arara typically re‐

turn a pair composed of an integer value and a class or object reference. This

integer value acts as a status of the underlying operation itself and might in‐

dicate potential issues. The possible values are:

0: Successful execution

1: File does not exist

2: File URL is incorrect

3: Class was not found

4: Access policy violation

5: Instantiation exception

Please make sure to always check the returned integer status when using

class loading and instantiation methods in directive and rule contexts. This

feature is quite powerful yet tricky and subtle!

[C|R] loadClass(File file, String name):

Pair<ClassLoading.ClassLoadingStatus, Object> This method loads a class

based on the canonical name from the provided File reference and returns an ordered

pair containing the status and the class reference itself. The file must contain the Java

bytecode, either directly accessible from a class file or packaged inside a jar file. If an

exception is raised, this method returns the Object class reference as second entry of

the pair.

result = loadClass(toFile('mymath.jar'),

'com.github.cereda.mymath.Arithmetic');

[C|R] loadClass(String ref,String name):

Pair<ClassLoading.ClassLoadingStatus, Object> This method loads a class

based on the canonical name from the provided String reference and returns an or‐

dered pair containing the status and the class reference itself. The file must contain the

Java bytecode, either directly accessible from a class file or packaged inside a jar file. If

an exception is raised, this method returns the Object class reference as second entry of

the pair.

•

•

•

•

•

•

•

•

Classes and objects 79

result = loadClass('mymath.jar',

'com.github.cereda.mymath.Arithmetic');

[C|R] loadObject(File file,String name):

Pair<ClassLoading.ClassLoadingStatus, Object> This method loads a class

based on the canonical name from the provided File reference and returns an ordered

pair containing the status and a proper corresponding object instantiation. The file must

contain the Java bytecode, either directly accessible from a class file or packaged inside

a jar file. If an exception is raised, this method returns an Object object as second en‐

try of the pair.

result = loadObject(toFile('mymath.jar'),

'com.github.cereda.mymath.Trigonometric');

[C|R] loadObject(String ref, String name):

Pair<ClassLoading.ClassLoadingStatus, Object> This method loads a class

based on the canonical name from the provided String reference and returns an or‐

dered pair containing the status and a proper corresponding object instantiation. The file

must contain the Java bytecode, either directly accessible from a class file or packaged

inside a jar file. If an exception is raised, this method returns an Object object as sec‐

ond entry of the pair.

result = loadObject('mymath.jar',

'com.github.cereda.mymath.Trigonometric');

This section presented class loading and instantiation methods which may significantly en‐

hance the expressiveness of rules and directives. However, make sure to use such feature with

great care and attention.

Dialog boxes

A dialog box is a graphical control element, typically a small window, that communicates infor‐

mation to the user and prompts them for a response. This section introduces UI methods relat‐

ed to such interactions.

UI elements

The graphical elements are provided by the Swing toolkit from the Java run‐

time environment. Note that the default look and feel class reference can be

modified through a key in the configuration file, as seen in Configuration. It

•

•

Dialog boxes 80

is important to observe that the methods presented in this section require a

graphical interface. If arara is being executed in a headless environment (i.e,

an environment with no graphical display available), an exception will be

thrown when trying to use such UI methods in either directive or rule con‐

texts.

Each dialog box provided by the UI methods of arara requires the specification of an associated

icon. An icon is a pictogram displayed on a computer screen in order to help the user quickly

identify the message by conveying its meaning through a visual resemblance to a physical ob‐

ject. Our tool features five icon types, illustrated below, to be used with dialog boxes. Observe

that each icon type is associated with a unique integer value which is provided later on to the

actual method call. Also, it is worth mentioning that the visual appearance of such icons is

based on the underlying Java virtual machine and the current look and feel, so your mileage

might vary.

1: Error

2: Information

3: Attention

4: Question

5: Plain

As good practice, make sure to provide descriptive messages to be placed in dialog boxes in or‐

der to ease and enhance the user experience. It is also highly advisable to always provide an

associated icon, so avoid the plain option whenever possible.

Message text width

arara sets the default message text width to 250 pixels. Feel free to override

this value according to your needs. Please refer to the appropriate method

signatures for specifying a new width.

The UI method signatures are followed by a visual representation of the provided dialog box.

For the sake of simplicity, each parameter index refers to the associated number in the figure.

[R] showMessage(int width, int icon, String title, String text): void

Message title

The quick brown fox jumps over the lazy dog.

OK

2

3

4

1

This method shows a message box according to the provided parameters. The dialog box is dis‐

posed when the user either presses the confirmation button or closes the window. It is impor‐

•

•

•

•

•

•

Dialog boxes 81

tant to observe that arara temporarily interrupts the execution and waits for the dialog box dis‐

posal. Also note that the total time includes the idle period as well.

showMessage(250, 2, 'My title', 'My message');

[R] showMessage(int icon, String title, String text): void

Message title

The quick brown fox jumps over the lazy dog.

OK

1

2

3

This method shows a message box according to the provided parameters. The dialog box

is disposed when the user either presses the confirmation button or closes the window. It

is important to observe that arara temporarily interrupts the execution and waits for the

dialog box disposal. Also note that the total time includes the idle period as well.

showMessage(2, 'My title', 'My message');

[C|R] showOptions(int width, int icon, String title, String text, Ob‐

ject... options): int

Message title

The quick brown fox jumps over the lazy dog.

Button n

2

3

4

...
5

1

This method shows a message box according to the provided parameters, including op‐

tions represented as an array of Object objects. This array is portrayed in the dialog box

as a list of buttons. The dialog box is disposed when the user either presses one of the

buttons or closes the window. The method returns the natural index of the selected but‐

ton, starting from 1. If no button is pressed (e.g, the window is closed), 0 is returned. Note

that the object array is denoted by a comma-separated sequence of elements in the ac‐

tual method call, resulting in a variable number of parameters. It is important to observe

that arara temporarily interrupts the execution and waits for the dialog box disposal. Also

note that the total time includes the idle period as well.

% arara: pdflatex if showOptions(250, 4, 'Important!',

% arara: --> 'Do you like ice cream?', 'Yes!', 'No!') == 1

•

•

Dialog boxes 82

Button orientation

Keep in mind that your window manager might render the button ori‐

entation differently than the original arrangement specified in your ar‐

ray of objects. For instance, I had a window manager that rendered the

buttons in the reverse order. However, note that the visual appearance

should not interfere with the programming logic! The indices shall re‐

main the same, pristine as ever, regardless of the actual rendering.

Trust your code, not your eyes.

[C|R] showOptions(int icon, String title, String text, Object... op‐

tions): int

Message title

The quick brown fox jumps over the lazy dog.

Button n

1

2

3

...
4

This method shows a message box according to the provided parameters, including op‐

tions represented as an array of Object objects. This array is portrayed in the dialog box

as a list of buttons. The dialog box is disposed when the user either presses one of the

buttons or closes the window. The method returns the natural index of the selected but‐

ton, starting from 1. If no button is pressed (e.g, the window is closed), 0 is returned. Note

that the object array is denoted by a comma-separated sequence of elements in the ac‐

tual method call, resulting in a variable number of parameters. It is important to observe

that arara temporarily interrupts the execution and waits for the dialog box disposal. Also

note that the total time includes the idle period as well.

% arara: pdflatex if showOptions(4, 'Important!',

% arara: --> 'Do you like ice cream?', 'Yes!', 'No!') == 1

[C|R] showDropdown(int width, int icon, String title, String text, Ob‐

ject... options): int

Message title

The quick brown fox jumps over the lazy dog.

OK

2

3

4

1

5

This method shows a dialog box according to the provided parameters, including options

represented as an array of Object objects. This array is portrayed in the dialog box as a

•

•

Dialog boxes 83

dropdown list. The first element from the array is automatically selected. The dialog box

is disposed when the user either presses one of the buttons or closes the window. The

method returns the natural index of the selected item, starting from 1. If the user cancels

the dialog or closes the window, 0 is returned. Note that the object array is denoted by a

comma-separated sequence of elements in the actual method call, resulting in a variable

number of parameters. It is important to observe that arara temporarily interrupts the ex‐

ecution and waits for the dialog box disposal. Also note that the total time includes the

idle period as well.

% arara: pdflatex if showDropdown(250, 4, 'Important!',

% arara: --> 'Who deserves the tick?', 'David Carlisle',

% arara: --> 'Enrico Gregorio', 'Joseph Wright',

% arara: --> 'Heiko Oberdiek') == 2

Combo boxes and dropdown lists

According to the Wikipedia entry, a combo box is a combination of a

dropdown list or list box and a single line editable textbox, allowing

the user to either type a value directly or select a value from the list.

The term is sometimes used to mean a dropdown list, but in Java, the

term is definitely not a synonym! A dropdown list is sometimes clarified

with terms such as non-editable combo box to distinguish it from the

original definition of a combo box.

[C|R] showDropdown(int icon, String title, String text, Object... op‐

tions): int

Message title

The quick brown fox jumps over the lazy dog.

OK

1

2

3
4

This method shows a dialog box according to the provided parameters, including options

represented as an array of Object objects. This array is portrayed in the dialog box as a

dropdown list. The first element from the array is automatically selected. The dialog box

is disposed when the user either presses one of the buttons or closes the window. The

method returns the natural index of the selected item, starting from 1. If the user cancels

the dialog or closes the window, 0 is returned. Note that the object array is denoted by a

comma-separated sequence of elements in the actual method call, resulting in a variable

number of parameters. It is important to observe that arara temporarily interrupts the ex‐

ecution and waits for the dialog box disposal. Also note that the total time includes the

idle period as well.

•

Dialog boxes 84

https://en.wikipedia.org/wiki/Combo_box

% arara: pdflatex if showDropdown(4, 'Important!',

% arara: --> 'Who deserves the tick?', 'David Carlisle',

% arara: --> 'Enrico Gregorio', 'Joseph Wright',

% arara: --> 'Heiko Oberdiek') == 2

Swing toolkit

According to the Wikipedia entry, the Swing toolkit was developed to

provide a more sophisticated set of GUI components than the earlier

AWT widget system. Swing provides a look and feel that emulates the

look and feel of several platforms, and also supports a pluggable look

and feel that allows applications to have a look and feel unrelated to

the underlying platform. It has more powerful and flexible components

than AWT. In addition to familiar components such as buttons, check

boxes and labels, Swing provides several advanced components, such

as scroll panes, trees, tables, and lists.

[C|R] showInput(int width, int icon, String title, String text):

String

Message title

The quick brown fox jumps over the lazy dog.

OK

2

3

4

1

This method shows an input dialog box according to the provided parameters. The dialog

box is disposed when the user either presses one of the buttons or closes the window.

The method returns the content of the input text field, as a trimmed String object. If the

user cancels the dialog or closes the window, an empty string is returned. It is important

to observe that arara temporarily interrupts the execution and waits for the dialog box

disposal. Also note that the total time includes the idle period as well.

% arara: pdflatex if showInput(250, 4, 'Important!',

% arara: --> 'Who wrote arara?') == 'Paulo'

[C|R] showInput(int icon, String title, String text): String

•

•

Dialog boxes 85

https://en.wikipedia.org/wiki/Swing_(Java)

Message title

The quick brown fox jumps over the lazy dog.

OK

1

2

3

This method shows an input dialog box according to the provided parameters. The dialog

box is disposed when the user either presses one of the buttons or closes the window.

The method returns the content of the input text field, as a trimmed String object. If the

user cancels the dialog or closes the window, an empty string is returned. It is important

to observe that arara temporarily interrupts the execution and waits for the dialog box

disposal. Also note that the total time includes the idle period as well.

% arara: pdflatex if showInput(4, 'Important!',

% arara: --> 'Who wrote arara?') == 'Paulo'

The UI methods presented in this section can be used for writing TeX tutorials and assisted

compilation workflows based on user interactions, including visual input and feedback through

dialog boxes.

Commands

arara features the Command object, a new approach for handling system commands based on a

high level structure with explicit argument parsing.

The anatomy of a command

From the user perspective, a Command object is simply a good old list of Ob‐

ject objects, in which the list head (i.e, the first element) is the underlying

system command, and the list tail (i.e, the remaining elements), if any, con‐

tains the associated command line arguments. For instance, given

['pdflatex', '--shell-escape', '--synctex=1', 'thesis.tex'

], we have:

Head: 'pdflatex'

Tail: ['--shell-escape', '--synctex=1', 'thesis.tex']

From the previous example, it is important to observe that a potential file

name quoting is not necessary. The underlying system command execution

library handles the provided arguments accordingly.

•

•

Commands 86

Behind the scenes, however, arara employs a different workflow when con‐

structing a Command object. The tool sets the working directory path for the

current command to USER_DIR which is based on the current execution. The

working directory path can be explicitly set through specific method calls, de‐

scribed later on in this section.

The list of objects is then completely flattened and all elements are mapped

to their string representations through corresponding ❖ toString calls. Fi‐

nally, the proper Command object is constructed. Keep in mind that, although

a command takes a list (or even an array) of objects, which can be of any

type, the internal representation is always a list of strings.

A list of objects might contain nested lists, i.e, a list within another list. As previously men‐

tioned, arara employs list flattening when handling a list of objects during a Command object in‐

stantiation. As a means to illustrate this handy feature, consider the following list of integers:

[1, 2, [3, 4], 5, [[6, 7], 8], 9, [[10]]

Note that the above list of integers contains nested lists. When applying list flattening, arara re‐

cursively adds the elements of nested lists to the original list and then removes the nested oc‐

currences. Please refer to the source code for implementation details. The new flattened list is

presented as follows.

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

List flattening and string mapping confer expressiveness and flexibility to the Command object

construction, as users can virtually use any data type to describe the underlying rule logic and

yet obtain a consistent representation.

[R] getCommand(List<String> elements): Command This method, as the name im‐

plies, returns a Command object according to the provided list of String elements. If the

list is empty, the tool will ignore the execution.

return getCommand(['ls', '-l']);

[R] getCommand(Object... elements): Command This method, as the name implies,

returns a Command object according to the provided array of Object elements. If the ar‐

ray is empty, the tool will ignore the execution. Note that the object array is denoted by a

comma-separated sequence of elements in the actual method call, resulting in a variable

number of parameters.

•

•

Commands 87

return getCommand('pdflatex', '--shell-escape', 'thesis.tex');

[R] getCommandWithWorkingDirectory(File directory, List<String> ele‐

ments): Command This method, as the name implies, sets the working directory based

on the provided File reference and returns a proper Command object according to the

provided list of String elements. If the list is empty, the tool will ignore the execution.

return getCommandWithWorkingDirectory(toFile('/home/islandoftex'),

 ['ls', '-l']);

[R] getCommandWithWorkingDirectory(String path, List<String> ele‐

ments): Command This method, as the name implies, sets the working directory based

on the provided String reference and returns a proper Command object according to the

provided list of String elements. If the list is empty, the tool will ignore the execution.

return getCommandWithWorkingDirectory('/home/islandoftex',

 ['ls', '-l']);

[R] getCommandWithWorkingDirectory(File directory, Object... ele‐

ments): Command This method, as the name implies, sets the working directory based

on the provided File reference and returns a proper Command object according to the

provided array of Object elements. If the array is empty, the tool will ignore the execu‐

tion. Note that the object array is denoted by a comma-separated sequence of elements

in the actual method call, resulting in a variable number of parameters.

return getCommandWithWorkingDirectory(toFile('/home/islandoftex'),

'pdflatex', '--shell-escape', 'thesis.tex');

[R] getCommandWithWorkingDirectory(String path, Object... elements):

Command This method, as the name implies, sets the working directory based on the pro‐

vided String reference and returns a proper Command object according to the provided

array of Object elements. If the array is empty, the tool will ignore the execution. Note

that the object array is denoted by a comma-separated sequence of elements in the ac‐

tual method call, resulting in a variable number of parameters.

return getCommandWithWorkingDirectory('/home/islandoftex',

'pdflatex', '--shell-escape', 'thesis.tex');

The methods presented in this section constitute the foundations of underlying system com‐

mand execution. In particular, whenever possible, it is highly advisable to use Command objects

•

•

•

•

Commands 88

through proper ❖ getCommand method calls, as the plain string approach used in previous

versions of our tool is marked as deprecated and will be removed in future versions.

Others

This section introduces assorted methods provided by arara as a means to improve the auto‐

mation itself with expressive rules and enhance the user experience. Such methods are proper‐

ly described as follows.

Session

Rules are designed under the encapsulation notion, such that the direct ac‐

cess to internal workings of such structures is restricted. However, as a

means to support framework awareness, arara provides a mechanism for

data sharing across rule contexts, implemented as a Session object. In prac‐

tical terms, this particular object is a global, persistent map composed of

String keys and Object values available throughout the entire execution.

The public methods of a session are described as follows:

❖ put(String key, Object value): void This method, as the

name implies, inserts an object into the session, indexed by the provid‐

ed key. Observe that, if the session previously contained a mapping for

the provided key, the old value is replaced by the specified value.

❖ remove(String key): void This method, as the name implies,

removes the mapping for the provided key from the session. Be mind‐

ful that an attempt to remove a mapping for a nonexistent key will

raise an exception.

❖ contains(String key): boolean This method, as the name

implies, returns a boolean value according to whether the session con‐

tains a mapping for the provided key. It is highly advisable to use this

method before attempting to remove a mapping from the session.

❖ get(String key): Object This method, as the name implies,

returns the object value to which the specified key is mapped. Be

mindful that an attempt to return a value for a nonexistent key will

raise an exception.

❖ forget(): void This method, as the name implies, removes all of

the existing mappings from the session. The session object will be ef‐

fectively empty after this call returns.

•

•

•

•

•

Others 89

It is important to observe that the Session object provided by our tool fol‐

lows the singleton pattern, i.e, a software design pattern that restricts the in‐

stantiation of a class to one object. Therefore, the same session is consis‐

tently shared across rule contexts.

[C|E|R] getSession(): Session This method, as the name implies, returns the Ses‐

sion object for data sharing across rule contexts. Keep in mind that a session cannot

contain duplicate keys. Each key can map to at most one value.

name = getSession().get('name');

[R] throwError(String message): void This method deliberately throws an error to

be intercepted later on during execution. Consider using such method for an explicit noti‐

fication about unexpected or unsought scenarios, e.g, wrong parameter types or values.

The raised error has an associated message which is displayed in the terminal and added

to the log file.

options = 'not a list';

if (!isList(options)) {

throwError('I was expecting a list.');

}

[R] isVerboseMode(): boolean This method, as the name implies, returns a boolean

value according to whether arara is being executed in verbose mode, enabled through ei‐

ther the --verbose command line option or the corresponding key in the configuration

file. Note that the logical negation of such method indicates whether the tool is being ex‐

ecuted in silent mode.

verbose = isVerboseMode();

[R] isOnPath(String name): boolean This method, as the name implies, returns a

boolean value according to whether the provided String reference representing a com‐

mand name is reachable from the system path. For portability reasons, there is no need

to provide extensions to Microsoft Windows command names, as arara will look for com‐

mon patterns. This behaviour is expected and by design. However, be mindful that the

search is case sensitive.

result = isOnPath('pdftex');

•

•

•

•

Others 90

Path inspection

According to the Wikipedia entry, PATH is an environment variable on

Unix-like operating systems and Microsoft Windows, specifying a set of

directories where executable programs are located. arara performs a

file search operation based on all directories specified in the system

path, filtering files by name (and extensions, when in Microsoft Win‐

dows). When an exact match is found, the search is concluded. Not‐

withstanding the great effort, it is very important to note that there is

no guarantee that our tool will be able to correctly reach the command

in all scenarios.

[R] unsafelyExecuteSystemCommand(Command command): Pair<Integer,

String> This method, which has a very spooky name, unsafely executes the provided

Command reference and returns an ordered pair containing the exit status and the com‐

mand output. Note that, if an exception is raised during the command execution, -99 is

assigned as exit status and an empty string is defined as command output. Please make

sure to always check the returned integer status when using this method.

result = unsafelyExecuteSystemCommand(getCommand('ls'));

Hic sunt leones

Please do not abuse this method! Keep in mind that this particular fea‐

ture is included for very specific scenarios in which the command

streams are needed ahead of time for proper decision making.

[R] isSubdirectory(File directory): boolean This method checks whether the

provided File reference is a valid subdirectory under the project hierarchy, return a cor‐

responding boolean value. This is a check to impose a possible restriction in the rule

scope, so that users can change down to subdirectories in their projects but not up, out‐

side of the root directory.

valid = isSubdirectory(toFile('chapters/'));

[R] getOrNull(List<String> list, int index): String This method attempts

to retrieve a list element based on an integer index. If the index is out of bounds, a null

value is returned instead.

list = ['a', 'b', 'c'];

third = getOrNull(list, 2);

•

•

•

Others 91

https://en.wikipedia.org/wiki/PATH_(variable)

[R] getOrNull(List<String> list): String This method attempts to retrieve the

first element of the provided list. If the list is empty, a null value is returned instead.

list = ['a', 'b', 'c'];

first = getOrNull(list);

Flags and reserved storage in a session

From version 6.0 on, there are three reserved namespaces within a session.

They are described as follows:

environment This namespace is quite intuitive: arara will store the

current state of the systems environment variables in its session. You

may alter these values in the session storage but they will not be writ‐

ten back to the system configuration. To access an environment vari‐

able, you can use its usual name prefixed by environment::

path = getSession().get('environment:PATH');

arara This namespace provides flags that control the underlying be‐

haviour of arara. Flags are used in rules and may be manipulated by

the user. Be aware that every change in this namespace will result in

the tool acting like you know what you did. Use this power with care.

Currently, there is only one relevant flag: arara:FILENAME:halt. This

will stop the currently run command execution on the file with the

specified file name. The value of this map entry is the exit status you

want arara to have.

getSession().put('arara:myfile.tex:halt', 42);

arg This namespace acts as a bridge between contexts and the com‐

mand line by providing access to key/value pairs defined at runtime by

--call-property command line flags.

key = getSession().get('arg:key');

Please refer to Command line for more details on the --call-property

command line flag.

•

•

•

•

Others 92

The methods presented in this section provide interesting features for persistent data sharing,

error handling, early command execution, and templating. It is important to note that more

classes, objects and methods can be incorporated into arara through class loading and object

instantiation, extending the features and enhancing the overall user experience.

Others 93

The official rule pack
arara ships with a pack of default rules, placed inside a special subdirectory named rules/ in‐

side another special directory named ARARA_HOME (the place where our tool is installed). This

chapter introduces the official rules, including proper listings and descriptions of associated

parameters whenever applied. Note that such rules work off the shelf, without any special in‐

stallation, configuration or modification. An option marked by [S] before the corresponding

identifier indicates a natural boolean switch. Similarly, the occurrence of an [R] mark indicates

that the corresponding option is required.

Can my rule be distributed within the official pack?

As seen in Important concepts, the default rule path can be extended to in‐

clude a list of directories in which our tool should search for rules. However,

if you believe your rule is comprehensive enough and deserves to be in the

official pack, please contact us! We will be more than happy to discuss the in‐

clusion of your rule in forthcoming updates.

animate

This rule creates an animated gif file from the corresponding base name of the ❖ current‐

File reference (i.e, the name without the associated extension) as a string concatenated with

the pdf suffix, using the convert command line utility from the ImageMagick suite.

delay (default: 10): This option regulates the number of ticks before the display of the

next image sequence, acting as a pause between still frames.

loop (default: 0): This option regulates the number of repetitions for the animation.

When set to zero, the animation repeats itself an infinite number of times.

density (default: 300): This option specifies the horizontal and vertical canvas resolu‐

tion while rendering vector formats into a proper raster image.

program (default: convert): This option specifies the command utility path as a means

to avoid potential clashes with underlying operating system commands.

•

•

•

•

animate 94

Microsoft Windows woes

According to the ImageMagick website, the Windows installation routine adds

the program directory to the system path, such that one can call command

line tools directly from the command prompt, without providing a path name.

However, convert is also the name of Windows system tool, located in the

system directory, which converts file systems from one format to another.

The best solution to avoid possible future name conflicts, according to the

ImageMagick team, is to call such command line tools by their full path in

any script. Therefore, the convert rule provides the program option for this

specific scenario.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: animate: { delay: 15, density: 150 }

asymptote

This rule executes the asy command line program, referring to Asymptote, a powerful descrip‐

tive vector graphics language for technical drawings, inspired by Metapost but with an improved

syntax. Please note that you will have to make the .asy extension known to arara in order to

compile Asymptote files. Furthermore, it is advised to use this in your regular TeX document

specifying the files parameter to include all graphics you want to compile for inclusion in

your document.

color: This option, as the name suggests, provides the underlying color model to be

used in the current execution. Possible values are:

bw: This option value, as the name suggests, converts all colors to a black and white

model.

cmyk: This option value converts the RGB (red, green an blue) color model to the

CMYK (cyan, magenta, yellow and black) counterpart.

rgb: This option value converts the CMYK (cyan, magenta, yellow and black) color

model to the RGB (red, green an blue) counterpart.

•

•

◦

◦

◦

asymptote 95

https://imagemagick.org/Usage/windows/

gray: This option value, as the name suggests, converts all colors to a grayscale

model.

engine (default: latex): This option, as the name indicates, sets the underlying TeX en‐

gine to be used for the current compilation. Make sure to take a look at the Asymptote

manual for further details on this option. Possible values are:

latex: This value, as the name suggests, sets the underlying TeX engine to latex

for the current compilation. Note that the engine might play a major role in the

generated code.

pdflatex: This value, as the name indicates, sets the underlying TeX engine to

pdflatex for the current compilation. Note that the engine might play a major

role in the generated code.

xelatex: This value, as the name suggests, sets the underlying TeX engine to xe‐

latex for the current compilation. Note that the engine might play a major role in

the generated code.

lualatex: This value, as the name indicates, sets the underlying TeX engine to lu‐

alatex for the current compilation. Note that the engine might play a major role

in the generated code.

tex: This value, as the name suggests, sets the underlying TeX engine to tex for

the current compilation. Note that the engine might play a major role in the gener‐

ated code.

pdftex: This value, as the name indicates, sets the underlying TeX engine to pdf‐

tex for the current compilation. Note that the engine might play a major role in the

generated code.

luatex: This value, as the name suggests, sets the underlying TeX engine to lua‐

tex for the current compilation. Note that the engine might play a major role in the

generated code.

context: This value, as the name indicates, sets the underlying TeX engine to con‐

text for the current compilation. Note that the engine might play a major role in

the generated code.

none: This value, as the name suggests, sets the underlying TeX engine to none for

the current compilation. In this case, there will be no associated engine.

format: This option, as the name suggests, converts each output file to a specified for‐

mat. Make sure to take a look at the Asymptote manual for further details.

output: This option, as the name suggests, sets an alternative output directory or file

name. Make sure to take a look at the Asymptote manual for further details.

◦

•

◦

◦

◦

◦

◦

◦

◦

◦

◦

•

•

asymptote 96

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: asymptote: { files: [mydrawing.asy] }

authorindex

This rule calls the authorindex wrapper, a Perl script that processes auxiliary files generated

by the package of the same name, producing author index files, with the ain extension.

[S] draft: This option sets whether the script should write additional information to the

produced file. For each author, the labels of all references and the page numbers where

they are cited are included as comments. This detail may help if you manually edit the

generated author index.

[S] index: This option sets whether the script should create a file suitable for further

processing with makeindex or the like. For example, you could use that to make a com‐

mon author and subject index. Note the extension of the generated file still will be the

default one.

[S] keep: This option sets whether the script should retain the temporarily generated bst

file after the run finishes. This information will give you a good starting point for ad‐

vanced customization of the author index.

[S] print: This option, as the name indicates, sets whether the script should print the re‐

sult to standard output instead of writing it to the output file.

[S] recurse: This option sets whether the script should automatically process auxiliary

files produced by included files. This behaviour is enabled by default.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: authorindex: { draft: yes }

•

•

•

•

•

•

•

authorindex 97

bib2gls

This rule executes the bib2gls command line application which extracts glossary information

stored in a bib file and converts it into glossary entry definitions in resource files. This rule

passes the base name of the ❖ currentFile reference (i.e, the name without the associated

extension) as the mandatory argument.

dir: This option sets the directory used for writing auxiliary files. Note that this option

does not change the current working directory.

trans: This option sets the extension of the transcript file created by bib2gls. The value

should be just the file extension without the leading dot. The default is glg.

locale: This option specifies the preferred language resource file. Please keep in mind

that the provided value must be a valid IETF language tag. If omitted, the default is ob‐

tained by bib2gls from the JVM.

[S] group: This option sets whether bib2gls will try to determine the letter group for

each entry and add it to a new field called group when sorting. Be mindful that some

sort options ignore this setting. The default value is off.

[S] interpret: This option sets whether the interpreter mode of bib2gls is enabled. If

the interpreter is on, bib2gls will attempt to convert any LaTeX markup in the sort value

to the closest matching Unicode characters. If the interpreter is off, the log file will not

be parsed for recognised packages. The default value is on.

[S] breakspace: This option sets whether the interpreter will treat a tilde character as a

non-breaking space (as with TeX) or a normal space. The default behaviour treats it as

non-breakable.

[S] trimfields: This option sets whether bib2gls will trim leading and trailing spaces

from field values. The default behaviour does not trim spaces.

[S] recordcount: This option sets whether the record counting will be enabled. If acti‐

vated, bib2gls will add record count fields to entries. The default behaviour is off.

[S] recordcountunit: This option sets whether bib2gls will add unit record count

fields to entries. These fields can then be used with special commands. The default be‐

haviour is off.

[S] cite: This option sets whether bib2gls will treat citation instances found in the aux

file as though it was actually an ignored record. The default behaviour is off.

•

•

•

•

•

•

•

•

•

•

bib2gls 98

[S] verbose: This option sets whether bib2gls will be executed in verbose mode. When

enabled, the application will write extra information to the terminal and transcript file.

This option is unrelated to arara's verbose mode. The default behaviour is off.

[S] merge: This option sets whether the program will merge wrglossary counter

records. If disabled, one may end up with duplicate page numbers in the list of entry lo‐

cations, but linking to different parts of the page. The default is on.

[S] uniscript: This option sets whether text superscript and subscript will use the cor‐

responding Unicode characters if available. The default is on.

packages: This option instructs the interpreter to assume the packages from the provid‐

ed list have been used by the document.

ignore: This option instructs bib2gls to skip the check for any package from the pro‐

vided list when parsing the corresponding log file.

custom: This option instructs the interpreter to parse the package files from the provided

list. The package files need to be quite simple.

mapformats: This option takes a list and sets up the rule of precedence for partial loca‐

tion matches. Each element from the provided list must be another list of exactly two en‐

tries representing a conflict resolution.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: bib2gls: { group: true }

% arara: --> if found('aux', 'glsxtr@resource')

biber

This rule runs biber, the backend bibliography processor for biblatex, on the corresponding

base name of the ❖ currentFile reference (i.e, the name without the associated extension)

as a string.

[S] tool: This option sets whether the bibliography processor should be executed in tool

mode, intended for transformations and modifications of datasources. Since this mode is

oriented towards a datasource rather than a document, make sure to use it alongside the

options option.

•

•

•

•

•

•

•

•

•

biber 99

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: biber: { options: ['--wraplines'] }

bibtex

This rule runs the bibtex program, a reference management software, on the corresponding

base name of the ❖ currentFile reference (i.e, the name without the associated extension)

as a string.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: bibtex: { options: ['-terse'] }

% arara: --> if exists(toFile('references.bib'))

bibtex8

This rule runs bibtex8, an enhanced, portable C version of bibtex, on the corresponding base

name of the ❖ currentFile reference (i.e, the name without the associated extension) as a

string. It is important to note that this tool can read a character set file containing encoding de‐

tails.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: bibtex8: { options: ['--trace', '--huge'] }

•

•

•

bibtex 100

bibtexu

This rule runs the bibtexu program, an enhanced version of bibtex with Unicode support

and language features, on the corresponding base name of the ❖ currentFile reference (i.e,

the name without the associated extension) as a string.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: bibtexu: { options: ['--language', 'fr'] }

clean

This rule removes the provided file reference through the underlying system command, which

can be rm in a Unix environment or del in Microsoft Windows. As a security lock, this rule will

always throw an error if ❖ currentFile is equal to ❖ getOriginalFile, so the main file

reference cannot be removed. It is highly recommended to use the special files parameter to

indicate removal candidates. Alternatively, a list of file extensions can be provided as well. Be

mindful that the security lock also applies to file removals based on extensions.

extensions: This option, as the name indicates, takes a list of extensions and constructs

a new list of removals commands according to the base name of the ❖ currentFile

reference (i.e, the name without the associated extension) as a string concatenated with

each extension from the original list as suffixes. Keep in mind that, if the special files

parameter is used with this option, the resulting list will contain the cartesian product of

file base names and extensions. An error is thrown if any data structure other than a

proper list is provided as the value.

Better safe than sorry!

When in doubt, always remember that the --dry-run command line option

is your friend! As seen in Command line, this option makes arara go through

all the motions of running tasks and subtasks, but with no actual calls. It is a

very useful feature for testing the sequence of removal commands without

actually losing your files! Also, as good practice, always write plain, simple,

understandable clean directives and use as many as needed in your TeX

documents.

•

•

bibtexu 101

% arara: clean: { extensions: [aux, log] }

context

This rule runs the context TeX engine on the provided ❖ currentFile reference, generating

a corresponding file in the Portable Document Format. Please refer to the user manual for fur‐

ther details.

[S] make: This option, as the name indicates, sets whether the engine should create con‐

text formats. Please refer to the user manual for further details on this option.

ctx: This option, as the name indicates, sets the ctx file for process management speci‐

fication. Please refer to the user manual for further details on this option.

interface: This option, as the name indicates, sets the specified user interface. Please

refer to the user manual for further details on this option.

[S] autopdf: This option, as the name indicates, closes the corresponding pdf file in

viewer and then reopens it afterwards.

purge: This option, as the name indicates, purges files according to the provided rule.

Possible values are:

partial: This value, as the name suggests, purges files either or not after a proper

run, defined through a pattern. Please refer to the user manual for further details.

all: This value, as the name suggests, purges all files either or not after a proper

run, defined through a pattern. Please refer to the user manual for further details.

result: This value, as the name suggests, purges the resulting file before the actu‐

al run. Please refer to the user manual for further details.

modules: This option, as the name indicates, sets a list of modules and styles to be load‐

ed, normally part of the distribution.

environments: This option, as the name indicates, sets a list of environment files (docu‐

ment styles) to load first.

mode: This option, as the name indicates, enables modes according to the provided list

(conditional processing in styles).

path: This option, as the name indicates, consults the given paths in the provided list

during a file lookup.

•

•

•

•

•

◦

◦

◦

•

•

•

•

context 102

arguments: This option, as the name indicates, sets variables that can be consulted dur‐

ing a run. Such variables are defined as key/value pairs.

trackers: This option, as the name indicates, sets the list of tracker variables. Please re‐

fer to the user manual for further details.

directives: This option, as the name indicates, sets the list of directive variables.

Please refer to the user manual for further details.

silent: This option, as the name indicates, disables the log categories based on the pro‐

vided list. Please refer to the user manual for further details.

errors: This option, as the name indicates, shows errors at the end of a run and quits

when it the provided list. Please refer to the user manual for further details.

[S] synctex: This option sets whether synctex, an input and output synchronization

feature that allows navigation from source to typeset material and vice versa, available in

most TeX engines, is activated.

interaction: This option alters the underlying engine behaviour. If this option is omit‐

ted, the engine will prompt the user for interaction in the event of an error. Possible val‐

ues are, in order of increasing user interaction (courtesy of our master Enrico Gregorio):

batchmode: In this mode, nothing is printed on the terminal, and errors are

scrolled as if the return key is hit at every error. Missing files that TeX tries to in‐

put or request from keyboard input cause the job to abort.

nonstopmode: In this mode, the diagnostic message will appear on the terminal,

but there is no possibility of user interaction just like in batch mode, previously de‐

scribed.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: context

•

•

•

•

•

•

•

◦

◦

•

context 103

convert

This rule runs the convert program, a member of the ImageMagick suite of tools. This program

is used to convert between image formats as well as resize an image, blur, crop, despeckle,

dither, draw on, flip, join, resample, and more.

program (default: convert): This option specifies the command utility path as a means

to avoid potential clashes with underlying operating system commands.

[R] options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual script call. An error is thrown if any data structure other than

a proper list is provided as the value.

% arara: convert: { options: ['photo1.jpg', '-resize',

% arara: --> '50%', 'photo2.jpg'] }

copy

This rule copies the File reference to the provided target using the underlying operating sys‐

tem copy operation. The target is always overwritten. However, be mindful that an error will be

thrown if you try to overwrite the file referenced in ❖ getOriginalReference.

[R] target: This option, as the name implies, specifies the target for the copy operation.

Keep in mind that this option is required.

% arara: copy: { target: 'backup/thesis.tex' }

•

•

•

convert 104

csplain

This rule runs the csplain TeX engine, a conservative extension of Knuth's plain TeX with direct

processing characters and hyphenation patterns for Czech and Slovak, on the provided ❖ cur‐

rentFile reference.

interaction: This option alters the underlying engine behaviour. When such option is

omitted, TeX will prompt the user for interaction in the event of an error. Possible values

are, in order of increasing user interaction (courtesy of our master Enrico Gregorio):

batchmode: In this mode, nothing is printed on the terminal, and errors are

scrolled as if the return key is hit at every error. Missing files that TeX tries to in‐

put or request from keyboard input cause the job to abort.

nonstopmode: In this mode, the diagnostic message will appear on the terminal,

but there is no possibility of user interaction just like in batch mode, previously de‐

scribed.

scrollmode: In this mode, as the name indicates, TeX will stop only for missing

files to input or if proper keyboard input is necessary. TeX fixes errors itself.

errorstopmode: In this mode, TeX will stop at each error, asking for proper user

intervention. This is the most user interactive mode available.

[S] shell: This option sets whether the possibility of running underlying system com‐

mands from within TeX is activated.

[S] synctex: This option sets whether synctex, an input and output synchronization

feature that allows navigation from source to typeset material and vice versa, available in

most TeX engines, is activated.

[S] draft: This option sets whether the draft mode, i.e, a mode that produces no output,

so the engine can check the syntax, is activated.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: csplain: { interaction: batchmode, shell: yes }

•

◦

◦

◦

◦

•

•

•

•

csplain 105

datatooltk

This rule runs datatooltk, an application that creates datatool databases in raw format

from several structured data formats, in batch mode. This rule requires output and one of the

import options.

[R] output: This option provides the database name to be saved as output. To guard

against accidentally overwriting a document file, datatooltk now forbids the tex ex‐

tension for output files. This option is required.

csv: This option, as the name indicates, imports data from the csv file reference provid‐

ed as a plain string value.

sep: This option specifies the character used to separate values in the csv file. Defaults

to a comma.

delim: This option specifies the character used to delimit values in the csv file. Defaults

to a double quote.

name: This option, as the name indicates, sets the label reference of the newly created

database according to the provided value.

sql: This option imports data from an SQL database where the provided value refers to a

proper select SQL statement.

sqldb: This option, as the name indicates, sets the name of the SQL database according

to the provided value.

sqluser: This option, as the name indicates, sets the name of the SQL user according to

the provided value.

noconsole (default: gui): This action dictates the password request action if such infor‐

mation was not provided earlier. If there is no console available, the action is determined

by the following values:

error: As the name indicates, this action issues an error when no password was

previously provided through the proper option.

stdin: This action requests the password via the standard input stream, which is

less secure than using a console.

gui: This action displays a dialog box in which the user can enter the password for

the SQL database.

probsoln: This option, as the name indicates, imports data in the probsoln format

from the file name provided as the value.

•

•

•

•

•

•

•

•

•

◦

◦

◦

•

datatooltk 106

input: This option, as the name indicates, imports data in the datatool format from

the file name provided as the value.

sort: This option, as the name indicates, sorts the database according to the column

whose label is provided as the value. The value may be preceded by + or - to indicate as‐

cending or descending order, respectively. If the sign is omitted, ascending is assumed.

sortlocale: This option, as the name indicates, sorts the database according to alpha‐

betical order rules of the locale provided as the value. If the value is set to none strings

are sorted according to non-locale letter order.

[S] sortcase: This option sets whether strings will be sorted using case-sensitive com‐

parison for non-locale letter ordering. The default behaviour is case-insensitive.

seed: This option, as the name indicates, sets the random generator seed to the provided

value. The seed is cleared if an empty value is provided.

[S] shuffle: This option sets whether the database will be properly shuffled. Shuffle is

always performed after sort, regardless of the option order.

[S] csvheader: This option sets whether the csv file has a header row. The spreadsheet

import functions also use this setting.

[S] debug: This option, as the name indicates, sets whether the debug mode of data‐

tooltk is activated. The debug mode is disabled by default.

[S] owneronly: This option sets whether read and write permissions when saving dbtex

files should be defined for the owner only. This option has no effect on some operating

systems.

[S] maptex: This option sets whether TeX special characters will be properly mapped

when importing data from csv files or SQL databases.

xls: This option, as the name indicates, imports data from a Microsoft Excel xls file ref‐

erence provided as a plain string value.

ods: This option, as the name indicates, imports data from an Open Document Spread‐

sheet ods file reference provided as a plain string value.

sheet: This option specifies the sheet to select from the Excel workbook or Open Docu‐

ment Spreadsheet. This may either be an index or the name of the sheet.

filterop: This option specifies the logical operator to be associated with a given filter.

Filtering is always performed after sorting and shuffling. Possible values are:

or: This value, as the name indicates, uses the logical or operator when filtering.

This is the default behaviour. Note that this value has no effect if only one filter is

supplied.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

◦

datatooltk 107

and: This value, as the name indicates, uses the logical and operator when filtering.

Note that this value has no effect if only one filter is supplied.

filters: This option takes a list and sets up a sequence of filters. Each element from

the provided list must be another list of exactly three entries representing a key, an oper‐

ator and a value, respectively.

truncate: This option truncates the database to the number of rows provided as the

value. Truncation is always performed after any sorting, shuffling and filtering, but before

column removal.

% arara: datatooltk: {

% arara: --> output: books.dbtex,

% arara: --> csv: booklist.csv }

detex

This rule runs detex, a command line application that, as the name indicates, reads the provid‐

ed ❖ currentFile reference, removes all comments and TeX control sequences and writes

the remainder to the standard output or file.

[S] references: This option defines whether the tool should echo values from page

counters, references and citations.

[S] follow: This option defines whether the tool should follow files referenced through

typical input mechanisms.

[S] math: This option defines whether the tool should replace math with nouns and verbs

in order to preserve grammar.

[S] spaces: This option, as the name indicates, define whether the tool should replace

control sequences with spaces.

[S] words: This option, as the name indicates, define whether the tool should output only

a list of words.

environments: This option takes a list of environments to be ignored by the tool during

the text transformation.

mode: This option, as the name indicates, defines the operation mode for the tool. Possi‐

ble values are:

latex: This value, as the name suggests, enables and forces the LaTeX mode for

the tool.

◦

•

•

•

•

•

•

•

•

•

◦

detex 108

tex: This value, as the name suggests, enables and forces the plain TeX mode for

the tool.

output: This value, as the name indicates, sets the output file in which the contents will

be redirected.

% arara: detex: { output: thesis.txt }

dvipdfm

This rule runs dvipdfm, a command line utility for file format translation, on the corresponding

base name of the ❖ currentFile reference (i.e, the name without the associated extension)

as a string concatenated with the dvi suffix, generating a Portable Document Format pdf file.

output: This option, as the name indicates, sets the output name for the generated pdf

file. There is no need to provide an extension, as the value is always normalized with

❖ getBasename such that only the name without the associated extension is used. The

base name of the current file reference is used as the default value.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: dvipdfm: { output: thesis }

dvipdfmx

This rule runs dvipdfmx, an extended version of dvipdfm created to support multibyte charac‐

ter encodings and large character sets for East Asian languages, on the corresponding base

name of the ❖ currentFile reference (i.e, the name without the associated extension) as a

string concatenated with the dvi suffix, generating a Portable Document Format pdf file.

output: This option, as the name indicates, sets the output name for the generated pdf

file. There is no need to provide an extension, as the value is always normalized with

❖ getBasename such that only the name without the associated extension is used. The

base name of the current file reference is used as the default value.

◦

•

•

•

•

dvipdfm 109

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: dvipdfmx: { options: ['-K', '40'] }

dvips

This rule runs dvips on the corresponding base name of the ❖ currentFile reference (i.e,

the name without the associated extension) as a string concatenated with the dvi suffix, gener‐

ating a PostScript ps file.

output: This option, as the name indicates, sets the output name for the generated ps

file. There is no need to provide an extension, as the value is always normalized with

❖ getBasename such that only the name without the associated extension is used. The

base name of the current file reference is used as the default value.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: dvips: { output: thesis }

dvipspdf

This rule runs dvips in order to obtain a corresponding ps file from the initial dvi reference,

and then runs ps2pdf on the previously generated ps file in order to obtain a pdf file. Note

that all base names are acquired from the ❖ currentFile reference (i.e, the name without

the associated extension) and used to construct the resulting files.

output: This option, as the name indicates, sets the output name for the generated pdf

file. There is no need to provide an extension, as the value is always normalized with

❖ getBasename such that only the name without the associated extension is used. The

base name of the current file reference is used as the default value.

options1: This option, as the name indicates, takes a list of raw command line options

and appends it to the dvips program call. An error is thrown if any data structure other

than a proper list is provided as the value.

•

•

•

•

•

dvips 110

options2: This option, as the name indicates, takes a list of raw command line options

and appends it to the ps2pdf program call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: dvipspdf: { output: article }

dvisvgm

This rule runs dvisvgm in order to obtain a corresponding svg file, a vector graphics format

based on XML, from the initial reference. It is important to observe that the base name is ac‐

quired from the ❖ currentFile reference (i.e, the name without the associated extension)

and used to construct the resulting file.

entry: This option sets the extension to be used for the initial reference (i.e, the current

file name) as input to the command line tool. The following values are available for this

option:

dvi: This value sets the extension to be used for the initial reference as a device

independent format. This is the default value when no value is provided.

xdv: This value sets the extension to be used for the initial reference as an extend‐

ed device independent format.

eps: This value sets the extension to be used for the initial reference as an encap‐

sulated PostScript graphics format.

pdf: This value sets the extension to be used for the initial reference as a Portable

Document Format.

pages: This value, as the name implies, takes a list of integers indicating the pages to be

processed by the command line tool.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: dvisvgm

•

•

◦

◦

◦

◦

•

•

dvisvgm 111

etex

This rule runs the etex extended (plain) TeX engine on the provided ❖ currentFile refer‐

ence, generating a corresponding file in a device independent format.

interaction: This option alters the underlying engine behaviour. If this option is omit‐

ted, TeX will prompt the user for interaction in the event of an error. Possible values are,

in order of increasing user interaction (courtesy of our master Enrico Gregorio):

batchmode: In this mode, nothing is printed on the terminal, and errors are

scrolled as if the return key is hit at every error. Missing files that TeX tries to in‐

put or request from keyboard input cause the job to abort.

nonstopmode: In this mode, the diagnostic message will appear on the terminal,

but there is no possibility of user interaction just like in batch mode, previously de‐

scribed.

scrollmode: In this mode, as the name indicates, TeX will stop only for missing

files to input or if proper keyboard input is necessary. TeX fixes errors itself.

errorstopmode: In this mode, TeX will stop at each error, asking for proper user

intervention. This is the most user interactive mode available.

[S] shell: This option sets whether the possibility of running underlying system com‐

mands from within TeX is activated.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: etex: {

% arara: --> shell: yes,

% arara: --> interaction: batchmode

% arara: --> }

fig2dev

This rule runs fig2dev, a command line application that translates fig code in the corre‐

sponding base name of the ❖ currentFile reference (i.e, the name without the associated

•

◦

◦

◦

◦

•

•

etex 112

extension) as a string concatenated with the fig suffix into the specified graphics language and

puts them in the specified output file.

[R] language: This option, as the name indicates, sets the output graphics language for

proper transformation. Possible values are listed as follows (you can infer their types as

well, based on the values): box, cgm, epic, eepic, eepicemu, emf, eps, gif, ibmgl,

jpeg, latex, map, mf, mp, mmp, pcx, pdf, pdftex, pdftex_t, pic, pictex, png, ppm, ps,

pstex, pstex_t, ptk, shape, sld, svg, textyl, tiff, tk, tpic, xbm, and xpm.

[R] output: This option, as the name indicates, sets the output file which will contain the

translated code based on the provided file and language.

magnification: This option, as the name suggests, sets the magnification level at which

the figure is rendered.

font: This option sets the default font used for text objects to the provided value. Keep

in mind that the format of this option depends on the graphics language in use.

size: This option, as the name suggests, set the default font size (in points) for text ob‐

jects to the provided value.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: fig2dev: { language: mp, output: drawing.mp }

frontespizio

This rule automates the steps required by the frontespizio package in order to help Italian

users generate the frontispiece to their thesis. First and foremost, the frontispiece is generated.

If latex is used as the underlying engine, there is an additional intermediate conversion step

to a proper eps file. Finally, the final document is compiled.

engine (default: pdflatex): This option, as the name indicates, sets the underlying TeX

engine to be used for both compilations (the frontispiece and the document itself). Pos‐

sible values are:

latex: This value, as the name indicates, sets the underlying TeX engine to latex

for both compilations (frontispiece and document).

pdflatex: This value, as the name indicates, sets the underlying TeX engine to

pdflatex for both compilations (frontispiece and document).

•

•

•

•

•

•

•

◦

◦

frontespizio 113

xelatex: This value, as the name indicates, sets the underlying TeX engine to xe‐

latex for both compilations (frontispiece and document).

lualatex: This value, as the name indicates, sets the underlying TeX engine to lu‐

alatex for both compilations (frontispiece and document).

[S] shell: This option sets whether the possibility of running underlying system com‐

mands from within the selected TeX engine is activated.

interaction: This option alters the underlying engine behaviour. If this option is omit‐

ted, TeX will prompt the user for interaction in the event of an error. Possible values are,

in order of increasing user interaction (courtesy of our master Enrico Gregorio):

batchmode: In this mode, nothing is printed on the terminal, and errors are

scrolled as if the return key is hit at every error. Missing files that TeX tries to in‐

put or request from keyboard input cause the job to abort.

nonstopmode: In this mode, the diagnostic message will appear on the terminal,

but there is no possibility of user interaction just like in batch mode, previously de‐

scribed.

scrollmode: In this mode, as the name indicates, TeX will stop only for missing

files to input or if proper keyboard input is necessary. TeX fixes errors itself.

errorstopmode: In this mode, TeX will stop at each error, asking for proper user

intervention. This is the most user interactive mode available.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual TeX engine call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: frontespizio: { engine: xelatex,

% arara: --> shell: yes, interaction: nonstopmode }

ghostscript

This rule runs ghostscript, an interpreter for PostScript and Portable Document Format files,

according to the provided parameters.

program (default: gs): This option specifies the command utility path as a means to

avoid potential clashes with underlying operating system commands or specific Windows

naming schemes.

◦

◦

•

•

◦

◦

◦

◦

•

•

ghostscript 114

[R] options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual ghostscript call. An error is thrown if any data structure

other than a proper list is provided as the value. This option is required.

device: This option specifies which output device the tool should use. If this option is

not given, the default device (usually a display device) is used.

output: This option, as the name indicates, specifies a file in which the tool should send

the output. Please refer to the documentation for more details.

% arara: ghostscript: { options: ['-dCompatibilityLevel=1.4',

% arara: --> '-dPDFSETTINGS=/printer', '-dNOPAUSE', '-dQUIET',

% arara: --> '-dBATCH', 'input.pdf'],

% arara: --> output: output.pdf,

% arara: --> device: pdfwrite }

gnuplot

This rule runs gnuplot, a command-driven plotting program that can generate plots of func‐

tions, data and data fits. The program also provides scripting capabilities, looping, functions,

text processing, variables, macros, arbitrary pre-processing of input data (usually across col‐

umns), as well as the ability to perform non-linear multi-dimensional multi-set weighted data

fitting.

[S] persist: This option, as the name implies, sets whether the program should let plot

windows survive after the main execution exits.

[S] default: this option, as the name suggests, sets whether the program should read

the default settings from either gnuplotrc or ~/.gnuplot on entry.

commands: This option, as the name implies, executes the requested commands before

loading the next input file. Please refer to the user manual for further details.

[R] input: This required option, as the name indicates, sets the list of input file names to

be processed by the program. An error is thrown if any data structure other than a proper

list is provided as the value.

% arara: gnuplot: { input: [myplot.gnuplot], default: yes }

•

•

•

•

•

•

•

gnuplot 115

halt

This rule, as the name suggests, sets a halt flag, which stops the current interpretation work‐

flow, such that subsequent directives are ignored. This rule contains no associated options.

Please refer to Methods for more information on flags.

% arara: halt

indent

This rule runs latexindent, a Perl script that indents TeX files according to an indentation

scheme, on the provided ❖ currentFile reference. Environments, including those with align‐

ment delimiters, and commands, including those that can split braces and brackets across

lines, are usually handled correctly by the script.

[S] silent: This option, as the name indicates, sets whether the script will operate in

silent mode, in which no output is given to the terminal.

[S] overwrite: This option, as the name indicates, sets whether the ❖ currentFile

reference will be overwritten. If activated, a copy will be made before the actual indenta‐

tion process.

trace: This option, as the name indicates, enables the script tracing mode, such that a

verbose output will be given to the indent.log log file. Possible values are:

default: This value, as the name indicates, refers to the default tracing level. Note

that, especially for large files, this value does affect performance of the script.

complete: This value, as the name indicates, refers to the detailed, complete trac‐

ing level. Note that, especially for large files, performance of the script will be sig‐

nificantly affected when this value is used.

[S] screenlog: This option, as the name indicates, sets whether latexindent will out‐

put the log file to the screen, as well as to the specified log file.

[S] modifylinebreaks: This option, as the name indicates, sets whether the script will

modify line breaks, according to specifications written in a configuration file.

cruft: This option sets the provided value as a cruft location in which the script will

write backup and log files. The default behaviour sets the working directory as cruft loca‐

tion.

•

•

•

◦

◦

•

•

•

halt 116

logfile: This option, as the name indicates, sets the name of the log file generated by

latexindent according to the provided value.

output: This option, as the name indicates, sets the name of the output file. Please note

that this option has higher priority over some switches, so options like overwrite will

be ignored by the underlying script.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual script call. An error is thrown if any data structure other than

a proper list is provided as the value.

settings: This option, as the name indicates, dictates the indentation settings to be ap‐

plied in the current script execution. Two possible values are available:

local: This value, as the name implies, acts a switch to indicate a local configura‐

tion. In this scenario, the script will look for a proper settings file in the same direc‐

tory as the ❖ currentFile reference and add the corresponding content to the

indentation scheme. Optionally, a file location can be specified as well. Please refer

to the where option for more details on such feature.

onlydefault: This value, as the name indicates, ignores any local configuration,

so the script will resort to the default indentation behaviour.

where: This option, as the name indicates, sets the file location containing the indenta‐

tion settings according to the provided value. This option can only be used if, and only if,

local is set as the value for the settings option, otherwise the rule will throw an error.

replacement: This option, as the name indicates, implements the replacement mode

switches. Three possible values are available:

full: This value, as the name indicates, performs indentation and replacements,

not respecting verbatim code blocks.

noverb: This value, as the name indicates, performs indentation and replacements,

and will respect verbatim code blocks.

noindent: This value, as the name implies, will not perform indentation, and will

perform replacements not respecting verbatim code blocks.

check: This option, as the name indicates, checks whether the text after indentation

matches that given in the original file. Two possible values are available:

standard: This value, as the name indicates, refers to the standard behaviour.

Please refer to the documentation for further details.

verbose: This value, as the name indicates, refers to including more details to the

check. The tool will print the result in the standard output, as well as in its own log

file. Please refer to the documentation for further details.

•

•

•

•

◦

◦

•

•

◦

◦

◦

•

◦

◦

indent 117

lines: This option instructs the tool to operate only on specific line ranges within the file

being inspected. Please refer to the documentation for further details.

% arara: indent: { overwrite: yes }

knitr

This rule calls the knitr package, a transparent engine for dynamic report generation with R. It

takes an .Rnw file as input, extracts the R code in it according to a list of patterns, evaluates

the code and writes the output in another file. It can also tangle R source code from the input

document.

output (default: NULL): This option sets the output file. when absent, knitr will try to

guess a default, which will be under the current working directory.

[S] tangle: This option sets whether to tangle the R code from the input file. Note that,

when used, this option requires output to be specified as well, otherwise an error is

thrown.

[S] quiet: This option, as the name indicates, sets whether the tool should suppress

both progress bar and messages.

envir (default: parent.frame()): This option sets the environment in which code

chunks are to be evaluated. Please refer to the documentation for further details.

encoding (default: getOption("encoding")): This option, as the name indicates, sets

the encoding of the input file. Please refer to the documentation for further details.

% arara: knitr: { quiet: yes }

latex

This rule runs the latex TeX engine on the provided ❖ currentFile reference, generating a

corresponding file in a device independent format.

branch (default: stable): This option allows branching formats for the current engine,

mainly focused on package development. Users of current TeX distributions might benefit

•

•

•

•

•

•

•

knitr 118

from format branching in order to easily test documents and code against the upcoming

releases. Possible values are:

stable: This value, as the name implies, enables the stable engine format branch.

Note that this is the default format.

developer: For experienced users, this value enables the experimental, developer

engine format branch.

interaction: This option alters the underlying engine behaviour. If this option is omit‐

ted, TeX will prompt the user for interaction in the event of an error. Possible values are,

in order of increasing user interaction (courtesy of our master Enrico Gregorio):

batchmode: In this mode, nothing is printed on the terminal, and errors are

scrolled as if the return key is hit at every error. Missing files that TeX tries to in‐

put or request from keyboard input cause the job to abort.

nonstopmode: In this mode, the diagnostic message will appear on the terminal,

but there is no possibility of user interaction just like in batch mode, previously de‐

scribed.

scrollmode: In this mode, as the name indicates, TeX will stop only for missing

files to input or if proper keyboard input is necessary. TeX fixes errors itself.

errorstopmode: In this mode, TeX will stop at each error, asking for proper user

intervention. This is the most user interactive mode available.

[S] shell: This option sets whether the possibility of running underlying system com‐

mands from within TeX is activated.

[S] synctex: This option sets whether synctex, an input and output synchronization

feature that allows navigation from source to typeset material and vice versa, available in

most TeX engines, is activated.

[S] draft: This option sets whether the draft mode, i.e, a mode that produces no output,

so the engine can check the syntax, is activated.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: latex: { interaction: scrollmode, draft: yes }

◦

◦

•

◦

◦

◦

◦

•

•

•

•

latex 119

latexmk

This rule runs latexmk, a fantastic command line tool for fully automated TeX document gen‐

eration, on the provided ❖ currentFile reference.

clean: This option, as the name indicates, removes all temporary files generated after a

sequence of intermediate calls for document generation. Two possible values are avail‐

able:

all: This value, as the name indicates, removes all temporary, intermediate files, as

well as resulting, final formats such as PostScript and Portable Document Format.

Only relevant source files are kept.

partial: This value, as the name indicates, removes all temporary, intermediate

files and keeps the resulting, final formats such as PostScript and Portable Docu‐

ment Format.

engine: This option, as the name indicates, sets the underlying TeX engine of latexmk

to be used for the compilation sequence. Possible values are:

latex: This value, as the name indicates, sets the underlying TeX engine of the

script to latex for the compilation sequence.

latex-dev: This value, as the name indicates, sets the underlying TeX engine of

the script to latex-dev (the development branch) for the compilation sequence.

pdflatex: This value, as the name indicates, sets the underlying TeX engine of the

script to pdflatex for the compilation sequence.

pdflatex-dev: This value, as the name indicates, sets the underlying TeX engine

of the script to pdflatex-dev (the development branch) for the compilation se‐

quence.

xelatex: This value, as the name indicates, sets the underlying TeX engine of the

script to xelatex for the compilation sequence.

xelatex-dev: This value, as the name indicates, sets the underlying TeX engine of

the script to xelatex-dev (the development branch) for the compilation se‐

quence.

lualatex: This value, as the name indicates, sets the underlying TeX engine of the

script to lualatex for the compilation sequence.

lualatex-dev: This value, as the name indicates, sets the underlying TeX engine

of the script to lualatex-dev (the development branch) for the compilation se‐

quence.

•

◦

◦

•

◦

◦

◦

◦

◦

◦

◦

◦

latexmk 120

program: This option, as the name suggests, sets the TeX engine according to the provid‐

ed value. It is important to note that this option has higher priority over engine values,

so the latter will be discarded.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual script call. An error is thrown if any data structure other than

a proper list is provided as the value.

% arara: latexmk: { engine: pdflatex }

llmk

This rule runs llmk, a command line tool specific for building LaTeX documents. The tool's aim

is to provide a simple way to specify a workflow of processing documents and encourage peo‐

ple to always explicitly show the right workflow for each document.

clean: This option, as the name indicates, removes all temporary files generated after a

sequence of intermediate calls for document generation. Two possible values are avail‐

able:

all: This value, as the name indicates, removes all temporary, intermediate files, as

well as resulting, final formats such as PostScript and Portable Document Format.

Only relevant source files are kept.

partial: This value, as the name indicates, removes all temporary, intermediate

files and keeps the resulting, final formats such as PostScript and Portable Docu‐

ment Format.

debug: This option activates the specified debug category, so debugging messages relat‐

ed to the activated category will be shown. Please refer to the documentation for more

details.

[S] dry: This option sets whether the tool should display a list of commands to be exe‐

cuted without actually invoking them.

mode: This option sets the verbosity level of messages to be displayed during a run. Three

possible values are available:

quiet: This value, as the name indicates, suppresses most of the messages from

the program during execution.

•

•

•

◦

◦

•

•

•

◦

llmk 121

silent: This value, as the name indicates, silences messages from invoked pro‐

grams by redirecting both standard output and standard error streams to the null

device.

verbose: This value, as the name indicates, displays additional information such

as invoked commands with options and arguments by the program.

% arara: llmk: { mode: verbose }

ltx2any

This rule runs ltx2any, a command line tool written in Ruby that acts as a LaTeX build wrap‐

per, on the provided ❖ currentFile reference.

[S] clean: This option, as the name indicates, sets whether all intermediate results gen‐

erated during the compilation to be deleted.

engine: This option, as the name indicates, sets the engine to be using during the cur‐

rent execution.

parameters: This option, as the name indicates, takes a list of parameters to be passed

to the engine. An error is thrown if any data structure other than a proper list is provided

as the value.

tikzimages: This option takes a list of externalised TikZ images to rebuild. An error is

thrown if any data structure other than a proper list is provided as the value.

jobname: This option, as the name indicates, sets the job name to be used in the result‐

ing file.

logname: This option, as the name indicates, sets the log file name to be used during the

current execution.

logformat: This option, as the name indicates, sets the log format to be used during the

current execution. Three possible values are available:

raw: This value, as the name indicates, sets the log format to be raw, i.e, as generat‐

ed by the underlying engines.

markdown: This value, as the name indicates, sets the log format to be displayed in

Markdown.

pdf: This value, as the name indicates, sets the log format to be displayed in the

Portable Document Format.

◦

◦

•

•

•

•

•

•

•

◦

◦

◦

ltx2any 122

loglevel: This option, as the name indicates, sets the log level to be used during the

current execution. Three possible values are available:

error: This value, as the name indicates, sets the base log level to report errors

only. No other information is appended.

warning: This value, as the name indicates, sets the base log level to report warn‐

ings and errors. No other information is appended.

info: This value, as the name indicates, set the base log level to report all informa‐

tion available, regardless of message categories.

frequency: This option, as the name indicates, sets how often the engine runs. Values

smaller than one will cause it to run until the resulting file no longer changes.

directory: This option, as the name indicates, sets the directory to hold intermediate

files during the compilation.

[S] synctex: This option sets whether synctex, an input and output synchronization

feature that allows navigation from source to typeset material and vice versa, available in

most TeX engines, is activated.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: ltx2any: { synctex: yes }

luahbtex

This rule runs the luahbtex TeX engine on the provided ❖ currentFile reference, generat‐

ing a corresponding file in the Portable Document Format, as expected.

interaction: This option alters the underlying engine behaviour. If this option is omit‐

ted, TeX will prompt the user for interaction in the event of an error. Possible values are,

in order of increasing user interaction (courtesy of our master Enrico Gregorio):

batchmode: In this mode, nothing is printed on the terminal, and errors are

scrolled as if the return key is hit at every error. Missing files that TeX tries to in‐

put or request from keyboard input cause the job to abort.

nonstopmode: In this mode, the diagnostic message will appear on the terminal,

but there is no possibility of user interaction just like in batch mode, previously de‐

scribed.

•

◦

◦

◦

•

•

•

•

•

◦

◦

luahbtex 123

scrollmode: In this mode, as the name indicates, TeX will stop only for missing

files to input or if proper keyboard input is necessary. TeX fixes errors itself.

errorstopmode: In this mode, TeX will stop at each error, asking for proper user

intervention. This is the most user interactive mode available.

[S] shell: This option sets whether the possibility of running underlying system com‐

mands from within TeX is activated.

[S] synctex: This option sets whether synctex, an input and output synchronization

feature that allows navigation from source to typeset material and vice versa, available in

most TeX engines, is activated.

[S] draft: This option sets whether the draft mode, i.e, a mode that produces no output,

so the engine can check the syntax, is activated.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: luahbtex: { interaction: batchmode,

% arara: --> shell: yes, draft: yes }

lualatex

This rule runs the new lualatex TeX engine on the provided ❖ currentFile reference, gen‐

erating a corresponding file in the Portable Document Format, as expected.

branch (default: stable): This option allows branching formats for the current engine,

mainly focused on package development. Users of current TeX distributions might benefit

from format branching in order to easily test documents and code against the upcoming

releases. Possible values are:

stable: This value, as the name implies, enables the stable engine format branch.

Note that this is the default format.

developer: For experienced users, this value enables the experimental, developer

engine format branch.

◦

◦

•

•

•

•

•

◦

◦

lualatex 124

interaction: This option alters the underlying engine behaviour. If this option is omit‐

ted, TeX will prompt the user for interaction in the event of an error. Possible values are,

in order of increasing user interaction (courtesy of our master Enrico Gregorio):

batchmode: In this mode, nothing is printed on the terminal, and errors are

scrolled as if the return key is hit at every error. Missing files that TeX tries to in‐

put or request from keyboard input cause the job to abort.

nonstopmode: In this mode, the diagnostic message will appear on the terminal,

but there is no possibility of user interaction just like in batch mode, previously de‐

scribed.

scrollmode: In this mode, as the name indicates, TeX will stop only for missing

files to input or if proper keyboard input is necessary. TeX fixes errors itself.

errorstopmode: In this mode, TeX will stop at each error, asking for proper user

intervention. This is the most user interactive mode available.

[S] shell: This option sets whether the possibility of running underlying system com‐

mands from within TeX is activated.

[S] synctex: This option sets whether synctex, an input and output synchronization

feature that allows navigation from source to typeset material and vice versa, available in

most TeX engines, is activated.

[S] draft: This option sets whether the draft mode, i.e, a mode that produces no output,

so the engine can check the syntax, is activated.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: lualatex: { interaction: errorstopmode,

% arara: --> synctex: yes }

•

◦

◦

◦

◦

•

•

•

•

lualatex 125

luatex

This rule runs the luatex TeX engine on the provided ❖ currentFile reference, generating a

corresponding file in the Portable Document Format, as expected.

interaction: This option alters the underlying engine behaviour. If this option is omit‐

ted, TeX will prompt the user for interaction in the event of an error. Possible values are,

in order of increasing user interaction (courtesy of our master Enrico Gregorio):

batchmode: In this mode, nothing is printed on the terminal, and errors are

scrolled as if the return key is hit at every error. Missing files that TeX tries to in‐

put or request from keyboard input cause the job to abort.

nonstopmode: In this mode, the diagnostic message will appear on the terminal,

but there is no possibility of user interaction just like in batch mode, previously de‐

scribed.

scrollmode: In this mode, as the name indicates, TeX will stop only for missing

files to input or if proper keyboard input is necessary. TeX fixes errors itself.

errorstopmode: In this mode, TeX will stop at each error, asking for proper user

intervention. This is the most user interactive mode available.

[S] shell: This option sets whether the possibility of running underlying system com‐

mands from within TeX is activated.

[S] synctex: This option sets whether synctex, an input and output synchronization

feature that allows navigation from source to typeset material and vice versa, available in

most TeX engines, is activated.

[S] draft: This option sets whether the draft mode, i.e, a mode that produces no output,

so the engine can check the syntax, is activated.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: luatex: { interaction: batchmode,

% arara: --> shell: yes, draft: yes }

•

◦

◦

◦

◦

•

•

•

•

luatex 126

make

This rule runs make, a build automation tool that automatically builds executable programs and

libraries from source code, according to a special file which specifies how to derive the target

program.

targets: This option takes a list of targets. Note that make updates a target if it depends

on files that have been modified since the target was last modified, or if the target does

not exist.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: make: { targets: [compile, package] }

makeglossaries

This rule runs makeglossaries, an efficient Perl script designed for use with TeX documents

that work with the glossaries package. All the information required to be passed to the rele‐

vant indexing application should also be contained in the auxiliary file. The script takes the cor‐

responding base name of the ❖ currentFile reference (i.e, the name without the associated

extension) as the mandatory argument.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual script call. An error is thrown if any data structure other than

a proper list is provided as the value.

% arara: makeglossaries if found('aux', '@istfilename')

makeglossarieslite

This rule runs makeglossaries-lite, a lightweight Lua script designed for use with TeX doc‐

uments that work with the glossaries package. All the information required to be passed to

the relevant indexing application should also be contained in the auxiliary file. The script takes

•

•

•

make 127

the corresponding base name of the ❖ currentFile reference (i.e, the name without the as‐

sociated extension) as the mandatory argument.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual script call. An error is thrown if any data structure other than

a proper list is provided as the value.

% arara: makeglossarieslite if found('aux', '@istfilename')

makeindex

This rule runs makeindex, a general purpose hierarchical index generator, on the correspond‐

ing base name of the ❖ currentFile reference (i.e, the name without the associated exten‐

sion) as a string concatenated with the idx suffix, generating an index as a special ind file.

style: This option, as the name indicates, sets the underlying index style file. Make sure

to provide a valid ist file when using this option.

[S] german: This option, as the name indicates, sets whether German word ordering

should be used when generating the index, according to the rules set forth in DIN 5007.

order: This option, as the name indicates, sets the default ordering scheme for the

makeindex program. Two possible values are available:

letter: This value, as the name indicates, activates the letter ordering scheme. In

such scheme, a blank space does not precede any letter in the alphabet.

word: This value, as the name indicates, activates the word ordering scheme. In

such scheme, a blank space precedes any letter in the alphabet.

input (default: idx): This option, as the name indicates, sets the default extension for

the input file, according to the provided value. Later, this value will be concatenated as a

suffix for the base name of the ❖ currentFile reference (i.e, the name without the as‐

sociated extension).

output (default: ind): This option, as the name indicates, sets the default extension for

the output file, according to the provided value. Later, this value will be concatenated as a

suffix for the base name of the ❖ currentFile reference (i.e, the name without the as‐

sociated extension).

log (default: ilg): This option, as the name indicates, sets the default extension for the

log file, according to the provided value. Later, this value will be concatenated as a suffix

•

•

•

•

◦

◦

•

•

•

makeindex 128

for the base name of the ❖ currentFile reference (i.e, the name without the associat‐

ed extension).

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: makeindex: { style: book.ist }

metapost

This rule runs metapost, a tool to compile the Metapost graphics programming language.

Please note that you will have to make the .mp extension known to arara in order to compile

Metapost files. Furthermore, it is advised to use this in your regular TeX document specifying

the files parameter to include all graphics you want to compile for inclusion in your docu‐

ment.

interaction: This option alters the underlying engine behaviour. If this option is omit‐

ted, TeX will prompt the user for interaction in the event of an error. Possible values are,

in order of increasing user interaction (courtesy of our master Enrico Gregorio):

batchmode: In this mode, nothing is printed on the terminal, and errors are

scrolled as if the return key is hit at every error. Missing files that TeX tries to in‐

put or request from keyboard input cause the job to abort.

nonstopmode: In this mode, the diagnostic message will appear on the terminal,

but there is no possibility of user interaction just like in batch mode, previously de‐

scribed.

scrollmode: In this mode, as the name indicates, TeX will stop only for missing

files to input or if proper keyboard input is necessary. TeX fixes errors itself.

errorstopmode: In this mode, TeX will stop at each error, asking for proper user

intervention. This is the most user interactive mode available.

numbersystem: This option sets the number system Metapost will use for calculations.

scaled: In this mode, 32-bit fixed-point arithmetics is used.

double: In this mode, IEEE floating-point arithmetics with 64 bits is used.

binary: This mode is similary to double but without a fixed-length mantissa.

•

•

◦

◦

◦

◦

•

◦

◦

◦

metapost 129

decimal: In this mode, arbitrary precision arithmetics is used and numbers are in‐

ternally represented in base 10.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: metapost: { files: [graphics.mp] }

mkdir

This rule creates a new directory at the current location and all parents as required. It does

nothing if the directory already exists.

[R] target: This option, as the name implies, specifies the name of the target directory

to be created. Keep in mind that this option is required.

% arara: mkdir: { target: 'dir_to_make' }

move

This rule moves the File reference to the provided target using the underlying operating sys‐

tem move operation. The target is always overwritten. However, be mindful that an error will be

thrown if you try to move or overwrite the file referenced in ❖ getOriginalReference.

[R] target: This option, as the name implies, specifies the target for the move operation.

Keep in mind that this option is required.

% arara: move: { files: ['thesis.pdf'],

% arara: --> target: 'backup/thesis.pdf' }

nomencl

This rule runs makeindex in order to automatically generate a nomenclature list from TeX doc‐

uments that work with the nomencl package. The program itself is a general purpose hierarchi‐

◦

•

•

•

mkdir 130

cal index generator and takes the corresponding base name of the ❖ currentFile reference

(i.e, the name without the associated extension) as a string concatenated with the nlo suffix

and a special style file in order to generate the nomenclature list as a special nls file.

style (default: nomencl.ist): This option, as the name indicates, sets the underlying

index style file. The default value is set to the one automatically provided by the nomen‐

cl package, so it is highly recommended to not override it.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: nomencl

pbibtex

This rule runs the pbibtex program, a reference management software, on the corresponding

base name of the ❖ currentFile reference (i.e, the name without the associated extension)

as a string.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: pbibtex

% arara: --> if exists(toFile('references.bib'))

pdfcrop

This rule runs pdfcrop, a command line utility to calculate and remove empty margins, on cor‐

responding base name of the ❖ currentFile reference (i.e, the name without the associated

extension) as a string concatenated with the pdf suffix.

output: This option, as the name indicates, sets the output file. When omitted, the tool

uses the input base name with the -crop.pdf suffix.

[S] verbose: This option, as the name indicates, sets whether the command line tool will

be executed in verbose mode.

•

•

•

•

•

pbibtex 131

[S] debug: This option, as the name indicates, sets whether the command line tool will be

executed in debug mode.

engine: This option, as the name indicates, sets the underlying TeX engine to be used

during the run. Three possible values are available:

pdftex: This value, as the name indicates, sets pdftex as the underlying TeX en‐

gine to be used during the run.

xetex: This value, as the name indicates, sets xetex as the underlying TeX engine

to be used during the run.

luatex: This value, as the name indicates, sets luatex as the underlying TeX en‐

gine to be used during the run.

margins: This option, as the name indicates, takes a list of four elements denoting left,

top, right and bottom margins, respectivelly. An error will be thrown if no list is provided

or if the list does not contain exactly four elements.

[S] clip: This option, as the name indicates, sets whether the command line tool should

include clipping support, if margins are set.

[S] hires: This option, as the name indicates, sets whether the command line tool

should use a high resolution bounding box feature.

[S] ini: This option, as the name indicates, sets whether the initex variant of the un‐

derlying TeX engine is used.

[S] restricted: This option, as the name indicates, sets whether the command line tool

should run on restricted mode.

papersize: This option, as the name indicates, sets the paper size. According to the doc‐

umentation, this option should only be used with older versions of ghostscript.

resolution: This option, as the name indicates, sets the resolution by forwarding the

value to the underlying ghostscript call.

bbox: This option, as the name indicates, takes a list of four elements denoting left, bot‐

tom, right and top margins, respectivelly, to override bounding box values found by

ghostscript. An error will be thrown if no list is provided or if the list does not contain

exactly four elements.

[S] uncompress: This option, as the name indicates, sets whether the tool should gener‐

ate an uncompressed Portable Document Format file, useful for debugging.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

•

•

◦

◦

◦

•

•

•

•

•

•

•

•

•

•

pdfcrop 132

% arara: pdfcrop

pdfcsplain

This rule runs the pdfcsplain TeX engine, a conservative extension of Knuth's plain TeX with

direct processing characters and hyphenation patterns for Czech and Slovak, on the provided

❖ currentFile reference.

interaction: This option alters the underlying engine behaviour. If this option is omit‐

ted, TeX will prompt the user for interaction in the event of an error. Possible values are,

in order of increasing user interaction (courtesy of our master Enrico Gregorio):

batchmode: In this mode, nothing is printed on the terminal, and errors are

scrolled as if the return key is hit at every error. Missing files that TeX tries to in‐

put or request from keyboard input cause the job to abort.

nonstopmode: In this mode, the diagnostic message will appear on the terminal,

but there is no possibility of user interaction just like in batch mode, previously de‐

scribed.

scrollmode: In this mode, as the name indicates, TeX will stop only for missing

files to input or if proper keyboard input is necessary. TeX fixes errors itself.

errorstopmode: In this mode, TeX will stop at each error, asking for proper user

intervention. This is the most user interactive mode available.

[S] shell: This option sets whether the possibility of running underlying system com‐

mands from within TeX is activated.

[S] synctex: This option sets whether synctex, an input and output synchronization

feature that allows navigation from source to typeset material and vice versa, available in

most TeX engines, is activated.

[S] draft: This option sets whether the draft mode, i.e, a mode that produces no output,

so the engine can check the syntax, is activated.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: pdfcsplain: { shell: yes, synctex: yes }

•

◦

◦

◦

◦

•

•

•

•

pdfcsplain 133

pdflatex

This rule runs the pdflatex TeX engine on the provided ❖ currentFile reference, generat‐

ing a corresponding file in the Portable Document Format, as expected.

branch (default: stable): This option allows branching formats for the current engine,

mainly focused on package development. Users of current TeX distributions might benefit

from format branching in order to easily test documents and code against the upcoming

releases. Possible values are:

stable: This value, as the name implies, enables the stable engine format branch.

Note that this is the default format.

developer: For experienced users, this value enables the experimental, developer

engine format branch.

interaction: This option alters the underlying engine behaviour. If this option is omit‐

ted, TeX will prompt the user for interaction in the event of an error. Possible values are,

in order of increasing user interaction (courtesy of our master Enrico Gregorio):

batchmode: In this mode, nothing is printed on the terminal, and errors are

scrolled as if the return key is hit at every error. Missing files that TeX tries to in‐

put or request from keyboard input cause the job to abort.

nonstopmode: In this mode, the diagnostic message will appear on the terminal,

but there is no possibility of user interaction just like in batch mode, previously de‐

scribed.

scrollmode: In this mode, as the name indicates, TeX will stop only for missing

files to input or if proper keyboard input is necessary. TeX fixes errors itself.

errorstopmode: In this mode, TeX will stop at each error, asking for proper user

intervention. This is the most user interactive mode available.

[S] shell: This option sets whether the possibility of running underlying system com‐

mands from within TeX is activated.

[S] synctex: This option sets whether synctex, an input and output synchronization

feature that allows navigation from source to typeset material and vice versa, available in

most TeX engines, is activated.

[S] draft: This option sets whether the draft mode, i.e, a mode that produces no output,

so the engine can check the syntax, is activated.

•

◦

◦

•

◦

◦

◦

◦

•

•

•

pdflatex 134

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: pdflatex: { interaction: batchmode }

% arara: --> if missing('pdf') || changed('tex')

pdftex

This rule runs the pdftex TeX engine on the provided ❖ currentFile reference, generating a

corresponding file in the Portable Document Format, as expected.

interaction: This option alters the underlying engine behaviour. If this option is omit‐

ted, TeX will prompt the user for interaction in the event of an error. Possible values are,

in order of increasing user interaction (courtesy of our master Enrico Gregorio):

batchmode: In this mode, nothing is printed on the terminal, and errors are

scrolled as if the return key is hit at every error. Missing files that TeX tries to in‐

put or request from keyboard input cause the job to abort.

nonstopmode: In this mode, the diagnostic message will appear on the terminal,

but there is no possibility of user interaction just like in batch mode, previously de‐

scribed.

scrollmode: In this mode, as the name indicates, TeX will stop only for missing

files to input or if proper keyboard input is necessary. TeX fixes errors itself.

errorstopmode: In this mode, TeX will stop at each error, asking for proper user

intervention. This is the most user interactive mode available.

[S] shell: This option sets whether the possibility of running underlying system com‐

mands from within TeX is activated.

[S] synctex: This option sets whether synctex, an input and output synchronization

feature that allows navigation from source to typeset material and vice versa, available in

most TeX engines, is activated.

[S] draft: This option sets whether the draft mode, i.e, a mode that produces no output,

so the engine can check the syntax, is activated.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

•

•

◦

◦

◦

◦

•

•

•

•

pdftex 135

% arara: pdftex: { draft: yes }

pdftk

This rule runs pdftk, a command line tool for manipulating Portable Document Format docu‐

ments, on the corresponding base name of the ❖ currentFile reference (i.e, the name with‐

out the associated extension) as a string concatenated with the pdf suffix.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: pdftk: { options: [burst] }

pdftocairo

This rule runs the pdftocairo program, which converts Portable Document Format documents

to a number of possible output formats using the cairo output device of the poppler PDF li‐

brary.

format (default: png): selects the desired outout format. Possible values are png, jpeg,

tiff, pdf, print, ps, eps and svg.

output: sets the basename of the output file.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual script call. An error is thrown if any data structure other than

a proper list is provided as the value.

% arara: pdftocairo: {

% arara: --> format: 'png',

% arara: --> output: 'imagename',

% arara: --> options: ['-r', '150', '-transp', '-singlefile']

% arara: --> }

•

•

•

•

pdftk 136

perltex

This rule runs perltex, a wrapper that enables a symbiosis between Perl, a popular general

purpose programming language, and a TeX engine, on the provided ❖ currentFile reference.

engine (default: latex): This option, as the name indicates, sets the underlying TeX en‐

gine to be used for the current compilation. Make sure to take a look at the manual for

further details on this option. Possible values are:

latex: This value, as the name suggests, sets the underlying TeX engine to latex

for the current compilation. Note that the engine might play a major role in the

generated code.

pdflatex: This value, as the name indicates, sets the underlying TeX engine to

pdflatex for the current compilation. Note that the engine might play a major

role in the generated code.

xelatex: This value, as the name suggests, sets the underlying TeX engine to xe‐

latex for the current compilation. Note that the engine might play a major role in

the generated code.

lualatex: This value, as the name indicates, sets the underlying TeX engine to lu‐

alatex for the current compilation. Note that the engine might play a major role

in the generated code.

tex: This value, as the name suggests, sets the underlying TeX engine to tex for

the current compilation. Note that the engine might play a major role in the gener‐

ated code.

pdftex: This value, as the name indicates, sets the underlying TeX engine to pdf‐

tex for the current compilation. Note that the engine might play a major role in the

generated code.

luatex: This value, as the name suggests, sets the underlying TeX engine to lua‐

tex for the current compilation. Note that the engine might play a major role in the

generated code.

context: This value, as the name indicates, sets the underlying TeX engine to con‐

text for the current compilation. Note that the engine might play a major role in

the generated code.

[S] safe: This option sets whether the wrapper should enable sandboxing. When explicit‐

ly disabled, the wrapper might execute any arbitrary Perl code, including that which can

harm files.

•

◦

◦

◦

◦

◦

◦

◦

◦

•

perltex 137

permit: This option takes a list of values in which indicate particular Perl operations to

be performed, enabling finer-grained control over the wrapper sandbox.

[S] standalone: This option generates a specific style file to make the document suit‐

able for distribution to users who do not have the wrapper installed. Please refer to the

manual for further details on this option.

interaction: This option alters the underlying engine behaviour. If this option is omit‐

ted, TeX will prompt the user for interaction in the event of an error. Possible values are,

in order of increasing user interaction (courtesy of our master Enrico Gregorio):

batchmode: In this mode, nothing is printed on the terminal, and errors are

scrolled as if the return key is hit at every error. Missing files that TeX tries to in‐

put or request from keyboard input cause the job to abort.

nonstopmode: In this mode, the diagnostic message will appear on the terminal,

but there is no possibility of user interaction just like in batch mode, previously de‐

scribed.

scrollmode: In this mode, as the name indicates, TeX will stop only for missing

files to input or if proper keyboard input is necessary. TeX fixes errors itself.

errorstopmode: In this mode, TeX will stop at each error, asking for proper user

intervention. This is the most user interactive mode available.

[S] shell: This option sets whether the possibility of running underlying system com‐

mands from within TeX is activated.

[S] synctex: This option sets whether synctex, an input and output synchronization

feature that allows navigation from source to typeset material and vice versa, available in

most TeX engines, is activated.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: perltex: { safe: no, standalone: yes }

•

•

•

◦

◦

◦

◦

•

•

•

perltex 138

platex

This rule runs the platex TeX engine on the provided ❖ currentFile reference, generating a

corresponding file in a device independent format.

branch (default: stable): This option allows branching formats for the current engine,

mainly focused on package development. Users of current TeX distributions might benefit

from format branching in order to easily test documents and code against the upcoming

releases. Possible values are:

stable: This value, as the name implies, enables the stable engine format branch.

Note that this is the default format.

developer: For experienced users, this value enables the experimental, developer

engine format branch.

interaction: This option alters the underlying engine behaviour. If this option is omit‐

ted, TeX will prompt the user for interaction in the event of an error. Possible values are,

in order of increasing user interaction (courtesy of our master Enrico Gregorio):

batchmode: In this mode, nothing is printed on the terminal, and errors are

scrolled as if the return key is hit at every error. Missing files that TeX tries to in‐

put or request from keyboard input cause the job to abort.

nonstopmode: In this mode, the diagnostic message will appear on the terminal,

but there is no possibility of user interaction just like in batch mode, previously de‐

scribed.

scrollmode: In this mode, as the name indicates, TeX will stop only for missing

files to input or if proper keyboard input is necessary. TeX fixes errors itself.

errorstopmode: In this mode, TeX will stop at each error, asking for proper user

intervention. This is the most user interactive mode available.

[S] shell: This option sets whether the possibility of running underlying system com‐

mands from within TeX is activated.

[S] synctex: This option sets whether synctex, an input and output synchronization

feature that allows navigation from source to typeset material and vice versa, available in

most TeX engines, is activated.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

•

◦

◦

•

◦

◦

◦

◦

•

•

•

platex 139

% arara: platex: { interaction: scrollmode, shell: yes }

ps2pdf

This rule runs ps2pdf, a tool that converts PostScript to Portable Document Format, on the cor‐

responding base name of the ❖ currentFile reference (i.e, the name without the associated

extension) as a string concatenated with the ps suffix.

output: This option, as the name indicates, sets the output name for the generated pdf

file. There is no need to provide an extension, as the value is always normalized with

❖ getBasename such that only the name without the associated extension is used. The

base name of the current file reference is used as the default value.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: ps2pdf: { output: article }

pythontex

This rule runs pythontex, a wrapper that provides access to Python from within typical TeX

documents, on the provided ❖ currentFile reference. Make sure to take a look at the docu‐

mentation for further details.

encoding: This option sets the encoding of the underlying TeX document and all related

files. If an encoding is not specified, Unicode is assumed.

[S] errorcode: This option determines whether an exit code of 1 is returned if there

were errors. On by default, but can be turned off since it is undesirable when working

with some editors.

[S] runall: This option sets whether all code to be executed, regardless of modification.

It is useful when code has not been modified, but a dependency such as a library or ex‐

ternal data has changed.

•

•

•

•

•

ps2pdf 140

rerun: This option, as the name indicates, sets the underlying threshold for reexecuting

code. By default, the wrapper will rerun code that has been modified or that produced er‐

rors on the last run. Possible values are:

never: When this value is used, the wrapper never executes code. In this scenario,

a warning is issued if there is modified code. Please refer to the documentation for

further details.

modified: When this value is used, as the name indicates, the wrapper only exe‐

cutes code that has been modified or that has modified dependencies.

errors: When this value is used, as the name indicates, the wrapper executes code

that has been modified as well as code that produced errors on the last run.

warnings: When this value is used, as the name indicates, the wrapper executes

code that has been modified as well as code that produced errors or warnings on

the last run.

always: When this value is used, as the name indicates, the wrapper executes all

code, regardless of modification or errors and warnings. It is useful when code has

not been modified, but a dependency such as a library or external data has

changed.

[S] hashdependencies: This option, as the name suggests, determines whether depen‐

dencies are checked for changes via their hashes or modification times.

jobs: This option, as the name suggests, takes an integer value denoting the maximum

number of concurrent processes. By default, the wrapper relies on the number of CPUs in

the system.

[S] verbose: This option sets whether the wrapper should be executed in verbose mode,

providing more output information, including a list of all processes that are launched.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: pythontex: { jobs: 2, verbose: yes }

•

◦

◦

◦

◦

◦

•

•

•

•

pythontex 141

qpdf

This rule runs qpdf, a command line application that does structural, content-preserving trans‐

formations of Portable Document Format files, as well as providing capabilities to developers.

[R] options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual script call. An error is thrown if any data structure other than

a proper list is provided as the value.

% arara: qpdf: { options: ['--linearize', 'input.pdf',

% arara: --> 'output.pdf'] }

rmdir

This rule removes a directory including its contents at the current location. It does nothing if

the directory does not exist.

[R] target: This option, as the name implies, specifies the name of the target directory

to be removed. Keep in mind that this option is required.

% arara: rmdir: { target: 'dir_to_remove' }

sage

This rule runs sage, a free open source mathematics software system, on the corresponding

base name of the ❖ currentFile reference (i.e, the name without the associated extension)

as a string concatenated with the sage extension (which can be overridden).

program (default: sage): This option, as the name indicates, sets the program name. If

the tool is not directly available in your system path, make sure to use the full path to the

installed sage binary.

extension (default: sage): This option, as the name indicates, sets the default extension

to the input file to be processed by sage. Three possible values are available:

sage: This value, as the name indicates, sets the extension to refer to the Sage for‐

mat, the default one used by the software system.

•

•

•

•

◦

qpdf 142

py: This value, as the name indicates, sets the extension to refer to a typical Python

source code.

spyx: This value, as the name indicates, sets the extension to refer to the SPYX for‐

mat, a specific Sage compiled source code.

command: This option, as the name indicates, forwards the provided value to the com‐

mand line utility to be evaluated as a Sage code.

[S] dotsage: This option, as the name indicates, sets whether the tool should consider

using the .sage directory in the user home directory or a temporary one.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: sage

sketch

This rule runs sketch, a system for producing line drawings of solid objects and scenes, on the

corresponding base name of the ❖ currentFile reference (i.e, the name without the associ‐

ated extension) as a string concatenated with the sk suffix. Note that one needs to add support

for this particular file type, as seen in Configuration.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: sketch

songidx

This rule runs songidx, a song index generation script for the songs package, on the file refer‐

ence provided as parameter, generating a proper index as a special sbx file. It is very important

to observe that, at the time of writing, this script is not available off the shelf in TeX Live or MiK‐

◦

◦

•

•

•

•

sketch 143

TeX distributions, so a manual deployment is required. The script execution is performed by the

underlying texlua interpreter.

[R] input: This required option, as the name indicates, sets the input name for the song

index file specified within the TeX document. There is no need to provide an extension, as

the value is always normalized with ❖ getBasename such that only the name without

the associated extension is used.

script (default: songidx.lua): This option, as the name indicates, sets the script path.

The default value is set to the script name, so either make sure songidx.lua is located

in the same directory of your TeX document or provide the correct location (preferably a

full path).

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual script call. An error is thrown if any data structure other than

a proper list is provided as the value.

% arara: songidx: { input: songs }

spix

This rule runs spix, an interesting command line TeX automation tool written in Python, on the

provided ❖ currentFile reference.

dry: This option sets whether the tool should display a list of commands to be executed

without actually invoking them.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual script call. An error is thrown if any data structure other than

a proper list is provided as the value.

% arara: spix

•

•

•

•

•

spix 144

tex

This rule runs the tex TeX engine on the provided ❖ currentFile reference, generating a

corresponding file in a device independent format.

interaction: This option alters the underlying engine behaviour. If this option is omit‐

ted, TeX will prompt the user for interaction in the event of an error. Possible values are,

in order of increasing user interaction (courtesy of our master Enrico Gregorio):

batchmode: In this mode, nothing is printed on the terminal, and errors are

scrolled as if the return key is hit at every error. Missing files that TeX tries to in‐

put or request from keyboard input cause the job to abort.

nonstopmode: In this mode, the diagnostic message will appear on the terminal,

but there is no possibility of user interaction just like in batch mode, previously de‐

scribed.

scrollmode: In this mode, as the name indicates, TeX will stop only for missing

files to input or if proper keyboard input is necessary. TeX fixes errors itself.

errorstopmode: In this mode, TeX will stop at each error, asking for proper user

intervention. This is the most user interactive mode available.

[S] shell: This option sets whether the possibility of running underlying system com‐

mands from within TeX is activated.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: tex: { shell: yes }

•

◦

◦

◦

◦

•

•

tex 145

texcount

This rule runs texcount, a Perl script designed to count words in TeX and LaTeX files, ignoring

macros, tables, formulae and more on the provided ❖ currentFile reference. The script is

highly configurable, so make sure to check the manual for further information.

rules: This option, as the name suggests, sets the rules which dictate how the script

should work regarding word counting and option handling. Possible values are:

relaxed: This value, as the name indicates, sets a relaxed set of rules, allowing

more general cases to be counted as either words and macros.

restricted: This value, as the name indicates, sets a more restricted set of rules

for word counting and option handling.

verbosity: This option, as the name suggests, sets the verbosity level of the script ac‐

cording to the provided integer value. Possible values are:

0: This value sets the lowest verbosity level of all, such that the script does not

present parsing details.

1: This value raises the details a bit and sets the verbosity level to include parsed

words and marked formulae.

2: This value adds more details from the previous verbosity level by including ig‐

nored text as well.

3: This value adds more details from the previous verbosity level by including com‐

ments and options.

4: This value sets the highest verbosity level of all, such that the script includes

parsed worded, marked formulae, ignored text, comments, options and internal

states.

[S] strict: This option sets whether the tool should enable strict mode, so certain

groups for which rules are not defined raise warnings.

[S] html: This option, as the name suggests, defines whether the tool should output the

report in the HTML format.

[S] total: This option, as the name suggests, defines whether the tool should provide a

total sum instead of partial sums (per file).

[S] unicode: This option, as the name indicates, defines whether the tool should select

Unicode as encoding for both input and output.

•

◦

◦

•

◦

◦

◦

◦

◦

•

•

•

•

texcount 146

output: This option, as the name suggests, sets the output file name in which the report

will be written.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: texcount: { output: report.txt }

texindy

This rule runs texindy, a variant of the xindy indexing system focused on LaTeX documents,

on the corresponding base name of the ❖ currentFile reference (i.e, the name without the

associated extension) as a string concatenated with the idx suffix, generating an index as a

special ind file.

[S] quiet: This option, as the name indicates, sets whether the tool will output progress

messages. It is important to observe that texindy always outputs error messages, re‐

gardless of this option.

codepage: This option, as the name indicates, specifies the encoding to be used for let‐

ter group headings. Additionally, it specifies the encoding used internally for sorting, but

that does not matter for the final result.

language: This option, as the name indicates, specifies the language that dictates the

rules for index sorting. These rules are encoded in a module.

markup: This option, as the name indicates, specifies the input markup for the raw index.

The following values are available:

latex: This value, as the name implies, is emitted by default from the LaTeX kernel,

and the raw input is encoded in the LaTeX Internal Character Representation for‐

mat.

xelatex: This value, as the name implies, acts like the previous latex markup op‐

tion, but without inputenc usage. Raw input is encoded in the UTF-8 format.

omega: This value, as the name implies, acts like the previous latex markup op‐

tion, but with Omega's special notation as encoding for characters not in the ASCII

set.

•

•

•

•

•

•

◦

◦

◦

texindy 147

modules: This option, as the name indicates, takes a list of module names. Modules are

searched in the usual application path. An error is thrown if any data structure other than

a proper list is provided as the value.

input (default: idx): This option, as the name indicates, sets the default extension for

the input file, according to the provided value. Later, this value will be concatenated as a

suffix for the base name of the ❖ currentFile reference (i.e, the name without the as‐

sociated extension).

output (default: ind): This option, as the name indicates, sets the default extension for

the output file, according to the provided value. Later, this value will be concatenated as a

suffix for the base name of the ❖ currentFile reference (i.e, the name without the as‐

sociated extension).

log (default: ilg): This option, as the name indicates, sets the default extension for the

log file, according to the provided value. Later, this value will be concatenated as a suffix

for the base name of the ❖ currentFile reference (i.e, the name without the associat‐

ed extension).

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: texindy: { markup: latex }

tikzmake

This rule runs make on a very specific build file generated by the tikzmake package, as a

means to simplify the externalization of TikZ pictures. This build file corresponds to the base

name of the ❖ currentFile reference (i.e, the name without the associated extension) as a

string concatenated with the makefile suffix.

[S] force: This option, as the name indicates, sets whether all targets specified in the

corresponding build file should be unconditionally made.

jobs: This option, as the name indicates, specifies the number of jobs (commands) to run

simultaneously. Note that the provided value must be a positive integer. The default num‐

ber of job slots is one, which means serial execution.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

•

•

•

•

•

•

•

•

tikzmake 148

% arara: tikzmake: { force: yes, jobs: 2 }

upbibtex

This rule runs the upbibtex program, a reference management software, on the corresponding

base name of the ❖ currentFile reference (i.e, the name without the associated extension)

as a string.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: pbibtex

% arara: --> if exists(toFile('references.bib'))

uplatex

This rule runs the uplatex TeX engine on the provided ❖ currentFile reference, generating

a corresponding file in a device independent format.

branch (default: stable): This option allows branching formats for the current engine,

mainly focused on package development. Users of current TeX distributions might benefit

from format branching in order to easily test documents and code against the upcoming

releases. Possible values are:

stable: This value, as the name implies, enables the stable engine format branch.

Note that this is the default format.

developer: For experienced users, this value enables the experimental, developer

engine format branch.

interaction: This option alters the underlying engine behaviour. If this option is omit‐

ted, TeX will prompt the user for interaction in the event of an error. Possible values are,

in order of increasing user interaction (courtesy of our master Enrico Gregorio):

batchmode: In this mode, nothing is printed on the terminal, and errors are

scrolled as if the return key is hit at every error. Missing files that TeX tries to in‐

put or request from keyboard input cause the job to abort.

•

•

◦

◦

•

◦

upbibtex 149

nonstopmode: In this mode, the diagnostic message will appear on the terminal,

but there is no possibility of user interaction just like in batch mode, previously de‐

scribed.

scrollmode: In this mode, as the name indicates, TeX will stop only for missing

files to input or if proper keyboard input is necessary. TeX fixes errors itself.

errorstopmode: In this mode, TeX will stop at each error, asking for proper user

intervention. This is the most user interactive mode available.

[S] shell: This option sets whether the possibility of running underlying system com‐

mands from within TeX is activated.

[S] synctex: This option sets whether synctex, an input and output synchronization

feature that allows navigation from source to typeset material and vice versa, available in

most TeX engines, is activated.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: uplatex: { interaction: scrollmode, shell: yes }

uptex

This rule runs the uptex TeX engine on the provided ❖ currentFile reference, generating a

corresponding file in a device independent format.

interaction: This option alters the underlying engine behaviour. If this option is omit‐

ted, TeX will prompt the user for interaction in the event of an error. Possible values are,

in order of increasing user interaction (courtesy of our master Enrico Gregorio):

batchmode: In this mode, nothing is printed on the terminal, and errors are

scrolled as if the return key is hit at every error. Missing files that TeX tries to in‐

put or request from keyboard input cause the job to abort.

nonstopmode: In this mode, the diagnostic message will appear on the terminal,

but there is no possibility of user interaction just like in batch mode, previously de‐

scribed.

scrollmode: In this mode, as the name indicates, TeX will stop only for missing

files to input or if proper keyboard input is necessary. TeX fixes errors itself.

◦

◦

◦

•

•

•

•

◦

◦

◦

uptex 150

errorstopmode: In this mode, TeX will stop at each error, asking for proper user

intervention. This is the most user interactive mode available.

[S] shell: This option sets whether the possibility of running underlying system com‐

mands from within TeX is activated.

[S] synctex: This option sets whether synctex, an input and output synchronization

feature that allows navigation from source to typeset material and vice versa, available in

most TeX engines, is activated.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: uptex

xdvipdfmx

This rule runs xdvipdfmx, the back end for the xetex TeX engine (and not intended to be in‐

voked directly), on the corresponding base name of the ❖ currentFile reference (i.e, the

name without the associated extension) as a string concatenated with a certain suffix, generat‐

ing a Portable Document Format pdf file.

entry: This option sets the extension to be used for the initial reference (i.e, the current

file name) as input to the command line tool. The following values are available for this

option:

dvi: This value sets the extension to be used for the initial reference as a device

independent format. This is the default value when no value is provided.

xdv: This value sets the extension to be used for the initial reference as an extend‐

ed device independent format.

output: This option, as the name indicates, sets the output name for the generated pdf

file. There is no need to provide an extension, as the value is always normalized with

❖ getBasename such that only the name without the associated extension is used. The

base name of the current file reference is used as the default value.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

◦

•

•

•

•

◦

◦

•

•

xdvipdfmx 151

% arara: xdvipdfmx: { output: thesis }

xelatex

This rule runs the new xelatex TeX engine on the provided ❖ currentFile reference, gen‐

erating a corresponding file in the Portable Document Format, as expected.

branch (default: stable): This option allows branching formats for the current engine,

mainly focused on package development. Users of current TeX distributions might benefit

from format branching in order to easily test documents and code against the upcoming

releases. Possible values are:

stable: This value, as the name implies, enables the stable engine format branch.

Note that this is the default format.

developer: For experienced users, this value enables the experimental, developer

engine format branch.

unsafe: This value enables the unsafe engine format branch. According to the doc‐

umentation, at all costs, avoid using this, or any, unsafe invocation with documents

off the net or that are otherwise untrusted in any way.

interaction: This option alters the underlying engine behaviour. If this option is omit‐

ted, TeX will prompt the user for interaction in the event of an error. Possible values are,

in order of increasing user interaction (courtesy of our master Enrico Gregorio):

batchmode: In this mode, nothing is printed on the terminal, and errors are

scrolled as if the return key is hit at every error. Missing files that TeX tries to in‐

put or request from keyboard input cause the job to abort.

nonstopmode: In this mode, the diagnostic message will appear on the terminal,

but there is no possibility of user interaction just like in batch mode, previously de‐

scribed.

scrollmode: In this mode, as the name indicates, TeX will stop only for missing

files to input or if proper keyboard input is necessary. TeX fixes errors itself.

errorstopmode: In this mode, TeX will stop at each error, asking for proper user

intervention. This is the most user interactive mode available.

[S] shell: This option sets whether the possibility of running underlying system com‐

mands from within TeX is activated.

•

◦

◦

◦

•

◦

◦

◦

◦

•

xelatex 152

[S] synctex: This option sets whether synctex, an input and output synchronization

feature that allows navigation from source to typeset material and vice versa, available in

most TeX engines, is activated.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: xelatex: { shell: yes, synctex: yes }

xetex

This rule runs the xetex TeX engine on the provided ❖ currentFile reference, generating a

corresponding file in the Portable Document Format, as expected.

branch (default: stable): This option allows branching formats for the current engine,

mainly focused on package development. Users of current TeX distributions might benefit

from format branching in order to easily test documents and code against the upcoming

releases. Possible values are:

stable: This value, as the name implies, enables the stable engine format branch.

Note that this is the default format.

unsafe: This value enables the unsafe engine format branch. According to the doc‐

umentation, at all costs, avoid using this, or any, unsafe invocation with documents

off the net or that are otherwise untrusted in any way.

interaction: This option alters the underlying engine behaviour. If this option is omit‐

ted, TeX will prompt the user for interaction in the event of an error. Possible values are,

in order of increasing user interaction (courtesy of our master Enrico Gregorio):

batchmode: In this mode, nothing is printed on the terminal, and errors are

scrolled as if the return key is hit at every error. Missing files that TeX tries to in‐

put or request from keyboard input cause the job to abort.

nonstopmode: In this mode, the diagnostic message will appear on the terminal,

but there is no possibility of user interaction just like in batch mode, previously de‐

scribed.

scrollmode: In this mode, as the name indicates, TeX will stop only for missing

files to input or if proper keyboard input is necessary. TeX fixes errors itself.

•

•

•

◦

◦

•

◦

◦

◦

xetex 153

errorstopmode: In this mode, TeX will stop at each error, asking for proper user

intervention. This is the most user interactive mode available.

[S] shell: This option sets whether the possibility of running underlying system com‐

mands from within TeX is activated.

[S] synctex: This option sets whether synctex, an input and output synchronization

feature that allows navigation from source to typeset material and vice versa, available in

most TeX engines, is activated.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: xetex: { interaction: scrollmode, synctex: yes }

xindex

This rule runs xindex, a flexible and powerful indexing system, on a provided idx input. This

tool is completely with the makeindex program.

[R] input: This option, as the name indicates, corresponds to the idx reference to be

processed by the indexing system. Note that this option is required.

config (default: cfg): This option specifies a configuration extension. Make sure to take

a look at the documentation for further details.

language (default: en): This option, as the name suggests, specifies the language. Make

sure to take a look at the documentation for further details.

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: xindex: { input: mydoc.idx }

◦

•

•

•

•

•

•

•

xindex 154

xindy

This rule runs xindy, a flexible and powerful indexing system, on the corresponding base name

of the ❖ currentFile reference (i.e, the name without the associated extension) as a string

concatenated with the idx suffix, generating an index as a special ind file.

[S] quiet: This option, as the name indicates, sets whether the tool will output progress

messages. It is important to observe that xindy always outputs error messages, regard‐

less of this option.

codepage: This option, as the name indicates, specifies the encoding to be used for let‐

ter group headings. Additionally, it specifies the encoding used internally for sorting, but

that does not matter for the final result.

language: This option, as the name indicates, specifies the language that dictates the

rules for index sorting. These rules are encoded in a module.

markup: This option, as the name indicates, specifies the input markup for the raw index.

The following values are available:

latex: This value, as the name implies, is emitted by default from the LaTeX kernel,

and the raw input is encoded in the LaTeX Internal Character Representation for‐

mat.

xelatex: This value, as the name implies, acts like the previous latex markup op‐

tion, but without inputenc usage. Raw input is encoded in the UTF-8 format.

omega: This value, as the name implies, acts like the previous latex markup op‐

tion, but with Omega's special notation as encoding for characters not in the ASCII

set.

xindy: This value, as the name implies, uses the xindy input markup as specified

in the xindy manual.

modules: This option, as the name indicates, takes a list of module names. Modules are

searched in the usual application path. An error is thrown if any data structure other than

a proper list is provided as the value.

input (default: idx): This option, as the name indicates, sets the default extension for

the input file, according to the provided value. Later, this value will be concatenated as a

suffix for the base name of the ❖ currentFile reference (i.e, the name without the as‐

sociated extension).

output (default: ind): This option, as the name indicates, sets the default extension for

the output file, according to the provided value. Later, this value will be concatenated as a

•

•

•

•

◦

◦

◦

◦

•

•

•

xindy 155

suffix for the base name of the ❖ currentFile reference (i.e, the name without the as‐

sociated extension).

log (default: ilg): This option, as the name indicates, sets the default extension for the

log file, according to the provided value. Later, this value will be concatenated as a suffix

for the base name of the ❖ currentFile reference (i.e, the name without the associat‐

ed extension).

options: This option, as the name indicates, takes a list of raw command line options

and appends it to the actual system call. An error is thrown if any data structure other

than a proper list is provided as the value.

% arara: xindy: { markup: xelatex }

It is highly advisable to browse the relevant documentation about packages and tools de‐

scribed in this chapter as a means to learn more about features and corresponding advanced

usage. For TeX Live users, we recommend the use of texdoc, a command line program to find

and view documentation. For example, this manual can be viewed through the following com‐

mand:

$ texdoc arara

The primary function of the handy texdoc tool is to locate relevant documentation for a given

keyword (typically, a package name) on your disk, and open it in an appropriate viewer. For MiK‐

TeX users, the distribution provides a similar tool named mthelp to find and view documenta‐

tion. Make sure to use these tools whenever needed!

•

•

xindy 156

Building arara
arara is a Kotlin application licensed under the New BSD License, a verified GPL-compatible free

software license, and the source code is available in the project repository at GitLab. This chap‐

ter provides detailed instructions on how to build our tool from source.

Requirements

In order to build our tool from source, we need to ensure that our development environment

has the minimum requirements for a proper compilation. Make sure the following items are

available:

On account of our project being hosted at GitLab, an online source code repository, we

highly recommend the installation of git, a version control system for tracking changes

in computer files and coordinating work on those files among multiple people. Alterna‐

tively, you can directly obtain the source code by requesting a source code download in

the repository. In order to check if git is available in your operating system, run the fol‐

lowing command in the terminal (version numbers might vary):

$ git --version

git version 2.29.2

Please refer to the git project website in order to obtain specific installation instructions

for your operating system. In general, most recent Unix systems have git installed out of

the shelf.

Our tool is written in the Kotlin programming language, so we need a proper Java Devel‐

opment Kit, a collection of programming tools for the Java platform. Our source code is

known to be compliant with several vendors, including Oracle, OpenJDK, and Azul Sys‐

tems. In order to check if your operating system has the proper tools, run the following

command in the terminal (version numbers might vary):

$ javac -version

javac 1.8.0_171

•

•

Requirements 157

https://www.opensource.org/licenses/bsd-license.php
https://gitlab.com/islandoftex/arara
https://gitlab.com/
https://gitlab.com/islandoftex/arara/-/archive/master/arara-master.zip
https://git-scm.com/

The previous command, as the name suggests, refers to the javac tool, which is the Java

compiler itself. The most common Java Development Kit out there is from Oracle. Howev‐

er, several Linux distributions (as well as some developers, yours truly included) favour

the OpenJDK vendor, so your mileage may vary. Please refer to the corresponding website

of the vendor of your choice in order to obtain specific installation instructions for your

operating system.

As a means to provide a straightforward and simplified compilation workflow, arara relies

on Gradle, a software project management and comprehension tool. Gradle is a build tool

just like ours with a much more comprehensive build framework to provide support for

the JVM ecosystem. In order to check if gradle, the Gradle binary, is available in your op‐

erating system, run the following command in the terminal (version numbers might vary):

$ gradle --version

--

Gradle 6.0.1

--

Build time: 2019-11-21 11:47:01 UTC

Revision: <unknown>

Kotlin: 1.3.50

Groovy: 2.5.8

Ant: Apache Ant(TM) version 1.10.7 compiled

on September 1 2019

JVM: 1.8.0_232 (Oracle Corporation 25.232-b09)

OS: Linux 5.5.0-1-MANJARO amd64

Please refer to the Gradle project website in order to obtain specific installation instruc‐

tions for your operating system. In general, most recent Linux distributions have the Gra‐

dle binary, as well the proper associated dependencies, available in their corresponding

repositories.

For a proper repository cloning, as well as the first Gradle build, an active Internet con‐

nection is required. In particular, Gradle dynamically downloads Java libraries and plug-

ins from one or more online repositories and stores them in a local cache. Be mindful

that subsequent builds can occur offline, provided that the local Gradle cache exists.

arara can be easily built from source, provided that the aforementioned requirements are avail‐

able. The next section presents the compilation details, from repository cloning to a proper Java

archive generation.

One tool to rule them all

For the brave, there is the Software Development Kit Manager, an interesting

tool for managing parallel versions of multiple software development kits on

•

•

Requirements 158

https://www.oracle.com/java/technologies/downloads/
https://gradle.org
https://sdkman.io/

most Unix based systems. In particular, this tool provides off the shelf sup‐

port for several Java Development Kit vendors and versions, as well as most

recent versions of Gradle.

Personally, I prefer the packaged versions provided by my favourite Linux dis‐

tribution (Fedora), but this tool is a very interesting alternative to set up a

development environment with little to no effort.

Compiling the tool

Fetching the sources

First and foremost, we need to clone the project repository into our development environment,

so we can build our tool from source. The cloning will create a directory named arara/ within

the current working directory, so remember to first ensure that you are in the appropriate direc‐

tory. For example:

$ mkdir git-projects

$ cd git-projects

Run the following command in the terminal to clone the arara project:

$ git clone https://gitlab.com/islandoftex/arara.git

Wait a couple of seconds (or minutes, depending on your Internet connection) while the previ‐

ous command clones the project repository hosted at GitLab. Be mindful that this operation

pulls down every version of every file for the history of the project. Fortunately, the version con‐

trol system has the notion of a shallow clone, which is a more succinctly meaningful way of de‐

scribing a local repository with history truncated to a particular depth during the clone opera‐

tion. If you want to get only the latest revision of everything in our repository, run the following

command in the terminal:

$ git clone https://gitlab.com/islandoftex/arara.git --depth 1

This operation is way faster than the previous one, for obvious reasons.

Compiling the tool 159

Building the executable

Unix terminals typically start at HOME as working directory, so, if you did not cd to another di‐

rectory (as in the earlier example), the newly cloned arara/ directory is almost certain to be

accessible from that level. Now, we need to navigate to the directory named arara/. Run the

following command in the terminal:

$ cd arara

The previous command should take us inside the arara/ directory of our project, where the

source code and the corresponding build file are located. Let us make sure we are in the correct

location by running the following command in the terminal:

$ ls build.gradle.kts

build.gradle.kts

Great, we are in the correct location! From the previous output, let us inspect the directory con‐

tents. The cli/ directory, as the name suggests, contains the source code of the main com‐

mand-line application organized in an established package structure, whereas

build.gradle.kts is the corresponding Gradle build file written to efficiently compile the

project. In order to build our tool, run the following command in the terminal:

$./gradlew :cli:build

Gradle is based around the central concept of a build life cycle. The compile phase, as the name

suggests, compiles the source code of the project using the underlying Java compiler. After

compiling, the code can be packaged, tested and run. The build target actually compiles, tests

and packages our tool. Afterwards, you will have a cli/build/libs/ directory with multiple

JAR files, one containing with-deps. That file is ready to run as it bundles all dependencies.

Subsequent builds will be significantly faster than the first build because they do not fetch de‐

pendencies and rely on a build cache. Finally, after some time, Gradle will output the following

message as result (please note that the entire compilation and packaging only took 4 seconds

on my development machine due to an existing local cache):

BUILD SUCCESSFUL in 4s

15 actionable tasks: 15 up-to-date

Compiling the tool 160

Executing the fresh build

Now, let us move the resulting Java archive file from that particular directory to our current di‐

rectory. Run the following command in the terminal (please note that the Java archive file was

also renamed during the move operation):

$ mv cli/build/libs/arara-cli-with-deps-*.jar arara.jar

Now, our current directory contains the final arara.jar Java archive file properly built from

source. This file can be safely distributed and deployed, as seen later on, in Deploying. You can

also test the resulting file by running the following command in the terminal:

$ java -jar arara.jar

Usage: arara [OPTIONS] file...

__ _ _ __ __ _ _ __ __ _

/ _` | '__/ _` | '__/ _` |

| (_| | | | (_| | | | (_| |

__,_|_| __,_|_| __,_|

The cool TeX automation tool.

arara executes the TeX workflow you tell it to execute. Simply specify your

needs within your TeX file and let arara do the work. These directives

feature conditional execution and parameter expansion.

Options:

-l, --log Generate a log output

-v, --verbose / -s, --silent Print the command output

-n, --dry-run Go through all the motions of running a

command, but with no actual calls

-S, --safe-run Run in safe mode and disable potentially

harmful features. Make sure your projects

uses only allowed features.

-w, --whole-file Extract directives in the file, not only in

the header

-p, --preamble TEXT Set the file preamble based on the

configuration file

-t, --timeout INT Set the execution timeout (in milliseconds)

-L, --language TEXT Set the application language

-m, --max-loops INT Set the maximum number of loops (> 0)

-d, --working-directory PATH Set the working directory for all tools

-P, --call-property VALUE Pass parameters to the application to be

used within the session.

--generate-completion [bash|zsh|fish]

Generate a completion script for arara. Add

'source <(arara --generate-completion

Compiling the tool 161

 <shell>)' to your shell's init file.

 -V, --version Show the version and exit

 -h, --help Show this message and exit

Arguments:

 file The file(s) to evaluate and process

The following optional Gradle phase is used to handle the project cleaning, including the com‐

plete removal of the build/ directory. As a result, the project is then restored to the initial

state without any generated Java bytecode. Run the following command in the terminal:

$./gradlew clean

This section covered the compilation details for building arara from source. The aforemen‐

tioned steps are straightforward and can be automated in order to generate snapshots and dai‐

ly builds. If you run into any issue, please let us know. Happy compilation!

Compiling the tool 162

Deploying the tool
As previously mentioned, arara runs on top of a Java virtual machine, available on all major op‐

erating systems -- in some cases, you might need to install the proper virtual machine. This

chapter provides detailed instructions on how to properly deploy the tool in your computer

from either the official package available in our project repository or a personal build generat‐

ed from source (as seen in Building).

Directory structure

From the early development stages, our tool employs a very straightforward directory structure.

In short, we provide the ARARA_HOME alias to the directory path in which the arara.jar Java

archive file is located. This particular file is the heart and soul of our tool and dictates the de‐

fault rule search path, which is a special directory named rules available from the same level.

This directory contains all rules specified in the YAML format. The structure overview is present‐

ed as follows.

ARARA_HOME

ar ar a. j ar

r ul es/

ar ar a- r ul e- ani mat e. yaml

ar ar a- r ul e- bi b2gl s. yaml

. . .

ar ar a- r ul e- xet ex. yaml

ar ar a- r ul e- xi ndy. yaml

Provided that this specific directory structure is honoured, the tool is ready for use off the shelf.

In fact, the official arara CTAN package is available in the artifacts section of our project repos‐

itory. Once the package is properly downloaded, we simply need to extract it into a proper

ARARA_HOME location.

Directory structure 163

https://gitlab.com/islandoftex/arara/-/jobs/artifacts/master/download?job=publish:tdszip

Defining a location

First and foremost, we need to obtain master-ctan.zip from our project repository at GitLab,

which is our CTAN package artifact. As the name indicates, this is a compressed file format, so

we need to extract it into a proper location. Run the following commands in the terminal:

$ unzip master-ctan.zip

$ unzip arara.tds.zip

$ mv scripts/arara .

As a result of the previous commands, we obtained a directory named arara with the exact

structure presented in the previous section in our working directory (amongst other files and

directories that can be safely discarded). Now we need to decide where arara should reside in

our system. For example, I usually deploy my tools inside the /opt/islandoftex path, so I

need to run the following command in the terminal (please note that my personal directory al‐

ready has the proper permissions, so I do not need superuser privileges):

$ mv arara /opt/islandoftex/

The tool has found a comfortable home inside my system! Observe that the full path of the

ARARA_HOME reference points out to /opt/islandoftex/arara since this is my deployment

location of choice. The resulting structure overview, from the root directory, is presented as fol‐

lows:

/

bi n/

boot /

. . .

opt /

paul o/ ar ar a/

ar ar a. j ar

r ul es/

ar ar a- r ul e- ani mat e. yaml

ar ar a- r ul e- bi b2gl s. yaml

. . .

ar ar a- r ul e- xet ex. yaml

ar ar a- r ul e- xi ndy. yaml

. . .

t exbi n/. . .

usr /

var /

If the tool was built from source (as indicated in Building), make sure to construct the provided

directory structure previously presented. We can test the deployment by running the following

command in the terminal (please note the full path):

$ java -jar /opt/islandoftex/arara/arara.jar

Usage: arara [OPTIONS] file...

Defining a location 164

__ _ _ __ __ _ _ __ __ _

/ _` | '__/ _` | '__/ _` |

| (_| | | | (_| | | | (_| |

__,_|_| __,_|_| __,_|

The cool TeX automation tool.

arara executes the TeX workflow you tell it to execute. Simply specify your

needs within your TeX file and let arara do the work. These directives

feature conditional execution and parameter expansion.

Options:

-l, --log Generate a log output

-v, --verbose / -s, --silent Print the command output

-n, --dry-run Go through all the motions of running a

command, but with no actual calls

-S, --safe-run Run in safe mode and disable potentially

harmful features. Make sure your projects

uses only allowed features.

-w, --whole-file Extract directives in the file, not only in

the header

-p, --preamble TEXT Set the file preamble based on the

configuration file

-t, --timeout INT Set the execution timeout (in milliseconds)

-L, --language TEXT Set the application language

-m, --max-loops INT Set the maximum number of loops (> 0)

-d, --working-directory PATH Set the working directory for all tools

-P, --call-property VALUE Pass parameters to the application to be

used within the session.

--generate-completion [bash|zsh|fish]

Generate a completion script for arara. Add

'source <(arara --generate-completion

 <shell>)' to your shell's init file.

 -V, --version Show the version and exit

 -h, --help Show this message and exit

Arguments:

 file The file(s) to evaluate and process

Please observe that, provided that the underlying operating system has an appropriate Java vir‐

tual machine installed, arara can be used as a portable, standalone application. Portable appli‐

cations can be stored on any data storage device, including external devices such as USB drives

and floppy disks.

Defining a location 165

Tool wrapping

arara is now properly deployed in our system, but we still need to provide the full path of

arara.jar to the Java virtual machine in order to make our tool work. This section provides

three approaches regarding the creation of a wrapper, a shell feature that embeds a system

command or utility, that accepts and passes a set of parameters to that command.

Shell alias: An alias is a command available in various shells which enables a replace‐

ment of a word by another string. It is mainly used for abbreviating a system command,

or for adding default arguments to a regularly used command. In order to create a shell

alias for our tool, open .bashrc (a script that is executed whenever a new terminal ses‐

sion starts in interactive mode) in your favourite editor and add the following line, prefer‐

ably at the end:

alias arara='java -jar /opt/islandoftex/arara/arara.jar'

Save the file and restart your terminal. It is important to observe that the given full path

must be properly quoted if it contains spaces. There is no need to provide explicit param‐

eters, as an alias simply acts as an inline string replacement.

Shell function: A shell function is, as the name suggests, a subroutine, a code block that

implements a set of operations as a means to performs a specified task. In order to cre‐

ate a shell function for our tool, open .bashrc (a script that is executed whenever a new

terminal session starts in interactive mode) in your favourite editor and add the following

line, preferably at the end:

arara() {

java -jar /opt/islandoftex/arara/arara.jar "$@"

}

Save the file and restart your terminal. It is important to observe that the given full path

must be properly quoted if it contains spaces. Note that the $@ symbol used in the func‐

tion body represents a special shell variable that stores all the actual parameters in a list

of strings.

Alias or function?

In general, an alias should effectively not do more than change the de‐

fault options of a command, as it constitutes a mere string replace‐

ment. A function should be used when you need to do something more

•

•

Tool wrapping 166

complex than an alias. In our particular case, as the underlying logic is

pretty straightforward, both approaches are valid.

Script file: A script is a computer program designed to be run by an interpreter. In our

context, the script merely sets up the environment and runs a system command. In order

to provide a script for our tool, open your favourite editor and create the following file

called arara (no extension):

#!/bin/bash

jarpath=/opt/islandoftex/arara/arara.jar

java -jar "$jarpath" "$@"

It is important to observe that the given full path must be properly quoted if it contains

spaces. Note that the $@ symbol used in the script body represents a special shell vari‐

able that stores all the actual parameters in a list of strings. This script file will act as the

entry point for our tool. Now, we need to make it executable (i.e, set the corresponding

execute permission) by running the following command in the terminal:

$ chmod +x arara

Now we need to move this newly executable script file to one of the directories set forth

in the PATH environment variable, where executable commands are located. For illustra‐

tive purposes only, let us move the script file to the /usr/local/bin/ directory, a loca‐

tion originally designed for programs that a normal user may run. Run the following com‐

mand in the terminal (note the need for superuser privileges):

$ sudo mv arara /usr/local/bin/

Alternatively, the script can be placed inside a special directory named bin/ from the

home directory of the current user, which is usually added by default to the system path.

Observe that, in this particular case, superuser privileges are not required, as the opera‐

tion is kept at the current user level. Run the following command in the terminal instead

(please note that the ~ symbol is a shell feature called tilde expansion and refers to the

home directory of the current user):

$ mv arara ~/bin/

There is no need to restart your terminal, as the reference becomes available as soon as

it is moved to the new location. Note that a shell script can provide a convenient varia‐

tion of a system command where special environment settings, command options, or

•

Tool wrapping 167

https://www.gnu.org/software/bash/manual/html_node/Tilde-Expansion.html

post-processing apply automatically, but in a way that allows the new script to still act as

a fully normal Unix command.

Regardless of the adopted approach, there should be an arara wrapper available as an actual

Unix command in your shell session. In order to test the wrapper, run the following command in

the terminal:

$ arara

Usage: arara [OPTIONS] file...

__ _ _ __ __ _ _ __ __ _

/ _` | '__/ _` | '__/ _` |

| (_| | | | (_| | | | (_| |

__,_|_| __,_|_| __,_|

The cool TeX automation tool.

arara executes the TeX workflow you tell it to execute. Simply specify your

needs within your TeX file and let arara do the work. These directives

feature conditional execution and parameter expansion.

Options:

-l, --log Generate a log output

-v, --verbose / -s, --silent Print the command output

-n, --dry-run Go through all the motions of running a

command, but with no actual calls

-S, --safe-run Run in safe mode and disable potentially

harmful features. Make sure your projects

uses only allowed features.

-w, --whole-file Extract directives in the file, not only in

the header

-p, --preamble TEXT Set the file preamble based on the

configuration file

-t, --timeout INT Set the execution timeout (in milliseconds)

-L, --language TEXT Set the application language

-m, --max-loops INT Set the maximum number of loops (> 0)

-d, --working-directory PATH Set the working directory for all tools

-P, --call-property VALUE Pass parameters to the application to be

used within the session.

--generate-completion [bash|zsh|fish]

Generate a completion script for arara. Add

'source <(arara --generate-completion

 <shell>)' to your shell's init file.

 -V, --version Show the version and exit

 -h, --help Show this message and exit

Arguments:

 file The file(s) to evaluate and process

Tool wrapping 168

It is important to observe that the wrapper initiative presented in this section might cause a

potential name clash with existing TeX Live or MiKTeX binaries and symbolic links. In this partic‐

ular scenario, make sure to inspect the command location as a means to ensure a correct exe‐

cution. To this end, run the following command in the terminal:

$ which arara

/usr/local/bin/arara

The which command shows the full path of the executable name provided as parameter. This

particular utility does this by searching for an executable or script in the directories listed in

the PATH environment variable. Be mindful that aliases and shell functions are listed as well.

Tool wrapping 169

Introduction to the YAML
format
According to the specification, YAML (a recursive acronym for YAML Ain't Markup Language) is a

human-friendly, cross language, Unicode-based data serialization language designed around

the common native data type of programming languages. arara uses this format in three cir‐

cumstances:

Parametrized directives, as the set of attribute/value pairs (namely, argument name and

corresponding value) is represented by a map. This particular type of directive is formally

introduced in Important concepts.

Rules, as their entire structure is represented by a set of specific keys and their corre‐

sponding values (a proper YAML document). A rule follows a very strict model, detailed in

Important concepts.

Configuration files, as the general settings are represented by a set of specific keys and

their corresponding values (a proper YAML document). Configuration files are covered in

Configuration.

This chapter only covers the relevant parts of the YAML format for a consistent use with arara.

For advanced topics, I highly recommend the complete format specification, available online.

Collections

According to the specification, YAML's block collections use indentation for scope and begin

each entry on its own line. Block sequences indicate each entry with a dash and space. Map‐

pings use a colon and space to mark each key: value pair. Comments begin with an octothorpe

#. arara relies solely on mappings and a few scalars to sequences at some point. Let us see an

example of a sequence of scalars:

team:

- Paulo Cereda

- Marco Daniel

1.

2.

3.

Collections 170

https://yaml.org/spec/1.2.2/

- Brent Longborough

- Nicola Talbot

- Ben Frank

It is quite straightforward: team holds a sequence of four scalars. YAML also has flow styles, us‐

ing explicit indicators rather than indentation to denote scope. The flow sequence is written as

a comma-separated list within square brackets:

primes: [2, 3, 5, 7, 11]

Attribute maps are easily represented by nesting entries, respecting indentation. For instance,

consider a map developer containing two keys, name and country. The YAML representation

is presented as follows:

developer:

name: Paulo

country: Brazil

Similarly, the flow mapping uses curly braces. Observe that this is the form adopted by a

parametrized directive (see syntax in Important concepts):

developer: { name: Paulo, country: Brazil }

An attribute map can contain sequences as well. Consider the following code where develop‐

ers holds a list of two developers containing their names and countries:

developers:

- name: Paulo

country: Brazil

- name: Marco

country: Germany

The previous code can be easily represented in flow style by using square and curly brackets to

represent sequences and attribute maps.

Scalars

Scalar content can be written in block notation, using a literal style, indicated by a vertical bar,

where all line breaks are significant. Alternatively, they can be written with the folded style, de‐

Scalars 171

noted by a greater-than sign, where each line break is folded to a space unless it ends an emp‐

ty or a more-indented line. It is mportant to note that arara intensively uses both styles (as

seen in Section~\ref{sec:rule}, on page~\pageref{sec:rule}). Let us see an example:

logo: |

 This is the arara logo

 in its ASCII glory!

 __ _ _ __ __ _ _ __ __ _

 / _` | '__/ _` | '__/ _` |

 | (_| | | | (_| | | | (_| |

 __,_|_| __,_|_| __,_|

slogan: >

 The cool TeX

 automation tool

As seen in the previous code, logo holds the ASCII logo of our tool, respecting line breaks. Sim‐

ilarly, observe that the slogan key holds the text with line breaks replaced by spaces (in the

same fashion TeX does with consecutive, non-empty lines).

Block indentation indicator

According to the YAML specification, the indentation level of a block scalar is

typically detected from its first non-empty line. It is an error for any of the

leading empty lines to contain more spaces than the first non-empty line,

hence the ASCII logo could not be represented, as it starts with a space.

When detection would fail, YAML requires that the indentation level for the

content be given using an explicit indentation indicator. This level is specified

as the integer number of the additional indentation spaces used for the con‐

tent, relative to its parent node. It would be the case if we want to represent

our logo without the preceding text.

YAML's flow scalars include the plain style and two quoted styles. The double-quoted style pro‐

vides escape sequences. The single-quoted style is useful when escaping is not needed. All flow

scalars can span multiple lines. Note that line breaks are always folded. Since arara uses MVEL

as its underlying scripting language (see MVEL for reference), it might be advisable to quote

scalars when starting with forbidden symbols in YAML.

Scalars 172

Tags

According to the specification, in YAML, untagged nodes are given a type depending on the ap‐

plication. The examples covered in this primer use the seq, map and str types from the fail

safe schema. Explicit typing is denoted with a tag using the exclamation point symbol. Global

tags are usually uniform resource identifiers and may be specified in a tag shorthand notation

using a handle. Application-specific local tags may also be used. For arara, there is a special

schema used for both rules and configuration files, so in those cases, make sure to add !con‐

fig as global tag:

!config

In particular, rules and configuration files of arara are properly covered in Important concepts

and Configuration. For now, it suffices to say that the !config global tag is necessary to pro‐

vide the correct mapping of values inside our tool.

Further reading

This chapter does not cover all features of the YAML format, so further reading is advisable. I

highly recommend the official YAML specification, currently covering the third version of the

format.

Tags 173

https://yaml.org/spec/1.2.2/

MVEL
According to the Wikipedia entry, the MVFLEX Expression Language (hereafter referred as MVEL)

is a hybrid, dynamic, statically typed, embeddable expression language and runtime for the Java

platform. Originally started as a utility language for an application framework, the project is

now developed completely independently. arara relies on this scripting language in two circum‐

stances:

Rules, as nominal attributes gathered from directives are used to build complex com‐

mand invocations and additional computations. A rule follows a very strict model, de‐

tailed in Important concepts.

Conditionals, as logical expressions must be evaluated in order to decide whether and

how a directive should be interpreted. Conditionals are detailed in Important concepts.

This chapter only covers the relevant parts of the MVEL language for a consistent use with

arara. For advanced topics, I highly recommend the official language guide for MVEL 2.0, avail‐

able online.

Basic usage

The following primer is provided by the official language guide, almost verbatim, with a few

modifications to make it more adherent to our needs with arara. Consider the following expres‐

sion:

user.name

In this expression, we have a single identifier user.name, which by itself is a property expres‐

sion, in that the only purpose of such an expression is to extract a property out of a variable or

context object, namely user. Property expressions are widely used by arara, as directive param‐

eters are converted to a map inside the corresponding rule scope. For instance, a parameter

foo in a directive will be mapped as parameters.foo inside a rule during interpretation. This

topic is detailed in Important concepts. The scripting language can also be used for evaluating

a boolean expression:

1.

2.

Basic usage 174

https://en.wikipedia.org/wiki/MVEL
https://mvel.documentnode.com/

user.name == 'John Doe'

This expression yields a boolean result, either true or false based on a comparison opera‐

tion. Like a typical programming language, MVEL supports the full gamut of operator prece‐

dence rules, including the ability to use bracketing to control execution order:

(user.name == 'John Doe') && ((x * 2) - 1) > 20

You may write scripts with an arbitrary number of statements using a semicolon to denote the

termination of a statement. This is required in all cases except in cases where there is only one

statement, or for the last statement in a script:

statement1; statement2; statement3

It is important to observe that MVEL expressions use a last value out principle. This means, that

although MVEL supports the return keyword, it can be safely omitted. For example:

foo = 10;

bar = (foo = foo * 2) + 10;

foo;

In this particular example, the expression automatically returns the value of foo as it is the last

value of the expression. It is functionally identical to:

foo = 10;

bar = (foo = foo * 2) + 10;

return foo;

Personally, I like to explicitly add a return statement, as it provides a visual indication of the

expression exit point. All rules released with arara favour this writing style. However, feel free to

choose any writing style you want, as long as the resulting code is consistent.

The type coercion system of MVEL is applied in cases where two incomparable types are pre‐

sented by attempting to coerce the right value to that of the type of the left value, and then

vice-versa. For example:

"123" == 123;

Basic usage 175

Surprisingly, the evaluation of such expression holds true in MVEL because the underlying type

coercion system will coerce the untyped number 123 to a string 123 in order to perform the

comparison.

Inline lists, maps and arrays

According to the documentation, MVEL allows you to express lists, maps and arrays using simple

elegant syntax. Lists are expressed in the following format:

["Jim", "Bob", "Smith"]

Note that lists are denoted by comma-separated values delimited by square brackets. Similarly,

maps (sets of key/value attributes) are expressed in the following format:

["Foo" : "Bar", "Bar" : "Foo"]

Note that attributes are composed by a key, a colon and the corresponding value. A map is de‐

noted by comma-separated attributes delimited by square brackets. Finally, arrays are ex‐

pressed in the following format:

{ "Jim", "Bob", "Smith" }

One important aspect about inline arrays is their special ability to be coerced to other array

types. When you declare an inline array, it is untyped at first and later coerced to the type need‐

ed in context. For instance, consider the following code, in which sum takes an array of integers:

math.sum({ 1, 2, 3, 4 });

In this case, the scripting language will see that the target method accepts an integer array and

automatically type the provided untyped array as such. This is an important feature exploited

by arara when calling methods within the rule or conditional scope.

Inline lists, maps and arrays 176

Property navigation

MVEL provides a single, unified syntax for accessing properties, static fields, maps and other

structures. Lists are accessed the same as arrays. For example, these two constructs are equiva‐

lent (MVEL and Java access styles for lists and arrays, respectively):

user[5]

user.get(5)

Observe that MVEL accepts plain Java methods as well. Maps are accessed in the same way as

arrays except any object can be passed as the index value. For example, these two constructs

are equivalent (MVEL and Java access styles for maps, respectively):

user["foobar"]

user.foobar

user.get("foobar")

It is advisable to favour such access styles over their Java counterparts when writing rules and

conditionals for arara. The clean syntax helps to ensure more readable code.

Flow control

The expression language goes beyond simple evaluations. In fact, MVEL supports an assortment

of control flow operators (namely, conditionals and repetitions) which allows advanced script‐

ing operations. Consider this conditional statement:

if (var > 0) {

 r = "greater than zero";

}

else if (var == 0) {

 r = "exactly zero";

}

else {

Property navigation 177

 r = "less than zero";

}

As seen in the previous code, the syntax is very similar to the ones found in typical program‐

ming languages. MVEL also provides a shorter version, known as a ternary statement:

answer == true ? "yes" : "no";

The foreach statement accepts two parameters separated by a colon, the first being the local

variable holding the current element, and the second the collection or array to be iterated over.

For example:

foreach (name : people) {

System.out.println(name);

}

As expected, MVEL also implements the standard C for loop. Observe that newer versions of

MVEL allow an abbreviation of foreach to the usual for statement, as syntactic sugar. In order

to explicitly indicate a collection iteration, we usually use foreach in the default rules for

arara, but both statements behave exactly the same from a semantic point of view.

for (int i = 0; i < 100; i++) {

System.out.println(i);

}

The scripting language also provides two versions of the do statement: one with while and one

with until (the latter being the exact inverse of the former):

do {

 x = something();

} while (x != null);

do {

 x = something();

} until (x == null);

Finally, MVEL also implements the standard while, with the significant addition of an until

counterpart (for inverted logic):

Flow control 178

while (isTrue()) {

doSomething();

}

until (isFalse()) {

doSomething();

}

Since while and until are unbounded (i.e, the number of iterations required to solve a prob‐

lem may be unpredictable), we usually tend to avoid using such statements when writing rules

for arara.

Projections and folds

Projections are a way of representing collections. According to the official documentation, using

a very simple syntax, one can inspect very complex object models inside collections in MVEL us‐

ing the in operator. For example:

names = (user.name in users);

As seen in the above code, names holds all values from the name property of each element,

represented locally by a placeholder user, from the collection users being inspected. This fea‐

ture can even perform nested operations.

Assignments

According to the official documentation, the scripting language allows variable assignment in

expressions, either for extraction from the runtime, or for use inside the expression. As MVEL is

a dynamically typed language, there is no need to specify a type in order to declare a new vari‐

able. However, feel free to explicitly declare the type when desired.

str = "My string";

String str = "My string";

Projections and folds 179

Unlike Java, however, the scripting language provides automatic type conversion (when possi‐

ble) when assigning a value to a typed variable. In the following example, an integer value is as‐

signed to a string:

String num = 1;

For dynamically typed variables, in order to perform a type conversion, it is just a matter of ex‐

plicitly casting the value to the desired type. In the following example, an explicit string cast is

assigned to the num variable:

num = (String) 1;

When writing rules for arara, is advisable to keep variables to a minimum in order to avoid un‐

necessary assignments and a potential performance drop. However, make sure to favour read‐

ability over unmaintained code.

Basic templating

MVEL templates are comprised of orb tags inside a plain text document. Orb tags denote dy‐

namic elements of the template which the engine will evaluate at runtime. arara heavily relies

on this concept for runtime evaluation of conditionals and rules. For rules, we use orb tags to

return either a string from a textual template or a proper command object. The former consti‐

tuted the basis of command generation in previous versions of our tool; we highly recommend

the latter, detailed in Important concepts. Conditionals are in fact orb tags in disguise, such

that the expression (or a sequence of expressions) is properly evaluated at runtime. Consider

the following example:

My favourite team is @{ person.name == 'Enrico' ? 'Juventus' : 'Palmeiras' }!

The above code features a basic form of orb tag named expression orb. It contains an expres‐

sion (or a sequence of expressions) which will be evaluated to a certain value, as seen earlier

on, when discussing the last value out principle. In the example, the value to be returned will

be a string containing a football team name (the result is of course based on the comparison

outcome).

Basic templating 180

Further documentation

This chapter does not cover all features of the MVEL expression language, so further reading is

advisable. I highly recommend the MVEL language guide currently covering version 2.0 of the

language.

Further documentation 181

https://mvel.documentnode.com/

	License
	Contents
	Introduction
	What is this tool?
	Core concepts
	Operating system remarks
	Support

	Important concepts
	Rules
	Directives
	Important changes in version 7

	Command line
	User interface design
	Options
	File name lookup

	Configuration file
	File lookup
	Basic structure

	Logging
	System information
	Directive extraction
	Directive normalization
	Rule interpretation

	Projects
	Rationale
	File structure

	Methods
	Files
	Conditional flow
	Strings
	Operating systems
	Type checking
	Classes and objects
	Dialog boxes
	Commands
	Others

	The official rule pack
	animate
	asymptote
	authorindex
	bib2gls
	biber
	bibtex
	bibtex8
	bibtexu
	clean
	context
	convert
	copy
	csplain
	datatooltk
	detex
	dvipdfm
	dvipdfmx
	dvips
	dvipspdf
	dvisvgm
	etex
	fig2dev
	frontespizio
	ghostscript
	gnuplot
	halt
	indent
	knitr
	latex
	latexmk
	llmk
	ltx2any
	luahbtex
	lualatex
	luatex
	make
	makeglossaries
	makeglossarieslite
	makeindex
	metapost
	mkdir
	move
	nomencl
	pbibtex
	pdfcrop
	pdfcsplain
	pdflatex
	pdftex
	pdftk
	pdftocairo
	perltex
	platex
	ps2pdf
	pythontex
	qpdf
	rmdir
	sage
	sketch
	songidx
	spix
	tex
	texcount
	texindy
	tikzmake
	upbibtex
	uplatex
	uptex
	xdvipdfmx
	xelatex
	xetex
	xindex
	xindy

	Building arara
	Requirements
	Compiling the tool
	Fetching the sources
	Building the executable
	Executing the fresh build

	Deploying the tool
	Directory structure
	Defining a location
	Tool wrapping

	Introduction to the YAML format
	Collections
	Scalars
	Tags
	Further reading

	MVEL
	Basic usage
	Inline lists, maps and arrays
	Property navigation
	Flow control
	Projections and folds
	Assignments
	Basic templating
	Further documentation

