
The newcommand.py utility∗

Scott Pakin
scott+nc@pakin.org

2010/06/01

Abstract

LATEX’s \newcommand is fairly limited in the way it processes optional
arguments, but the TEX alternative, a batch of \defs and \futurelets,
can be overwhelming to the casual LATEX user. newcommand.py is a Python
program that automatically generates LATEX macro definitions for macros
that require more powerful argument processing than \newcommand can han­
dle. newcommand.py is intended for LATEX advanced beginners (i.e., those
who know how to use \newcommand but not internal LATEX2ε macros like
\@ifnextchar) and for more advanced users who want to save some typing
when defining complex macros.

1 Introduction

LATEX’s \newcommand is a rather limited way to define new macros. Only one
argument can be designated as optional, it must be the first argument, and it
must appear within square brackets. Defining macros that take multiple optional
arguments or in which an optional argument appears in the middle of the argu­
ment list is possible but well beyond the capabilities of the casual LATEX user.
It requires using TEX primitives such as \def and \futurelet and/or LATEX2ε
internal macros such as \@ifnextchar.

newcommand.py is a Python program that reads a specification of an argument
list and automatically produces LATEX code that processes the arguments appropri­
ately. newcommand.py makes it easy to define LATEX macros with more complex
parameter parsing than is possible with \newcommand alone. Note that you do
need to have Python installed on your system to run newcommand.py. Python is
freely available for download from http://www.python.org/.

To define a LATEX macro, one gives newcommand.py a macro description written
in a simple specification language. The description essentially lists the required
and optional arguments and, for each optional argument, the default value. The
next section of this document describes the syntax and provides some examples,
but for now, let’s look at how one would define the most trivial macro possible, one
that takes no arguments. Enter the following at your operating system’s prompt:

∗newcommand.py has version number 2.0, last revised 2010/06/01.

1

mailto:scott+nc@pakin.org
mailto:scott+nc@pakin.org
http://www.python.org/
http:newcommand.py
http:newcommand.py
http:newcommand.py
http:newcommand.py
http:newcommand.py
http:newcommand.py
http:newcommand.py
http:newcommand.py

newcommand.py "MACRO trivial"

(Depending on your system, you may need to prefix that command with “python”.)
The program should output the following LATEX code in response:

% Prototype: MACRO trivial
\newcommand{\trivial}{%

% Put your code here.
}

Alternatively, you can run newcommand.py interactively, entering macro descrip­
tions at the “% Prototype:” prompt:

% Prototype: MACRO trivial
\newcommand{\trivial}{%

% Put your code here.
}
% Prototype:

Enter your operating system’s end-of-file character (Ctrl-D in Unix or Ctrl-Z in
Windows) to exit the program.

While you certainly don’t need newcommand.py to write macros that are as
trivial as \trivial, the previous discussion shows how to run the program and
the sort of output that you should expect. There will always be a “Put your
code here” comment indicating where you should fill in the actual macro code.
At that location, all of the macro’s parameters—both optional and required—will
be defined and can be referred to in the ordinary way: #1, #2, #3, etc.

2 Usage

As we saw in the previous section, macros are defined by the word “MACRO” followed
by the macro name, with no preceding backslash. In this section we examine how
to specify increasingly sophisticated argument processing using newcommand.py.

2.1 Required arguments

Required arguments are entered as #1, #2, #3, . . . , with no surrounding braces:

% Prototype: MACRO required #1 #2 #3 #4 #5
\newcommand{\required}[5]{%

% Put your code here.
% You can refer to the arguments as #1 through #5.

}

Parameters must be numbered in monotonically increasing order, starting
with #1. Incorrectly ordered parameters will produce an error message:

% Prototype: MACRO required #1 #3 #4
^

newcommand.py: Expected parameter 2 but saw parameter 3.

2

http:newcommand.py
http:newcommand.py
http:newcommand.py
http:newcommand.py
http:newcommand.py

2.2 Optional arguments

Optional arguments are written as either “OPT[(param)={(default)}]” or
“OPT((param)={(default)})”. In the former case, square brackets are used to offset
the optional argument; in the latter case, parentheses are used. (param) is the
parameter number (#1, #2, #3, . . .), and (default) is the default value for that
parameter. Note that curly braces are required around (default).

% Prototype: MACRO optional OPT[#1={maybe}]

\newcommand{\optional}[1][maybe]{%

% Put your code here.

% You can refer to the argument as #1.

}

Up to this point, the examples have been so simple that newcommand.py is
overkill for entering them. We can now begin specifying constructs that LATEX’s
\newcommand can’t handle, such as a parenthesized optional argument, an optional
argument that doesn’t appear at the beginning of the argument list, and multiple
optional arguments:

% Prototype: MACRO parenthesized OPT(#1={abc})

\makeatletter

\newcommand{\parenthesized}{%

\@ifnextchar({\parenthesized@i}{\parenthesized@i({abc})}%

}

\def\parenthesized@i(#1){%

% Put your code here.

% You can refer to the argument as #1.

}

\makeatother

% Prototype: MACRO nonbeginning #1 OPT[#2={abc}]

\makeatletter
\newcommand{\nonbeginning}[1]{%

\@ifnextchar[{\nonbeginning@i{#1}}{\nonbeginning@i{#1}[{abc}]}%
}

\def\nonbeginning@i#1[#2]{%

% Put your code here.

% You can refer to the arguments as #1 and #2.

}

\makeatother

% Prototype: MACRO multiple OPT[#1={abc}] OPT[#2={def}]

\makeatletter

3

http:newcommand.py

\newcommand{\multiple}[1][abc]{%

\@ifnextchar[{\multiple@i[{#1}]}{\multiple@i[{#1}][{def}]}%

}

\def\multiple@i[#1][#2]{%

% Put your code here.

% You can refer to the arguments as #1 and #2.

}

\makeatother

The template for optional arguments that was shown on the preceding page
stated that optional arguments contain a “(param)={(default)}” specification. In
fact, optional arguments can contain multiple “(param)={(default)}” specifica­
tions, as long as they are separated by literal text:

% Prototype: MACRO multiopt OPT(#1={0},#2={0})

\makeatletter

\newcommand{\multiopt}{%

\@ifnextchar({\multiopt@i}{\multiopt@i({0},{0})}%

}

\def\multiopt@i(#1,#2){%

% Put your code here.

% You can refer to the arguments as #1 and #2.

}

\makeatother

In that example, \multiopt takes an optional parenthesized argument. If omitted,
it defaults to (0,0). If provided, the argument must be of the form “((x),(y))”. In
either case, the comma-separated values within the parentheses are parsed into #1
and #2. Contrast that with the following:

% Prototype: MACRO multiopt OPT(#1={0,0})

\makeatletter

\newcommand{\multiopt}{%

\@ifnextchar({\multiopt@i}{\multiopt@i({0,0})}%

}

\def\multiopt@i(#1){%

% Put your code here.

% You can refer to the argument as #1.

}

\makeatother

The optional argument still defaults to (0,0), but #1 receives all of the text
that lies between the parentheses; \multiopt does not parse it into two comma-
separated values in #1 and #2, as it did in the previous example.

4

The (default) text in an OPT term can reference any macro parameter intro­
duced before the OPT. Hence, the following defines a macro that accepts a required
argument followed by an optional argument. The default value of the optional ar­
gument is the value provided for the required argument:

% Prototype: MACRO paramdefault #1 OPT[#2={#1}]

\makeatletter
\newcommand{\paramdefault}[1]{%

\@ifnextchar[{\paramdefault@i{#1}}{\paramdefault@i{#1}[{#1}]}%
}

\def\paramdefault@i#1[#2]{%

% Put your code here.

% You can refer to the arguments as #1 and #2.

}

\makeatother

2.3 Literal text

In addition to required and optional parameters, it is also possible to specify text
that must appear literally in the macro call. Merely specify it within curly braces:

% Prototype: MACRO textual #1 { and } #2 {.}

\makeatletter

\newcommand{\textual}[1]{%

\textual@i{#1}%

}

\def\textual@i#1 and #2.{%

% Put your code here.

% You can refer to the arguments as #1 and #2.

}

\makeatother

A macro such as \textual can be called like this:

\textual {Milk} and {cookies}.

Actually, in that example, because both Milk and cookies are delimited on the
right by literal text, TEX can figure out how to split \textual’s argument into #1
and #2 even if the curly braces are omitted:

\textual Milk and cookies.

5

2.4 Starred macros

The names of some LATEX macros can be followed by an optional “*” to indicate
a variation on the normal processing. For example, \vspace, which introduces
a given amount of vertical space, discards the space if it appears at the top of
the page. \vspace*, in contrast, typesets the space no matter where it appears.
newcommand.py makes it easy for users to define their own starred commands:

% Prototype: MACRO starred * #1 #2

\makeatletter

\newif\ifstarred@star

\newcommand{\starred}{%

\@ifstar{\starred@startrue\starred@i*}{\starred@starfalse\starred@i*}%
}

\def\starred@i*#1#2{%

\ifstarred@star

% Put code for the "*" case here.

\else

% Put code for the non-"*" case here.
\fi
% Put code common to both cases here (and/or above the \ifstarred@star).
% You can refer to the arguments as #1 and #2.

}

\makeatother

Note that unlike the generated code shown up to this point, the code for starred
macros includes multiple placeholders for user code.

The “*” in a starred macro does not have to immediately follow the
macro name; it can appear anywhere in the macro specification. However,
newcommand.py currently limits macros to at most one asterisk.

Embedding an asterisk within curly braces causes it to be treated not as an
optional character but as (required) literal text. Contrast the preceding example
with the following one:

% Prototype: MACRO starred {*} #1 #2

\makeatletter

\newcommand{\starred}{%

\starred@i%

}

\def\starred@i*#1#2{%

% Put your code here.

% You can refer to the arguments as #1 and #2.

}

\makeatother

The asterisk in that definition of \starred must be included in every macro
invocation or TEX will abort with a “Use of \starred@i doesn’t match its
definition” error.

6

http:newcommand.py
http:newcommand.py

2.5 More than nine arguments

TEX imposes a limit of nine arguments per macro. Internally, “#” is expected to
be followed by exactly one digit, which means that “#10” refers to argument #1
followed by the character 0. Fortunately, it’s rare that a macro needs more than
nine arguments and rarer still that those arguments are not better specified as
a list of (key)=(value) pairs, as supported by the keyval package and many other
LATEX packages.

If large numbers of arguments are in fact necessary, newcommand.py does let
you specify them. The trick that the generated code uses is to split the macro
into multiple macros, each of which takes nine or fewer arguments and stores the
value of each argument in a variable that can later be accessed. Because digits
are awkward to use in macro names, newcommand.py uses roman numerals to
name arguments in the case of more than nine arguments: \(name)@arg@i for #1,
\(name)@arg@ii for #2, \(name)@arg@iii for #3, \(name)@arg@iv for #4, and
so forth. The following example takes 14 required arguments and one optional
argument (which defaults to the string “etc”):

% Prototype: MACRO manyargs #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13

#14 OPT[#15={etc}]

\makeatletter
\newcommand{\manyargs}[9]{%

\def\manyargs@arg@i{#1}%

\def\manyargs@arg@ii{#2}%

\def\manyargs@arg@iii{#3}%

\def\manyargs@arg@iv{#4}%

\def\manyargs@arg@v{#5}%

\def\manyargs@arg@vi{#6}%

\def\manyargs@arg@vii{#7}%

\def\manyargs@arg@viii{#8}%

\def\manyargs@arg@ix{#9}%

\manyargs@i

}

\def\manyargs@i#1#2#3#4#5{%

\def\manyargs@arg@x{#1}%

\def\manyargs@arg@xi{#2}%

\def\manyargs@arg@xii{#3}%

\def\manyargs@arg@xiii{#4}%

\def\manyargs@arg@xiv{#5}%

\@ifnextchar[{\manyargs@ii}{\manyargs@ii[{etc}]}%

}

\def\manyargs@ii[#1]{%
\def\manyargs@arg@xv{#1}%
% Put your code here.
% You can refer to the arguments as \manyargs@arg@i through \manyargs@arg@xv.

}

\makeatother

7

http:newcommand.py
http:newcommand.py

The current version of newcommand.py is limited to 4000 arguments, which
should be more than enough for most purposes.

2.6 Summary

A macro is defined in newcommand.py with:

MACRO (name) (arguments)

in which (name) is the name of the macro, and (arguments) is zero or more of the
following:

Argument Meaning Example

#(number)
{(text)}
OPT[#(number)={(text)}]
OPT(#(number)={(text)})

Parameter (required)
Literal text (required)
Parameter (optional, with default)
Same as the above, but with paren­
theses instead of brackets

#1
{+}
OPT[#1={tbp}]
OPT(#1={tbp})

* Literal asterisk (optional) *

Within an OPT argument, #(number)={(text)} can be repeated any number of
times, as long as the various instances are separated by literal text.

3 Further examples

3.1 Mimicking LATEX’s picture environment

The LATEX picture environment takes two, parenthesized, coordinate-pair argu­
ments, the second pair being optional. Here’s how to define a macro that takes
the same arguments as the picture environment and parses them into x1, y1, x2,
and y2 (i.e., #1–#4):

% Prototype: MACRO picturemacro {(}#1{,}#2{)} OPT(#3={0},#4={0})

\makeatletter

\newcommand{\picturemacro}{%

\picturemacro@i%

}

\def\picturemacro@i(#1,#2){%
\@ifnextchar({\picturemacro@ii({#1},{#2})}{\picturemacro@ii({#1},{#2})({0},{0})}%

}

\def\picturemacro@ii(#1,#2)(#3,#4){%

% Put your code here.

% You can refer to the arguments as #1 through #4.

}

\makeatother

8

http:newcommand.py
http:newcommand.py

The first pair of parentheses and the comma are quoted because they represent
required, literal text.

3.2 Mimicking LATEX’s \parbox macro

LATEX’s \parbox macro takes three optional arguments and two required argu­
ments. Furthermore, the third argument defaults to whatever value was spec­
ified for the first argument. This is easy to express in LATEX with the help of
newcommand.py:

% Prototype: MACRO parboxlike OPT[#1={s}] OPT[#2={\relax}] OPT[#3={#1}]
#4 #5

\makeatletter
\newcommand{\parboxlike}[1][s]{%

\@ifnextchar[{\parboxlike@i[{#1}]}{\parboxlike@i[{#1}][{\relax}]}%
}

\def\parboxlike@i[#1][#2]{%
\@ifnextchar[{\parboxlike@ii[{#1}][{#2}]}{\parboxlike@ii[{#1}][{#2}][{#1}]}%

}

\def\parboxlike@ii[#1][#2][#3]#4#5{%
% Put your code here.
% You can refer to the arguments as #1 through #5.

}
\makeatother

3.3 Dynamically changing argument formats

With a little cleverness, it is possible for a macro to accept one of two completely
different sets of arguments based on the values provided for earlier arguments. For
example, suppose we want to define a macro, \differentargs that can be called
as either

\differentargs*[optarg]{reqarg}

or

\differentargs{reqarg}(optarg)

That is, the presence of an asterisk determines whether \differentargs should
expect an optional argument in square brackets followed by a required argument
or to expect a required argument followed by an optional argument in parentheses.

The trick is to create two helper macros: one for the “*” case (\withstar) and
the other for the non-“*” case (\withoutstar). \differentargs can then invoke
one of \withstar or \withoutstar based on whether or not it sees an aster­
isk. The following shows how to use newcommand.py to define \differentargs,

9

http:newcommand.py
http:newcommand.py

\withstar, and \withoutstar and how to edit \differentargs to invoke its
helper macros:

% Prototype: MACRO differentargs *

\makeatletter

\newif\ifdifferentargs@star

\newcommand{\differentargs}{%

\@ifstar{\differentargs@startrue\differentargs@i*}

{\differentargs@starfalse\differentargs@i*}%

}

\def\differentargs@i*{%

\ifdifferentargs@star

% Put code for the "*" case here.

\let\next=\withstar

\else

% Put code for the non-"*" case here.

\let\next=\withoutstar

\fi
% Put code common to both cases here (and/or above the \ifdifferentargs@star).
\next

}

\makeatother

% Prototype: MACRO withstar OPT[#1={starry}] #2

\newcommand{\withstar}[2][starry]{%

% Put your code here.

% You can refer to the arguments as #1 and #2.

}

% Prototype: MACRO withoutstar #1 OPT(#2={dark})

\makeatletter

\newcommand{\withoutstar}[1]{%

\@ifnextchar({\withoutstar@i{#1}}{\withoutstar@i{#1}({dark})}%

}

\def\withoutstar@i#1(#2){%

% Put your code here.

% You can refer to the arguments as #1 and #2.

}

\makeatother

Note that we edited \differentargs@i to let \next be equivalent to either
\withstar or \withoutstar based on whether an asterisk was encountered. \next
is evaluated outside of the \ifdifferentargs@star. . . \fi control structure. This
rigmarole is necessary because directly calling \withstar or \withoutstar would
cause those macros to see \ifdifferentargs@star’s \else or \fi as their first
argument when they ought to see the text following the \differentargs call.

10

4 Grammar

The following is the formal specification of newcommand.py’s grammar, written in
a more-or-less top-down manner. Literal values, shown in a typewriter font, are
case-sensitive. (letter) refers to a letter of the (English) alphabet. (digit) refers to
a digit.

(decl) ::= MACRO (ident) (arglist) .

(arg) ::= (formal)
(quoted
(

)
optarg)

*

 .

(formal) ::= # [(digit) .

(quoted) ::= { (rawtext) } .

(rawtext) ::= [anything except a {, }, or # .

(optarg) ::= OPT (delim) (defvals) (delim) .

::= .

(defvals) ::=

(quoted)
(rawtext)

[(defval) .

(defval) ::= (formal) = (quoted) .

5 Acknowledgements

I’d like to say thank you to the following people:

•	 John Aycock for writing the Scanning, Parsing, and Rewriting Kit
(SPARK)—the lexer and parser underlying newcommand.py—and making
it freely available and redistributable.

(ident) ::= [(letter) .

(arglist) ::=
(arg)
[.

(delim) [
]
(
)

11

http://pages.cpsc.ucalgary.ca/~aycock/spark/
http://pages.cpsc.ucalgary.ca/~aycock/spark/

•	 Hendri Adriaens for pointing out a bug in the code generated by
newcommand.py. Previously, bracketed text within a mandatory argument
could be mistaken for an optional argument.

•	 Tom Potts for reporting a spurious error message caused by the processing
of OPT. This bug has now been fixed. Tom Potts also proposed the example
used in Section 3.3 in which the starred and unstarred versions of a macro
take different arguments.

6 Copyright and license

Copyright © 2010, Scott Pakin

This package may be distributed and/or modified under the conditions of the
LATEX Project Public License, either version 1.3c of this license or (at your option)
any later version. The latest version of this license is in:

http://www.latex-project.org/lppl.txt

and version 1.3c or later is part of all distributions of LATEX version 2006/05/20
or later.

12

http://www.latex-project.org/lppl.txt
http:newcommand.py

	Introduction
	Usage
	Required arguments
	Optional arguments
	Literal text
	Starred macros
	More than nine arguments
	Summary

	Further examples
	Mimicking LaTeX's picture environment
	Mimicking LaTeX's parbox macro
	Dynamically changing argument formats

	Grammar
	Acknowledgements
	Copyright and license

