The X Keyboard Extension:
Library Specification

Library Version 1.0 / Document Revision 1.1
X Consortium Standard

X Version 11, Release 6.4

Amber J. Benson and Gary Aitken

Erik Fortune
Silicon Graphics, Inc.

Donna Converse
X Consortium Inc.

George Sachs
Hewlett-Packard Company

Will Walker
Digital Equipment Corporation

Copyright © 1995, 1996 X Consortium Inc.

Copyright © 1995, 1996 Silicon Graphics Inc.
Copyright © 1995, 1996 Hewlett-Packard Company
Copyright © 1995, 1996 Digital EqQuipment Corporation

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
S0, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGE-
MENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the names of the X Consortium, Silicon Graphics Inc.,
Hewlett-Packard Company, and Digital Equipment Corporation shall not be used in advertising or
otherwise to promote the sale, use or other dealings in this Software without prior written authori-
zation.

Acknowledgments

This document is the result of a great deal of hard work by a great many people. Without Erik For-
tune’s work as Architect of the X Keyboard Extension and the longtime support of Silicon Graph-
ics Inc. there would not be a keyboard extension.

We gratefully thank Will Walker and George Sachs for their help and expertise in providing some
of the content for this document, and Digital Equipment Corporation and Hewlett-Packard for
allowing them to participate in this project, and we are deeply indebted to IBM for providing the
funding to complete this library specification.

Most of all, we thank Gary Aitken and Amber J. Benson for their long hours and late nights as
ultimate authors of this specification, and for serving as authors, document editors, and XKB pro-
tocol and implementation reviewers. Their commitment to accuracy and completeness, their
attention to detail, their keen insight, and their good natures when working under tremendous
pressure are in some measure responsible not only for the quality of this document, but for the
quality of the Keyboard extension itself.

Matt Landau

Manager, X Window System
X Consortium Inc.

5 February 1996

The X Keyboard Extension

The following table shows the font conventions used in this document:

Usage Font example

Key Labels Num_Lock

New terms SlowKeys acceptance delay

Function definitions XkbColorPXkbAddGeomColor(geomspegpixel)
Function references XkbAddGeomColor

Parameters or arguments geom

Structure definitions XkbGeometryRec

Structure references XkbGeonet r yRec

References to fields in a data structurekey_aliases
References to masks, modifiers, controlgnor e@ oupLock

November 10, 1997 Library Version 1.0/Document Revision 1.1

The X Keyboard Extension

L@ A= V1= PSP 1
1.1 Core X Protocol Support for Keyboardsueeeiiiieeiiiiiiciiiiiieee e 1
1.2 Xkb Keyboard Extension Support for Keyboards.............ccccveeiiiiiiiiiiiieeeeeeeii, 1
1.3 XKD EXIENSION COMPONENTS ...cciiiitiiiieiitiieee et ee e e sttt e e e st e e e e s sbb e e e e s sbbe e e e e s sabreeeesanbeeeeeaanes 1
1.3.1 Groups and Shift LEVEIS..........uuiiiiiiiiiie e 3
S T ¥ Vo [(ol €] o 10 o ST PP PO PP PPP PPN 3
1.4 (O 1= o A 177 =SSR 3
1.5 Compatibility With the Core ProtOCOL............ceiiiiiiiie e 4
1.6 Additional ProtOCOI EITOIS ...ttt e e e e e e e e s e e e e e e e e e as 4
1.7 EXtension LIBrary FUNCHONSciiiiiie et e e are e e e e e e e e e e 4
O 0 R = o T gl [o [Tox= 11T LS PP 4
Initialization and General Programming Information................coouuiiiiiiiinneeeeeeenn. 6
21 EXtENSION HEAUEK FIlES. ettt e e e e e e e e e e e e snneenes 6
2.2 EXLENSION NAME ...ttt e e e sttt e e s ettt e e e e snbbe e e e e s bbeeeeeeneee 6
2.3 Determining Library CompatiDilitycccooeieiiiiiiii e 6
2.4 Initializing the Keyboard EXIENSION ... 7
25 Disabling the Keyboard EXIENSIONuuuiiiiiieeeeiis e e e e e e s s s e e e e e e e s e s ennnnreneeees 8
2.6 [o (e ol I = g (o] = PSP T PP PPPPPPPR 9
2.7 Display and Device Specifications in Function Callsccoceeiiiiiiiiiiniec e, 9
(D=1 = B 1 U [L1 PP PP 11
3.1 Allocating XKD Data SITUCIUIESuvviiiiiiiiiiie e e e e a e e e e e e e 11
3.2 Adding Data and Editing Data SIHUCIUIESeeieiiiiiiieiiiiiiee et 11
3.3 Making Changes to the Server's Keyboard Descriptionccccccvveeeeviiiiiciiiiiieneeee e 12
3.4 Tracking Keyboard Changes in the Server............ccccoo e 12
3.5 Freeing Data SITUCLUIESuiiie ittt et e s b e e s annnee e s 13
DT A =T o £ RS SSS 14
4.1 DT YT o A 1Y o= 14
4.2 XKD EVENE DAtA STIUCTUIESveeiiiiiie ettt ettt et e e e e e e s st e eeaaaeeeseeannnnnnes 15
4.3 SeleCting XKD EVENLScviiiiie ittt e e e e e e s e e e e e e e e e e s e s neeneeeeeas 15
A.3. 1 EVENEIMASKS ...ttt 17
4.4 UNified XKD EVENT TYPB..coiiiieiiiiieit et e ettt n e e e e aaaeas 18
(Y 0= 0 IS = L (= S EEPPPRRRR 19
5.1 Keyboard State DeSCHIPLION.ueiii ittt et e e sabe e e e e ane 19
5.2 Changing the Keyboard STAte.........c.c..uuuiiiiiiiiiii et 22
5,21 Changing MOGIfIEIScccoeiiii e e e e e e e e e e e e e e e aeaeananes 22
5.2.2 ChangiNg GrOUPSuuutuiieiiiaaeaeeiaaitete ettt e e e e e e e e sttt et e e e e e e s s e aaabbebeeeeeaaaeeeaaaaans 23
5.3 Determining Keyboard Stateooo it 23
5.4 Tracking Keyboard STALEeiviiiiiiiiie e 24
Complete Keyboard DeSCHPLION..........couuuiiiiiiiiiieaae et 27
6.1 The XKDDESCREC SIUCIUIE ..ottt e e e e e e e e e s e eneeebeaeees 27
6.2 Obtaining a Keyboard Description from the Server...........ccccocccviiiieiei e, 28
6.3 Tracking Changes to the Keyboard Description in the Server.........ccccoevvvvviiiiiviviiceieenennn. 28
6.4 Allocating and Freeing a Keyboard DeSCrHPLONcccoiiiiiiiiiiiiieees e 28
VirtUal MOGIFIEIS ... e e e as 30
7.1 Virtual Modifier Names and MaSKScoooiiiiiiiiiie e 30

November 10, 1997 Library Version 1.0/Document Revision 1.1 TOC-1

The X Keyboard Extension

10

7.2 MOAIfIEr DEFINILIONSevviii e e e e e e e e e et e e e e e eebaa e ns 30
7.3 Binding Virtual Modifiers to Real MOdIfiers ... 31
7.4 Virtual Modifier KEY MaPPINGcceeeeeiiiiiiiiiiiieiie e ee e e s s s sstieare e e e e e e e e e s s ssnnnreeeeeeeeeeeesannnnns 31
7.4.1 INACVE MOIfIEr SIS ...iiiiiii i e e e e e e e e e e e e e e e eeeraeenes 32
7.5 (070] 017751 o1 1 o] o PSPPSRI 32
7.6 EXAMIPIO e e et e e b e e e e s e e e e a 32
FaTo [Tor=1 (o] &< T PPPSTRR 34
8.1 [aTo [Tor=1 (o] gl \\F= Ty g LTS PO UPPRPPRRRPPNt 34
8.2 INAICALOr DAta STIUCTUIEScviuii ittt e et e e e e et e e e e s e etb e e e e e eessbaseeeeees 34
8.2.1 XKBINAICAIOIREC ...uun ittt e e e et e e e e e e ea b s e e e eeeaaas 34
8.2.2 XKDBINAICAIOIMEAPREC.....cciiiiiiiiee it 35
8.3 Getting Information AbOULt INAICALOIS........ccccviiiieiiiee e 39
8.3.1 Getting INdICAtOr STAEc..vviiiiiiieee e ———————— 40
8.3.2 Getting Indicator Information by INAeX.........cccvviiiiiiiriee e 40
8.3.3 Getting Indicator Information by Nameccccccvvveeeiiiiiccieeece e 40
8.4 Changing Indicator Maps and Statecoceiiiiiiiii i 41
8.4.1 Effects of Explicit Changes on INiCators...............oovvvviviiiiiiiiiiiiiie e, 41
8.4.2 Changing Indicator Maps by INAEX.........cccoeeiiiiiiiiiiieeeee e 42
8.4.3 Changing Indicator Maps by NamMeccccooeiiiiiiiiiiiie 43
8.4.4 The XkbIndicatorChangesSReC SIrUCLUIeoovviiviviiiiiiiiiirerr e 43
8.5 Tracking Changes to Indicator State Or Map...........uuueiiiiiieiiiiiiiieee e 44
8.6 Allocating and Freeing INdiCator MapS.......cuuveeeiii i e 45
BIIS e e e e 47
9.1 BEIIINAMIES ...ttt ettt e e e e e e et e e e e e e e st e e e e e s eebba e e eeesesaba e eeeeeraen 47
9.2 AUIDIE BEIIS......ceeeeieietittciee ettt ettt e e s e s e e e e e e e aeaeaeeeeeeeeeeeararararara 48
9.3 BEIIFUNCLIONS ...vuiiiiceie et e e e e et e e e e e e bt e e e e e e et e e e e e e eabaanns 48
9.3.1 Generating Named BellS...........uuuuuiiiiiiii e 49
9.3.2 Generating Named Bell EVENLS............uuiiiiiiiiii e 50
9.3.3 Forcing a Server-Generated Bell..............oooriririie e 51
9.4 DEeteCting BElIScooiiiiiiee e 51
()Y L0 =T o I @] o] o] F 53
10.1 Controls that Enable and Disable Other CoNntrolSccoooovvviiiieiieiceiee e, 54
10.1.1 The EnabledControls CONtrol........c..cooviviiiiiiiiiiiiee e 54
10.1.2 The AUORESEL CONIIOLccvuiiiieiiiiie e e e e aab e e s 55
10.2 (Ofo] 0 (o] I (o] g =T= |l ST=T 0 T= AV [o] RPN 56
10.2.1 The AudIibIEBEIl CONIOL.......covveieieiieee et 56
10.3 Controls for Repeat KeY BENAVIOLuuiiiiiiieeiiiiicciiiiees e e e 56
10.3.1 The PerKeyRepeat CONLrOl.......cc.uuuiiiiiieeeeeiie it e e e e e e s s e e e e e e e e s e ennenes 56
10.3.2 The RepeatKeys CONtrol.........cccuiiiiiiiiieie e e e e e e e e e e s eaneees 56
10.3.3 The DetectableAutorepeat CONtrol...........ccceuvviiieiieeee e 57
10.4 Controls for Keyboard Overlays (Overlayl and Overlay2 Controls)..........c.ccccvvvvvvvvvnnnnnn. 58
10.5 Controls for Using the Mouse from the Keyboard............occeeiiiiiiiiiiiiiiiiecc e, 59
10.5.1 The MOUSEKEYS CONMIOL.......ciiiiiiiiiieiiiiie ettt 59
10.5.2 The MouseKeySACCEl CONLIOL..........cuuiiiiiiiiiiiie e 59
10.6 Controls for Better Keyboard Access by Physically Impaired Persons..............cccoceeuee. 61
10.6.1 The AccesSXKEYS CONLIOL........uuiiiiiiiiiee i is i e e e e e 62
10.6.2 The AccessXTIMEOUL CONIOluuuiiiiiiiiiiiiiieceeceeeceeee e 62
10.6.3 The AccessXFeedback CONtrOl...............ooovviiiiiiiiiiiiiiiicee e e e e ee e e eeeens 63
10.6.4 ACCESSXNOLIfY EVENLS ...cccei ittt r e e e e e e e 64

November 10, 1997 Library Version 1.0/Document Revision 1.1 TOC-2

The X Keyboard Extension

10.6.5 StickyKeys, RepeatKeys, and MouseKeys EVENLS.............euvvvveiviiiiiiiiiiiiieieeeenn. 65
10.6.6 The SIOWKEYS CONLIOL........ccceeieeieieieeeeeeeeeee s e e e e e e e e e e e e e e e e e e eeaeaaaaenns 65
10.6.7 The BounCeKEYS CONLIOl........ccvviiiiiiiiiiiiiieiie e e 66
10.6.8 The StickyKeys CONIOl.........uuuuuuiiiiii i 67
10.7 Controls for General Keyboard Mapping.........ueeeeiiiiieeeeiiiiieee sttt sineeee e 68
10.7.1 The GroupSWrap CONIOLcccoiiiiiiiiiiiie ettt 69
10.7.2 The IgNoreLoCKMOdS CONIOLcuviiiiiiiiiiee et 69
10.7.3 The IgnoreGroupLock CONLIOlcuviiiiiiiiiiiee e 70
10.7.4 The InternalMods CONrol.............uuiiiiiiiiii e 70
10.8 The XKDCONLrOISREC SLIUCIUIEeeeiiiiiiiiiie ettt 71
10.9 L@ 1811 oY1 o [0o 11 {0 LSRR 77
10.10 Changing CONIIOIS.eeiiiiiiiieee ittt e s e e st e e e e nbn e e e e s sannneeas 77
10.10.1 The XkbControlsChangeSREC STIUCIUIEccuviieeiiiiiiee et 78
10.11 Tracking Changes to Keyboard CONtrOlSccoovviciiiiiiiiiieee e 79
10.12 Allocating and Freeing an XKDCONLIOISRECcccoeeiiiiiiiiiieieeee e 80
10.13 The Miscellaneous Per-client CONLrOISceiiiiiiiiiiiiiiiiiiieee e 81
11 X LIBrary CONMrOlS......uuuueiiii e e e e e e e e aaes 82
11.1 Controls Affecting Keycode-to-String Translationccccooveiiiiiiieieeeecee, 82
11.1.1 ForcelatinILOOKUP.......cccocuiiiiiiiii i 82
11.1.2 CoNSUMELOOKUPMOUS......ciiiiiiee e s e e e e e e e e e e e e e e e eeeeeeeaanaens 82
11.1.3 AlwaysConsumeShiftANALOCKuuiiiiiiiieiiiiie e 83
11.2 Controls Affecting CoOmpPOSE PrOCESSING ...cciiiieeiiiiiiiiiiiiiieeee e e e e e 83
11.2.1 ConsumeKeysONCOMPOSEFAIlccoiiiiiiiieiiiiiie e 83
11.2.2 COMPOSELED. s 84
11.2.3 BeepONCOMPOSERAIL.........oiiiiiiiiiieiiiiite ettt 84
11.3 Controls Effecting EVENt DEIIVEIYevviiieeei i e e e e e e e 84
11.3.1 IgNOreNewKeYDOArdsccooiiiiiiiiiiiiii e 84
11.4 Manipulating the Library CONtrolS.........cocuuiiiiiiiii e 85
11.4.1 Determining Which Library Controls are Implemented............c.ccoovvvvvviiiinnnnnnn. 85
11.4.2 Determining the State of the Library Controls ..., 85
11.4.3 Changing the State of the Library COoNntrolscocciiiiiiiiiiiiiieeeeeee 85
12 Interpreting KeY EVENTSoooiiiiiiiie e 87
12.1 Effects of Xkb on the Core X LibBrary ... 87
12.1.1 Effects of Xkb 0N EVENE State........cooiiiiiiiiiiiii e 87
12.1.2 Effects of Xkb on MappingNotify EVENLScoccuiiiiiiiiiiiiiiiiiee e 87
12.1.3 X Library Functions Affected by XKDcoooiiiiiiiii e 88
12.2 Xkb Event and Keymap FUNCHONS...........ouuuuiiiiiiiiiiiis e e e ee e 89
13 ()Y Lo =T o I CT=To] 1 4[] 1 oY PSSP 92
13.1 Shapes and OULIINESuuiiiiiiieee e e e e e e e s s s s e e e e e e e e s e s annnnnrenneees 94
13.2 ST=Tod 110 LT TP PPPTTPPR 95
13.3 ROWS 8NGO KBYS ...ttt ettt et e e sk r e e e s anbbn e e e s annneeee s 95
134 D ToToTo F= 1o £ 3PP OTPPPPRPTPPRRN 96
13.5 Overlay ROWS and OVErlay KEYScooiiiiiieiiiiiiiiiiiiis i e s s e e 96
13.6 Drawing a Keyboard Representation.............ccueiiiiiiiiiiiiiiiiee e 97
13.7 GeomMeEtry Data STIUCTUMNESeeeeeeeeiieiiieteeesss e s e e e e e e e e e e e e e e e et e e e e e e eeeeaetebean s a e e e s e e eaeeaaaes 98
13.8 Getting Keyboard Geometry From the Serverccccceeeeiiiiiie e 104
13.9 Using Keyboard GEOMELIYocuuiiiiiiiiiiie ettt 105
13.10 Adding Elements to a Keyboard GEOMELrY.........ccuvieieiiiiiiciiiiiiiiieee e e e e 106

November 10, 1997 Library Version 1.0/Document Revision 1.1 TOC-3

The X Keyboard Extension

14

15

16

13.11 Allocating and Freeing Geometry COMPONENES............cuvvuririmimimiiiiiiinieieeeeeeeeeeaaeeeereeeenens 110
Do 13 Y] o To = U e I\ F= o] o1 o 116
14.1 [\ o) e= o] g Ir=Ta o I =T 011 o] (oo |28 PSSR 116
14.1.1 Core Implementationccccuuuiiiiriiie e e e e e e s e e e e e e e 117
14.1.2 XKb IMplementationcccuiiiiiiiiiee e e e e 117
14.2 Getting Map Components from the SEIVET ... 118
14.3 Changing Map Components in the SEIVEN ... 120
14.3.1 The XkbMapChangesREC STIUCIUIEcoocuuiiieiiiiiiiee e 120
14.4 Tracking Changes to Map COMPONENTSccoiiiiiiieiiiiiiiee it e e e sebee e 122
14.5 Allocating and Freeing Client and Server Mapsccooovviiivieeeeeeveinincesn e 123
14.5.1 Allocating an Empty ClHent Mapcceeeiiiiiiiiiiiieeeeeeeeeeee e 123
14.5.2 Freeing a CleNt MaApuuuuuuiiiiiiie e a e 124
14.5.3 Allocating an Empty SErver Mapccoooeeeiiiiiiiieeeeeeer e 124
14.5.4 Freeing a SEIrVEr Mapccooieeiiiiiiiiee s s e s e e e e e e e e e e e e e e e e eeeeaaeaaaanes 125
Xkb Client Keyboard Mappingccceeeeeriiieeeeeiiiiiiiiisseee e e e e eeeeeeeeeeeeeeensnnnnnnns 126
151 The XKbClentMapREC STIUCIUIEueiiiiiiiiiie ettt sareee e 127
15.2 (NS VA Y/ 1= PRSPPI 127
15.2.1 The Canonical KEY TYPESccceiiiiiiiieieeeeeeeeti s s e s e e e e e e e e e e e e e aeaeeeeeeeananes 129
15.2.2 Getting Key Types from the SErver ..o 131
15.2.3 Changing the Number of Levels in a Key TYPE......cceieiiieiiiiiiieeieeeeeeieieeeeeeee 132
15.2.4 CoPYING KEY TYPES . uiiii i i i i i et e e e e e e e e e e e e e e e e e eeeeeeaeerarnrane 132
15.3 (Y]] o 1o I =T o PR UP PR 133
15.3.1 Per-Key Key TYPE INAICESuuuuiiiiiiieaiiiieiiiiieiee et 133
15.3.2 Per-Key Group INformationuuueiiiiiiioiii e 134
15.3.3 KEY WILLN coeiii ittt e s e e et e e e e s sraaeaeeaae 135
15.3.4 Offset in t0 the SYMDOI MaPuuiiiiiiiiiii e 135
15.3.5 Getting the Symbol Map for Keys from the Server...........ccccoiiiieiiiiinns 136
15.3.6 Changing the Number of Groups and Types Bound to a Key...........ccccceeeeeennn. 137
15.3.7 Changing the Number of Symbols Bound to a Key...........ccccuviiiieeiiieeniiniinns 138
15.4 The Per-Key MOdIifiler MApuuuiiiiiiiiiec e r e e e e e er e e e e e e e 138
15.4.1 Getting the Per-Key Modifier Map from the Server.........cccoccceeveeeeeiiiicciinnen, 139
Xkb Server Keyboard Mappingcooeeeeiiiiiiiiiiiieeeeee et 140
16.1 KBY ACLIONS ...ttt ettt e e e e e e e e e e e e nnes 141
16.1.1 The XKDACLON StIUCLUIEcoiiiiiiiieeeee e e e e e 142
16.1.2 The XKDANYACHON SIIUCIUIEeeiiiiiiiiiee et 143
16.1.3 Actions for Changing Modifiers’ Statecccccevviiiiiiiiiiiee e 143
16.1.4 Actions for Changing Group STate...........ccouiiiiiieiiiiiee e 145
16.1.5 Actions for Moving the POINLENccoiiiiiiiiiiiiiic e 147
16.1.6 Actions for Simulating Pointer Button Press and Release...........cccccccceeviiinnnns 148
16.1.7 Actions for Changing the Pointer Button Simulatedccccceeiiiiieeennnn. 149
16.1.8 Actions for Locking Modifiers and GrouUp............cccoruurieeriiiieeeeiniieeee e 150
16.1.9 Actions for Changing the ACtive SCreen.........ccccoocvivieiiiiiiie e 153
16.1.10 Actions for Changing Boolean Controls State.............cccccvevniiieiiiiiiieeee e 154
16.1.11 Actions for Generating MESSAUESuuieeiiuiiiieiiiiiiee et 155
16.1.12 Actions for Generating a Different Keycodeccoceeeiiiiiiiiiiiiiiceeiiiieeeee 156
16.1.13 Actions for Generating DeviceButtonPress and DeviceButtonRelease............ 158
16.1.14 Actions for Simulating Events from Device Valuators............ccccceeevviiereennnnen. 159
16.1.15 Obtaining Key Actions for Keys from the Server..........ccooccviiiiiiiiiieeceee, 160
16.1.16 Changing the Number of Actions Bound to a Keyccccveiiiiiiieiiiiiienennee, 160
16.2 SV 2 1= = 1Y/ T PP 161
T R = - To [[0 T 101U o1 161

November 10, 1997 Library Version 1.0/Document Revision 1.1 TOC-4

The X Keyboard Extension

16.2.2 The XKbBehavior SIrUCLUIEoooieiiiieiiee e 161
16.2.3 Obtaining Key Behaviors for Keys from the Server...........ccccovvvvvvviiiiivvvvnnnnnnn. 162
16.3 Explicit Components—Avoiding Automatic Remapping by the Server............c.cocee... 163
16.3.1 Obtaining Explicit Components for Keys from the Server..........cccccccovvieeennns 163
16.4 RV (0= Y, oo L3 =T 1Y/ = o]] T P EEEER 164
16.4.1 Obtaining Virtual Modifier Bindings from the Server.........cccccccceeviiiiicniinnnnen, 165
16.4.2 Obtaining Per-Key Virtual Modifier Mappings from the Server 166
17 The Xkb CompatiDility MapPoiiiiieeee s 167
17.1 The XKDCOMPAtMEAP STTUCTUIEcoitiiiieiiiiieee ettt eeeeeaes 169
17.1.1 Xkb State to Core Protocol State Transformationcccoceeiiiiiinininnne 169
17.1.2 Core Keyboard Mapping to Xkb Keyboard Mapping Transformation............. 170
17.1.3 Xkb Keyboard Mapping to Core Keyboard Mapping Transformations 173
17.2 Getting Compatibility Map Components From the Serverccccccvvvciiiiiieeveeee s 174
17.3 Using the CompatibDility Mapeuuuuimiiiiiiii e e e e e 175
17.4 Changing the Server’'s Compatibility Map........ccoooiiiiiiiiiiiiieiiec e 177
17.5 Tracking Changes to the Compatibility Mapccoooviiiiiiiiiiiie e 178
17.6 Allocating and Freeing the Compatibility Map............iiiiiiiiniiiiiieeeeeeeceeeeeiiiis 179
18 SYMDBDONIC NAIMES ...ttt et e e e e e e e e e e e s 180
18.1 The XKDNAMESREC SIIUCIUIciiieiiieiiiiiiie ettt 180
18.2 SYMDOIC NAMES MASKSeuuiiiiiii i e e e e e e e e e e e e e e e e e e e aeaeananes 182
18.3 Getting Symbolic Names From the Server..........coccoiiiiiiiiiee e 183
18.4 Changing Symbolic Names 0N the SErVer............ooicciiiieiiiiee e 183
18.5 Tracking Name ChanQESuuuiiuiiiiiiiice et e e e e aaaeas 185
18.6 Allocating and Freeing Symbolic NameS...........eviiiiiiiiiiiiiie e 186
19 Replacing a Keyboard “Onthe Fly”oooiiiiiiee e 187
20 Server Database of Keyboard COmMpPOoNEeNntscovvvviiiiiiiiiiiiinie e 190
20.1 COMPONENT NAMES ...oeiiiieiiiiii et e e e e e e s e e e e reee e 191
20.2 Listing the Known Keyboard COMPONENLScceeeiiiiiiiiiiieiirieeeee e e s sssiinveeeeeeee e e e e e 191
20.3 (70T p] oo T a1=T 0| Wl = 18] £ RPN 192
20.4 Building a Keyboard Description Using the Server Databasecccccoccieeeiiniinns 193
21 Attaching Xkb Actions to X Input Extension DevViCesccceeeeevvvvviieiiiinnnnnn. 198
21.1 XKDDEVICEINTOREC ...ttt ettt e e e e e e e e e e e e 199
21.2 Querying Xkb Features for Non-KeyClass Input Extension Devices............ccoccvveeeenee. 200
21.3 Allocating, Initializing, and Freeing the XkbDevicelnfoRec Structure............ccccceeen.... 203
21.4 Setting Xkb Features for Non-KeyClass Input Extension DeviCes..........cccccevveeeeeeeeennn, 204
21.5 XKbEXtensionDeViCENOLIfY EVENTocuiiiiiiiiiie ittt 206
21.6 Tracking Changes to EXtENSION DEVICESccceeiiiiiciiiiieiee e e e 207
22 D7=T o 18 o o Lo AN [0 KPP TSSURRPPP 210
TADIE 22. 1 GI0SSAIY ...ttt 211

November 10, 1997 Library Version 1.0/Document Revision 1.1 TOC-5

The X Keyboard Extension

Figure 1.1

Figure 5.1

Figure 10.1
Figure 131
Figure 13.2
Figure 13.3
Figure 13.4
Figure 13.5
Figure 13.6
Figure 13.7
Figure 14.1
Figure 15.1
Figure 16.1
Figure 16.2
Figure 17.1
Figure 17.2
Figure 17.3
Figure 20.1

Overall XKD STrUCIUIEccooiieiieeee e e 2
XKD StALE. ... 19
MoUSEKEYS ACCEIEIAtiONcceeeeeeeiiiece e e 61
Rotated Keyboard SECHONS..........uiiiiiiiiiiiiieeeeeee e 92
Keyboard with FOUr SECHIONS...........uuuuiiiiiiiie e 94
ROWS 1N @ SECHON....ciiiiiiieieii et 95
Xkb Geometry Data StIUCIUIESuuuuiiiiiiiiiiiiieie e 98
Xkb Geometry Data Structures (D0o0dads)ccoovvvrieeiiriiiiiiiiiiinneeeeeeeeean 99
Xkb Geometry Data Structures (Overlays)..........cccceeeevvivvviviiiviiiciieeeenn. 100
Key Surface, Shape Outlines, and Bounding BOXccccccoeeeevvviivviiennnnns 105
Shift LEVEIS @nd GrOUPS.....uuuuiiiiiiee e eeeee ettt e e e e e e eeeeeeeeennae 117
XKD CHENE MAP.....ccoeeieeeeeee e e e e e e e e e e e 126
Server Map RelationShipsuuviiiiiiiiiiieee 140
Virtual Modifier RelationShips...........eiiii e 165
Server Interaction with Types of Clients............ccoovvviiiiiiiiiieeeeeeeeeee, 167
Server Derivation of State and Keyboard Mapping Components............ 168
Xkb Compatibility Data StrUCIUIES.........ueiieiiieeeeeeeeeeeeeeeee e 169
Building a New Keyboard Description from the Server Database 196

November 10, 1997

Library Version 1.0/Document Revision 1.1

LOF-12

The X Keyboard Extension

Table 1.1
Table 2.1
Table 2.2
Table 4.1
Table 4.2
Table 5.1
Table 5.2
Table 5.3
Table 6.1
Table 6.2
Table 8.1
Table 8.2
Table 8.3
Table 8.4
Table 8.5
Table 9.1
Table 9.2
Table 10.1
Table 10.2
Table 10.3
Table 10.4
Table 10.5
Table 10.6
Table 10.7
Table 10.8
Table 10.9
Table 11.1
Table 13.1
Table 14.1
Table 14.2
Table 14.3
Table 14.4
Table 15.1
Table 15.2
Table 15.3
Table 16.1
Table 16.2
Table 16.3
Table 16.4
Table 16.5
Table 16.6

Function Error Returns Due to Extension Problems..............ccoovviiiiiiiiiieeeeee, 4
XKD ProtOCOI EITOIS ..ottt e e e e e e e e e 9
BadKeyboard Protocol Error resource_id Valuesccccooeeeeeeiiiiiiiieiiiiiicee, 9
XKD EVENT TYPES ..ttt e e e e e e e e e e e e e e e e e s e s e aanns 14
XkbSelectEvents Mask CONSLANTScooeiiiiiiiiiiiiiiii e 17
Real MOdIfier MASKS..........ooeeieiiiiicieie e e e e e e e e e e e e e 22
SYMDBDOIIC GroUP NAMESo r e e e eas 23
XkbStateNotify Event Detail Masks............coouuiuiiiiiiiiieeeeeeeeei e 24
XkbDescRec Component ReferenCesS........cooooiviiiiiiieeiiicceee e 27
Mask Bits fOr XKDDESCRECcuvuviiiiiiiiiiiie e eeeeee ettt e e e e e e e e e e e aeeeeeannnnee 28
XkbIndicatorMapRec flags Field..............uuuueiiiiii e 35

XkbIndicatorMapRec which_groups and groups, Keyboard Drives Indicator...37
XkbIndicatorMapRec which_groups and groups, Indicator Drives Keyboard...37

XkblIndicatorMapRec which_mods and mods, Keyboard Drives Indicator 38
XkbIndicatorMapRec which_mods and mods, Indicator Drives Keyboard 39
Predefined BellS ..o e 48
Bell Sounding and Bell Event Generatingcoooveeeeeiiiiiieiiiiiiiiccsn e 49
Xkb Keyboard CONtrolSccooiiiiiiiiece e a e e 53
MOUSEKEYSACCEI FIEIAS ... 59
AcCCESSXFEEdDACK MASKS.uuuiiiii e 63
ACCESSXNOLIFY EVENES ..ot 64
AccessSXNOtify EVENt DetallSooooviiiiiiiiiiiii e 65
XKD CONLIOIS ... e e e e e e e eeeeeaeees 72
CONLIOIS MASK BIS ...vveeeiiiiiiiiiiiieee ettt 73
GroupsWrap options (groups_wrap field) ... 74
Access X Enable/Disable Bits (ax_options field)eeeiiiiiiiiniiiiiiiiiiiiiiies 75
Library Control MaskS.........coooe et a e 85
Do oT0 F=To I 1Y/ o2 ST PP TTPRPPPP 96
Xkb Mapping Component Masks and Convenience Functions........................ 118
XkbMapChangesSREC MaSKS........ccccoeeiiiiiiiieeee e 121
XKDAIOCCHENTMAP MASKSevviiiiiiiiiiieeee e 123
XKDAIIOCServerMap MasSKS.........oooo oot 124
EXAMPIE KEY TYPE ... ittt s e e e e e e e e e e e e e e e eeneeannee 128
group_info Range Normalizationcccuuviiiiiiiiiiiiiiieeeee e 134
Group INAeX CONSEANTSiiiiiii e a e 137
ACLION TYPES oottt e ettt s e e e e e e e e e e e e e e et e ettt a e s e e e eaeeaaeaeeenennnne 143
MOdIfIEr ACHON TYPES ..oeeieiiiiieeeee oottt 144
Modifier ACHON FIAgScooi e e e 145
GrOUP ACHION TYPES . uuiiiii et e e e e e e e e e e e e e e eaaeeaees 146
Group ACLION FIAGS......cooiiiiiiiie e 146
POINTEN ACHION TYPES. .. ittt e e e e e e e e e eeees 147

November 10, 1997

Library Version 1.0/Document Revision 1.1

The X Keyboard Extension

Table 16.7
Table 16.8
Table 16.9
Table 16.10
Table 16.11
Table 16.12
Table 16.13
Table 16.14
Table 16.15
Table 16.16
Table 16.17
Table 16.18
Table 16.19
Table 16.20
Table 16.21
Table 17.1
Table 17.2
Table 18.1
Table 18.2
Table 19.1
Table 20.1
Table 20.2
Table 20.3
Table 20.4
Table 21.1
Table 22.1

Pointer BUtton ACHION TYPES....coiiiiiiiiiiittt e 149
Pointer Button ACION FIAgSuueiiiiiiie e 149
Pointer Default FIags ... 150
ISO Action Flags when XkbSA ISODFItISGroup is Setcccceeeeiiiiieeeeeennennn. 151
ISO Action Flags when XkbSA_ISODfltIsGroup is Not Setccccoevveeeeeennn. 152
ISO Action Affect Field ValUESoooiiiiiiiiiiieeeeee e 152
Switch Screen ACHION FIAgScuvviiiiiiiiii e 153
CONLrolS ACLION TYPES ..ieiiiieiiiitietiieea e e e e e e e e ettt ee et e e e e e e e e e e eeaeeeeesennnen 154
Control ACHION FIAagS......coce e e e e e e e e e e eeaaanes 154
Message ACHION FIAagSoooiiiiiiii s 155
Device BUtton ACHION TYPESccoeeeiiiiiiieeeeeeiietee et 158
Device Button ACtioN FIagS.........uuuiuieiiiiiiiie e 158
Device Valuator v<n>_what High Bits Valueseeeeeiiiiiiiiiiiiinii, 159
S =12 0 F= Y o £ PR 161
EXplicit COMPONENt MASKS.......ccceeiiiiieeieeee e 163
Symbol Interpretation MatCh Criteria........cccooeveeeiiiiiiiiiieee e 172
Compatibility Map Component MasksS.........ccooooeeiiiiiiiiiiiiiiii e 174
Symbolic NameES MaSKS..........ccoiiiiiiieeec e e e e e 182
XKbNameChanges Fields...........ouu it 184
XkbNewKeyboardNotifyEvent Detalils............oooovviiiiiiiiiiiiiieeeeeeiiiiees 188
Server Database Keyboard COmMPONENtS...........uuueciiiiiiiiieeeeeeeeeeeeee e 190
XkbComponentNameRec FIags BitSccccciiiiiiiiiiiiiiieeeeeeeeeee e 193
Want and Need Mask Bits and Required Names Components.............cceeeeeee... 195
XkbDescRec Components Returned for Values of Want & Needs 197
XkbDevicelNfoOREC MaSK BitScccouiiiiiieeiiiiiiiiieeicese e 200
Debug CoNtrol MASKSuuuuuiiiiiee e 210

November 10, 1997

Library Version 1.0/Document Revision 1.1 LOT-2

The X Keyboard Extension 1 Overview

1

11

1.2

1.3

Overview

The X Keyboard Extension provides capabilities that are lacking or are cumbersome in the
core X protocol.

Core X Protocol Support for Keyboards

The core X protocol specifies the ways that$hef t , Cont r ol , andLock modifiers

and the modifiers bound to tiMode_switch or Num_Lock keysyms interact to generate
keysyms and characters. The core protocol also allows users to specify that a key affects
one or more modifiers. This behavior is simple and fairly flexible, but it has a number of
limitations that make it difficult or impossible to properly support many common varieties
of keyboard behavior. The limitations of core protocol support for keyboards include:

» Use of a single, uniform, four-symbol mapping for all keyboard keys makes it difficult
to properly support keyboard overlays, PC-style break keys, or keyboards that comply
with 1ISO9995, or a host of other national and international standards.

» A second keyboard group may be specified using a modifier, but this has side effects
that wreak havoc with client grabs and X toolkit translations. Furthermore, this
approach limits the number of keyboard groups to two.

» Poorly specified locking key behavior requires X servers to look for a few “magic” key-
syms to determine that keys should lock when pressed. This leads to incompatibilities
between X servers with no way for clients to detect implementation differences.

» Poorly specified capitalization and control behavior requires modifications to X library
source code to support new character sets or locales and can lead to incompatibilities
between system wide and X library capitalization behavior.

» Limited interactions between modifiers specified by the core protocol make many com-
mon keyboard behaviors difficult or impossible to implement. For example, there is no
reliable way to indicate whether or not the shift modifier should “cancel” the lock mod-
ifier.

» The lack of any explicit descriptions for indicators, most modifiers, and other aspects
of the keyboard appearance requires clients that wish to clearly describe the keyboard
to a user to resort to a mish-mash of prior knowledge and heuristics.

Xkb Keyboard Extension Support for Keyboards

The X Keyboard Extension makes it possible to clearly and explicitly specify most aspects
of keyboard behavior on a per-key basis. It adds the notion of a keyboard group to the glo-
bal keyboard state and provides mechanisms to more closely track the logical and physical
state of the keyboard. For keyboard-control clients, Xkb provides descriptions and sym-
bolic names for many aspects of keyboard appearance and behavior.

In addition, the X Keyboard Extension includes additional keyboard controls designed to
make keyboards more accessible to people with movement impairments.

Xkb Extension Components

The Xkb extension is composed of two parts: a server extension, and a client-side X
library extension. These consist of a loadable module that may be activated when an X
server is started and a modified version of Xlib. Both server and Xlib versions must be at
least X11 R6.

November 10, 1997 Library Version 1.0/Document Revision 1.1 1

The X Keyboard Extension

1 Overview

Figure 1.1 shows the overall structure of the Xkb extension:

Xkb Extension

Xkb-aware | | Xkb-capable| | Xkb-unaware
User User User
Application Application | | Application Keyboard
Core Xlib | X Server
Xkb Server Extension

Xkb Core Xlib e e el
Additons| Client Map, Server Mag Compatibility Map

to Xlib Xkb Modifications | |77 G CTTT T

(Xkb to Core Xlib Controls| Indicator Map! Names Geometry
functions) functions : '

!

Server Database of
Keyboard Components

Figure 1.1 Overall Xkb Structure

The server portion of the Xkb extension encompasses a database of named keyboard com-
ponents, in unspecified format, that may be used to configure a keyboard. Internally, the
server maintains lkeyboard descriptiothat includes the keyboard state and configuration
(mapping). By “keyboard” we mean the logical keyboard device, which includes not only
the physical keys, but also potentially a set of up to 32 indicators (usually LEDs) and bells.

The keyboard description is a composite of several different data structures, each of which
may be manipulated separately. When manipulating the server components, the design
allows partial components to be transmitted between the server and a client. The individ-
ual components are shown in Figure 1.1.

Client Map
The key mapping information needed to convert arbitrary keycodes to symbols.

Server Map

The key mapping information categorizing keys by functionality (which keys are
modifiers, how keys behave, and so on).

Controls

Client configurable quantities effecting how the keyboard behaves, such as repeat
behavior and modifications for people with movement impairments.

November 10, 1997 Library Version 1.0/Document Revision 1.1 2

The X Keyboard Extension 1 Overview

13.1

1.3.2

1.4

Indicators
The mapping of behavior to indicators.

Geometry

A complete description of the physical keyboard layout, sufficient to draw a represen-
tation of the keyboard.

Names

A mapping of names to various aspects of the keyboard such as individual virtual
modifiers, indicators, and bells.

Compatibility Map
The definition of how to map core protocol keyboard state to Xkb keyboard state.

A client application interrogates and manipulates the keyboard by reading and writing
portions of the server description for the keyboard. In a typical sequence a client would
fetch the current information it is interested in, modify it, and write it back. If a client
wishes to track some portion of the keyboard state, it typically maintains a local copy of
the portion of the server keyboard description dealing with the items of interest and
updates this local copy from events describing state transitions that are sent by the server.

A client may request the server to reconfigure the keyboard either by sending explicit
reconfiguration instructions to it, or by telling it to load a new configuration from its data-
base of named components. Partial reconfiguration and incremental reconfiguration are
both supported.

Groups and Shift Levels

The graphic characters or control functions that may be accessed by one key are logically
arranged in groups and levels. See section 14.1for a complete description of groups and
levels.

Radio Groups

A radio group is a set of keys whose behavior simulates a set of radio buttons. Once a key
in a radio group is pressed, it stays logically depressed until another key in the group is
pressed, at which point the previously depressed key is logically released. Consequently,
at most one key in a radio group can be logically depressed at one time. A radio group is
defined by a radio group index, an optional name, and by assigning each key in the radio
groupXkbKB_Radi oG oup behavior and the radio group index.

Client Types
This specification differentiates between three different classes of client applications:

» Xkb-aware applications
These applications make specific use of Xkb functionality and APIs not present in the
core protocol.

» Xkb-capable applications
These applications make no use of Xkb extended functionality and Application Pro-
gramming Interfaces (APIs) directly. However, they are linked with a version of Xlib
that includes Xkb and indirectly benefit from some of Xkb's features.

November 10, 1997 Library Version 1.0/Document Revision 1.1 3

The X Keyboard Extension 1 Overview

15

1.6

1.7

1.7.1

» Xkb-unaware applications
These applications make no use of Xkb extended functionality or APIs and require
Xkb’s functionality to be mapped to core Xlib functionality to operate properly.

Compatibility With the Core Protocol

Because the Xkb extension allows a keyboard to be configured in ways not foreseen by
the core protocol, and because Xkb-unaware clients are allowed to connect to a server
using the Xkb extension, there must be a means of converting between the Xkb domain
and the core protocol. The Xkb server extension maintains a compatibility map as part of
its keyboard description; this map controls the conversion of Xkb generated events to core
protocol events and the results of core protocol requests to appropriate Xkb state and con-
figuration.

Additional Protocol Errors

The Xkb extension adds a single protocol erfBaKeyboar d, to the core protocol error
set. See section 2.6 for a discussion ofBh@Keyboar d protocol error.

Extension Library Functions

The X Keyboard Extension replaces the core protocol definition of a keyboard with a
morelcomprehensive one. The X Keyboard Extension library interfaces are included in
Xlib.

Xlib detects the presence of the X Keyboard server extension and uses Xkb protocol to
replace some standard X library functions related to the keyboard. If an application uses
only standard X library functions to examine the keyboard or process key events, it should
not need to be modified when linked with an X library containing the X keyboard exten-
sion. All of the keyboard-related X library functions have been modified to automatically
use Xkb protocol when the server extension is present.

The Xkb extension adds library interfaces to allow a client application to directly manipu-
late the new capabilities.

Error Indications

Xkb functions that communicate with the X server check to be sure the Xkb extension has
been properly initialized prior to doing any other operations. If the extension has not been
properly initialized or the application, library, and server versions are incompatible, these
functions return an error indication as shown in Table 1.1. Because of thiBatkt;

cess andBadMat ch (due to incompatible versions) protocol errors should normally not

be generated.

Table 1.1 Function Error Returns Due to Extension Problems

Functions return type Return value
pointer to a structure NULL

Bool False

Status BadAccess

1. X11R6.1 is the first release by the X Consortium, Inc.,that includes the X Keyboard Extension in Xlib. X11R6
included work in progress on this extension as nonstandard additions to the library.

November 10, 1997 Library Version 1.0/Document Revision 1.1 4

The X Keyboard Extension 1 Overview

Many Xkb functions do not actually communicate with the X server; they only require
processing in the client-side portion of the library. Furthermore, some applications may
never actually need to communicate with the server; they simply use the Xkb library capa-
bilities. The functions that do not communicate with the server return either a pointer to a
structure, a Bool, or a Status. These functions check that the application has queried the
Xkb library version and return the values shown in Table 1.1 if it has not.

November 10, 1997 Library Version 1.0/Document Revision 1.1 5

The X Keyboard Extension 2 Initialization and General Programming

2

2.1

2.2

2.3

Initialization and General Programming Information

Extension Header Files
The following include files are part of the Xkb standard:

e <X11/ XKBli b. h>
XKBl i b. h is the main header file for Xkb; it declares constants, types, and functions.
o <X11/ext ensi ons/ XKBstr. h>
XKBst r. h declares types and constants for Xkb. It is included automatically from
<X11/ XKBl i b. h>; you should never need to reference it directly in your application
code.
« <X11/ ext ensi ons/ XKB. h>
XKB. h defines constants for Xkb. It is included automatically frod 1/ XKB-
st r. h>; you should never need to reference it directly in your application code.
« <X11/ ext ensi ons/ XKBgeom h>
XKBgeom h declares types, symbolic constants, and functions for manipulating key-
board geometry descriptions.

Extension Name
The name of the Xkb extension is giverxiXiLl/ ext ensi ons/ Xkb. h>:
#define XkbName “XKEYBOARD”

Most extensions to the X protocol are initialized by calkhgitExtensiorand passing the
extension name. However, as explained in section 2.4, Xkb requires a more complex ini-
tialization sequence, and a client program should noXtalExtensiondirectly.

Determining Library Compatibility

If an application is dynamically linked, both the X server and the client-side X library
must contain the Xkb extension in order for the client to use the Xkb extension capabili-
ties. Therefore a dynamically linked application must check both the library and the server
for compatibility before using Xkb function calls. A properly written program must check
for compatibility between the version of the Xkb library that is dynamically loaded and
the one used when the application was built. It must then check the server version for
compatibility with the version of Xkb in the library.

If your application is statically linked, you must still check for server compatibility and
may check library compatibility. (It is possible to compile against one set of header files
and link against a different, incompatible, version of the library, although this should not
normally occur.)

To determine the compatibility of a library at runtime, é&bLibraryVersion

Bool XkbLibraryVersion (lib_major_in_outlib_minor_in_ou}
int* lib_major_in_out; /* specifies and returns the major Xkb library version. */
int* lib_minor_in_out; /* specifies and returns the minor Xkb library version. */

Pass the symbolic valuékbMaj or Ver si on in lib_major_in_outandXkbM nor Ver -

si oninlib_minor_in_out These arguments represent the version of the library used at
compile time. TheXkbLibraryVersiorfunction backfills the major and minor version
numbers of the library used at run timdin major_in_outandlib_minor_in_out If the

November 10, 1997 Library Version 1.0/Document Revision 1.1 6

The X Keyboard Extension 2 Initialization and General Programming

versions of the compile time and run time libraries are compaXkla,ibraryVersion
returnsTr ue, otherwise, it returnBal se.

In addition, in order to use the Xkb extension, you must ensure that the extension is
present in the server and that the server supports the version of the extension expected by
the client. UseXkbQueryExtensioto do this, as described in the next section.

2.4 Initializing the Keyboard Extension

Call XkbQueryExtensioto check for the presence and compatibility of the extension in
the server and to initialize the extension. Because of potential version mismatches, you
cannot use the generic extension mechanism funciki@edryExtensioand XInitExten-
sion) for checking for the presence of, and initializing the Xkb extension.

You must callXkbQueryExtensioar XkbOpenDisplaypefore using any other Xkb library
interfaces, unless such usage is explicitly allowed in the interface description in this docu-
ment. The exceptions anékblgnoreExtensigrXkbLibraryVersionand a handful of audi-
ble-bell functions. You should not use any other Xkb functions if the extension is not
present or is uninitialized. In general, calls to Xkb library functions made prior to initializ-
ing the Xkb extension cauadAccess protocol errors.

XkbQueryExtensioboth determines whether a compatible Xkb extension is present in the
X server and initializes the extension when it is present.

Bool XkbQueryExtension(dpy, opcode_rtrn, event_rtrn, error_rtrn, major_in_out,
minor_in_ou}

Display * dpy; [* connection to the X server */

int * opcode_rtrn * backfilled with the major extension opcode */

int * event_rtrn [* backfilled with the extension base event code */

int * error_rtrn; /* backfilled with the extension base error code */

int * major_in_out /* compile time lib major version in, server major version out */
int * minor_in_out; /* compile time lib min version in, server minor version out */

The XkbQueryExtensiofunction determines whether a compatible version of the X Key-
board Extension is present in the server. If a compatible extension is pxédeptie-
ryExtensiorreturnsTr ue; otherwise, it returnbal se.

If a compatible version of Xkb is preseKkbQueryExtensiomitializes the extension. It
backfills the major opcode for the keyboard extensiamprode_rtrnthe base event code

in event_rtrn the base error code émror_rtrn, and the major and minor version numbers

of the extension imajor_in_outandminor_in_out The major opcode is reported in the
req_majorfields of some Xkb events. For a discussion of the base event code, see section
4.1.

November 10, 1997 Library Version 1.0/Document Revision 1.1 7

The X Keyboard Extension 2 Initialization and General Programming

2.5

As a convenience, you can use the funckehOpenDisplayo perform these three tasks
at once: open a connection to an X server, check for a compatible version of the Xkb
extension in both the library and the server, and initialize the extension for use.

Display *XkbOpenDisplay(display_name, event_rtrn, error_rtrn, major_in_out, minor_in_out,
reason_rtrn)
char display_namg /* hardware display hame, which determines the display and
communications domain to be used */
int* event_rtrn /* backfilled with the extension base event code */
int* error_rtrn; /* backfilled with the extension base error code */
int* major_in_ouf /* compile time lib major version in, server major version out */
int* minor_in_ouf /* compile time lib minor version in, server minor version out */
int* reason_rtrn /* backfilled with a status code */

XkbOpenDisplays a convenience function that opens an X display connection and initial-
izes the X keyboard extension. In all cases, upon retason_rtrncontains a status value
indicating success or the type of failuremi&jor_in_outandminor_in_outare notN\NULL,
XkbOpenDisplayirst callsXkbLibraryVersiorto determine whether the client library is
compatible, passing it the values pointed tartajor_in_outandminor_in_out If the

library is incompatibleXkbOpenDisplaypackfillsmajor_in_outandminor_in_outwith

the major and minor extension versions of the library being used and mdtlutindf the
library is compatibleXkbOpenDisplayext callsXOpenDisplaywith thedisplay _name

If this fails, the function returnSULL. If successfulXkbOpenDisplagalls XkbQueryEx-
tensionand backfills the major and minor Xkb server extension version numbers in
major_in_outandminor_in_out If the server extension version is not compatible with the
library extension version or if the server extension is not preskb@penDisplagloses

the display and returidJLL. When successful, the function returns the display connec-
tion.

The possible values foeason_rtrnare:

e XkbCD BadLi br ar yVer si on indicatesxkbLibraryVersiorreturnedral se.

« XkbOD Connect i onRef used indicates the display could not be opened.

« XkbCD BadSer ver Ver si on indicates the library and the server have incompatible
extension versions.

« XkbCD NonXkbSer ver indicates the extension is not present in the X server.

« XkbCD Success indicates that the function succeeded.

Disabling the Keyboard Extension

If a server supports the Xkb extension, the X library normally implements preXkb key-
board functions using the Xkb keyboard description and state. The server Xkb keyboard
state may differ from the prexXkb keyboard state. This difference does not affect most cli-
ents, but there are exceptions. To allow these clients to work properly, you may instruct
the extension not to use Xkb functionality.

Call XkblgnoreExtensioto prevent core X library keyboard functions from using the X
Keyboard Extension. You must cXlkblgnoreExtensiobefore you open a server connec-
tion; Xkb does not provide a way to enable or disable use of the extension once a connec-
tion is established.

Bool XkblgnoreExtension(ignore)
Bool ignore /* Tr ue means ignore the extension */

November 10, 1997 Library Version 1.0/Document Revision 1.1 8

The X Keyboard Extension 2 Initialization and General Programming

XkblgnoreExtensiotells the X library whether to use the X Keyboard Extension on any
subsequently opened X display connections. If ignofe i, the library does not initial-

ize the Xkb extension when it opens a new display. This forces the X server to use com-
patibility mode and communicate with the client using only core protocol requests and
events. If ignore igal se, the library treats subsequent callXt©penDisplaynormally

and uses Xkb extension requests, events, and state. Do not explicitly use Xkb on a connec-
tion for which it is disabledXkblgnoreExtensioreturnsFal se if it was unable to apply

the ignore request.

2.6 Protocol Errors
Many of the Xkb extension library functions described in this document can cause the X
server to report an error, referred to in this documentBasi¥xx protocol error, where
Xxx is some name. These errors are fielded in the normal manner, by the default Xlib error
handler or one replacing it. Note that X protocol errors are not necessarily reported imme-
diately because of the buffering of X protocol requests in Xlib and the server.

Table 2.1 lists the protocol errors that can be generated, and their causes.
Table 2.1 Xkb Protocol Errors

Error Cause

BadAccess The Xkb extension has not been properly initialized

BadKeyboard The device specified was not a valid core or input extension device

Badimplementation Invalid reply from server

BadAlloc Unable to allocate storage

BadMatch A compatible version of Xkb was not available in the server or an argument
has correct type and range, but is otherwise invalid

BadValue An argument is out of range

BadAtom A name is neither a valid AtomNbone

BadDevice Device, Feedback Class, or Feedback ID invalid

The Xkb extension adds a single protocol efBaKeyboar d, to the core protocol error

set. This error code will be reported aséhn®r_rtrn whenXkbQueryExtensiois called.

When aBadKeyboar d error is reported in aker r or Event , additional information is
reported in theesource_idield. The most significant byte of tmesource_ids a further
refinement of the error cause, as defined in Table 2.2. The least significant byte will con-
tain the device, class, or feedback ID as indicated in the table.

Table 2.2 BadKeyboard Protocol Error resource_id Values

high-order byte value meaning low-order byte
XkbErr_BadDevice Oxff device not found device ID
XkbErr_BadClass Oxfe device found, but it is of the wrong class class ID
XkbErr_Badld Oxfd device found, class ok, but device does rieedback ID

contain a feedback with the indicated ID

2.7 Display and Device Specifications in Function Calls

Where a connection to the server is passed as an argument (Display*) and an
XkbDescPt r is also passed as an argument, the Display* argument must madigly the
field of theXkbDescRec pointed to by thekbDescPt r argument, or else trapyfield

of theXkbDescRec must beNULL. If they don’t match or thdpyfield is notNULL, a

November 10, 1997 Library Version 1.0/Document Revision 1.1 9

The X Keyboard Extension 2 Initialization and General Programming

BadMat ch error is returned (either in the return value or a backfitest us variable).
Upon successful return, tipyfield of theXkbDescRec always contains the Display*
value passed in.

The Xkb extension can communicate with the X input extension if it is present. Conse-
guently, there can potentially be more than one input device connected to the server. Most
Xkb library calls that require communicating with the server involve both a server connec-
tion (Display *dpy) and a device identifier (unsigned ddvice _spéec In some cases, the
device identifier is implicit and is taken as thevice_spetield of anXkbDescRec struc-

ture passed as an argument.

The device identifier can specify any X input extension device wWiiyaCl ass compo-
nent, or it can specify the constaxitbUseCor eKbd. The use oKkbUseCor ekbd

allows applications to indicate the core keyboard without having to determine its device
identifier.

Where an Xkb device identifier is passed as an argument adiBascPt r is also
passed as an argument, if either the argument okihigescRec device spetield is
XkbUseCor eKbd, and if the function returns successfully, ¥kdDescPt r device_spec
field will have been converted frofkbUseCor eKbd to a real Xkb device ID. If the func-
tion does not complete successfully, tewice_spebeld remains unchanged. Subse-
guently, the device id argument must matchdixece speéeld of theXkbDescPt r
argument. If they don’t match,BadMat ch error is returned (either in the return value or
a backfilledSt at us variable).

When the Xkb extension in the server hands an application a device identifier to use for
the keyboard, that ID is the input extension identifier for the device if the server supports
the X Input Extension. If the server does not support the input extension, the meaning of
the identifier is undefined — the only guarantee is that when yoMkimdseCor eKbd,
XkbUseCor eKbd will work and the identifier returned by the server will refer to the core
keyboard device.

November 10, 1997 Library Version 1.0/Document Revision 1.1 10

The X Keyboard Extension 3 Data Structures

3

3.1

3.2

Data Structures

An Xkb keyboard description consists of a variety of data structures, each of which
describes some aspect of the keyboard. Although each data structure has its own peculiar-
ities, there are a number of features common to nearly all Xkb structures. This chapter
describes these common features and techniques for manipulating them.

Many Xkb data structures are interdependent; changing a field in one might require
changes to others. As an additional complication, some Xkb library functions allocate
related components as a group to reduce fragmentation and allocator overhead. In these
cases, simply allocating and freeing fields of Xkb structures might corrupt program mem-
ory. Creating and destroying such structures or keeping them properly synchronized dur-
ing editing is complicated and error prone.

Xkb provides functions and macros to allocate and free all major data structures. You
should use them instead of allocating and freeing the structures yourself.

Allocating Xkb Data Structures

Xkb provides functions, known as allocators, to create and initialize Xkb data structures.
In most situations, the Xkb functions that read a keyboard description from the server call
these allocators automatically. As a result, you will seldom have to directly allocate or ini-
tialize Xkb data structures.

However, if you need to enlarge an existing structure or construct a keyboard definition
from scratch, you may need to allocate and initialize Xkb data structures directly. Each
major Xkb data structure has its own unique allocator. The allocator functions share com-
mon features: allocator functions for structures with optional components take as an input
argument a mask of subcomponents to be allocated. Allocators for data structures contain-
ing variable-length data take an argument specifying the initial length of the data.

You may call an allocator to change the size of the space allocated for variable-length
data. When you call an allocator with an existing data structure as a parameter, the alloca-
tor does not change the data in any of the fields, with one exception: variable-length data
might be moved. The allocator resizes the allocated memory if the current size is too
small. This normally involves allocating new memory, copying existing data to the newly
allocated memory, and freeing the original memory. This possible reallocation is impor-
tant to note because local variables pointing into Xkb data structures might be invalidated
by calls to allocator functions.

Adding Data and Editing Data Structures

You should edit most data structures via the Xkb-supplied helper functions and macros,
although a few data structures can be edited directly. The helper functions and macros
make sure everything is initialized and interdependent values are properly updated for
those Xkb structures that have interdependencies. As a general rule, if there is a helper
function or macro to edit the data structure, use it. For example, increasing the width of a
type requires you to resize every key that uses that type. This is complicated and ugly,
which is why there’s aXkbResizeKeyTyganction.

Many Xkb data structures have arrays whose size is reported by two fields. The first field,
whose name is usually prefixed &%/, represents the total number of elements that can be
stored in the array. The second field, whose name is usually prefixedbyspecifies

November 10, 1997 Library Version 1.0/Document Revision 1.1 11

The X Keyboard Extension 3 Data Structures

3.3

3.4

the number of elements currently stored there. These arrays typically represent data whose
total size cannot always be determined when the array is created. In these instances, the
usual way to allocate space and add data is as follows:

» Call the allocator function with some arbitrary size, as a hint.
» For those arrays that have X¥kb...Add..function, call it each time you want to add
new data to the array. The function expands the array if necessary.

For example, call:
XkbAllocGeomShapes(geom,4)

to say “I'll need space for four new shapes in this geometry.” This makes sure that
sz_shapesnum_shapes= 4, and resizes the shapes array if it isn’t. If this function suc-
ceeds, you are guaranteed to have space for the number of shapes you need.

When you call an editing function for a structure, you do not need to check for space,
because the function automatically checksstheandnum_fields of the array, resizes the
array if necessary, adds the entry to the array, and then updatesrthigeld.

Making Changes to the Server’'s Keyboard Description

In Xkb, as in the core protocol, the client and server have independent copies of the data
structures that describe the keyboard. The recommended way to change some aspect of the
keyboard mapping in the X server is to edit a local copy of the Xkb keyboard description
and then send only the changes to the X server. This method helps eliminate the need to
transfer the entire keyboard description or even an entire data structure for only minor
changes.

To help you keep track of the changes you make to a local copy of the keyboard descrip-
tion, Xkb provides separate speahhngesiata structures for each major Xkb data struc-
ture. These data structures do not contain the actual changed values: they only indicate the
changes that have been made to the structures that actually describe the keyboard.

When you wish to change the keyboard description in the server, you first modify a local
copy of the keyboard description and then flag the modifications in an appropriate
changes data structure. When you finish editing the local copy of the keyboard descrip-
tion, you pass your modified version of the keyboard description and the modified
changes data structure to an Xkb function. This function uses the modified keyboard
description and changes structure to pass only the changed information to the server. Note
that modifying the keyboard description but not setting the appropriate flags in the
changes data structure causes indeterminate behavior.

Tracking Keyboard Changes in the Server

The server reports all changes in its keyboard description to any interested clients via spe-
cial Xkb events. Just as clients use special changes data structures to change the keyboard
description in the server, the server uses special changes data structures to tell a client
what changed in the server’s keyboard description.

Unlike clients, however, the server does not always pass the new values when it reports
changes to its copy of the keyboard description. Instead, the server only passes a changes
data structure when it reports changes to its keyboard description. This is done for effi-
ciency reasons — some clients do not always need to update their copy of the keyboard
description with every report from the server.

November 10, 1997 Library Version 1.0/Document Revision 1.1 12

The X Keyboard Extension 3 Data Structures

When your client application receives a report from the server indicating the keyboard
description has changed, you can determine the set of changes by passing the event to an
Xkb function that “notes” event information in the corresponding changes data structure.
These “note changes” functions are defined for all major Xkb components, and their
names have the fordkbNote{Component}ChangeshereComponents the name of a

major Xkb component such B&ap or NamesWhen you want to copy these changes from

the server into a local copy of the keyboard description, use the correspghting
Get{Component}Changdanction passing it the changes structure. The function then
retrieves only the changed structures from the server and copies the modified pieces into
the local keyboard description.

3.5 Freeing Data Structures

For the same reasons you should not directlyneécto allocate Xkb data structures,

you should not free Xkb data structures or components directly fusagy Xfree Xkb
provides functions to free the various data structures and their compgxiesmtgs use

the free functions supplied by Xkb. There is no guarantee that any particular field can be
safely freed byree or Xfree

November 10, 1997 Library Version 1.0/Document Revision 1.1 13

The X Keyboard Extension 4 Xkb Events

4

4.1

Xkb Events

The primary way the X server communicates with clients is by sending X events to them.
Some events are sent to all clients, while others are sent only to clients that have requested
them. Some of the events that can be requested are associated with a particular window
and are only sent to those clients who have both requested the event and specified the win-
dow in which the event occurred.

The Xkb extension uses events to communicate the keyboard status to interested clients.
These events are not associated with a particular window. Instead, all Xkb keyboard status
events are reported to all interested clients, regardless of which window currently has the
keyboard focus and regardless of the grab state of the key]board.

The X server reports the events defined by the Xkb extension to your client application
only if you have requested them. You may request Xkb events by calling)@ih®elect-
Eventsor XkbSelectEventDetailXkbSelectEventequests Xkb events by their event type

and causes them to be reported to your client application under all circumstances. You can
specify a finer granularity for event reporting by usiidpSelectEventDetajls this case

events are reported only when the specific detail conditions you specify have been met.

Xkb Event Types

The Xkb Extension adds new event types to the X protocol definition. An Xkb event type

is defined by two fields in the X event data structure. One ig/fiedield, containing the

base event cod@his base event code is a value the X server assigns to each X extension
at runtime and thatidentifies the extension that generated the event; thus, the event code in
thetypefield identifies the event as an Xkb extension event, rather than an event from
another extension or a core X protocol event. You can obtain the base event code via a call
to XkbQueryExtensioar XkbOpenDisplayThe second field is the Xkb event type, which
contains a value uniquely identifying each different Xkb event type. Possible values are
defined by constants declared in the headexM&1/extensions/Xkb.h>.

Table 4.1 lists the categories of events defined by Xkb and their associated event types, as
defined inXkb.h Each event is described in more detail in the section referenced for that
event.

Table 4.1 Xkb Event Types

Event Type Conditions Generating Event Section Page
XkbNewKeyboar dNot i fy Keyboard geometry; keycode range change 19 187
XkbMapNot i fy Keyboard mapping change 14.4 122
XkbSt at eNot i fy Keyboard state change 5.4 25
XkbCont rol sNoti fy Keyboard controls state change 10.11 79
Xkbl ndi cat or St at eNot i fy Keyboard indicators state change 8.5 45
Xkbl ndi cat or MapNot i fy Keyboard indicators map change 8.5 45
XkbNamesNot i fy Keyboard name change 18.5 185
XkbConpat MapNot i fy Keyboard compatibility map change 17.5 178
XkbBel | Noti fy Keyboard bell generated 9.4 52

1. The one exception to this rule is tebExt ensi onDevi ceNot i fy event report that is sent when a client
attempts to use an unsupported feature of an X Input Extension device (see section 21.4).

November 10, 1997 Library Version 1.0/Document Revision 1.1 14

The X Keyboard Extension 4 Xkb Events

4.2

4.3

Table 4.1 Xkb Event Types

Event Type Conditions Generating Event Section Page
XkbAct i onMessage Keyboard action message 16.1.11 155
XkbAccessXNot i fy AccessX state change 10.6.4 65
XkbExt ensi onDevi ceNot i f y Extension device change 21.6 207

Xkb Event Data Structures

Xkb reports each event it generates in a unique structure holding the data values needed to
describe the conditions the event is reporting. However, all Xkb events have certain things
in common. These common features are contained in the same fields at the beginning of
all Xkb event structures and are described ind&i®AnyEvent structure:

typedef struct {
int type; /* Xkb extension base event code */
unsigned long serial; [* X server serial number for event */
Bool send_event; /At ue => synthetically generated */
Display * display; [* server connection where event generated */
Time time; [* server time when event generated */
int xkb_type; /* Xkb minor event code */
unsigned int device; /* Xkb device ID, will not bé&bUseCor eKbd */

} XkbAnyEvent;

For any Xkb event, thiypefield is set to the base event code for the Xkb extension,
assigned by the server to all Xkb extension eventss&hal, send_evenanddisplay

fields are as described for all X11 events. fimefield is set to the time when the event
was generated and is expressed in millisecondsxRineypefield contains the minor
extension event code, which is the extension event type, and is one of the values listed in
Table 4.1. Thelevicefield contains the keyboard device identifier associated with the
event. This is nevexkbUseCor eKbd, even if the request that generated the event speci-
fied a device oXkbUseCor eKbd. If the request that generated the event specified
XkbUseCor eKbd, devicecontains a value assigned by the server to specify the core key-
board. If the request that generated the event specified an X input extensiondiswoee,
contains that same identifier.

Other data fields specific to individual Xkb events are described in subsequent chapters
where the events are described.

Selecting Xkb Events

Xkb events are selected using an event mask, much the same as normal core X events are
selected. However, unlike selecting core X events, where you must specify the selection
status (on or off) for all possible event types whenever you wish to change the selection
criteria for any one event, Xkb allows you to restrict the specification to only the event
types you wish to change. This means that you do not need to remember the event selec-
tion values for all possible types each time you want to change one of them.

Many Xkb event types are generated under several different circumstances. When select-
ing to receive an Xkb event, you may specify either that you want it delivered under all
circumstances, or that you want it delivered only for a subset of the possible circum-
stances.

November 10, 1997 Library Version 1.0/Document Revision 1.1 15

The X Keyboard Extension 4 Xkb Events

You can also deselect an event type that was previously selected for, using the same gran-
ularity.

Xkb provides two functions to select and deselect delivery of Xkb evékiSelect-
Eventsallows you to select or deselect delivery of more than one Xkb event type at once.
Events selected usirkkbSelectEventre delivered to your program under all circum-
stances that generate the events. To restrict delivery of an event to a subset of the condi-
tions under which it occurs, ud&bSelectEventDetailXkbSelectEventDetaitmly

allows you to change the selection conditions for a single event at a time, but it provides a
means of fine-tuning the conditions under which the event is delivered.

To select and / or deselect for delivery of one or more Xkb events and have them delivered
under all conditions, usékbSelectEvents

Bool XkbSelectEventgdisplay, device_spec, bits_to_change, values_fol)_bits
Display * display, /* connection to the X server */
unsigned int device_spec /* device ID, orXkbUseCor eKbd */
unsigned long inbits_to_changd¥ determines events to be selected / deselected */
unsigned long invalues_for_bitg* 1=>select, 0->deselect; for eventshits_to_changé/

This request changes the Xkb event selection mask for the keyboard specified by
device_spec

Each Xkb event that can be selected is represented by a bitditsthie _changand
values_for_bitsnasks. Only the event selection bits specified byitseto change

parameter are affected; any unspecified bits are left unchanged. To turn on event selection
for an event, set the bit for the event in ltits_to_changg@arameter and set the corre-
sponding bit in thealues_for_bitgparameter. To turn off event selection for an event, set
the bit for the event in thigits_to_chang@arameter and do not set the corresponding bit

in thevalues_for_bitpparameter. The valid values for both of these parameters are an
inclusive bitwise OR of the masks shown in Table 4.2. There is no interface to return your
client’s current event selection mask. Clients cannot set other clients’ event selection
masks.

If a bit is not set in thbits_to_changgarameter, but the corresponding bit is set in the
values_for_bitparameter, BadMat ch protocol error results. If an undefined bit is set in
either thebits_to_changer thevalues_for_bitgparameter, 8adVal ue protocol error
results.

All event selection bits are initially zero for clients using the Xkb extension. Once you set
some bits, they remain set for your client until you clear them via another Xih8e-
lectEvents

XkbSelectEventgturnsFal se if the Xkb extension has not been initilialized dmdie
otherwise.

To select or deselect for a specific Xkb event and optionally place conditions on when
events of that type are reported to your client XldgSelectEventDetail3 his allows you

November 10, 1997 Library Version 1.0/Document Revision 1.1 16

The X Keyboard Extension 4 Xkb Events

43.1

to exercise a finer granularity of control over delivery of Xkb events MithSelect-
Events

Bool XkbSelectEventDetail¢display, device_spec, event_type, bits_to_charadees_for_bits
Display * display, [* connection to the X server */
unsigned int device_spec /* device ID, orXkbUseCor eKbd */
unsigned int event_type /* Xkb event type of interest */
unsigned long inbits_to_changg* event selection details */
unsigned long inwvalues_for_bitg* values for bits selected tyits_to_changé/

While XkbSelectEventllows multiple events to be selecté#bSelectEventDetails
changes the selection criteria for a single type of Xkb event. The interpretation of the
bits_to_changeandvalues_for_bitsnasks depends on the event type in question.

XkbSelectEventDetaitshanges the Xkb event selection mask for the keyboard specified
by device_speand the Xkb event specified byent_typeTo turn on event selection for
an event detail, set the bit for the detail inbite_to_chang@arameter and set the corre-
sponding bit in thealues_for_bitparameter. To turn off event detail selection for a
detail, set the bit for the detail in tbés_to_chang@arameter and do not set the corre-
sponding bit in thealues_for_bitparameter.

If an invalid event type is specifiedBadVal ue protocol error results. If a bit is not set in
thebits_to_chang@arameter, but the corresponding bit is set irvithees_for_bits
parameter, 8adMat ch protocol error results. If an undefined bit is set in either the
bits_to_changer thevalues_for_bitgparameter, 8adVal ue protocol error results.

For each type of Xkb event, the legal event details that you can specifyXkliBelect-
EventDetailgequest are listed in the chapters that describe each event in detail.
Event Masks

The X server reports the events defined by Xkb to your client application only if you have
requested them via a call X&bSelectEventsr XkbSelectEventDetailSpecify the event
types in which you are interested in a mask, as described in section 4.3.

Table 4.2 lists the event mask constants that can be specified witkiiSelectEvents
request and the circumstances in which the mask should be specified.

Table 4.2 XkbSelectEvents Mask Constants

Event Mask Value Notification Wanted
XkbNewKeyboar dNot i f yMask (1L<<0) Keyboard geometry change
XkbMapNot i f yMask (1L<<1) Keyboard mapping change
XkbSt at eNot i f yMask (1L<<?) Keyboard state change
XkbCont r ol sNot i f yMask (1L<<3) Keyboard control change

Xkbl ndi cat or St at eNot i f yMask (1L<<4) Keyboard indicator state change
Xkbl ndi cat or MapNot i f yMask (1L<<5b) Keyboard indicator map change
XkbNamesNot i f yMask (1L<<6) Keyboard name change
XkbConpat MapNot i f yMask (1L<<7) Keyboard compat map change
XkbBel | Not i f yMask (1L<<8) Bell

XkbAct i onMessageMask (1L<<9) Action message
XkbAccessXNot i f yMask (1L<<10) AccessX features

XkbExt ensi onDevi ceNot i fyMask (1L<<11) Extension device

November 10, 1997 Library Version 1.0/Document Revision 1.1 17

The X Keyboard Extension 4 Xkb Events

4.4

Table 4.2 XkbSelectEvents Mask Constants

Event Mask Value Notification Wanted
XkbAl | Event sMask (OXFFF) All Xkb events

Unified Xkb Event Type

TheXkbEvent structure is a union of the individual structures declared for each Xkb

event type and for the core protod&vent type. Given aixkbEvent structure, you may

use thaypefield to determine if the event is an Xkb evegpéequals the Xkb base event

code; see section 2.4). If the event is an Xkb event, you may then asg/tkidb _type

field to determine the type of Xkb event and thereafter access the event-dependent compo-
nents using the union member corresponding to the particular Xkb event type.

typedef union _XkbEvent {

int type;
XkbAnyEvent any;
XkbStateNotifyEvent state;
XkbMapNotifyEvent map;
XkbControlsNotifyEvent ctrls;
XkbIndicatorNotifyEvent indicators;
XkbBellNotifyEvent bell;
XkbAccessXNotifyEvent accessx;
XkbNamesNotifyEvent names;
XkbCompatMapNotifyEvent compat;
XkbActionMessageEvent message;

XkbExtensionDeviceNotifyEvent device;
XkbNewKeyboardNotifyEvent new_kbd,;
XEvent core;

} XkbEvent;

This unified Xkb event type includes a norrx&vent as used by the core protocol, so it

is straightforward for applications that use Xkb events to call the X library event functions
without having to cast every reference. For example, to get the next event, you can simply
declare a variable of typékbEvent and call:

XNextEvent(dpy,&xkbev.core);

November 10, 1997 Library Version 1.0/Document Revision 1.1 18

The X Keyboard Extension 5 Keyboard State

5 Keyboard State

Keyboard state encompasses all of the transitory information necessary to map a physical
key press or release to an appropriate event. The Xkb keyboard state consists of primitive
components and additional derived components that are maintained for efficiency reasons.
Figure 5.1 shows the components of Xkb keyboard state and their relationships.

Xkb State

Base Modifiers m

— Compatibility State

Base Group mE

| Compatibility Lookup State

D

| Effective Modifiers

Locked Modifiers [

™| Compatibility Grab State

L ;
Locked Group — Effective Group

Latched Modifiers [~

| | ookup State

!
3

Latched Group —

| Grab State [Tt

Core Pointer Buttons

Server Internal Modifiers

IgnoreLock Modifiers
J Compatibility Map

IgnoreGroupLock

Figure 5.1 Xkb State

5.1 Keyboard State Description

The Xkb keyboard state is comprised of the state of all keyboard modifiers, the keyboard
group, and the state of the pointer buttons. These are grouped into the following compo-
nents:

The locked group and locked modifiers
The latched group and latched modifiers
The base group and base modifiers

The effective group and effective modifiers
The state of the core pointer buttons

November 10, 1997 Library Version 1.0/Document Revision 1.1 19

The X Keyboard Extension 5 Keyboard State

ThemodifiersareShi f t, Lock, Cont r ol , andMbd1-Mobd5, as defined by the core proto-

col. A modifier can be thought of as a toggle that is either set or unset. All modifiers are
initially unset. When a modifier is locked, it is set and remains set for all future key
events, until it is explicitly unset. A latched modifier is set, but automatically unsets after
the next key event that does not change the keyboard state. Locked and latched modifier
state can be changed by keyboard activity or via Xkb extension library functions.

The Xkb extension provides support kmysym groupsas defined by 1ISO9995:

Group A logical state of a keyboard providing access to a collection of characters. A
group usually contains a set of characters that logically belong together and
that may be arranged on several shift levels within that group.

The Xkb extension supports up to four keysym groups. Groups are named beginning with
one and indexed beginning with zero. All group states are indicated using the group index.
At any point in time, there is zero or one locked group, zero or one latched group, and one
base group. When a group is locked, it supersedes any previous locked group and remains
the locked group for all future key events, until a new group is locked. A latched group
applies only to the next key event that does not change the keyboard state. The locked and
latched group can be changed by keyboard activity or via Xkb extension library functions.

Changing to a different group changes the keyboard state to produce characters from a dif-
ferent group. Groups are typically used to switch between keysyms of different languages
and locales.

Thepointer buttonsareBut t onl - But t on5, as defined by the core protocol.

Thebase groupandbase modifiersepresent keys that are physically or logically down.
These and the pointer buttons can be changed by keyboard activity and not by Xkb
requests. It is possible for a key to be logically down, but not physically down, and neither
latched nor locked.

Theeffective modifierare the bitwise union of the locked, latched, and the base modifiers.

Theeffective groups the arithmetic sum of the group indices of the latched group, locked
group, and base group, which is then normalized by some function. The result is a mean-
ingful group index.

n = number of keyboard groups, 1<=n <=4
0 <= any of locked, latched, or base group <n
effective group = f(locked group + latched group + base group)

The function f ensures that the effective group is within range. The precise function is
specified for the keyboard and can be retrieved through the keyboard description. It may
wrap around, clamp down, or default. Few applications will actually examine the effective
group, and far fewer still will examine the locked, latched, and base groups.

There are two circumstances under which groups are normalized:

1. Keys may be logically down when they are physically up because of their electrical properties or because of the
keyboard extension in the X server having filtered the key release, for esoteric reasons.

November 10, 1997 Library Version 1.0/Document Revision 1.1 20

The X Keyboard Extension 5 Keyboard State

1. The global locked or effective group changes. In this case, the changed group is nor-
malized into range according to the settings oigtloeips_wragfield of theXkbCon-
t r ol sRec structure for the keyboard (see section 10.7.1).

2. The Xkb library is interpreting an event with an effective group that is legal for the
keyboard as a whole, but not for the key in question. In this case, the group to use for
this event only is determined using treup_infofield of the key symbol mapping
(XkbSyniapRec) for the event key.

Each nonmodifier key on a keyboard has zero or more symbols, or keysyms, associated
with it. These are the logical symbols that the key can generate when it is pressed. The set
of all possible keysyms for a keyboard is divided into groups. Each key is associated with
zero or more groups; each group contains one or more symbols. When a key is pressed,
the determination of which symbol for the key is selected is based on the effective group
and the shift level, which is determined by which modifiers are set.

A client that does not explicitly call Xkb functions, but that otherwise makes use of an X
library containing the Xkb extension, will have keyboard state represented in bits O - 14 of
the state field of events that report modifier and button state. Such a client is said to be
Xkb-capableA client that does explicitly call Xkb functions is Akb-awareclient. The

Xkb keyboard state includes information derived from the effective state and from two
server parameters that can be set through the keyboard extension. The following compo-
nents of keyboard state pertain to Xkb-capable and Xkb-aware clients:

» lookup state: lookup group and lookup modifiers
» grab state: grab group and grab modifiers

Thelookup modifier@ndlookup groupare represented in the state field of core X events.
The modifier state and keycode of a key event are used to determine the symbols associ-
ated with the event. FéeyPr ess andKeyRel ease events, the lookup modifiers are
computed as:

((base | latched | locked) &erver_internal_modifiejs
Otherwise the lookup modifiers are computed as:

(((base | latched | (locked &gnore_lock$) & ~server_internal_modifiejs
The lookup group is the same as the effective group.

When an Xkb-capable or Xkb-aware client wishes to map a keycode to a keysym, it
should use thieookup state— the lookup group and the lookup modifiers.

Thegrab stateis the state used when matching events to passive grabs. If the event acti-
vates a grab, thgrab modifiersandgrab groupare represented in the state field of core X
events; otherwise, the lookup state is used. The grab modifiers are computed as:

(((base | latched | (locked & ~ignore_locks)) & ~server_internal_modifiers)

If the server’'d gnor e@ oupLock control (see section 10.7.3) is not set, the grab group is
the same as the effective group. Otherwise, the grab group is computed from the base
group and latched group, ignoring the locked group.

The final three components of Xkb state are applicable to clients that are not linked with
an Xlib containing the X keyboard extension library and therefore are not aware of the
keyboard extensioXkb-unawareclients):

November 10, 1997 Library Version 1.0/Document Revision 1.1 21

The X Keyboard Extension 5 Keyboard State

5.2

5.2.1

» The compatibility modifier state
e The compatibility lookup modifier state
» The compatibility grab modifier state

The X11 protocol interpretation of modifiers does not include direct support for multiple
groups. When an Xkb-extended X server connects to an Xkb-unaware client, the compati-
bility states remap the keyboard group into a core modifier whenever possible. The com-
patibility state corresponds to the effective modifier and effective group state, with the
group remapped to a modifier. The compatibility lookup and grab states correspond to the
lookup and grab states, respectively, with the group remapped to a modifier. The compati-
bility lookup state is reported in events that do not trigger passive grabs; otherwise, the
compatibility grab state is reported.

Changing the Keyboard State

Changing Modifiers

The functions in this section that change the use of modifiers use a mask in the parameter
affect It is a bitwise inclusive OR of the legal modifier masks:

Table 5.1 Real Modifier Masks

Mask
ShiftMask
LockMask
ControlMask
Mod1Mask
Mod2Mask
Mod3Mask
Mod4Mask
Mod5Mask

To lock and unlock any of the eight real keyboard modifiersXbé ockModifiers:

Bool XkbLockModifiers (display, device_spec, affect, values

Display * display [* connection to the X server */

unsigned int device_spec /* device ID, orXkbUseCor eKbd */

unsigned int affect /* mask of real modifiers whose lock state is to change */
unsigned int values /* 1 =>lock, 0 => unlock; only for modifiers selecteddffect*/

XkbLockModifiersends a request to the server to lock the real modifiers selected by both
affectandvaluesand to unlock the real modifiers selectedhfigctbut not selected byal-

ues XkbLockModifiergloes not wait for a reply from the server. It retufnge if the

request was sent, akdl se otherwise.

To latch and unlatch any of the eight real keyboard modifierskiseatchModifiers:
Bool XkbLatchModifiers (display, device_spec, affect, values

Display * display /* connection to the X server */

unsigned int device_spec /* device ID, orXkbUseCor eKbd */

unsigned int affect /* mask of modifiers whose latch state is to change */
unsigned int values /* 1 => latch, 0 => unlatch; only for mods selectedalffgct*/

November 10, 1997 Library Version 1.0/Document Revision 1.1 22

The X Keyboard Extension

5 Keyboard State

5.2.2

5.3

XkbLatchModifiersends a request to the server to latch the real modifiers selected by both
affectandvaluesand to unlatch the real modifiers selectectbigctbut not selected by
values XkbLatchModifiergloes not wait for a reply from the server. It returnse if the
request was sent, akdl se otherwise.
Changing Groups
Reference the keysym group indices with these symbolic constants:

Table 5.2 Symbolic Group Names

Symbolic Name Value
XkbGrouplindex 0
XkbGroup2Iindex 1
XkbGroup3index 2
XkbGroup4index 3

To lock the keysym group, usékbLockGroup.

Bool XkbLockGroup (display, device_spec, group
Display * display, [* connection to the X server */
unsigned int device_spec /* device ID, orxkbUseCor eKbd */
unsigned int group; /* index of the keysym group to lock */

XkbLockGroupsends a request to the server to lock the spegjf@gband does not wait
for a reply. It returndr ue if the request was sent aRdl se otherwise.

To latch the keysym group, uX&bLatchGroup.

Bool XkbLatchGroup (display, device_spec, group
Display * display /* connection to the X server */
unsigned int device_spec /* device 1D, orXkbUseCor eKbd */
unsigned int group, /* index of the keysym group to latch */

XkbLatchGroupsends a request to the server to latch the specified group and does not wait
for a reply. It returngr ue if the request was sent aRdl se otherwise.

Determining Keyboard State
Xkb keyboard state may be represented iXlett at eRec structure:

unsigned char
unsigned char
unsigned char
unsigned char
unsigned char

latched_group;

locked_group;
mods;
base _mods;

latched_mods;

typedef struct {
unsigned char group; [* effective group index */
unsigned char base_group; [* base group index */

/* latched group index */
/* locked group index */
[* effective modifiers */

[* base modifiers */

[* latched modifiers */

unsigned char locked_mods; * locked modifiers */
unsigned char compat_state; [* effective group => modifiers */
unsigned char grab_mods; /* modifiers used for grabs */

unsigned char
unsigned char
unsigned char

compat_grab_mods;

lookup_mods;

/* mods used for compatibility mode grabs */
/* modifiers used to lookup symbols */

compat_lookup_mods;/* mods used for compatibility lookup */

November 10, 1997

Library Version 1.0/Document Revision 1.1 23

The X Keyboard Extension 5 Keyboard State

5.4

unsigned short ptr_buttons; * 1 bit => corresponding pointer btn is down */
} XkbStateRec*XkbStatePtr;

To obtain the keyboard state, UddbGetState.
StatusXkbGetState(display device_specstate_returi

Display * display, [* connection to the X server */
unsigned int device_spec /* device ID, orXkbUseCor eKbd */
XkbStatePtr state_return /* backfilled with Xkb state */

The XkbGetStatéunction queries the server for the current keyboard state, waits for a
reply, and then backfillstate_returnwith the results.

All group values are expressed as group indices in the range [0..3]. Modifiers and the
compatibility modifier state values are expressed as the bitwise union of the core X11
modifier masks. The pointer button state is reported as in the core X11 protocol.

Tracking Keyboard State
The Xkb extension repordékbSt at eNot i fy events to clients wanting notification

whenever the Xkb state changes. The changes reported include changes to any aspect of

the keyboard state: when a modifier is set or unset, when the current group changes, or
when a pointer button is pressed or released. As with all Xkb ex&ihiSt at eNot i fy
events are reported to all interested clients without regard to the current keyboard input
focus or grab state.

There are many different types of Xkb state changes. Xkb defines an event detail mask
corresponding to each type of change. The event detail masks are listed in Table 5.3.

Table 5.3 XkbStateNotify Event Detail Masks

Mask Value
XkbModifierStateMask (AL << 0)
XkbModifierBaseMask (AL << 1)
XkbModifierLatchMask (1L << 2)
XkbModifierLockMask (AL << 3)
XkbGroupStateMask (1L << 4)
XkbGroupBaseMask (lL << 5)
XkbGroupLatchMask (1L << 6)
XkbGroupLockMask (AL << 7)
XkbCompatStateMask (1L << 8)
XkbGrabModsMask (AL << 9)
XkbCompatGrabModsMask (1L << 10)
XkbLookupModsMask (1L << 11)
XkbCompatLookupModsMask (1L << 12)
XkbPointerButtonMask (1L << 13)

XkbAllStateComponentsMask (0x3fff)

To track changes in the keyboard state for a particular device, select to Mdeive
St at eNot i fy events by calling eithetkbSelectEventsr XkbSelectEventDetai(see
section 4.3).

November 10, 1997 Library Version 1.0/Document Revision 1.1 24

The X Keyboard Extension 5 Keyboard State

To receiveXkbSt at eNot i fy events under all possible conditions, X&bSelectEvents
and paskbSt at eNot i f yMask in bothbits_to _changendvalues_for_bits

To receiveXkbSt at eNot i fy events only under certain conditions, Xs#dSelectEvent-
DetailsusingXkbSt at eNot i fy as theevent_typend specifying the desired state
changes imits_to_changandvalues_for_bitaising mask bits from Table 5.3.

The structure fokkbSt at eNot i fy events is:

typedef struct {
int type; /* Xkb extension base event code */
unsigned long serial; /* X server serial number for event */
Bool send_event; AT ue => synthetically generated */
Display * display; [* server connection where event generated */
Time time; /* server time when event generated */
int xkb_type; *XkbSt at eNot i fy */
int device; /* Xkb device ID, will not b&xkbUseCor eKbd */
unsigned int changed; [* bits indicating what has changed */
int group; [* group index of effective group */
int base_group; /* group index of base group */
int latched_group; /* group index of latched group */
int locked_group; /* group index of locked group */
unsigned int mods; [* effective modifiers */
unsigned int base_mods; /* base modifiers */
unsigned int latched_mods; /* latched modifiers */
unsigned int locked_mods; /* locked modifiers */
int compat_state; /* computed compatibility state */
unsigned char grab_mods; /* modifiers used for grabs */
unsigned char compat_grab_mods; /* modifiers used for compatibility grabs */
unsigned char lookup_mods; /* modifiers used to lookup symbols */
unsigned char compat_lookup_mods; /* mods used for compatibility look up */
int ptr_buttons; /* core pointer buttons */
KeyCode keycode; * keycode causing event, 0 if programmatic */
char event_type; [* core eventrég_majoror req_minornon zero */
char req_major; /* major request code if program trigger, else 0 */
char reg_minor; /* minor request code if program trigger, else 0 */

} XkbStateNotifyEvent;

When you receive axkbSt at eNot i f y event, theehangedield indicates which ele-
ments of keyboard state have changed. This will be the bitwise inclusive OR of one or
more of thexkbSt at eNot i fy event detail masks shown in Table 5.3. All fields reported
in the event are valid, but only those indicatedhiangechave changed values.

Thegroupfield is the group index of the effective keysym group. bagse group
latched_groupandlocked_grougdields are set to a group index value representing the

base group, the latched group, and the locked group, respectively. The X server can set the
modifier and compatibility state fields to a union of the core modifier mask bits; this union
represents the corresponding modifier states.piihduttonfield gives the state of the

core pointer buttons as a mask composed of an inclusive OR of zero or more of the core
pointer button masks.

Xkb state changes can occur either in response to keyboard activity or under application
control. If a key event caused the state chang&epeoddield gives the keycode of the

November 10, 1997 Library Version 1.0/Document Revision 1.1 25

The X Keyboard Extension 5 Keyboard State

key event, and thevent_typdield is set to eithelkeyPr ess or KeyRel ease. If a pointer
button event caused the state changekelieoddield is zero, and thevent_typdield is
set to eitheBut t onPr ess or But t onRel ease. Otherwise, the major and minor codes
of the request that caused the state change are givenragthmeajorandreq_minor
fields, and th&eycoddield is zero. Theeq_majorvalue is the same as timajor extension

opcode

November 10, 1997 Library Version 1.0/Document Revision 1.1

26

The X Keyboard Extension 6 Complete Keyboard Description

6

6.1

Complete Keyboard Description

The complete Xkb description for a keyboard device is accessed using a single structure
containing pointers to major Xkb components. This chapter describes this single structure
and provides references to other sections of this document that discuss the major Xkb
components in detail.

The XkbDescRec Structure

The complete description of an Xkb keyboard is given b}kdorbescRec. The compo-
nent structures in th&kbDescRec represent the major Xkb components outlined in Fig-
ure 1.1.

typedef struct {
struct _XDisplay * display; /* connection to X server */
unsigned short flags; /* private to Xkb, do not modify */
unsigned short device_spec; [/* device of interest */
KeyCode min_key_code; /* minimum keycode for device */
KeyCode max_key_code; /* maximum keycode for device */
XkbControlsPtr ctrls; [* controls */
XkbServerMapPtr server,; [* server keymap */
XkbClientMapPtr map; * client keymap */
XkbindicatorPtr indicators; /* indicator map */
XkbNamesPtr names; /* names for all components */
XkbCompatMapPtr compat; [* compatibility map */
XkbGeometryPtr geom; * physical geometry of keyboard */

} XkbDescReg *XkbDescPtr;

Thedisplayfield points to an X display structure. Thagsfield is private to the library:
modifying flags may yield unpredictable results. Ttievice speéield specifies the
device identifier of the keyboard input device XkbUseCor eKeyboar d, which speci-
fies the core keyboard device. Timen_key codandmax_key codBelds specify the
least and greatest keycode that can be returned by the keyboard.

The other fields specify structure components of the keyboard description and are
described in detail in other sections of this document. Table 6.1 identifies the subsequent
sections of this document that discuss the individual componentsX&hbescRec.

Table 6.1 XkbDescRec Component References
XkbDescRec Field For more info

ctrls Chapter 10
server Chapter 16
map Chapter 15
indicators Chapter 8

names Chapter 18
compat Chapter 17
geom Chapter 13

Each structure component has a corresponding mask bit that is used in function calls to
indicate that the structure should be manipulated in some manner, such as allocating it or

November 10, 1997 Library Version 1.0/Document Revision 1.1 27

The X Keyboard Extension 6 Complete Keyboard Description

freeing it. These masks and their relationships to the fields ikthigescRec are shown

in Table 6.2.

Table 6.2 Mask Bits for XkbDescRec

Mask Bit X'kaescRec Value
Field

XkbControlsMask ctrls (1L<<0)
XkbServerMapMask server (1L<<1)
XkblClientMapMask map (1L<<?2)
XkbIndicatorMapMask indicators (1L<<3)
XkbNamesMask names (1L<<4)
XkbCompatMapMask compat (1L<<b)
XkbGeometryMask geom (1L<<6)

XkbAllComponentsMask All Fields (Ox7f)

6.2 Obtaining a Keyboard Description from the Server

To retrieve one or more components of a keyboard device descriptiofkhGetKey-
board (see alsXkbGetKeyboardbyName

XkbDescPtiXkbGetKeyboard(display, which, device spec
Display * display, [* connection to X server */
unsigned int whichy /* mask indicating components to return */
unsigned int device_spec /* device for which to fetch description, BkbUseCor eKbd */

XkbGetKeyboara@llocates and returns a pointer to a keyboard description. It queries the
server for those components specified invitnech parameter for devicgevice_speand
copies the results to tikbDescRec it allocated. The remaining fields in the keyboard
description are set tdLL. The valid masks fawvhichare those listed in Table 6.2.

XkbGetKeyboardan generatBadAl | oc protocol errors.

To free the returned keyboard description, XikeFreeKeyboardsee section 6.4).

6.3 Tracking Changes to the Keyboard Description in the Server

The server can generate events whenever its copy of the keyboard description for a device
changes. Refer to section 14.4 for detailed information on tracking changes to the key-
board description.

6.4 Allocating and Freeing a Keyboard Description

Applications seldom need to directly allocate a keyboard description; cdkin@etKey-
boardusually suffices. In the event you need to create a keyboard description from
scratch, however, usékbAllocKeyboardather than directly callingnallocor Xmalloc

XkbDescRec *XkbAllocKeyboard (void)

If XkbAllocKeyboardails to allocate the keyboard description, it retidosL. Other-

wise, it returns a pointer to an empty keyboard description structureeVive _speteld

will have been initialized t&kbUseCor eKbd. You may then either fill in the structure
components or use Xkb functions to obtain values for the structure components from a
keyboard device.

November 10, 1997 Library Version 1.0/Document Revision 1.1 28

The X Keyboard Extension 6 Complete Keyboard Description

To destroy either an entire ZkbDescRec or just some of its members, uskbFreeKey-

board.

void XkbFreeKeyboard(xkb, which, free_a)l
XkbDescPtr xkby [* keyboard description with components to free */
unsigned int which /* mask selecting components to free */
Bool free_alt [* Tr ue => free all components amxitb*/

XkbFreeKeyboardrees the components xib specified bywhichand sets the corre-
sponding values thULL. If free_allis Tr ue, XkbFreeKeyboardrees every nomNULL
component okkband then frees theb structure itself.

November 10, 1997 Library Version 1.0/Document Revision 1.1 29

The X Keyboard Extension 7 Virtual Modifiers

7

7.1

7.2

Virtual Modifiers

The core protocol specifies that certain keysyms, when bound to modifiers, affect the rules
of keycode to keysym interpretation for all keys; for example, wheNuhe Lock key-

sym is bound to some modifier, that modifier is used to select between shifted and
unshifted state for the numeric keypad keys. The core protocol does not provide a conve-
nient way to determine the mapping of modifier bits (in partiduball throughMbd5) to
keysyms such asum_Lock andMode_switch. Using the core protocol only, a client
application must retrieve and search the modifier map to determine the keycodes bound to
each madifier, and then retrieve and search the keyboard mapping to determine the key-
syms bound to the keycodes. It must repeat this process for all modifiers whenever any
part of the modifier mapping is changed.

Xkb alleviates these problems by defining virtual modifiers. In addition to the eight core
modifiers, referred to as tleal modifiers Xkb provides a set of sixteen namedual
modifiers Each virtual modifier can be bound to any set of the real modighrg { ,

Lock, Cont rol , andMbd1-Mbdb).

The separation of function from physical modifier bindings makes it easier to specify
more clearly the intent of a binding. X servers do not all assign modifiers the same way —
for exampleNum_Lock might be bound tbd2 for one vendor and tgbd4 for another.

This makes it cumbersome to automatically remap the keyboard to a desired configuration
without some kind of prior knowledge about the keyboard layout and bindings. With

XKB, applications can use virtual modifiers to specify the desired behavior, without
regard for the actual physical bindings in effect.

Virtual Modifier Names and Masks

Virtual modifiers are named by converting their string name to Ahofnand storing the

Atom in thenames.vmodarray in anxkbDescRec structure (see section 6.1). The posi-

tion of a name Atom in theames.vmodarray defines the bit position used to represent

the virtual modifier and also the index used when accessing virtual modifier information

in arrays: the name in the i-th (O relative) entrpafes.vmodss the i-th virtual modifier,
represented by the mask (1<<i). Throughout Xkb, various functions have a parameter that
is a mask representing virtual modifier choices. In each case, the i-th bit (O relative) of the
mask represents the i-th virtual modifier.

To set the name of a virtual modifier, dSebSetNamesisingXkbVi r t ual ModNanes-
Mask in whichand the name in thé&kbargument; to retrieve indicator names, ¥kbGet-
Names These functions are discussed in Chapter 18.

Modifier Definitions

An Xkb modifier definitiorenumerates a collection of real and virtual modifiers but does
not in itself bind those modifiers to any particular key or to each other. Modifier defini-
tions are included in a number of structures in the keyboard description to define the col-
lection of modifiers that affect or are affected by some other entity. A modifier definition

is relevant only in the context of some other entity such as an indicator map, a control, or a
key type. (See sections 8.2.2, 10.8, and 15.2.)

typedef struct _XkbMods {
unsigned char mask; /* real_mods | vmods mapped to real modifiers */
unsigned char real_mods; * real modifier bits */

November 10, 1997 Library Version 1.0/Document Revision 1.1 30

The X Keyboard Extension 7 Virtual Modifiers

7.3

7.4

unsigned short vmods; * virtual modifier bits */
} XkbModsRec,*XkbModsPtr;

An Xkb modifier definition consists of a set of bit masks corresponding to the eight real
modifiers (eal_mod$; a similar set of bitmasks corresponding to the 16 named virtual
modifiers {mod$; and an effective maskn@sh. The effective mask represents the set of
all real modifiers that can logically be set either by setting any of the real modifiers or by
setting any of the virtual modifiers in the definitionaskis derived from the real and vir-
tual modifiers and should never be explicitly changed — it contains all of the real modifi-
ers specified in the definitiomgal _mod3$ plusany real modifiers that are bound to the
virtual modifiers specified in the definitionrfod$. The binding of the virtual modifiers

to real modifiers is exterior to the modifier definition. Xkb automatically recomputes the
mask field of modifier definitions as necessary. Whenever you access a modifier defini-
tion that has been retrieved using an Xkb library function, the mask field will be correct
for the keyboard mapping of interest.

Binding Virtual Modifiers to Real Modifiers

The binding of virtual modifiers to real modifiers is defined bygéeser.vmodsarray in
anXkbDescRec structure. Each entry contains the real modifier bits that are bound to the
virtual modifier corresponding to the entry. The overall relationship of fields dealing with
virtual modifiers in the server keyboard description are shown in Figure 16.2.

Virtual Modifier Key Mapping

Xkb maintains avirtual modifier mappingwhich lists the virtual modifiers associated

with, or bound to, each key. The real modifiers bound to a virtual modifier always include
all of the modifiers bound to any of the keys that specify that virtual modifier in their vir-
tual modifier mapping. Theerver.vmodmaprray indicates which virtual modifiers are
bound to each key; each entry is a bitmask for the virtual modifier bitserter.vmod-
maparray is indexed by keycode.

Thevmodmapndvmodsmembers of the server map are the “master” virtual modifier
definitions. Xkb automatically propagates any changes to these fields to all other fields
that use virtual modifier mappings (see section 16.4).

For example, iMbd3 is bound to thélum_Lock key by the core protocol modifier map-
ping, and thé\uniock virtual modifier is bound to thelyjum_Lock key by the virtual
modifier mappingMbd3 is added to the set of modifiers associated WiiiLock.

The virtual modifier mapping is normally updated whenever actions are automatically
applied to symbols (see section 16.4 for details), and few applications should need to
change the virtual modifier mapping explicitly.

UseXkbGetMap(see section 14.2) to get the virtual modifiers from the server otkise
GetVirtualMods(see section 16.4.1) to update a local copy of the virtual modifiers bind-
ings from the server. To set the binding of a virtual modifier to a real modifier, use
XkbSetMagsee section 14)3

November 10, 1997 Library Version 1.0/Document Revision 1.1 31

The X Keyboard Extension 7 Virtual Modifiers

To determine the mapping of virtual modifiers to core X protocol modifiersXkis¥ir-
tualModsToReal

Bool XkbVirtualModsToReal (xkb, virtual_mask, mask_r{yn

XkbDescPtr xkby [* keyboard description for input device */
unsigned int virtual_mask /* virtual modifier mask to translate */
unsigned int * mask_rtrn /* backfilled with real modifiers */

If the keyboard description defined kigbincludes bindings for virtual modifier&kbVir-
tualModsToRealises those bindings to determine the set of real modifiers that correspond
to the set of virtual modifiers specifiedvirtual_mask Thevirtual_maskparameter is a

mask specifying the virtual modifiers to translate; the i-th bit (O relative) of the mask rep-
resents the i-th virtual modifier. thask_rtrnis nonNULL, XkbVirtualModsToRedback-

fills it with the resulting real modifier mask. If the keyboard descriptiatkindoes not

include virtual modifier bindings{kbVirtualModsToRealeturnsFal se; otherwise, it
returnsTr ue.

Note Itis possible for a local (client-side) keyboard description Xkigparameter) to not
contain any virtual modifier information (simply because the client has not requested
it) while the server’s corresponding definition may contain virtual modifier informa-
tion.

7.4.1 Inactive Modifier Sets

An unbound virtual modifier is one that is not bound to any real modifier
(server>vmod$virtual_modifier_index] is zero).

Some Xkb operations ignore modifier definitions in which the virtual modifiers are
unbound. Consider this example:

if (state matches {Shift}) Do OneThing;
if (state matches {Shift+NumLock}) Do Another;

If the NunLock virtual modifier is not bound to any real modifiers, the effective masks for
these two cases are identical (that is, contain 8imiy t). When it is essential to distin-
guish between OneThing and Another, Xkb considers only those modifier definitions for
which all virtual modifiers are bound.

7.5 Conventions

The Xkb extension does not require any specific virtual modifier names. However, every-
one benefits if the same names are used for common modifiers. The following names are
suggested:

Nunock
Scrol | Lock
At

Met a

Ata

Level Thr ee

7.6 Example

If the second (O-relative) entry mames.vmodsontains the Atom for “NumLock”, then
0x4 (1<<2) is the virtual modifier bit for tiduniock virtual modifier. Ifserver.vmodg]

November 10, 1997 Library Version 1.0/Document Revision 1.1 32

The X Keyboard Extension 7 Virtual Modifiers

containdvbd3Mask, then the\uniock virtual modifier is bound to thiebd3 real modi-
fier.

A virtual modifier definition for this example would have:

real_mods =0
vmods = 0x4 (NumLock named virtual modifier)
mask = 0x20 (Mod3Mask)

Continuing the example, if the keyboard hasuen_Lock keysym bound to the key with
keycode 14, and thduniock virtual modifier is bound to this kegerver.vmodmdf4]
contains 0x4.

Finally, if the keyboard also used the rbtil modifier for numeric lock operations, the
modifier definition below would represent the situation where either the key bound to

Mbd1 or theNuniock virtual modifier could be used for this purpose:

real_mods = 0x8 (Mod1Mask)
vmods = 0x4 (NumLock named virtual modifier)
mask = 0x28 (Mod1Mask | Mod3Mask)

November 10, 1997 Library Version 1.0/Document Revision 1.1

33

The X Keyboard Extension 8 Indicators

8

8.1

8.2

8.2.1

Indicators

Although the core X implementation supports up to 32 LEDs on an input device, it does
not provide any linkage between the state of the LEDs and the logical state of the input
device. For example, most keyboards ha@Ga@sLock LED, but X does not provide a
mechanism to make the LED automatically follow the logical state afdpslLock key.

Furthermore, the core X implementation does not provide clients with the ability to deter-
mine what bits in theed_masKield of theXKeyboar dSt at e map to the particular LEDs

on the keyboard. For example, X does not provide a method for a client to determine what
bit to set in théed_maskKield to turn on theScroll LockLED or whether the keyboard

even has &croll Lock LED.

Xkb provides indicator names and programmable indicators to help solve these problems.
Using Xkb, clients can determine the names of the various indicators, determine and con-
trol the way that the individual indicators should be updated to reflect keyboard changes,
and determine which of the 32 keyboard indicators reported by the protocol are actually
present on the keyboard. Clients may also request immediate notification of changes to the
state of any subset of the keyboard indicators, which makes it straightforward to provide
an on-screen “virtual” LED panel. This chapter describes Xkb indicators and the functions
used for manipulating them.

Indicator Names

Xkb provides the capability of symbolically naming indicators. Xkb itself doesn’'t use

these symbolic names for anything; they are there only to help make the keyboard descrip-
tion comprehensible to humans. To set the names of specific indicataxkh&stNames

as discussed in Chapter 18. Then set the map M&in§etMapsee section 14.3) otkb-
SetNamedIndicataibelow). To retrieve indicator names, o8 GetNamefChapter 18).

Indicator Data Structures

Use the indicator description recoikbl ndi cat or Rec, and its indicator map,
Xkbl ndi cat or MapRec, to inquire about and control most indicator properties and
behaviors.

XkblndicatorRec

The description for all the Xkb indicators is held in itndicatorsfield of the complete
keyboard description (see Chapter 6), which is defined as follows:

#define XkbNumindicators 32

typedef struct {
unsigned long phys_indicators; /* LEDs existence */
XkblndicatorMapRec maps[XkbNumindicators]; * indicator maps */

} XkbIndicatorRec,*XkblIndicatorPtr;

This structure contains thpdhys_indicatordield, which relates some information about
the correspondence between indicators and physical LEDs on the keyboard, and an array
of indicatormaps one map per indicator.

Thephys_indicatordield indicates which indicators are bound to physical LEDs on the
keyboard; if a bit is set iphys_indicatorsthen the associated indicator has a physical

November 10, 1997 Library Version 1.0/Document Revision 1.1 34

The X Keyboard Extension 8 Indicators

8.2.2

LED associated with it. This field is necessary because some indicators may not have cor-
responding physical LEDs on the keyboard. For example, most keyboards have an LED
for indicating the state dfapsLock, but most keyboards do not have an LED that indi-
cates the current group. Becapbgs_indicatorglescribes a physical characteristic of the
keyboard, you cannot directly change it under program control. However, if a client pro-
gram loads a completely new keyboard descriptiorXiiaGetKeyboardByNamer if a

new keyboard is attached and the X implementation nopbss, indicatorchanges if

the indicators for the new keyboard are different.

XkbIndicatorMapRec

Each indicator has its own set of attributes that specify whether clients can explicitly set
its state and whether it tracks the keyboard state. The attributes of each indicator are held
in themapsarray, which is an array &&bl ndi cat or Rec structures:

typedef struct {
unsigned char flags; /* how the indicator can be changed */
unsigned char which_groups; /* match criteria for groups */
unsigned char groups; /* which keyboard groups the indicator watches */
unsigned char which_mods; /* match criteria for modifiers */
XkbModsRec mods; /* which modifiers the indicator watches */
unsigned int ctrls; * which controls the indicator watches */

} XkbIndicatorMapRec, *XkbIndicatorMapPtr;
This indicator map specifies for each indicator:

The conditions under which the keyboard modifier state affects the indicator

The conditions under which the keyboard group state affects the indicator

The conditions under which the state of the boolean controls affects the indicator
The effect (if any) of attempts to explicitly change the state of the indicator using the
functionsXkbSetControlser XChangeKeyboardControl

For more information on the effects of explicit changes to indicators and the relationship
to the indicator map, see section 8.4.1.

XkbIndicatorMapRec flags field

Theflagsfield specifies the conditions under which the indicator can be changed and the
effects of changing the indicator. The valid valuedlfays and their effects are shown in
Table 8.1.

Table 8.1 XkbIndicatorMapRec flags Field

Value Effect
XkbIM_NoExplicit (1L<<7) Client applications cannot change the state of the indicator.

XkbIM_NoAutomatic (1L<<6) Xkb does not automatically change the value of the indicator
based upon a change in the keyboard state, regardless of the
values for the other fields of the indicator map.

XkbIM_LEDDriveskB (1L<<5) A client application changing the state of the indicator causes
the state of the keyboard to change.

Note that ifXkbl M NoAut omat i c is not set, by default the indicator follows the key-
board state.

November 10, 1997 Library Version 1.0/Document Revision 1.1 35

The X Keyboard Extension 8 Indicators

If Xkbl M LEDDx i vesKBis set andkkbl M NoExpl i ci t is not, and if you call a function
which updates the server’s image of the indicator map (susklx®etindicatorMar
XkbSetNamediIndicatprXkb changes the keyboard state and controls to reflect the other
fields of the indicator map, as described in the remainder of this section. If you attempt to
explicitly change the value of an indicator for whiithl M LEDDr i vesKB is absent or

for which Xkbl M_NoExpl i ci t is present, keyboard state or controls are unaffected.

For example, a keyboard designer may want to makéapel.ock LED controllable

only by the server, but allow ti8zroll LockLED to be controlled by client applications.
To do so, the keyboard designer could seditd M NoExpl i ci t flag for the

CapsLock LED, but not set it for th&croll LockLED. Or the keyboard designer may
wish to allow theCapsLock LED to be controlled by both the server and client applica-
tions and also have the server to automatically changéafisd ock modifier state when-
ever a client application changes apsLock LED. To do so, the keyboard designer
would not set thekbl M NoExpl i ci t flag, but would instead set the

Xkbl M LEDDx i vesKB flag.

The remaining fields in the indicator map specify the conditions under which Xkb auto-
matically turns an indicator on or off (onlyXkbl M NoAut ormat i ¢ is not set). If these
conditions match the keyboard state, Xkb turns the indicator on. If the conditions do not
match, Xkb turns the indicator off.

XkbIndicatorMapRec which_groups and groups fields

Thewhich_groupsand thegroupsfields of an indicator map determine how the keyboard
group state affects the corresponding indicator.Whieh_groupdield controls the inter-
pretation ofgroupsand may contain any one of the following values:

#define XkbIM_UseNone 0

#define XkbIM_UseBase (1L << 0)
#define XkbIM_UseLatched (1L << 1)
#define XkbIM_UseLocked (1L << 2)

#define XkbIM_UseEffective (AL << 3)
#define XkbIM_UseAnyGroup XkbIM_UselLatched | XkbIM_UselLocked |
XkbIM_UseEffective

Thegroupsfield specifies what keyboard groups an indicator watches and is the bitwise
inclusive OR of the following valid values:

#define XkbGrouplMask (1<<0)
#define XkbGroup2Mask (1<<1)
#define XkbGroup3Mask (1<<2)
#define XkbGroup4Mask (1<<3)

#define XkbAnyGroupMask (1<<7)
#define XkbAllGroupsMask (Oxf)

November 10, 1997 Library Version 1.0/Document Revision 1.1 36

The X Keyboard Extension 8 Indicators

If Xkbl M _NoAut omat i ¢ is not set (the keyboard drives the indicator), the effect of
which_groupsandgroupsis shown in Table 8.2.

Table 8.2 XkblIndicatorMapRec which_groups and groups, Keyboard Drives Indicator

which_groups Effect
XkbIM_UseNone Theyroupsfield and the current keyboard group state are ignored.
XkbIM_UseBase ligroupsis nonzero, the indicator is lit whenever the base keyboard

group is nonzero. froupsis zero, the indicator is lit whenever the base
keyboard group is zero.

XkbIM_UseLatched ligroupsis nonzero, the indicator is lit whenever the latched keyboard
group is nonzero. ijroupsis zero, the indicator is lit whenever the
latched keyboard group is zero.

XkbIM_UselLocked Th@roupsfield is interpreted as a mask. The indicator is lit when the
current locked keyboard group matches one of the bits that are set in
groups

XkbIM_UseEffective Thegroupsfield is interpreted as a mask. The indicator is lit when the
current effective keyboard group matches one of the bits that are set in
groups

The effect ofwhich_groupsandgroupswhen you change an indicator for which
Xkbl M LEDDx i vesKB is set (the indicator drives the keyboard) is shown in Table 8.3.
The “New State” column refers to the new state to which you set the indicator.

Table 8.3 XkbIndicatorMapRec which_groups and groups, Indicator Drives Keyboard

which_groups New State Effect on Keyboard Group State

XkbIM_UseNone On or Off No effect

XkbIM_UseBase On or Off No effect

XkbIM_UseLatched On Thgroupsfield is treated as a group mask. The keyboard

group latch is changed to the lowest numbered group speci-
fied ingroups if groupsis empty, the keyboard group latch is
changed to zero.

XkbIM_UseLatched Off Thegroupsfield is treated as a group mask. If the indicator is
explicitly extinguished, keyboard group latch is changed to
the lowest numbered group not specifiedrioups if groups
is zero, the keyboard group latch is set to the index of the
highest legal keyboard group.

XkbIM_UselLocked or On If the groupsmask is empty, group is not changed; otherwise,
XkbIM UseEffective the locked keyboard group is changed to the lowest num-

- bered group specified groups
XkbIM_UselLocked or Off Locked keyboard group is changed to the lowest numbered
XkbIM UseEffective group that is not specified in theoupsmask, or td3 oupl

- if the groupsmask contains all keyboard groups.

XkbiIndicatorMapRec which_mods and mods fields

Themodsfield specifies what modifiers an indicator watches. iftoglsfield is an Xkb
modifier definition, XkbMbdsRec, as described in section 7.2, which can specify both real
and virtual modifiers. Thenodsfield takes effect even if some or all of the virtual indica-
tors specified inmodsare unbound. To specify the mods field, in general, assign the mod-
ifiers of interest tanods.real_modand the virtual modifiers of interestit@ods.vmods

You can disregard thmods.maskield unless your application needs to interpret the indi-
cator map directly (that is, to simulate automatic indicator behavior on its own). Relatively

November 10, 1997 Library Version 1.0/Document Revision 1.1 37

The X Keyboard Extension 8 Indicators

few applications need to do so, but if you find it necessary, you can either read the indica-
tor map back from the server after you update it (the server automatically updates the
mask field whenever any of the real or virtual modifiers are changed in the modifier defi-
nition) or you can us¥kbVirtualModsToReab determine the proper contents for the

mask field, assuming that tb&bDescRec contains the virtual modifier definitions.

which_modspecifies what criteria Xkb uses to determine a match with the corresponding
modsfield by specifying one or more components of the Xkb keyboard state. If

Xkbl M NoAut onat i ¢ is not set (the keyboard drives the indicator), the indicator is lit
whenever any of the modifiers specified in thaskfield of themodsmodifier definition

are also set in any of the current keyboard state components specifieccbymods
Remember that thmaskfield is comprised of all of the real modifiers specified in the def-
inition plus any real modifiers that are bound to the virtual modifiers specified in the defi-
nition. (See Chapter 5 for more information on the keyboard state and Chapter 7 for more
information on virtual modifiers.) Use a bitwise inclusive OR of the following values to
compose a value favhich_mods

#define XkbIM_UseNone 0

#define XkbIM_UseBase (1L << 0)

#define XkbIM_UseLatched (1L <<1)

#define XkbIM_UseLocked (1L << 2)

#define XkbIM_UseEffective (1L << 3)

#define XkbIM_UseCompat (1L << 4)

#define XkbIM_UseAnyMods XkbIM_UseBase | XkbIM_UselLatchg#ljIM_UselLocked

| XkbIM_UseEffective | XkbIM_UseCompat

If Xkbl M NoAut omat i ¢ is not set (the keyboard drives the indicator), the effect of
which_modsandmodsis shown in Table 8.4

Table 8.4 XkbIndicatorMapRec which_mods and mods, Keyboard Drives Indicator

which_mods Effect on Keyboard Modifiers
XkbIM_UseNone The mods field and the current keyboard modifier state are ignored.

XkbIM_UseBase The indicator is lit when any of the modifiers specified imtlaskfield
of modsare on in the keyboard base stétdooth mods.real _mods
andmods.vmodare zero, the indicator is lit when the base key-
board state contains no modifiers.

XkbIM_UselLatched The indicator is lit when any of the modifiers specified imtlaskfield
of modsare latchedlf both mods.real_modandmods.vmodare
Izer%, tg\e indicator is lit when none of the modifier keys are
atched.

XkbIM_UseLocked The indicator is lit when any of the modifiers specified imtlaskfield
of modsare lockedlf both mods.real_modandmods.vmodare
zero, the indicatois lit when none of the modifier keys are locked.

XkbIM_UseEffective The indicator is lit when any of the modifiers specified imtlaskfield
of modsare in the effective keyboard staieboth mods.real_mods
andmods.vmodare zero, the indicator is lit when the effective
keyboard state contains no modifiers.

XkbIM_UseCompat The indicator is lit when any of the modifiers specified imtlaskfield
of modsare in the keyboard compatibility stateboth
mods.real_modandmods.vmodare zero, the indicator is lit
whenthe keyboard compatibility state contains no modifiers.

November 10, 1997 Library Version 1.0/Document Revision 1.1 38

The X Keyboard Extension 8 Indicators

8.3

The effect on the keyboard modifierswafich_modsindmodswhen you change an indi-
cator for whichxkbl M LEDDx i vesKB s set (the indicator drives the keyboard) is shown

in Table 8.5. The “New State” column refers to the new state to which you set the indica-
tor.

Table 8.5 XkbIndicatorMapRec which_mods and mods, Indicator Drives Keyboard

which_mods New State Effect on Keyboard Modifiers

XkbIM_UseNone or On or Off No Effect
XkbIM_UseBase

XkbIM_Uselatched On Any maodifiers specified in thaskfield of modsare
added to the latched modifiers.

XkbIM_UseLatched Off Any modifiers specified in theaskfield of modsare
removed from the latched modifiers.

XkbIM_Uselocked, On Any modifiers specified in theaskfield of modsare

XkbIM_UseCompat, or added to the locked modifiers.

XkbIM_UseEffective

XkbIM_UseLocked Off Any modifiers specified in theaskfield of modsare

removed from the locked modifiers.

XkbIM_UseCompat or ~ Off Any modifiers specified in thenaskfield of modsare
XkbIM_UseEffective removed from both the locked and latched modifiers.

XkblIndicatorMapRec ctrls field

Thectrls field specifies what controls (see Chapter 10) the indicator watches and is com-
posed using the bitwise inclusive OR of the following values:

#define XkbRepeatKeysMask (1L << 0)
#define XkbSlowKeysMask (AL << 1)
#define XkbBounceKeysMask (AL << 2)
#define XkbStickyKeysMask (1L << 3)
#define XkbMouseKeysMask (1L << 4)
#define XkbMouseKeysAccelMask (1L << 5)
#define XkbAccessXKeysMask (1L << 6)

#define XkbAccessXTimeoutMask (1L << 7)
#define XkbAccessXFeedbackMask (1L << 8)

#define XkbAudibleBellMask (1L << 9)
#define XkbOverlaylMask (1L << 10)
#define XkbOverlay2Mask (1L << 11)

#define XkbAllBooleanCtrisMask (Ox00001FFF)
Xkb lights the indicator whenever any of the boolean controls specifetdsns enabled.

Getting Information About Indicators

Xkb allows applications to obtain information about indicators using two different meth-
ods. The first method, which is similar to the core X implementation, uses a mask to spec-
ify the indicators. The second method, which is more suitable for applications concerned
with interoperability, uses indicator names. The correspondence between the indicator
name and the bit position in masks is as follows: one of the parameters return#trom
GetNamedIndicators an index that is the bit position to use in any function call that

November 10, 1997 Library Version 1.0/Document Revision 1.1 39

The X Keyboard Extension 8 Indicators

8.3.1

8.3.2

8.3.3

requires a mask of indicator bits, as well as the indicator’s index inXktiiendi ca-
t or Rec array of indicator maps.

Getting Indicator State

Because the state of the indicators is relatively volatile, the keyboard description does not
hold the current state of the indicators. To obtain the current state of the keyboard indica-
tors, useXkbGetIndicatorState

StatusXkbGetlndicatorState (display device_specstate_returi
Display * display [* connection to the X server */
unsigned int device_spec /* device ID, orXkbUseCor eKbd */
unsigned int state_return /* backfilled with a mask of the indicator state */

XkbGetIndicatorStatgueries thalisplayfor the state of the indicators on the device spec-
ified by thedevice_sped-or each indicator that is “turned on” on the device, the associ-
ated bit is set istate_returnIf a compatible version of the Xkb extension is not available
in the serverXkbGetIndicatorStateeturns eBadivat ch error. Otherwise, it sends the
request to the X server, places the state of the indicatorstat& returnand returns
Success. Thus the value reported bikbGetindicatorStates identical to the value
reported by the core protocol.

Getting Indicator Information by Index

To get the map for one or more indicators, using a mask to specify the indicatotsbuse
GetlIndicatorMap

StatusXkbGetlndicatorMap (dpy, which desg
Display * dpy; [* connection to the X server */
unsigned int whiclt ~ /* mask of indicators for which maps should be returned */
XkbDescPtr des¢ [* keyboard description to be updated */

XkbGetIndicatorMapmbtains the maps from the server for only those indicators specified
by thewhichmask and copies the values into the keyboard description specitieddly
theindicatorsfield of thedescparameter iNULL, XkbGetIndicatorMagallocates and ini-
tializes it.

XkbGetIndicatorMagan generatBadAl | oc, BadLengt h, Badvat ch, andBadl npl e-
nent at i on errors.

To free the indicator maps, us&bFreelndicatorMapgsee section 8.6).

Getting Indicator Information by Name

Xkb also allows applications to refer to indicators by name Xkb&etNameto get the
indicator names (see Chapter 18). Using hames eliminates the need for hard-coding bit-
mask values for particular keyboards. For example, instead of using vendor-specific con-
stants such a&bKBLed_Scr ol | Lock mask on Digital workstations or

XLED SCROLL_LQOCK on Sun workstations, you can instead XkbGetNamedIndicator

to look up information on the indicator named “Scroll Lock.”

November 10, 1997 Library Version 1.0/Document Revision 1.1 40

The X Keyboard Extension 8 Indicators

8.4

8.4.1

UseXkbGetNamedindicatdo look up the indicator map and other information for an
indicator by name.

Bool XkbGetNamedIndicator(dpy, dev_specname ndx_rtrn state_rtrn map_rtrn real_rtrn)

Display * dpy; [* connection to the X server */

unsigned int device_sped* keyboard device 1D, okkbUseCor eKbd */

Atom name /* name of the indicator to be retrieved */

int * ndx_rtrry /* backfilled with the index of the retrieved indicator */

Bool * state_rtrn /* backfilled with the current state of the retrieved indicator */
XkblIndicatorMapPtmap_rtrri/* backfilled with the mapping for the retrieved indicator */
Bool * real_rtrn; /* backfilled withTr ue if the named indicator is real (physical) */

If the device specified bgievice_spebas an indicator namedme XkbGetNamedindi-
cator returnsTr ue and populates the rest of the parameters with information about the
indicator. OtherwiseXkbGetNamedIndicataeturnsFal se.

Thendx_rtrnfield returns the zero-based index of the named indicator. This index is the
bit position to use in any function call that requires a mask of indicator bits, as well as the
indicator’s index into th&kbl ndi cat or Rec array of indicator mapstate_rtrnreturns

the current state of the named indicaforye = on,Fal se = off). map_rtrnreturns the
indicator map for the named indicator. In addition, if the indicator is mapped to a physical
LED, thereal_rtrn parameter is set ffr ue.

Each of the “rtrn” arguments is optional; you can padd L for any unneeded ftrn”
arguments.

XkbGetNamedindicataran generatBadAt omandBadl npl enent at i on errors.

Changing Indicator Maps and State

Just as you can get the indicator map using a mask or using an indicator name, so you can
change it using a mask or a name.

Note You cannot change thghys_indicatorgield of the indicators structure. The only
way to change thphys_indicatordield is to change the keyboard map.

There are two ways to make changes to indicator maps and state: either change a local
copy of the indicator maps and uskbSetindicatorMapr XkbSetNamedIndicatpor, to
reduce network traffic, use adkbl ndi cat or ChangesRec structure and use
XkbChangelndicators

Effects of Explicit Changes on Indicators

This section discusses the effects of explicitly changing indicators depending upon differ-
ent settings in the indicator map. See Tables 8.3 and Table 8.5 for information on the
effects of the indicator map fields when explicit changes are made.

If Xkbl M LEDDx i vesKBis set andkkbl M NoExpl i ci t is not, and if you call a function
that updates the server’s image of the indicator map (su€kbéetindicatorMapr Xkb-
SetNamedIndicatdr Xkb changes the keyboard state and controls to reflect the other
fields of the indicator map. If you attempt to explicitly change the value of an indicator for
which Xkbl M LEDDx i vesKB is absent or for whickkbl M NoExpl i ci t is present,
keyboard state or controls are unaffected.

November 10, 1997 Library Version 1.0/Document Revision 1.1 41

The X Keyboard Extension 8 Indicators

8.4.2

If neitherxXkbl M NoAut ormat i ¢ nor Xkbl M NoExpl i ci t is set in an indicator map,

Xkb honors any request to change the state of the indicator, but the new state might be
immediately superseded by automatic changes to the indicator state if the keyboard state
or controls change.

The effects of changing an indicator that drives the keyboard are cumulative; it is possible
for a single change to affect keyboard group, modifiers, and controls simultaneously.

If you change an indicator for which both tdebl M LEDDr i veskKB and

Xkbl M_NoAut omat i ¢ flags are specified, Xkb applies the keyboard changes specified in
the other indicator map fields and changes the indicator to reflect the state that was explic-
itly requested. The indicator remains in the new state until it is explicitly changed again.

If the Xkbl M NoAut onat i ¢ flag is not set andkbl M LEDDx i vesKB s set, Xkb applies

the changes specified in the other indicator map fields and sets the state of the indicator to
the values specified by the indicator map. Note that it is possible in this case for the indi-
cator to end up in a different state than the one that was explicitly requested. For example,
Xkb does not extinguish an indicator witthich_modof Xkbl M UseBase andmodsof

Shi ft if, at the time Xkb processes the request to extinguish the indicator, onesbfifthe

keys is physically depressed.

If you explicitly light an indicator for whickkkbl M LEDDr i vesKBiis set, Xkb enables all

of the boolean controls specified in tttels field of its indicator map. Explicitly extin-
guishing such an indicator causes Xkb to disable all of the boolean controls specified in
ctrls.

Changing Indicator Maps by Index

To update the maps for one or more indicators, first modify a local copy of the keyboard
description, then us€kbSetindicatorMapo download the changes to the server:

Bool XkbSetIndicatorMap (dpy, which des¢
Display * dpy; [* connection to the X server */
unsigned int whiclt /* mask of indicators to change */
XkbDescPtr desg /* keyboard description from which the maps are taken */

For each bit set in thehichparameterXkbSetindicatorMagends the corresponding
indicator map from theescparameter to the server.

November 10, 1997 Library Version 1.0/Document Revision 1.1 42

The X Keyboard Extension 8 Indicators

8.4.3 Changing Indicator Maps by Name
XkbSetNamediIndicataan do several related things:

Name an indicator if it is not already named
Toggle the state of the indicator

Set the indicator to a specified state

Set the indicator map for the indicator

Bool XkbSetNamedIndicator(dpy, device_spemame change_state, stgtereate_newmap

Display * dpy, [* connection to the X server */

unsigned int device_spec /* device ID, orXkbUseCor eKbd */

Atom name /* name of the indicator to change */

Bool change_statg* whether to change the indicator state or not */

Bool state [* desired new state for the indicator */

Bool create_new /* whether a new indicator with the specified name
should be created when necessary */

XkblndicatorMapPtr mag /* new map for the indicator */

If a compatible version of the Xkb extension is not available in the séiklegetNamed-

Indicator returnsFal se. Otherwise, it sends a request to the X server to change the indi-

cator specified bpameand returngr ue.
If change_statés Tr ue, and the optional parametstate is notNULL, XkbSetNamed-

Indicator tells the server to change the state of the named indicator to the value specified

by state

If an indicator with the name specified bgmedoes not already exist, tbeeate_new
parameter tells the server whether it should create a new named indicatatdf news

Tr ue, the server finds the first indicator that doesn’t have a name and gives it the name

specified byname

If the optional parametemap is notNULL, XkbSetNamedIndicataells the server to
change the indicator’'s map to the values specifiedap

XkbSetNamedindicatman generatBadAt omandBadl npl enent at i on errors. In
addition, it can also generatkbl ndi cat or St at eNot i f y (see section 8.5xkbl ndi -
cat or MapNot i fy, andXkbNamesNot i fy events (see section 18.5).

8.4.4 The XkbIndicatorChangesRec Structure
TheXkbl ndi cat or ChangesRec identifies small modifications to the indicator map.

Use it with the functiorXkbChangelndicatort reduce the amount of traffic sent to the

server.
typedef struct _XkblndicatorChanges {
unsigned int state_changes;
unsigned int map_changes;

} XkbIndicatorChangesRecg*XkbIndicatorChangesPtr;

Thestate_changeBeld is a mask that specifies the indicators that have changed state, and

map_changes a mask that specifies the indicators whose maps have changed.

November 10, 1997 Library Version 1.0/Document Revision 1.1

43

The X Keyboard Extension 8 Indicators

To change indicator maps or state without passing the entire keyboard description, use
XkbChangelndicators

Bool XkbChangelndicators(dpy, xkb, changes, state

Display * dpy. [* connection to the X server */

XkbDescPtr Xkl [* keyboard description from which names are to be
taken. */

XkbIndicatorChangesPtichanges /* indicators to be updated on the server */

unsigned int state /* new state of indicators listed in

changes>state_change¥

XkbChangelndicatorsopies any maps specified tlyangedrom the keyboard descrip-
tion, xkb, to the server specified lapy. If any bits are set in tretate_changeseld of
changesXkbChangelndicatoralso sets the state of those indicators to the values speci-
fied in thestatemask. A 1 bit irstateturns the corresponding indicator on, a 0 bit turns it
off.

XkbChangelndicat@r can generat®adAt omandBadl npl enent at i on errors. In addi-
tion, it can also genera¥bl ndi cat or St at eNot i f y andXkbl ndi cat or MapNot i fy
events (see section 8.5).

8.5 Tracking Changes to Indicator State or Map

Whenever an indicator changes state, the server Xgbtladi cat or St at eNot i fy
events to all interested clients. Similarly, whenever an indicator’'s map changes, the server
sendsxXkbl ndi cat or MapNot i fy events to all interested clients.

To receivexXkbl ndi cat or St at eNot i f y events, us&XkbSelectEveni{see section 4.3)
with both thebits_to_changandvalues_for_bitparameters containingbl ndi ca-

tor Stat eNot i f yMask. To receiveXkbl ndi cat or MapNot i fy events, usXkbSelect-
Eventswith Xkbl ndi cat or MapNot i f yMask.

To receive events for only specific indicators, M&bSelectEventDetailSet the
event_typgarametert o Xkbl ndi cat or St at eNot i fy or Xkbl ndi cat or MapNo-

tify, and set both thieits_to_changandvalues_for_bitsletail parameters to a mask

where each bit specifies one indicator, turning on those bits that specify the indicators for
which you want to receive events.

Both types of indicator events use the same structure:
typedef struct _XkblIndicatorNotify {

int type; /* Xkb extension base event code */

unsigned long serial; [* X server serial number for event */

Bool send_event; /AT ue => synthetically generated */

Display * display; [* server connection where event generated */
Time time; [* server time when event generated */

int xkb_type; [* specifies state or map notify */

int device; * Xkb device ID, will not b&XkbUseCor eKbd*/
unsigned int changed; /* mask of indicators with new state or map */
unsigned int state; [* current state of all indicators */

} XkbIndicatorNotifyEvent ;

November 10, 1997 Library Version 1.0/Document Revision 1.1 44

The X Keyboard Extension 8 Indicators

8.6

xkb_types eitherxXkbl ndi cat or St at eNot i fy or Xkbl ndi cat or MapNot i fy,
depending on whether the event isbd ndi cat or St at eNot i fy event okbl ndi ca-
t or MapNot i fy event.

Thechangedparameter is a mask that is the bitwise inclusive OR of the indicators that
have changed. If the event is of tydebl ndi cat or MapNot i f y, changedeports the
maps that changed. If the event is of ty§bl ndi cat or St at eNot i f y, changedeports
the indicators that have changed ststateis a mask that specifies the current state of all
indicators, whether they have changed or not, for Bkth ndi cat or St at eNot i fy

andl ndi cat or MapNot i fy events.

When your client application receives eithefkdl ndi cat or St at eNot i fy event or
Xkbl ndi cat or MapNot i fy event, you can note the changes in a changes structure by
calling XkbNotelndicatorChanges

void XkbNotelndicatorChangedold, new wanted

XkblIndicatorChangesPtr old; /* XkbiIndicatorChanges structure to be updated */
XkbIndicatorNotifyEvent * new /* event from which changes are to be copied */
unsigned int wanted /* which changes are to be noted */

Thewantedparameter is the bitwise inclusive ORXbI ndi cat or MapMask and
Xkbl ndi cat or St at eMask. XkbNotelndicatorChangesopies any changes reported in
newand specified invantedinto the changes record specifieddig.

To update a local copy of the keyboard description with the actual values, pass the results
of one or more calls t§kbNotelndicatorChangds XkbGetindicatorChanges

StatusXkbGetlIndicatorChanges(dpy, xkh changesstate

Display * dpy; [* connection to the X server */

XkbDescPtr xkby /* keyboard description to hold the new values */
XkblIndicatorChangesPtichanges /* indicator maps/state to be obtained from the server */
unsigned int * state * backfilled with the state of the indicators */

XkbGetIndicatorChangesxamines thehangegarameter, pulls over the necessary infor-
mation from the server, and copies the results intakh&eyboard description. If any bits
are set in thetate_changegeld of changesXkbGetIndicatorChangealso places the

state of those indicators state If theindicatorsfield of xkbis NULL, XkbGetIindicator-
Changesallocates and initializes it. To free timelicatorsfield, useXkbFreelndicators

(see section 8.6).

XkbGetIndicatorChangesan generatBadAl | oc, Badl npl erent at i on, andBad-
Mat ch errors.

Allocating and Freeing Indicator Maps

Most applications do not need to directly allocateitldécatorsmember of the keyboard
description record (the keyboard description record is described in Chapter 6). If the need
arises, however, usé&bAllocindicatorMaps.

StatusXkbAllocIindicatorMaps (xkb)
XkbDescPtr xkb; /* keyboard description structure */

Thexkb parameter must point to a valid keyboard description. If it doeskixAllocIndi-
catorMapsreturns éBadiat ch error. OtherwiseXkbAllocindicatorMapsllocates and
initializes theindicatorsmember of the keyboard description record and retuns

November 10, 1997 Library Version 1.0/Document Revision 1.1 45

The X Keyboard Extension 8 Indicators

cess. If XkbAllocindicatorMapsvas unable to allocate the indicators record, it reports a
BadAl | oc error.

To free memory used by thedicatorsmember of aixkbDescRec structure, use
XkbFreelndicatorMaps.

void XkbFreelndicatorMaps (xkb)
XkbDescPtr xkb; /* keyboard description structure */

If the indicatorsmember of the keyboard description record pointed tdkbys notNULL,
XkbFreelndicatorMap$rees the memory associated with iindicatorsmember okkh

November 10, 1997 Library Version 1.0/Document Revision 1.1 46

The X Keyboard Extension 9 Bells

9

9.1

Bells

The core X protocol allows only applications to explicitly sound the system bell with a
given duration, pitch, and volume. Xkb extends this capability by allowing clients to

attach symbolic names to bells, disable audible bells, and receive an event whenever the
keyboard bell is rung. For the purposes of this documenguitidlebell is defined to be

the system bell, or the default keyboard bell, as opposed to any other audible sound gener-
ated elsewhere in the system.

You can ask to receivé&kbBel | Not i fy events (see section 9.4) when any client rings
any one of the following:

* The default bell

« Any bell on an input device that can be specified bgla classandbell_id pair

» Any bell specified only by an arbitrary name. (This is, from the server’s point of view,
merely a name, and not connected with any physical sound-generating device. Some
client application must generate the sound, or visual feedback, if any, that is associated
with the name.)

You can also ask to receixkbBel | Not i f y events when the server rings the default bell
or if any client has requested events only (without the bell sounding) for any of the bell
types previously listed.

You can disable audible bells on a global basis (to setitiebl eBel | control, see

Chapter 10). For example, a client that replaces the keyboard bell with some other audible
cue might want to turn off thaudi bl eBel | control to prevent the server from also gen-
erating a sound and avoid cacophony. If you disable audible bells and request to receive
XkbBel | Not i fy events, you can generate feedback different from the default bell.

You can, however, override tAedi bl eBel | control by calling one of the functions that
force the ringing of a bell in spite of the setting of Aueli bl eBel | control —Xkb-
ForceDeviceBelbr XkbForceBell(see section 9.3.3). In this case the server does not gen-
erate a bell event.

Just as some keyboards can produce keyclicks to indicate when a key is pressed or repeat-
ing, Xkb can provide feedback for the controls by using special beep codes. The
AccessXFeedback control is used to configure the specific types of operations that gen-
erate feedback. See section 10.6.3 for a discussidnaessXFeedback control.

This chapter describes bell names, the functions used to generate named bells, and the
events the server generates for bells.

Bell Names

You can associate a name to an act of ringing a bell by converting the name to an Atom
and then using this name when you call the functions listed in this chapter. If an event is
generated as a result, the name is then passed to all other clients interested in receiving
XkbBel | Not i fy events. Note that these are arbitrary names and that there is no binding
to any sounds. Any sounds or other effects (such as visual bells on the screen) must be
generated by a client application upon receipt of the bell event containing the name. There
is no default name for the default keyboard bell. The server does generate some pre-
defined bells for the AccessX controls (see section 10.6.3). These named bells are shown
in Table 9.1; the name is included in any bell event sent to clients that have requested to
receiveXkbBel | Not i fy events.

November 10, 1997 Library Version 1.0/Document Revision 1.1 47

The X Keyboard Extension 9 Bells

Table 9.1 Predefined Bells

Action Named Bell

Indicator turned on AX_IndicatorOn
Indicator turned off AX_IndicatorOff

More than one indicator changed state AX_IndicatorChange
Control turned on AX_FeatureOn

Control turned off AX_FeatureOff

More than one control changed state AX_FeatureChange
SlowKeys and BounceKeys about to be turned on or off AX_SlowKeysWarning
SlowKeys key pressed AX_SlowKeyPress
SlowKeys key accepted AX_SlowKeyAccept
SlowKeys key rejected AX_SlowKeyReject
Accepted SlowKeys key released AX_SlowKeyRelease
BounceKeys key rejected AX_BounceKeyReject
StickyKeys key latched AX_StickyLatch
StickyKeys key locked AX_StickyLock
StickyKeys key unlocked AX_StickyUnlock

9.2 Audible Bells

Using Xkb you can generate bell events that do not necessarily ring the system bell. This
is useful if you need to use an audio server instead of the system beep. For example, when
an audio client starts, it could disable the audible bell (the system bell) and then listen for
XkbBel | Not i fy events (see section 9.4). When it receivisiaBel | Not i fy event, the

audio client could then send a request to an audio server to play a sound.

You can control the audible bells feature by passingib@dudi bl eBel | Mask to
XkbChangeEnabledContro{see section 10.1.1). If you sékbAudi bl eBel | Mask on,

the server rings the system bell when a bell event occurs. This is the default. If you set
XkbAudi bl eBel | Mask off and a bell event occurs, the server does not ring the system
bell unless you caKkbForceDeviceBelbr XkbForceBell(see section 9.3.3).

Audible bells are also part of the per-client auto-reset controls. For more information on
auto-reset controls, see section 10.1.2.

9.3 Bell Functions
Use the functions described in this section to ring bells and to generate bell events.

The input extension has two types of feedbacks that can generate bells — bell feedback
and keyboard feedback. Some of the functions in this sectiorble#lvelassandbell_id
parameters; set them as follows: Bell_classto Bel | Feedbackd ass or KbdFeed-

backd ass. A device can have more than one feedback of each tydeelked to the
particular bell feedback ddfell_classtype.

November 10, 1997 Library Version 1.0/Document Revision 1.1 48

The X Keyboard Extension 9 Bells

Table 9.2 shows the conditions that cause a bell to sound®&b&el | Not i f yEvent to
be generated when a bell function is called.

Table 9.2 Bell Sounding and Bell Event Generating

Server sounds Server sends an

Function called AudibleBell 2 bell XkbBellNotifyEvent
XkbDeviceBell On Yes Yes

XkbDeviceBell Off No Yes

XkbBell On Yes Yes

XkbBell Off No Yes
XkbDeviceBellEvent On or Off No Yes

XkbBellEvent On or Off No Yes
XkbDeviceForceBell On or Off Yes No

XkbForceBell On or Off Yes No

9.3.1 Generating Named Bells
To ring the bell on an X input extension device or the default keyboardkb&xevice-

Bell.

Bool XkbDeviceBell(display, window, device_id, bell_class, bell_id, percent, pame
Display * display [* connection to the X server */
Window window /* window for which the bell is generated, or None */

unsigned int device_spec /* device ID, orXkbUseCor eKbd */
unsigned int bell_class /* X input extension bell class of the bell to be rung */

unsigned int bell_id; /* X input extension bell ID of the bell to be rung */
int percent /* bell volume, from -100 to 100 inclusive */
Atom name /* a name for the bell, dULL */

Setpercentto be the volume relative to the base volume for the keyboard as described for
XBell

Note thatbell_classandbell_id indicate the bell to physically ringameis simply an
arbitrary moniker for the client application’s use.

To determine the current feedback settings of an extension input deviX& eseed-
backControl See the X input extension documentation for more informatiotGaet-
FeedbackControand related data structures.

If a compatible keyboard extension is not present in the X setkbBheviceBellmmedi-
ately returnd=al se. Otherwise XkbDeviceBelfings the bell as specified for the display
and keyboard device and retuifraue. If you have disabled the audible bell, the server
does not ring the system bell, although it does genebdibBel | Not i f y event.

You can callXkbDeviceBelithout first initializing the keyboard extension.

As a convenience function, Xkb provides a function to ring the bell on the default key-

board:XkbBell.
Bool XkbBell (display, window, percent, naine
Display * display, /* connection to the X server */
Window window /* event window, or None*/
int percent /* relative volume, which can range from -100 to 100 inclusive */
Atom name * a bell name, oNULL */

November 10, 1997 Library Version 1.0/Document Revision 1.1 49

The X Keyboard Extension 9 Bells

If a compatible keyboard extension isn’t present in the X sex¥BellcallsXBell with
the specifiedlisplayandpercent and returngal se. Otherwise XkbBellcalls XkbDevi-
ceBellwith the specifiedlisplay, window, percendndname adevice _speof XkbUseG
or eKbd, abell_classof XkbDf | t XI A ass, and abell_idof XkbDf I t XI | d, and returns
Tr ue.

If you have disabled the audible bell, the server does not ring the system bell, although it
does generateXkbBel | Not i fy event.

You can callXkbBellwithout first initializing the keyboard extension.

9.3.2 Generating Named Bell Events

Using Xkb, you can also generate a named bell event that does not ring any bell. This
allows you to do things such as generate events when your application starts.

For example, if an audio client listens for these types of bells, it can produce a “whoosh”
sound when it receives a named bell event to indicate a client just started. In this manner,
applications can generate start-up feedback and not worry about producing annoying
beeps if an audio server is not running.

To cause a bell event for an X input extension device or for the keyboard, without ringing
the corresponding bell, ud&bDeviceBellEvent.

Bool XkbDeviceBellEven{display, window, device_spec, bell_class, bell_id, percent, hame
Display * display, /* connection to the X server */
Window window /* event window, or None*/
unsigned int device_spet* device ID, orXkbUseCor eKbd */
unsigned int bell_class/* input extension bell class for the event */
unsigned int bell_id; /* input extension bell ID for the event */
int percenf /* volume for the bell, which can range from -100 to 100 inclusive */
Atom name /* a bell name, oNULL */

If a compatible keyboard extension isn’t present in the X sex¥daeviceBellEvent
immediately returnf&al se. Otherwise XkbDeviceBellEverdauses aixkbBel | Not i fy
event to be sent to all interested clients and reflirne. Setpercentto be the volume rel-
ative to the base volume for the keyboard as describe<Bieit.

In addition,XkbDeviceBellEvennhay generatét omprotocol errors as well a&b-
Bel | Noti fy events. You can calkbBellwithout first initializing the keyboard exten-
sion.

As a convenience function, Xkb provides a function to cause a bell event for the keyboard
without ringing the bellXkbBellEvent.

Bool XkbBellEvent(display, window, percent, nae

Display * display [* connection to the X server */

Window window [* the event window, or None */

int percent [* relative volume, which can range from -100 to 100 inclusive */
Atom name /* a bell name, oNULL */

If a compatible keyboard extension isn’t present in the X sexid@BellEventmmedi-
ately returng-al se. Otherwise XkbBellEventalls XkbDeviceBellEvenwith the speci-
fied display, window, percenandname adevice _speof XkbUseCor eKbd, abell_class

November 10, 1997 Library Version 1.0/Document Revision 1.1 50

The X Keyboard Extension 9 Bells

of XkbDf | t XI A ass, and aell _idof XkbDf I t XI | d, and returns whatkbDevice-
BellEventreturns.

XkbBellEvengenerates #ZkbBel | Not i fy event.

You can callXkbBellEventwithout first initializing the keyboard extension.

9.3.3 Forcing a Server-Generated Bell

To ring the bell on any keyboard, overriding user preference settings for audible bells, use

XkbForceDeviceBell

Bool XkbForceDeviceBel(display, window, device_spec, bell_class, bell_id, peycent
Display * display [* connection to the X server */
Window window /* event window, or None */

unsigned int device_spec /* device ID, orXkbUseCor eKbd */

unsigned int bell_class /* input extension class of the bell to be rung */

unsigned int bell_id; /* input extension ID of the bell to be rung */

int percent [* relative volume, which can range from -100 to 100 inclusive */

If a compatible keyboard extension isn’'t present in the X sex¥bf-orceDeviceBell
immediately returngal se. Otherwise XkbForceDeviceBelings the bell as specified for
the display and keyboard device and retdimse. Setpercentto be the volume relative to
the base volume for the keyboard as describedBail. There is namameparameter
becauseXkbForceDeviceBelloes not cause afikbBel | Not i fy event.

You can callXkbBellwithout first initializing the keyboard extension.

To ring the bell on the default keyboard, overriding user preference settings for audible
bells, useXkbForceBell

Bool XkbForceBell(display, percent)
Display * display, /* connection to the X server */
int percent /* volume for the bell, which can range from -100 to 100 inclusive */

If a compatible keyboard extension isn’'t present in the X sexkérorceBellcallsXBell
with the specifiedlisplayandpercentand returngal se. Otherwise XkbForceBelkalls
XkbForceDeviceBellvith the specifiedlisplayandpercentdevice _speeXkbUseCG

or eKbd, bell_class=XkbDf I t XI d ass, bell_id=XkbDf It XI | d, window= None, and
name= NULL, and returns whatkbForceDeviceBeleturns.

XkbForceBeldoes not cause afkbBel | Not i fy event.

You can callXkbBellwithout first initializing the keyboard extension.

9.4 Detecting Bells

Xkb generateXkbBel | Not i fy events for all bells except for those resulting from calls
to XkbForceDeviceBekndXkbForceBell To receivexkbBel | Not i fy events under all
possible conditions, pa3&bBel | Not i f yMask in both thebits_to_changand
values_for_bitparameters t¥kbSelectEvenisee section 4.3).

TheXkbBel | Not i f y event has no event details. It is either selected or it is not. How-
ever, you can cakkbSelectEventDetailssingXkbBel | Not i fy as theevent_typeand
specifyingXkbAl | Bel | Not i f yMask in bits_to_changandvalues_for_bitsThis has

the same effect as a callX@bSelectEvents

November 10, 1997 Library Version 1.0/Document Revision 1.1 51

The X Keyboard Extension 9 Bells
The structure for thgkbBel | Not i f y event type contains:
typedef struct _XkbBellNotify {

int type; /* Xkb extension base event code */
unsigned long serial; [* X server serial number for event */
Bool send_event; /AT ue => synthetically generated */
Display * display; [* server connection where event generated */
Time time; /* server time when event generated */
int xkb_type; /*XkbBel | Noti fy */
unsigned int device; /* Xkb device ID, will not bé&bUseCor eKbd */
int percent; * requested volume as % of max */
int pitch; /* requested pitch in Hz */
int duration; * requested duration in microseconds */
unsigned int bell_class; /* X input extension feedback class */
unsigned int bell_id; [* X input extension feedback ID */
Atom name; /* “name” of requested bell */
Window window; /* window associated with event */
Bool event_only; /*Fal se ->the server did not produce a beep */

} XkbBellNotifyEvent ;

If your application needs to generate visual bell feedback on the screen when it receives a

bell event, use the window ID in tb&bBel | Not i f yEvent , if present.

November 10, 1997

Library Version 1.0/Document Revision 1.1

52

The X Keyboard Extension 10 Keyboard Controls

10 Keyboard Controls

The Xkb extension is composed of two parts: a server extension, and a client-side X
library extension. This chapter discusses functions used to modify controls effecting the
behavior of the server portion of the Xkb extension. Chapter 11 discusses functions used
to modify controls that affect only the behavior of the client portion of the extension; those
controls are known as Library Controls.

Xkb contains control features that affect the entire keyboard, known as global keyboard
controls. Some of the controls may be selectively enabled and disabled; these controls are
known as thé&oolean ControlsBoolean Controls can be turned on or off under program
control and can also be automatically set to an on or off condition when a client program
exits. The remaining controls, known as i@n-Boolean Contro|sre always active. The
XkbCont r ol sRec structure describes the current state of most of the global controls and
the attributes effecting the behavior of each of these Xkb features. This chapter describes
the Xkb controls and how to manipulate them.

There are two possible components for each of the Boolean Controls: attributes describing
how the control should work, and a state describing whether the behavior as a whole is
enabled or disabled. The attributes and state for most of these controls are held in the
XkbCont r ol sRec structure (see section 10.8).

You can manipulate the Xkb controls individually, via convenience functions, or as a
whole. To treat them as a group, modifyXxtCont r ol sRec structure to describe all of
the changes to be made, and then pass that structure and appropriate flags to an Xkb
library function, or use ZkbCont r ol sChangesRec (see section 10.10.1) to reduce net-
work traffic. When using a convenience function to manipulate one control individually,
you do not use arkbCont r ol sRec structure directly.

The Xkb controls are grouped as shown in Table 10.1.
Table 10.1 Xkb Keyboard Controls

Type of Control Control Name Boolean Control?
Controls for enabling and disabling other controls EnabledControls No
AutoReset No
Control for bell behavior AudibleBell Boolean
Controls for repeat key behavior PerKeyRepeat No
RepeatKeys Boolean
DetectableAutorepeat Boolean
Controls for keyboard overlays Overlayl Boolean
Overlay?2 Boolean
Controls for using the mouse from the keyboard MouseKeys Boolean
MouseKeysAccel Boolean
Controls for better keyboard access by AccessXFeedback Boolean
physically impaired persons AccessXKeys Boolean
AccessXTimeout Boolean
BounceKeys Boolean
SlowKeys Boolean
StickyKeys Boolean
Controls for general keyboard mapping GroupsWrap No

November 10, 1997 Library Version 1.0/Document Revision 1.1 53

The X Keyboard Extension 10 Keyboard Controls

10.1

Table 10.1 Xkb Keyboard Controls

Type of Control Control Name Boolean Control?
IgnoreGroupLock Boolean
IgnoreLockMods No
InternalMods No

Miscellaneous per-client controls GrabsUseXKBState Boolean
LookupStateWhenGraBoolean
bed
SendEventUsesXKBSBoolean
te

The individual categories and controls are described first, together with functions for
manipulating them. A description of tb&bCont r ol sRec structure and the general
functions for dealing with all of the controls at once follow at the end of the chapter.

Controls that Enable and Disable Other Controls

Enable and disable the boolean controls under program control by uskatiiesd-
Cont r ol s control; enable and disable them upon program exit by configuring the
Aut oReset control.

10.1.1 The EnabledControls Control

TheEnabl edCont r ol s control is a bit mask where each bit that is turned on means the
corresponding control is enabled, and when turned off, disabled. It corresponds to the
enabled_ctridield of anXkbGont r ol sRec structure (see section 10.8). The bits describ-
ing which controls are turned on or off are defined in Table 10.7.

UseXkbChangeEnabledControls manipulate th&nabl edCont r ol s control.
Bool XkbChangeEnabledControlddpy, device_speanask value$

Display * dpy, [* connection to X server */

unsigned int device_spec /* keyboard device to modify */
unsigned int mask /* 1 bit -> controls to enable / disable */
unsigned int values /* 1 bit => enable, 0 bit => disable */

The maskparameter specifies the boolean controls to be enabled or disabled, @ald the
uesmask specifies the new state for those controls. Valid values for both of these masks
are composed of a bitwise inclusive OR of bits taken from the set of mask bits in Table
10.7, using only those masks with “ok” in theabled_ctrlscolumn.

If the X server does not support a compatible version of Xkb or the Xkb extension has not
been properly initialized{kbChangeEnabledControtsturnsFal se; otherwise, it sends
the request to the X server and returnee.

Note that théenabl edCont r ol s control only enables and disables controls; it does not
configure them. Some controls, such asAhéi bl eBel | control, have no configuration
attributes and are therefore manipulated solely by enabling and disabling them. Others,
however, have additional attributes to configure their behavior. For example, the
Repeat Cont r ol control usesepeat_delayandrepeat_intervafields to describe the

timing behavior of keys that repeat. TlRepeat Cont r ol behavior is turned on or off

November 10, 1997 Library Version 1.0/Document Revision 1.1 54

The X Keyboard Extension 10 Keyboard Controls

depending on the value of thikbRepeat KeysMask bit, but you must use other means,
as described in this chapter, to configure its behavior in detalil.

10.1.2 The AutoReset Control

You can configure the boolean controls to automatically be enabled or disabled when a
program exits. This capability is controlled via two masks maintained in the X server on a
per-client basis. There is no client-side Xkb data structure corresponding to these masks.
Whenever the client exits for any reason, any boolean controls specifiecautdheset
maskare set to the corresponding value fromatt-reset valuemask. This makes it
possible for clients to “clean up after themselves” automatically, even if abnormally termi-
nated. The bits used in the masks correspond tarthlel edCont r ol s control bits.

For example, a client that replaces the keyboard bell with some other audible cue might
want to turn off thedudi bl eBel | control to prevent the server from also generating a
sound and avoid cacophony. If the client were to exit without resettidgitiidl eBel |

control, the user would be left without any feedback at all. SeAtidgbl eBel | in both

the auto-reset mask and auto-reset values guarantees that the audible bell will be turned
back on when the client exits.

To get the current values of the auto-reset controlsXkis&etAutoResetControls

Bool XkbGetAutoResetControlqdpy, auto_ctrls auto_valuep

Display * dpy, [* connection to X server */
unsigned int * auto_ctrls [* specifies which bits imuto_valuesre relevant */
unsigned int * auto_values /* 1 bit => corresponding control has auto-reset on */

XkbGetAutoResetContratackfillsauto_ctrlsandauto_valuesvith theAut oReset con-
trol attributes for this particular client. It returfisue if successful, anéfal se otherwise.

To change the current values of thé oReset control attributes, usékbSetAutoReset-

Controls.

Bool XkbSetAutoResetControlgdpy, changesauto_ctrls auto_valuep
Display * dpy, [* connection to X server */
unsigned int changes /* controls for which to change auto-reset values */
unsigned int * auto_ctrls /* controls from changes that should auto reset */
unsigned int * auto_values /* 1 bit => auto-reset on */

XkbSetAutoResetContralhanges the auto-reset status and associated auto-reset values
for the controls selected lmppangesFor any control selected laspangesif the corre-
sponding bit is set iauto_ctrls the control is configured to auto-reset when the client
exits. If the corresponding bit auto_valuess on, the control is turned on when the client
exits; if zero, the control is turned off when the client exits. For any control selected by
changesif the corresponding bit is not setanto_ctrls the control is configured to not
reset when the client exits. For example:

To leave the auto-reset controls 8 ckyKeys the way they are:
ok = XkbSetAutoResetControls(dpy, 0, 0, 0);

To change the auto-reset controls so 8iatckyKeys are unaffected when the client
exits:

ok = XkbSetAutoResetControls(dpy, XkbStickyKeysMask, 0, 0);

November 10, 1997 Library Version 1.0/Document Revision 1.1 55

The X Keyboard Extension 10 Keyboard Controls

To change the auto-reset controls so 8iatckyKeys are turned off when the client
exits:

ok = XkbSetAutoResetControls(dpy, XkbStickyKeysMask, XkbStickyKeysMask, 0);
To change the auto-reset controls so $atckyKeys are turned on when the client exits:

ok = XkbSetAutoResetControls(dpy, XkbStickyKeysMask, XkbStickyKeysMask,
XkbStickyKeysMask);

XkbSetAutoResetContrddackfillsauto_ctrlsandauto _valueswvith the auto-reset con-
trols for this particular client. Note that all of the bits are valid in the returned values, not
just the ones selected in tblegangesnask.

10.2 Control for Bell Behavior

The X server’s generation of sounds is controlled byAtte bl eBel | control. Configu-
ration of different bell sounds is discussed in Chapter 9.

10.2.1 The AudibleBell Control

TheAudi bl eBel | control is a boolean control that has no attributes. As such, you may
enable and disable it using either Er@abl edCont r ol s control or theAut oReset con-

trol discussed in section 10.1.1. When enabled, protocol requests to generate a sound
result in the X server actually producing a real sound; when disabled, requests to the
server to generate a sound are ignored unless the sound is forced. See section 9.2.

10.3 Controls for Repeat Key Behavior

The repeating behavior of keyboard keys is governed by three contrdbey tkey Re-
peat control, which is always active, and tRepeat Keys andDet ect abl eAut or e-
peat controls, which are boolean controls that may be enabled and disabled.

Per KeyRepeat determines which keys are allowed to repBapeat Keys governs the
behavior of an individual key when it is repeatibgt ect abl eAut or epeat allows a
client to detect when a key is repeating as a result of being held down.

10.3.1 The PerKeyRepeat Control

ThePer KeyRepeat control is a bitmask long enough to contain a bit for each key on the
device; it determines which individual keys are allowed to repeat. Thé&etkkey Re-

peat control provides no functionality different from that available via the core X proto-
col. There are no convenience functions in Xkb for manipulating this control. The

Per KeyRepeat control settings are carried in ther_key repedield of anXkbCon-

t r ol sRec structure, discussed in section 10.8.

10.3.2 The RepeatKeys Control

The core protocol allows only control over whether or not the entire keyboard or individ-
ual keys should auto-repeat when held doRapeat Keys is a boolean control that

extends this capability by adding control over the delay until a key begins to repeat and the
rate at which it repeatBepeat Keys is coupled with the core auto-repeat control: when
Repeat Keys is enabled or disabled, the core auto-repeat is enabled or disabled and vice
versa.

November 10, 1997 Library Version 1.0/Document Revision 1.1 56

The X Keyboard Extension 10 Keyboard Controls

Auto-repeating keys are controlled by two attributes. The finsgout is the delay after

the initial press of an auto-repeating key and the first generated repeat event. The second,
interval, is the delay between all subsequent generated repeat events. As with all boolean
controls, configuring the attributes that determine how the control operates does not auto-
matically enable the control as a whole; see section 10.1.

To get the current attributes of tRepeat Keys control for a keyboard device, us&b-

GetAutoRepeatRate

Bool XkbGetAutoRepeatRatddisplay, device_spec, timeout_rtrn, interval_jtrn
Display * display, [* connection to X server */
unsigned int device_spec /* desired device ID, oXkbUseCor ekbd */
unsigned int timeout_rtrry /* backfilled with initial repeat delay, ms */
unsigned int interval_rtrn; /* backfilled with subsequent repeat delay, ms */

XkbGetAutoRepeatRatgieries the server for the current values oRdyeeat Control s
control attributes, backfillsmeout_rtrnandinterval_rtrnwith them, and returng ue. If

a compatible version of the Xkb extension is not available in the s¢kb&etAutoRepe-
atRatereturnsFal se.

To set the attributes of the RepeatKeys control for a keyboard devicéhSetAutoRe-

peatRate
Bool XkbSetAutoRepeatRatddisplay, device_spec, timeout, intejval
Display * display; [* connection to X server */
unsigned int device_spec /* device to configure, akkbUseCor eKbd */
unsigned int timeout /* initial delay, ms */
unsigned int interval, [* delay between repeats, ms */

XkbSetAutoRepeatRatends a request to the X server to configurédth®Repeat con-
trol attributes to the values specifiedimeoutandinterval.

XkbSetAutoRepeatRalees not wait for a reply; it normally returfisue. Specifying a
zero value for eitheimeoutor interval causes the server to generaiadVal ue proto-
col error. If a compatible version of the Xkb extension is not available in the s¢kber,
SetAutoRepeatRateturnsFal se.

10.3.3 The DetectableAutorepeat Control

Auto-repeat is the generation of multiple key events by a keyboard when the user presses
a key and holds it down. Keyboard hardware and device-dependent X server software
often implement auto-repeat by generating multfggPr ess events with no intervening
KeyRel ease event. The standard behavior of the X server is to genekatgRel ease

event for everKeyPr ess event. If the keyboard hardware and device-dependent soft-
ware of the X server implement auto-repeat by generating mfegler ess events, the
device-independent part of the X server by default synthetically geneitdgRel ease

event after eackeyPr ess event. This provides predictable behavior for X clients, but

does not allow those clients to detect the fact that a key is auto-repeating.

Xkb allows clients to requesdketectable auto-repealf a client requests and the server
supportdet ect abl eAut or epeat , Xkb generateBeyRel ease events only when the
key is physically released. [kt ect abl eAut or epeat is not supported or has not been
requested, the server synthesiz&gyRel ease event for each repeati@yPr ess

event it generates.

November 10, 1997 Library Version 1.0/Document Revision 1.1 57

The X Keyboard Extension 10 Keyboard Controls

Det ect abl eAut or epeat , unlike the other controls in this chapter, is not contained in
the XkbCont r ol sRec structure, nor can it be enabled or disabled videtiaddl edCon-

t rol s control. Instead, query and &t ect abl eAut or epeat usingXkbGetDetectab-
leAutorepeataindXkbSetDetectableAutorepeat

Det ect abl eAut or epeat is a condition that applies to all keyboard devices for a client’s
connection to a given X server; it cannot be selectively set for some devices and not for
others. For this reason, none of the Xkb library functions involRetgect abl eAu-

t or epeat involve a device specifier.

To determine whether or not the server supdoetsct abl eAut or epeat , useXkbGet-
DetectableAutorepeat

Bool XkbGetDetectableAutorepeatdisplay, supported_rtin
Display * display, [* connection to X server */
Bool * supported_rtrn /* backfilled Tr ue if Det ect abl eAut or epeat supported */

XkbGetDetectableAutorepeguieries the server for the current statBaifect abl eAu-

t or epeat and waits for a reply. Bupported_rtrris notNULL, it backfillssupported_rtrn
with Tr ue if the server support3et ect abl eAut or epeat , andFal se otherwise Xkb-
GetDetectableAutorepeagturns the current state Dét ect abl eAut or epeat for the
requesting clientTr ue if Det ect abl eAut or epeat is set, andral se otherwise.

To setDet ect abl eAut or epeat , useXkbSetDetectableAutorepedhis request affects
all keyboard activity for the requesting client only; other clients still see the expected non-
detectable auto-repeat behavior, unless they have requested otherwise.

Bool XkbSetDetectableAutorepeatdisplay, detectable, supported_rirn
Display * display, [* connection to X server */
Bool detectable I* Tr ue => setDet ect abl eAut or epeat */
Bool * supported_rtrn /* backfilled Tr ue if Det ect abl eAut or epeat supported */

XkbSetDetectableAutorepesgnds a request to the server tdDseiect abl eAut or e-
peat on for the current client detectablas Tr ue, and off itdetectablas Fal se; it then
waits for a reply. Isupported_rtrnis notNULL, XkbSetDetectableAutorepedazckfills
supported_rtrrwith Tr ue if the server supportSet ect abl eAut or epeat , andFal se
if it does notXkbSetDetectableAutorepaaturns the current state Bét ect abl eAu-

t or epeat for the requesting clientr ue if Det ect abl eAut or epeat is set, andral se
otherwise.

10.4 Controls for Keyboard Overlays (Overlayl and Overlay2 Controls)

A keyboard overlay allows some subset of the keyboard to report alternate keycodes when
the overlay is enabled. For example, a keyboard overlay can be used to simulate a numeric
or editing keypad on a keyboard that does not actually have one by reusing some portion
of the keyboard as an overlay. This technique is very common on portable computers and
embedded systems with small keyboards.

Xkb includes direct support for two keyboard overlays, usin@itee | ay1l and

Qver | ay2 controls. WherQver | ayl is enabled, all of the keys that are members of the

first keyboard overlay generate an alternate keycode. \@hem ay?2 is enabled, all of

the keys that are members of the second keyboard overlay generate an alternate keycode.
The two overlays are mutually exclusive; any particular key may be in at most one over-
lay. Qver | ayl andOver | ay2 are boolean controls. As such, you may enable and disable

November 10, 1997 Library Version 1.0/Document Revision 1.1 58

The X Keyboard Extension 10 Keyboard Controls

them using either thiénabl edCont r ol s control or theAut oReset control discussed in
section 10.1.1.

To specify the overlay to which a key belongs and the alternate keycode it should generate
when that overlay is enabled, assign it eithexdi®<B Over | ayl or XkbKB_Over | ay2
key behaviors, as described in section 16.2.

10.5 Controls for Using the Mouse from the Keyboard

Using XKkb, it is possible to configure the keyboard to allow simulation of the X pointer
device. This simulation includes both movement of the pointer itself and press and release
events associated with the buttons on the pointer. Two controls affect this behavior: the
MouseKeys control determines whether or not simulation of the pointer device is active,
as well as configuring the default button; MmiseKeysAccel control determines the
movement characteristics of the pointer when simulated via the keyboard. Both of them
are boolean controls; as such, you may enable and disable them using either the

Enabl edCont r ol s control or theAut oReset control discussed in section 10.1.1. The
individual keys that simulate different aspects of the pointer device are determined by the
keyboard mapping, discussed in Chapter 16.

10.5.1 The MouseKeys Control

TheMuseKeys control allows a user to control all the mouse functions from the key-
board. WherMbuseKeys are enabled, all keys wittbuseKeys actions bound to them
generate core pointer events instead of noKegPr ess andKeyRel ease events.

TheMuseKeys control has a single attributek_dflt_btnthat specifies the core button
number to be used by mouse keys actions that do not explicitly specify a button. There is
no convenience function for getting or setting the attribute; insteaxkieetControls
andXkbSetControlgsee sections 10.9 and 10.10).

Note MouseKeys can also be turned on and off by pressing the key combination necessary
to produce aiXK_Poi nt er _Enabl eKeys keysym. The de facto default standard
for this isShi f t +Al t +NunLock, but this may vary depending on the keymap.

10.5.2 The MouseKeysAccel Control

When theMbuseKeysAccel control is enabled, the effect of a key-activated pointer
motion action changes as a key is held down. If the control is disabled, pressing a
mouse-pointer key yields one mouse event. WMmrseKeysAccel is enabled, mouse
movement is defined by an initial distance specified in&ESA MovePt r action and
the following fields in thexkbCont r ol sRec structure (see section 10.8).

Table 10.2 MouseKeysAccel Fields

Field Function

mk_delay Time (ms) between the initial key press and the first repeated motion event
mk_interval Time (ms) between repeated motion events

mk_time_to_max Number of events (count) before the pointer reaches maximum speed
mk_max_speed The maximum speed (in pixels per event) the pointer reaches

mk_curve The ramp used to reach maximum pointer speed

November 10, 1997 Library Version 1.0/Document Revision 1.1 59

The X Keyboard Extension 10 Keyboard Controls

There are no convenience functions to query or change the attributedvolisieKey-
sAccel control; instead us¥kbGetControlandXkbSetControlgsee sections 10.9 and
10.10).

The effects of the attributes of tuseKeysAccel control depend on whether the
XkbSA MovePtr action (see section 16.1) specifies relative or absolute pointer motion.

Absolute Pointer Motion

If an XkbSA MovePt r action specifies an absolute position for one of the coordinates but
still allows acceleration, all repeated events contain any absolute coordinates specified in
the action. For example, if tidkbSA MovePt r action specifies an absolute position for

the X direction, but a relative motion for the Y direction, the pointer accelerates in the Y
direction, but stays at the same X position.

Relative Pointer Motion

If the XkbSA MovePt r action specifies relative motion, the initial event always moves
the cursor the distance specified in the action. Aftierdelaymilliseconds, a second
motion event is generated, and another occurs enkryntervalmilliseconds until the
user releases the key.

Between the time of the second motion eventrakdtime _to_maintervals, the change

in pointer distance per interval increases with each interval. Altetime_to_mainter-

vals have elapsed, the change in pointer distance per interval remains the same and is cal-
culated by multiplying the original distance specified in the actiomkymax_speed

For example, if th&kbSA MovePt r action specifies a relative motion in the X direction
of 5, mk_delay160,mk_intervat40,mk_time_to_masB0, andnk_max_speedO0, the
following happens when the user presses the key:

» The pointer immediately moves 5 pixels in the X direction when the key is pressed.

» After 160 millisecondsrik_delay, and every 40 milliseconds thereaftek(interva),
the pointer moves in the X direction.

» The distance in the X direction increases with each interval until 30 intervals
(mk_time_to_maxhave elapsed.

» After 30 intervals, the pointer stops accelerating, and moves 150 pixels
(mk_max_speetithe original distance) every interval thereafter, until the key is
released.

The increase in pointer difference for each interval is a functiatkoturveEvents after
the first but before maximum acceleration has been achieved are accelerated according to
the formula:

0 max_accel 0

o urveFactor
Q@teps to maserveFactof] steff

d(step = action_deltax

Whereaction_deltais the relative motion specified by thkbSA MovePt r action,
mk_max_speeandmk_time_to_maare parameters to tiMduseKeysAccel control,
and the curveFactor is computed usinghbeseKeysAccel mk_curveparameter as fol-
lows:

curve

curveFactor(curveF % 1000

November 10, 1997 Library Version 1.0/Document Revision 1.1 60

The X Keyboard Extension 10 Keyboard Controls

With the result that enk_curveof zero causes the distance moved to increase linearly

from action_deltato (mk_max_speed action_dej. A negativank _curvecauses an initial

sharp increase in acceleration that tapers off, and a positive curve yields a slower initial
increase in acceleration followed by a sharp increase as the number of pointer events gen-
erated by the action approacimek _time_to_maxThe legal values fank_curveare

between -1000 and 1000.

A distance vs. time graph of the pointer motion is shown in Figure 10.1.

mk_max_speed * Action delte

DOSY W O

Action delta

mk_delay mk_time_to_max mKk_interval
(msec) (count) (msec)

e Mk _curve=0
s MK_curve<0
ssrrrr. MK_curve>0

Figure 10.1 MouseKeys Acceleration

10.6 Controls for Better Keyboard Access by Physically Impaired Persons

The Xkb extension includes several controls specifically aimed at making keyboard use
more effective for physically impaired people. All of these controls are boolean controls
and may be individually enabled and disabled, as well as configured to tune their specific
behavior. The behavior of these controls is based on the AccessDOS package

1. AccessDOS provides access to the DOS operating system for people with physical impairments and was devel-
oped by the Trace R&D Center at the University of Wisconsin. For more information on AccessDOS, contact the
Trace R&D Center, Waisman Center and Department of Industrial Engineering, University of Wisconsin-Madison
WI 53705-2280. Phone: 608-262-6966. e-mail: info@trace.wisc.edu.

November 10, 1997 Library Version 1.0/Document Revision 1.1 61

The X Keyboard Extension 10 Keyboard Controls

10.6.1 The AccessXKeys Control

Enabling or disabling the keyboard controls through a graphical user interface may be
impossible for people who need to use the controls. For example, a user who needs

S owKeys (see section 10.6.6) may not even be able to start the graphical application, let
alone use it, il owKeys is not enabled. To allow easier access to some of the controls,
the AccessXKeys control provides a set of special key sequences similar to those avail-
able in AccessDOS.

When theAccessXKeys control is enabled, the user can turn controls on or off from the
keyboard by entering the following standard key sequences:

« Holding down a shift key by itself for eight seconds togglessth@nKeys control.

* Pressing and releasing the left or righift key five times in a row, without any inter-
vening key events and with less than 30 seconds delay between consecutive presses,
toggles the state of ttf# i ckyKeys control.

 Simultaneously operating two or more modifier keys deactivatest thekyKeys
control.

When theAccessXKeys control is disabled, Xkb does not look for the above special key
sequences.

Some of these key sequences optionally generate audible feedback of the change in state,
as described in section 10.6.3 XbCont r ol sNot i f y events, described in section
10.11.

10.6.2 The AccessXTimeout Control

In environments where computers are shared, features s8cbhwseys present a prob-

lem: if Sl owKeys is on, the keyboard can appear to be unresponsive because keys are not
accepted until they are held for a certain period of time. To help solve this problem, Xkb
provides arAccessXTi neout control to automatically change the enabled/disabled state

of any boolean controls and to change the value oAdt¢bhessXKeys andAccessX-

Feedback control attributes if the keyboard is idle for a specified period of time.

When a timeout as specified BgcessXTi meout occurs and a control is consequently
modified, Xkb generates afkbCont r ol sNot i f y event. For more information ofkb-
Cont rol sNot i fy events, refer to section 10.11.

UseXkbGetAccessXTimeotat query the currericcessXTi neout options for a key-
board device.

Bool XkbGetAccessXTimeoufdisplay device_spedimeout_rtrn ctrls_mask_rtrn
ctrls_values_rtrnoptions_mask_rtrn, options_values_itrn

Display * display, [* connection to X server */

unsigned int device _spec [* device to query, oRkbUseCor eKbd */
unsigned short * timeout_rtrn /* delay until AccessXTimeout, seconds */
unsigned int * ctrls_mask_rtrn /* backfilled with controls to modify */
unsigned int * ctrls_values_rtrn /* backfilled with on/off status for controls */
unsigned short * opts_mask_rtrn [* backfilled withax_optiongo modify */
unsigned short * opts_values_rtm I* backfilled with values foax_options/

XkbGetAccessXTimeosegnds a request to the X server to obtain the current values for the
AccessXTi neout attributes, waits for a reply, and backfills the values into the appropri-
ate arguments. The parametepts_mask_rtrrandopts_values_rtrrare backfilled with

November 10, 1997 Library Version 1.0/Document Revision 1.1 62

The X Keyboard Extension 10 Keyboard Controls

the options to modify and the values &t _optionswhich is a field in thékbCon-

t rol sRec structure (see section 10.8kbGetAccessXTimeowturnsTr ue if success-
ful; if a compatible version of the Xkb extension is not available in the server,
XkbGetAccessXTimeongturnsFal se.

To configure theAccessXTi neout options for a keyboard device, uskbSetAccessX-
Timeout

Bool XkbSetAccessXTimeoutdisplay device_spec, timeout, ctrls_mask, ctrls_values,
opts_mask, opts_valdes

Display * display, [* connection to X server */

unsigned int device_spec /* device to configure, akkbUseCor eKbd */
unsigned short timeout /* seconds idle until AccessXTimeout occurs */
unsigned int ctrls_mask /* boolean controls to modify */

unsigned int ctrls_values /* new bits for controls selected loyrls_maskt/
unsigned short opts_mask /* ax_optiongo change */

unsigned short opts_values /* new bits forax_optionsselected bypts_mask/

timeoutspecifies the number of seconds the keyboard must be idle before the controls are
modified.ctrls_maskspecifies what controls are to be enabled or disabled, and
ctrls_valuesspecifies whether those controls are to be enabled or disabled. The bit values
correspond to those for enabling and disabling boolean controls (see section 10.1.1). The
opts_maslkield specifies which attributes of thecessXKeys andAccessXFeedback

controls are to be changed, ats_valuespecifies the new values for those options.

The bit values correspond to those fordalkeoptiondield of anXkbDescRec (see section

10.8).

XkbSetAccessXTimeasgnds a request to configure foeessXTi neout control to the
server. It does not wait for a reply, and normally retdimse. If a compatible version of
the Xkb extension is not available in the serxéhSetAccessXTimeawturnsFal se.

10.6.3 The AccessXFeedback Control

Just as some keyboards can produce keyclicks to indicate when a key is pressed or repeat-
ing, Xkb can provide feedback for the controls by using special beep codes. Use the
AccessXFeedback control to configure the specific types of operations that generate
feedback.

There is no convenience function for modifying AoeessXFeedback control, although

the feedback as a whole can be enabled or disabled just as other boolean controls are (see
section 10.1). Individual beep codes are turned on or off by modifying the following bits

in theax_optiondield of anXkbCont r ol sRec structure and usingkbSetControl¢see

section 10.10):

Table 10.3 AccessXFeedback Masks

Action Beep Code ax_options bit

LED turned on High-pitched beep XkbAX_IndicatorFBMask
LED turned off Low-pitched beep XkbAX_IndicatorFBMask
More than one LED changed state Two high-pitched beeps XkbAX_IndicatorFBMask
Control turned on Rising tone XkbAX_FeatureFBMask
Control turned off Falling tone XkbAX_FeatureFBMask
More than one control changed state high-pitched beeps XkbAX_FeatureFBMask

November 10, 1997 Library Version 1.0/Document Revision 1.1 63

The X Keyboard Extension 10 Keyboard Controls

Table 10.3 AccessXFeedback Masks

Action Beep Code ax_options bit

SlowKeys and BounceKeys abouthree high-pitched beeps XkbAX_SlowWarnFBMask
to be turned on or off

SlowKeys key pressed Medium-pitched beep XkbAX_SKPressFBMask
SlowKeys key accepted Medium-pitched beep XkbAX_SKAcceptFBMask
SlowKeys key rejected Low-pitched beep XkbAX_ SKRejectFBMask
Accepted SlowKeys key released Medium-pitched beep XkbAX_ SKReleaseFBMask
BounceKeys key rejected Low-pitched beep XkbAX BKRejectFBMask
StickyKeys key latched Low-pitched beep followedXbAX _StickyKeysFBMask
high-pitched beep
StickyKeys key locked High-pitched beep XKkbAX_StickyKeysFBMask
StickyKeys key unlocked Low-pitched beep XkbAX_StickyKeysFBMask

Implementations that cannot generate continuous tones may generate multiple beeps
instead of falling and rising tones; for example, they can generate a high-pitched beep fol-
lowed by a low-pitched beep instead of a continuous falling tone. Other implementations
can only ring the bell with one fixed pitch. In these cases, use the

XkbAX DunbBel | FBMask bit of ax_optiongo indicate that the bell can only ring with a
fixed pitch.

When any of the above feedbacks occur, Xkb may genexiieBel | Not i f y event (see
section 9.4).

10.6.4 AccessXNotify Events

The server can generatkbAccessXNot i fy events for some of the global keyboard
controls. The structure for tidkbAccessXNot i f y event type is as follows:

typedef struct {
int type; /* Xkb extension base event cotfe
unsigned long serial, X server serial number for evetit
Bool send_event; /T ue => synthetically generated
Display * display; [*server connection where event generéated
Time time; [* server time when event generatéd
int xkb_type; [*XkbAccessXNot i fy */
int device /* Xkb device ID, will not bexkbUseCor eKbd */
int detail; I* XKbAXN_* */
KeyCode keycode; [* key of event */
int slowKeysDelay; /* current SlowKeys delay */
int debounceDelay; /* current debounce delay */

} XkbAccessXNotifyEvent
Thedetail field describes what AccessX event just occurred and can be any of the values

in Table 10.4.
Table 10.4 AccessXNotify Events
detall Reason
XKbAXN_SKPress A key was pressed when SlowKeys was enabled.
XKkbAXN_SKAccept A key was accepted (held longer than the SlowKeys delay).
XkbAXN_SKRelease An accepted SlowKeys key was released.
XkbAXN_SKReject A key was rejected (released before the SlowKeys delay expired).

November 10, 1997 Library Version 1.0/Document Revision 1.1 64

The X Keyboard Extension 10 Keyboard Controls

Table 10.4 AccessXNotify Events

detall Reason

XkbAXN_BKAccept A key was accepted by BounceKeys.

XkbAXN_BKReject A key was rejected (pressed before the BounceKeys delay
expired).

XkbAXN_AXKWarning AccessXKeys is about to turn on/off StickyKeys or BounceKeys.

Thekeycoddield reports the keycode of the key for which the event occurred. If the
action is related t&8l owKeys, theslowKeysDelayield contains the curreld owKeys
acceptance delay. If the action is relateBdonceKeys, thedebounceDelafield contains
the currenBouncekKeys debounce delay.

Selecting for AccessX Events

To receivexkbAccessXNot i fy events under all possible conditions, M&bSelect-
Events(see section 4.3) and padsAccesXNot i f yMask in bothbits_to_changand
values_for_bits

To receiveXkbSt at eNot i fy events only under certain conditions, XsbSelectEvent-
DetailsusingXkbAccessXNot i fy as theevent_typend specifying the desired state
changes imits_to_changendvalues_for_bitsising mask bits from Table 10.5.

Table 10.5 AccessXNotify Event Details
XkbAccessXNotify Event Details Value Circumstances

XkbAXN_SKPressMask (1<<0) Slow key press notification wanted
XkbAXN_SKAcceptMask (1<<1) Slow key accept notification wanted
XKkbAXN_SKRejectMask (1<<2) Slow key reject notification wanted
XkbAXN_SKReleaseMask (1<<3) Slow key release notification wanted
XkbAXN_BKAcceptMask (1<<4) Bounce key accept notification wanted
XkbAXN_BKRejectMask (1<<5) Bounce key reject notification wanted
XKkbAXN_AXKWarningMask (1<<6) AccessX warning notification wanted
XkbAXN_AllEventsMask (Ox7f) All AccessX features notifications wanted

10.6.5 StickyKeys, RepeatKeys, and MouseKeys Events

TheSti ckyKeys, Repeat Keys, andMbuseKeys controls do not generate specific
events. Instead, the latching, unlatching, locking, or unlocking of modifiers Sisirok-

yKeys generateXkbSt at eNot i fy events as described in section 5.4. Repeating keys

generate normadeyPr ess andKeyRel ease events, though the auto-repeat can be
detected usin@et ect abl eAut or epeat (see section 10.3.3). FinalipuseKeys gen-
erates pointer events identical to those of the core pointer device.

10.6.6 The SlowKeys Control

Some users may accidentally bump keys while moving a hand or typing stick toward the
key they want. Usually, the keys that are accidentally bumped are just hit for a very short
period of time. The&l owKeys control helps filter these accidental bumps by telling the

server to wait a specified period, called 8lewKeys acceptance deJdefore delivering

key events. If the key is released before this period elapses, no key events are generated.
Users can then bump any number of keys on their way to the one they want without acci-
dentally getting those characters. Once they have reached the key they want, they can then

November 10, 1997 Library Version 1.0/Document Revision 1.1

65

The X Keyboard Extension 10 Keyboard Controls

hold the desired key long enough for the computer to acc&orKeys is a boolean
control with one configurable attribute.

When theS owKeys control is active, the server reports the initial key press, subsequent
acceptance or rejection, and release of any key to interested clients by sending an appro-
priateAccessXNot i fy event (see section 10.6.4).

To get theS owKeys acceptance delay for a keyboard device XldeGetSlowKeysDe-

lay.

Bool XkbGetSlowKeysDelaydisplay device_spedaelay_rtrr)
Display * display, [* connection to X server */
unsigned int device_spec /* device ID, orXkbUseCor eKbd */
unsigned int * delay_rtrn /* backfilled withSl owKeys delay, ms */

XkbGetSlowKeysDelagquests the attributes of tBeowKeys control from the server,
waits for a reply and backfilldelay_rtrnwith theSl owKeys delay attributeXkb-
GetSlowKeysDelaseturnsTr ue if successful; if a compatible version of the Xkb exten-
sion is not available in the servkbGetSlowKeysDelagturnsFal se.

To set theSl owKeys acceptance delay for a keyboard device XidgSetSlowKeysDelay
Bool XkbSetSlowKeysDelaydisplay device spedalelay)

Display * display; [* connection to X server */
unsigned int device_spec /* device to configure, akkbUseCor eKbd */
unsigned int delay, /* Sl owKeys delay, ms */

XkbSetSlowKeysDelagnds a request to configure Bi@wKeys control to the server. It
does not wait for a reply, and normally retufinsie. Specifying a value d for thedelay
parameter cause&kbSetSlowKeys generate BadVal ue protocol error. If a compatible
version of the Xkb extension is not available in the sexkbiSetSlowKeysDelagturns
Fal se.

10.6.7 The BounceKeys Control

Some users may accidentally “bounce” on a key when they release it. They press it once,
then accidentally press it again after they release itBbheceKeys control temporarily
disables a key after it has been pressed, effectively “debouncing” the keyboard. The
period of time the key is disabled after it is released is known &otimeceKeys delay
BounceKeys is a boolean control.

When theBounceKeys control is active, the server reports acceptance or rejection of any
key to interested clients by sending an appropAatessXNot i fy event (see section

10.6.4).
UseXkbGetBounceKeysDelay query the currerBounceKeys delay for a keyboard
device.
Bool XkbGetBounceKeysDelaydisplay device_spedelay_rtrn)
Display * display, [* connection to X server */
unsigned int device_spec /* device ID, orXkbUseCor eKbd */
unsigned int * delay_rtrn /* backfilled with bounce keys delay, ms */

XkbGetBounceKeysDelagquests the attributes of tBeunceKeys control from the
server, waits for a reply, and backfitlslay _rtrnwith theBounceKeys delay attribute.

November 10, 1997 Library Version 1.0/Document Revision 1.1 66

The X Keyboard Extension 10 Keyboard Controls

XkbGetBounceKeysDelagturnsTr ue if successful; if a compatible version of the Xkb
extension is not available in the ser¥dbGetSlowKeysDelagturnsFal se.

To set thdBounceKeys delay for a keyboard device, uskbSetBounceKeysDelay
Bool XkbSetBounceKeysDelaydisplay device spedelay)

Display * display, [* connection to X server */
unsigned int device_spec /* device to configure, akkbUseCor eKbd */
unsigned int delay, /* bounce keys delay, ms */

XkbSetBounceKeysDelagnds a request to configure BoainceKeys control to the
server. It does not wait for a reply and normally retdimse. Specifying a value afer o
for thedelayparameter causeé&kbSetBounceKeysDeltaygenerate BadVal ue protocol
error. If a compatible version of the Xkb extension is not available in the sEkixSet-
BounceKeysDelaseturnsFal se.

10.6.8 The StickyKeys Control

Some people find it difficult or even impossible to press two keys at once. For example, a
one-fingered typist or someone using a mouth stick cannot presisiftreendl keys at the

same time. Th&t i ckyKeys control solves this problem by changing the behavior of the
modifier keys. WithSt i ckyKeys, the user can first press a modifier, release it, then press
another key. For example, to get an exclamation point on a PC-style keyboard, the user
can press thshift key, release it, and then press tHeey.

Sti ckyKeys also allows users to lock modifier keys without requiring special locking
keys. Whertt i ckyKeys is enabled, a modifier is latched when the user presses it just
once. The user can press a modifier twice in a row to lock it, and then unlock it by pressing
it one more time.

When a modifier is latched, it becomes unlatched when the user presses a nonmodifier key
or a pointer button. For instance, to enter the sequéimdd +Cont r ol +Z the user could

press and release tBaift key to latch it, then press and releaseCbmtrol key to latch it,

and finally press and release the Z key. Becausedheol key is a modifier key, pressing

it does not unlatch thehift key. Thus, after the user presses@hstrol key, both the

Shi ft andCont rol modifiers are latched. When the user pressez Key, the effect is

as though the user had presShdf t +Cont r ol +Z. In addition, because tlzekey is not

a modifier key, theéhi ft andCont r ol modifiers are unlatched.

Locking a modifier key means that the modifier affects any key or pointer button the user
presses until the user unlocks it or it is unlocked programmatically. For example, to enter
the sequence (“XKB”) on a keyboard where ‘(’ is a shifted ‘9’,)’ is a shifted ‘0’, and "

is a shifted single quote, the user could press and releaSkiftHeey twice to lock the

Shi ft modifier. Then, when the user pressesthex, k, b, ‘, and0 keys in sequence, it
generates (“XKB”). To unlock thgéhi f t modifier, the user can press and releasstiife

key.

Sti ckyKeys is a boolean control with two separate attributes that may be individually
configured: one to automatically disable it, and one to control the latching behavior of
modifier keys.

November 10, 1997 Library Version 1.0/Document Revision 1.1 67

The X Keyboard Extension 10 Keyboard Controls

StickyKeys Options

TheSti ckyKeys control has two options that can be accessed viaxheptionsof an

XkbCont r ol sRec structure (see section 10.8). The first optibmKeys, specifies

whetherSt i ckyKeys should automatically turn off when two keys are pressed at the

same time. This feature is useful for shared computers so people who do not want them do
not need to turist i ckyKeys off if a previous user lefst i ckyKeys on. The second
option,Lat chToLock, specifies whether or n& i ckyKeys locks a modifier when

pressed twice in a row.

UseXkbGetStickyKeysOptiots query the currer@t i ckyKeys attributes for a keyboard

device.

Bool XkbGetStickyKeysOptions(display device spemptions_rtrn
Display * display, [* connection to X server */
unsigned int device_spec /* device ID, orXkbUseCor eKbd */
unsigned int * options_rtrn /* backfilled with StickyKeys option mask */

XkbGetStickyKeysOptiomsquests the attributes of tBei ckyKeys control from the
server, waits for a reply, and backfiiptions_rtrnwith a mask indicating whether the
individual St i ckyKeys options are on or off. Valid bits wptions_rtrnare:

XkbAX_ TwoKeysMask
XkbAX Lat chToLockMask

XkbGetStickyKeysOptiomsturnsTr ue if successful; if a compatible version of the Xkb
extension is not available in the serXébhGetStickyKeysOptiomsturnsFal se.

To set theSt | ckyKeys attributes for a keyboard device, udéSetStickyKeysOptians
Bool XkbSetStickyKeysOptiongdisplay device_spec, mask, valjies

Display * display; [* connection to X server */

unsigned int device_spec /* device to configure, or XkbUseCoreKbd */
unsigned int mask [* selects StickyKeys attributes to modify */
unsigned int values; /* values for selected attributes */

XkbSetStickyKeysOptiosends a request to configure 8ie ckyKeys control to the
server. It does not wait for a reply and normally retdimge. The valid bits to use for
both themaskandvaluesparameters are:

XkbAX_ TwoKeysMask
XkbAX Lat chToLockMask

If a compatible version of the Xkb extension is not available in the s&ikieBetStick-
yKeysOptionseturnsFal se.

10.7 Controls for General Keyboard Mapping

There are several controls that apply to the keyboard mapping in general. They control
handling of out-of-range group indices and how modifiers are processed and consumed in
the server. These are:

Q oupsW ap

| gnor eG oupLock
| gnor eLockMbds
| nt er nal Mods

November 10, 1997 Library Version 1.0/Document Revision 1.1 68

The X Keyboard Extension 10 Keyboard Controls

| gnor e oupLock is a boolean control; the rest are always active.

Without the modifier processing options provided by Xkb, passive grabs set via transla-
tions in a client (for exampld) t <KeyPr ess>space) do not trigger if any modifiers

other than those specified by the translation are set. This results in problems in the user
interface when eithéduniock or a secondary keyboard group is active. Tgpeor e-
LockMbds andl gnor eG oupLock controls make it possible to avoid this behavior with-
out exhaustively specifying a grab for every possible modifier combination.

10.7.1 The GroupsWrap Control

The G oupsW ap control determines how illegal groups are handled on a global basis.
There are a number of valid keyboard sequences that can cause the effective group num-
ber to go out of range. When this happens, the group must be normalized back to a valid
number. The&x oupsW ap control specifies how this is done.

When dealing with group numbers, all computations are done using the group index,
which is the group number minus one. There are three different algorithms; the
Q oupsW ap control specifies which one is used:

» XkbRedirectintoRange

All invalid group numbers are converted to a valid group number by taking the last
four bits of theG oupsW ap control and using them as the group index. If the
result is still out of range, Group one is used.

» XkbClamplintoRange

All invalid group numbers are converted to the nearest valid group number. Group
numbers larger than the highest supported group number are mapped to the highest
supported group; those less than one are mapped to group one.

» XkbWrapIntoRange

All invalid group numbers are converted to a valid group number using integer
modulus applied to the group index.

There are no convenience functions for manipulatingXtoeeipsW ap control. Manipu-
late theG oupsW ap control via thegroups_wragfield in theXkbCont r ol sRec struc-
ture, then us&XkbSetControlandXkbGetControlgsee section 10.9 and section 10.10) to
guery and change this control.

Note See also section 15.3.2 or a discussion of the relatedgdieldy infq which also nor-
malizes a group under certain circumstances.

10.7.2 The IgnoreLockMods Control

The core protocol does not provide a way to exclude specific modifiers from grab calcula-
tions, with the result that locking modifiers sometimes have unanticipated side effects.

Thel gnor eLockMods control specifies modifiers that should be excluded from grab cal-
culations. These modifiers are also not reported in any core events €xgEpéss and

KeyRel ease events that do not activate a passive grab and that do not occur while a grab
is active.

November 10, 1997 Library Version 1.0/Document Revision 1.1 69

The X Keyboard Extension 10 Keyboard Controls

Manipulate thd gnor eLockMbds control via thegnore_lockfield in thexXkbCon-
t r ol sRec structure, then usékbSetControlandXkbGetControl§see sections 10.9 and
10.10) to query and change this control. Alternatively XldeSetignoreLockMods

To set the modifiers that, if locked, are not to be reported in matching events to passive
grabs, us&kbSetignoreLockMods.

Bool XkbSetlgnoreLockMods(display, device_spec, affect_real, real_values, affect_virtual,
virtual_value$
Display * display, /* connection to the X server */
unsigned int device_spec /* device ID, orxkbUseCor eKbd */
unsigned int affect_reaj /* mask of real modifiers affected by this call */
unsigned int real_values /* values for affected real modifiers (1=>set, 0=>unset) */
unsigned int affect_virtuaj/* mask of virtual modifiers affected by this call */
unsigned int virtual_values/* values for affected virtual modifiers (1=>set, 0=>unset) */

XkbSetlgnoreLockModsends a request to the server to change the selrgaios e-
LockMods control.affect_realandreal_valuesare masks of real modifier bits indicating
which real modifiers are to be added and removed from the selrgeits eLockMbds
control. Modifiers selected by bottfect realandreal valuesare added to the server’'s
| gnor eLockMods control; those selected laffect_realbut not byreal valuesare
removed from the serverlggnor eLockMobds control. Valid values foaffect_realand
real_valuesconsist of any combination of the eight core modifier I8ts:f t Mask,
LockMask, Cont r ol Mask, Mod1Mask - Mod5Mask. affectvirtualandvirtual valuesare
masks of virtual modifier bits indicating which virtual modifiers are to be added and
removed from the serverlggnor eLockMbds control. Modifiers selected by both
affect_virtualandvirtual valuesare added to the servet’'gnor eLockMbds control,
those selected kgffect_virtualbut not byvirtual valuesare removed from the server’s

| gnor eLockMbds control. See section 7.1 for a discussion of virtual modifier masks to
use inaffect_virtualandvirtual_values XkbSetlgnoreLockModioes not wait for a reply
from the server. It returnf ue if the request was sent, aRdl se otherwise.

10.7.3 The IgnoreGroupLock Control

Thel gnor e@ oupLock control is a boolean control with no attributes. If enabled, it
specifies that the locked state of the keyboard group should not be considered when acti-
vating passive grabs.

Becauséd gnor e oupLock is a boolean control with no attributes, use the general bool-
ean controls functions (see section 10.1) to change its state.

10.7.4 The InternalMods Control

The core protocol does not provide any means to prevent a modifier from being reported
in events sent to clients; Xkb, however makes this possible viathe nal Mbds con-

trol. It specifies modifiers that should be consumed by the server and not reported to cli-
ents. When a key is pressed and a modifier that has its bit set int tyenal Mods

control is reported to the server, the server uses the modifier when determining the actions
to apply for the key. The server then clears the bit, so it is not actually reported to the cli-
ent. In addition, modifiers specified in that er nal Mbds control are not used to deter-

mine grabs and are not used to calculate core protocol compatibility state.

November 10, 1997 Library Version 1.0/Document Revision 1.1 70

The X Keyboard Extension 10 Keyboard Controls

10.8

Manipulate thd nt er nal Mbds control via thanternal field in theXkbCont r ol sRec
structure, usingKkbSetControlandXkbGetControlgsee sections10.9 and 10.10). Alter-
natively, useXxkbSetServerinternalMods

To set the modifiers that are consumed by the server before events are delivered to the cli-
ent, useXkbSetServerinternalMods.

Bool XkbSetServerinternalMods(display, device_spec, affect_real, real_values, affect_virtual,
virtual_value$
Display * display /* connection to the X server */
unsigned int device_spet/* device ID, or XkbUseCor eKbd */
unsigned int affect_reaj /* mask of real modifiers affected by this call */
unsigned int real_values /* values for affected real modifiers (1=>set, 0=>unset) */
unsigned int affect_virtual/* mask of virtual modifiers affected by this call */
unsigned int virtual_values/* values for affected virtual modifiers (1=>set, 0=>unset) */

XkbSetServerinternalMod®nds a request to the server to change the internal modifiers
consumed by the serverffect _realandreal_valuesare masks of real modifier bits indi-
cating which real modifiers are to be added and removed from the server’s internal modi-
fiers control. Modifiers selected by batffect_realandreal valuesare added to the
server’s internal modifiers control; those selectedffgct_realbut not byreal valuesare
removed from the server’s internal modifiers mask. Valid valuesffect_realand
real_valuesconsist of any combination of the eight core modifier I8is:f t Mask,
LockMask, Cont r ol Mask, Mod1Mask - Mod5Mask. affect_virtualandvirtual valuesare
masks of virtual modifier bits indicating which virtual modifiers are to be added and
removed from the server’s internal modifiers control. Modifiers selected by both
affect_virtualandvirtual_valuesare added to the server’s internal modifiers control; those
selected byaffect_virtualbut not byvirtual_valuesare removed from the server’s internal
modifiers control. See section 7.1 for a discussion of virtual modifier masks to use in
affect_virtualandvirtual_values XkbSetServerinternalMod®es not wait for a reply

from the server. It returnf ue if the request was sent aRdl se otherwise.

The XkbControlsRec Structure

Many of the individual controls described in sections 10.1 through 10.7 may be manipu-
lated via convenience functions discussed in those sections. Some of them, however, have
no convenience functions. Tk&bCont r ol sRec structure allows the manipulation of

one or more of the controls in a single operation and to track changes to any of them in
conjunction with thexkbGetControlsandXkbSetControl$éunctions. This is the only way

to manipulate those controls that have no convenience functions.

TheXkbCont r ol sRec structure is defined as follows:

#define XkbMaxLegalKeyCode 255

#define XkbPerKeyBitArraySize ((XkbMaxLegalKeyCode+1)/8)

typedef struct {
unsigned char mk_dflt_btn; /* default button for keyboard driven mouse */
unsigned char num_groups; /* number of keyboard groups */
unsigned char groups_wrap; /* how to wrap out-of-bounds groups */
XkbModsRec internal; [* defines server internal modifiers */
XkbModsRec ignore_lock; /* modifiers to ignore when checking for grab */
unsigned int enabled_ctrls; /* 1 bit => corresponding boolean control enabled */

November 10, 1997 Library Version 1.0/Document Revision 1.1 71

The X Keyboard Extension

10 Keyboard Controls

unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
short

unsigned short
unsigned short
unsigned short
unsigned short
unsigned int
unsigned int
unsigned char

repeat_delay; /* ms delay until first repeat */

repeat_interval; /* ms delay between repeats */

slow_keys delay; /* ms minimum time key must be down to be ok */
debounce_delay; /* ms delay before key reactivated */

mk_delay; /* ms delay to second mouse motion event */
mk_interval; /* ms delay between repeat mouse events */
mk_time_to_max; /* # intervals until constant mouse move */
mk_max_speed; /* multiplier for maximum mouse speed */

mk_curve; /* determines mouse move curve type */
ax_options; /* 1 bit => Access X option enabled */
ax_timeout; /* seconds until Access X disabled */

axt_opts_mask; /* 1 bit => options to reset on Access X timeout */
axt_opts_values; /* 1 bit => turn option on, 0=> off */
axt_ctrls_mask; /* which bitsénabled_ctrlgo modify */
axt_ctrls_values; /* values for new bitemabled_ctrls/

per_key repeat[XkbPerKeyBitArraySize]; /* per key auto repeat */

} XkbControlsRec, *XkbControlsPtr;

The general-purpose functions that work withxXkeCont r ol sRec structure use a mask

to specify which controls are to be manipulated. Table 10.6 lists these controls, the masks
used to select them in the general function callgch parameter), and the data fields in

the XkbCont r ol sRec structure that comprise each of the individual controls. Also listed
are the bit used to turn boolean controls on and off and the section where each control is

described in more detail.

Table 10.6 Xkb Controls

Control Selection Mask Relevant XkbControlsRecBoolean Control

Control (which parameter) Data Fields

Secti
enabled_ctrls bit on

AccessXFeedback XkbAccessXFeedbackMask ax_options:
XkbAX_*FBMask
AccessXKeys
AccessXTimeout XkbAccessXTimeoutMask ax_timeout
axt_opts_mask
axt_opts_values
axt_ctrls_mask
axt_ctrls_values
AudibleBell
AutoReset
BounceKeys
Detectable-
Autorepeat
EnabledControls XkbControlsEnabledMask enabled_ctrls
GroupsWrap XkbGroupsWrapMask groups_wrap
IgnoreGrouplLock
IgnoreLockMods XkblgnoreLockModsMask ignore_lock
InternalMods XkblnternalModsMask internal
MouseKeys XkbMouseKeysMask mk_dflt_btn

XkbBounceKeysMask debounce_delay

XkbAccessXFeedbackMask 10.6.3

XkbAccessXKeysMask 10.6.1
XkbAccessXTimeoutMask 10.6.2

XkbAudibleBellMask 9.2

10.1.2

XkbBounceKeysMask 10.6.7
10.3.3
Non-Boolean Control 10.1.1
Non-Boolean Control 10.7.1

XkblgnoreGroupLockMask 10.7.3

Non-Boolean Control 51
Non-Boolean Control 5.1
XkbMouseKeysMask 10.5.1

November 10, 1997

Library Version 1.0/Document Revision 1.1 72

The X Keyboard Extension 10 Keyboard Controls

Table 10.6 Xkb Controls

Control Con_trol Selection Mask Releva_nt XkbControlsRecBoolean Contro_l Secti
(which parameter) Data Fields enabled_ctrls bit on
MouseKeysAccel XkbMouseKeysAccelMask mk_delay XkbMouseKeysAccelMask 10.5.2
mk_interval
mk_time_to_max
mk_max_speed
mk_curve
Overlayl XkbOverlaylMask 10.4
Overlay?2 XkbOverlay2Mask 10.4
PerKeyRepeat XkbPerKeyRepeatMask per_key repeat Non-Boolean Control 10.3.1
RepeatKeys XkbRepeatKeysMask repeat_delay XkbRepeatKeysMask 10.3
repeat_interval
SlowKeys XkbSlowKeysMask slow_keys_delay XkbSlowKeysMask 10.6.6
StickyKeys XkbStickyKeysMask ax_options: XkbStickyKeysMask 10.6.8

XkbAX_TwoKeysMask
XkbAX_LatchToLockMask

Table 10.7 shows the actual values for the individual mask bits used to select controls for
modification and to enable and disable the control. Note that the same mask bit is used to
specify general modifications to the parameters used to configure the cahiah) (and

to enable and disable the contrehébled_ctrls The anomalies in the table (no “ok” in
column) are for controls that have no configurable attributes; and for controls that are not
boolean controls and therefore cannot be enabled or disabled.

Table 10.7 Controls Mask Bits

Mask Bit which or enabled_ctrls Value
changed_ctrls
XkbRepeatKeysMask ok ok (1L<<0)
XkbSlowKeysMask ok ok (1L<<1)
XkbBounceKeysMask ok ok (1L<<2)
XkbStickyKeysMask ok ok (1L<<3)
XkbMouseKeysMask ok ok (1L<<4)
XkbMouseKeysAccelMask ok ok (1L<<5b)
XkbAccessXKeysMask ok ok (1L<<6)
XkbAccessXTimeoutMask ok ok (1L<<7)
XkbAccessXFeedbackMask ok ok (1L<<8)
XkbAudibleBellMask ok (1L<<9)
XkbOverlaylMask ok (1L<<10)
XkbOverlay2Mask ok (1L<<11)
XkblgnoreGroupLockMask ok (1L<<12)
XkbGroupsWrapMask ok (1L<<27)
XkbInternalModsMask ok (1L<<28)
XkblgnoreLockModsMask ok (1L<<29)
XkbPerKeyRepeatMask ok (1L<<30)
XkbControlsEnabledMask ok (1L<<31)
XkbAccessXOptionsMask ok ok (XkbStickyKeysMask |

XkbAccessXFeedbackMask)

November 10, 1997 Library Version 1.0/Document Revision 1.1 73

The X Keyboard Extension 10 Keyboard Controls

Table 10.7 Controls Mask Bits

Mask Bit which or enabled_ctrls Value
changed_ctrls -

XkbAllBooleanCtrlsMask ok (Ox00001FFF)

XkbAllControlsMask ok (OxF8001FFF)

The individual fields of the&xkbCont r ol sRec structure are defined as follows.

mk_dflt_btn

mk_dflt_btnis an attribute of thbbuseKeys control (see section 10.5). It specifies the
mouse button number to use for keyboard simulated mouse button operations. Its value
should be one of the core symbBig t onl - But t on5.

num_groups

num_groupss not a part of any control, but is reported inXkbCont r ol sRec structure
whenever any of its components are fetched from the server. It reports the number of
groups the particular keyboard configuration uses and is computed automatically by the
server whenever the keyboard mapping changes.

groups_wrap

groups_wragps an attribute of th& oupsW ap control (see section 10.7.1). It specifies
the handling of illegal groups on a global basis. Valid valuegrfmups_wrapare shown
in Table 10.8.

Table 10.8 GroupsWrap options groups wrap field)

groups_wrap symbolic name value

XkbWraplntoRange (0x00)
XkbClamplIntoRange (0Ox40)
XkbRedirectintoRange (0x80)

Whengroups_wraps set taxkbRedi r ect | nt oRange, its four low-order bits specify
the index of the group to use.

internal

internalis an attribute of thent er nal Mods control (see section 10.7.4). It specifies
modifiers to be consumed in the server and not passed on to clients when events are
reported. Valid values consist of any combination of the eight core modifieShitst -
Mask, LockMask, Cont r ol Mask, Mod1Mask - Mod5Mask.

ignore_lock

ignore_lockis an attribute of thegnor eLockMbds control (see section 10.7.2). It speci-
fies modifiers to be ignored in grab calculations. Valid values consist of any combination
of the eight core modifier bit$hi f t Mask, LockMask, Cont r ol Mask, Mod1Mask -
Mod5Mask.

enabled_ctrls

enabled_ctrlgs an attribute of thEnabl edCont r ol s control (see section 10.1.1). It
contains one bit per boolean control. Each bit determines whether the corresponding con-

November 10, 1997 Library Version 1.0/Document Revision 1.1 74

The X Keyboard Extension 10 Keyboard Controls

trol is enabled or disabled; a one bit means the control is enabled. The mask bits used to
enable these controls are listed in Table 10.7, using only those masks with “ok” in the
enabled_ctricolumn.

repeat_delay and repeat_interval

repeat_delayandrepeat_intervabre attributes of thBepeat Keys control (see section
10.3.2).repeat_delays the initial delay before a key begins repeating, in milliseconds;
repeat_intervals the delay between subsequent key events, in milliseconds.

slow_keys_delay

slow_keys delaig an attribute of th&l owKeys control (see section 10.6.6). Its value
specifies th& owKeys acceptance delay period in milliseconds before a key press is
accepted by the server.

debounce_delay

debounce_delaig an attribute of thBounceKeys control (see section 10.6.7). Its value
specifies thBounceKeys delay period in milliseconds for which the key is disabled after
having been pressed before another press of the same key is accepted by the server.

mk_delay, mk_interval, mk_time_to_max, mk_max_speed, and mk_curve

mk_delaymk_interva]l mk_time_to_maxmk_max_spee@dndmk_curveare attributes of
theMbuseKeysAccel control. Refer to section 10.5.2 for a description of these fields and
the units involved.

ax_options

Theax_optiondield contains attributes used to configure two different controls, the
Sti ckyKeys control (see section 10.6.8) and #imeessXFeedback control (see sec-
tion 10.6.3). Thex_optiondield is a bitmask and may include any combination of the
bits defined in Table 10.9.

Table 10.9 Access X Enable/Disable Bitax_options field)

Access X Control ax_options bit value

AccessXFeedback XkbAX_ SKPressFBMask (1L<<0)
XkbAX_SKAcceptFBMask (1L << 1)
XkbAX FeatureFBMask (AL << 2)
XkbAX_SlowWarnFBMask (AL << 3)
XkbAX_IndicatorFBMask (1L << 4)
XkbAX_StickyKeysFBMask (1L << 5)
XkbAX_SKReleaseFBMask (1L << 8)
XkbAX_SKRejectFBMask (1L << 9)
XkbAX_BKRejectFBMask (1L << 10)
XkbAX_DumbBellFBMask (1L << 11)

StickyKeys XkbAX_TwoKeysMask (1L << 6)
XkbAX _LatchToLockMask (AL << 7)
XkbAX_AllOptionsMask (OXFFF)

November 10, 1997 Library Version 1.0/Document Revision 1.1 75

The X Keyboard Extension 10 Keyboard Controls

The fields pertaining to each control are relevant only wheoadtfieol is enabled{kbAc-
cessXFeedbackMask or XkbSt i ckyKeysMask bit is turned on in thenabled_cntrls
field).

Xkb provides a set of convenience macros for working witlathe@ptiondield of an
XkbCont r ol sRec structure:

#defineXkbAX_NeedOption(c,w) ((c)->ax_options&(w))

The XkbAX_NeedOptiomacro is useful for determining whether a particular AccessX
option is enabled or not. It accepts a pointer t&ldyCont r ol sRec structure and a valid
mask bit from Table 10.9. If the specified mask bit inakeoptiondield of the controls
structure is set, the macro returns the mask bit. Otherwise, it returns zero. Thus,

XkbAX_NeedOption(ctlrec, XkbAXLatchToLockMask

is nonzero if the latch to lock transition for latching keys is enabled, and zero if it is dis-
abled. Note thaXkbAX NeedOptioanly determines whether or not the particular capa-
bility is configured to operate; ttikbAccessXFeedbackMask bit must also be turned

on inenabled_ctridor the capability to actually be functioning.

#defineXkbAX_AnyFeedback(c) ((c)->enabled_ctris&XkbAccessXFeedbackMask)

The XkbAX _AnyFeebaakiacro accepts a pointer to dkbCont r ol sRec structure and
tells whether théccessXFeedback control is enabled or not. If tihecess XFeedback
control is enabled, the macro retuMkdbAccess XFeedbackMask. Otherwise, it returns
zero.

#defineXkbAX_NeedFeedbackc,w)
(XkbAX_AnyFeedback(c)&&XkbAX NeedOption(c,w))

The XkbAX_NeedFeedbadkacro is useful for determining if both thecessXFeed-

back control and a particular AccessX feedback option are enabled. The macro accepts a
pointer to arXkbCont r ol sRec structure and a feedback option from the table above. If
both theAccessXFeedback control and the specified feedback option are enabled, the
macro returngr ue. Otherwise it returnbal se.

ax_timeout, axt_opts_mask, axt_opts_values, axt_ctrls_mask, and
axt_ctrls_values

ax_timeoutact_opts_maskaxt_opts_valuesxt_ctrls_maskandaxt_ctrls_valuesre
attributes of thédccessXTi meout control. Refer to section 10.6.2 for a description of
these fields and the units involved.

per_key repeat

Theper_key_repedield mirrors theauto_repeatdield of the core protocotkeyboar d-

St at e structure: changing theuto_repeatdield automatically changgser_key repeat

and vice versa. It is provided for convenience and to reduce protocol traffic. For example,
to obtain the individual repeat key behavior as well as the repeat delay and rxidy)-use
GetControls If theper_key_repeatvere not in this structure, you would have to call both
XGetKeyboardContraindXkbGetControldo get this information. The bits correspond to
keycodes. The first seven keys (keycodes 1-7) are indicaped ikey repedd], with bit

November 10, 1997 Library Version 1.0/Document Revision 1.1 76

The X Keyboard Extension 10 Keyboard Controls

10.9

10.10

position O (low order) corresponding to the fictitious keycode 0. Following array elements
correspond to 8 keycodes per element. A 1 bit indicates that the key is a repeating key.

Querying Controls
UseXkbGetControlgo find the current state of Xkb server controls.
StatusXkbGetControls(display, which, xkb)

Display * display, [* connection to X server */
unsigned long whichy /* mask of controls requested */
XkbDescPtr xkby /* keyboard description for controls information*/

XkbGetControlgjueries the server for the requested control information, waits for a reply,
and then copies the server’s values for the requested information ictdgistructure of
thexkbargument. Only those components specified byieh parameter are copied.
Valid values fowhichare any combination of the masks listed in Table 10.7 that have
“ok” in the which column.

If xkb->ctrls is NULL, XkbGetControlsllocates and initializes it before obtaining the val-
ues specified byhich If xkb->ctrls is notNULL, XkbGetControlsnodifies only those
portions ofxkb->ctrls corresponding to the values specifiedadyich

XkbGetControlseturnsSuccess if successful; otherwise, it returBadAl | oc if it can-
not obtain sufficient storagBadMat ch if xkbis NULL or whichis empty, oBadl npl e-
ment at i on.

To free thectrls member of a keyboard description, XdddFreeControlgsee section
10.12)

Thenum_groupdield in thectrls structure is always filled in bykbGetControlsregard-
less of which bits are selected Wwhich

Changing Controls

There are two ways to make changes to controls: either change a local copy keyboard
description and caKkbSetControlsor, to reduce network traffic, use dkbCon-
t r ol sChangesRec structure and cakkbChangeControls

To change the state of one or more controls, first modifgttlestructure in a local copy
of the keyboard description and then ¥&bSetControl$o copy those changes to the X
server.

Bool XkbSetControls(display, which, xkb)

Display * display; /* connection to X server */
unsigned long which /* mask of controls to change */
XkbDescPtr xkby [* ctrls field contains new values to be set */

For each bit that is set in théich parameterXkbSetControlsends the corresponding
values from thexkb->ctrls field to the server. Valid values fathichare any combination
of the masks listed in Table 10.7 that have “ok” inwigch column.

If xkb->ctrls is NULL, the server does not support a compatible version of Xkb, or the Xkb
extension has not been properly initializ&#bSetControlseturnsFal se. Otherwise, it
sends the request to the X server and reflirns.

November 10, 1997 Library Version 1.0/Document Revision 1.1 77

The X Keyboard Extension 10 Keyboard Controls

Note that changes to attributes of controls inxkieCont r ol sRec structure are apparent

only when the associated control is enabled, although the corresponding values are still
updated in the X server. For example, tiygeat _delayandrepeat_intervalfields are

ignored unless thBepeat Keys control is enabled (that is, the X server’s equivalent of
xkb->ctrls hasXkbRepeat KeyMask set inenabled_ctrlk It is permissible to modify the
attributes of a control in one call to XkbSetControls and enable the control in a subsequent
call. See section 10.1.1 for more information on enabling and disabling controls.

Note that theenabled_ctridield is itself a control — th&nabl edCont r ol s control. As

such, to set a specific configuration of enabled and disabled boolean controls, you must set
enabled_ctrlgo the appropriate bits to enable only the controls you want and disable all
others, then specify thiékbCont r ol sEnabl edMask in a call toXkbSetControls

Because this is somewhat awkward if all you want to do is enable and disable controls,
and not modify any of their attributes, a convenience function is also provided for this pur-
pose KkbChangeEnabledContrglsection 10.1.1).

10.10.1The XkbControlsChangesRec Structure

The XkbCont r ol sChangesRec structure allows applications to track modifications to
anXkbCont r ol sRec structure and thereby reduce the amount of traffic sent to the server.
The samexkbCont r ol sChangesRec structure may be used in several successive modi-
fications to the samekbCont r ol sRec structure, then subsequently used to cause all of
the changes, and only the changes, to be propagated to the servébhTbre

t r ol sChangesRec structure is defined as follows:

typedef struct _XkbControlsChanges {

unsigned int changed_ctrls; [* bits indicating changed control data */
unsigned int enabled_ctrls_changes; /* bits indicating enabled/disabled controls */
Bool num_groups_changed; Tr ue if number of keyboard groups changed */

} XkbControlsChangesReg¢*XkbControlsChangesPtr;

Thechanged_ctridield is a mask specifying which logical sets of data in the controls
structure have been modified. In this context, modified meenthat is, if a value is set

to the same value it previously contained, it has still been modified, and is noted as
changed. Valid values fahanged_ctrlsare any combination of the masks listed in Table
10.7 that have “ok” in thehanged_ctrisolumn. Setting a bit implies the corresponding
data fields from the “Relevant XkbControlsRec Data Fields” column in Table 10.6 have
been modified. Thenabled_ctrls_changdeld specifies which bits in thenabled_ctrls
field have changed. If the number of keyboard groups has changed, the
num_groups_changdeeld is set tolr ue.

If you have an Xkb description with controls that have been modified aXkieBon-

t r ol sChangesRec that describes the changes that have been mad&hiangeCon-
trols function provides a flexible method for updating the controls in a server to match
those in the changed keyboard description.

Bool XkbChangeControls(dpy, xkb, changgs
Display * dpy. [* connection to X server */
XkbDescPtr xkb; /* keyboard description with changekb->ctrls */
XkbControlsChangesPtr changes /* which parts ofxkb->ctrls have changed */

XkbChangeControlsopies any controls fields specified dlyangedrom the keyboard
description controls structurekb->ctrls, to the server specified lalpy.

November 10, 1997 Library Version 1.0/Document Revision 1.1 78

The X Keyboard Extension 10 Keyboard Controls

10.11 Tracking Changes to Keyboard Controls

Whenever a field in the controls structure changes in the server’s keyboard description,
the server sends atkbCont r ol sNot i fy event to all interested clients.To receXkdb-

Cont r ol sNot i fy events under all possible conditions, X&bSelectEven{see section
4.3) and pasBkbCont r ol sNot i f yMask in bothbits_to_changandvalues_for_bits

To receivexkbCont r ol sNot i fy events only under certain conditions, XsbSelect-
EventDetailausingXkbCont r ol sNot i fy as theevent_typand specifying the desired
state changes inits_to_changandvalues_for_bitaising mask bits from Table 10.7.

The structure for th&kbCont r ol sNot i fy event is defined as follows:

typedef struct {
int type; /* Xkb extension base event code */
unsigned long serial; /* X server serial number for event */
Bool send_event; /AT ue => synthetically generated */
Display * display; [* server connection where event generated */
Time time; /* server time when event generated */
int xkb_type; [*XkbConpat MapNot i fy */
int device; /* Xkb device ID, will not b&XkbUseCor eKbd */

unsigned int changed_ctrls; /* bits indicating which controls data have changed*/
unsigned int enabled_ctrls; /* controls currently enabled in server */
unsigned int enabled_ctrl_changes; /* bits indicating enabled/disabled controls */

int num_groups; /* current number of keyboard groups */
KeyCode keycode; [* 1= 0 => keycode of key causing change */
char event_type; /* Type of event causing change */

char req_major; /* major event code of event causing change */
char req_minor; /* minor event code of event causing change */

} XkbControlsNotifyEvent;;

Thechanged_ctrigield specifies the controls components that have changed and consists
of bits taken from the masks defined in Table 10.7 with “ok” inctrenged_ctrisolumn.

The controls currently enabled in the server are reported entiged_ctridield. If any
controls were just enabled or disabled (that is, the contents efétded_ctridield
changed), they are flagged in #eabled_ctrl_changefseld. The valid bits for these

fields are the masks listed in Table 10.7 with “ok” in ém@bled_ctrlscolumn. The
num_groupsdield reports the number of groups bound to the key belonging to the most
number of groups and is automatically updated when the keyboard mapping changes.

If the change was caused by a request from a clierkefrmodeandevent_typdields are
set tozer o and thereq_majorandreq_minorfields identify the request. Thheq_major
value is the same as thmjor extension opcod©therwisegvent_types set to the type of
event that caused the change (onEeyfPr ess, KeyRel ease, Devi ceKeyPr ess,

Devi ceKeyRel ease, But t onPr ess or But t onRel ease), andreq_majorand
req_minorare undefined. Iévent_typeas KeyPr ess, KeyRel ease, Devi ceKeyPr ess,
or Devi ceKeyRel ease, thekeycoddield is set to the key that caused the change. If
event_types But t onPr ess or But t onRel ease, keycodecontains the button number.

November 10, 1997 Library Version 1.0/Document Revision 1.1 79

The X Keyboard Extension 10 Keyboard Controls

10.12

When a client receives atkbCont r ol sNot i fy event, it can note the changes in a
changes structure usitkkbNoteControlsChanges

void XkbNoteControlsChangegchangesnew wanted
XkbControlsChangesPtr changes /* records changes indicated by new */
XkbControlsNotifyEvent * new /* tells which things have changed */
unsigned int wanted /* tells which parts of new to record in changes */

Thewantedparameter is a bitwise inclusive OR of bits taken from the set of masks speci-
fied in Table 10.7 with “ok” in thehanged_ ctriolumn.XkbNoteControlsChange®p-

ies any changes reportednewand specified invantedinto the changes record specified

by old.

UseXkbGetControlsChangde update a local copy of a keyboard description with the
changes previously noted by one or more calkskioNoteControlsChanges.

StatusXkbGetControlsChangegdpy, xkhh changey

Display * dpy, [* connection to X server */
XkbDescPtr xkby /* xkb->ctrls will be updated */
XkbNameChangesPtr changes /* indicates which parts otkb->ctrlsto update */

XkbGetControlsChange=xamines thehangegparameter, queries the server for the nec-
essary information, and copies the results intokiee>ctrls keyboard description. If the
ctrls field of xkbis NULL, XkbGetControlsChangesdlocates and initializes it. To free the
ctrls field, useXkbFreeControl§see section 10.12).

XkbGetControlsChangesturnsSuccess if successful and can gener&sdAl | oc,
Badl npl enent ati on, andBadMat ch errors.

Allocating and Freeing an XkbControlsRec

The need to allocate afkbCont r ol sRec structure seldom arises; Xkb creates one when
an application callXkbGetControl®r a related function. For those situations where there
is not anXkbCont r ol sRec structure allocated in thé&kbDescRec, allocate one by call-
ing XkbAllocControls

StatusXkbAllocControls (xkb, which
XkbDescPtr xkby /* Xkb description in which to allocate ctrls rec */
unsigned int which; /* mask of components atrls to allocate */

XkbAllocControlsallocates thetrls field of thexkbparameter, initializes all fields to zero,
and return$Success. If thectrls field is notNULL, XkbAllocControlssimply returnsSuc-
cess. If xkbis NULL, XkbAllocControlseports éBadMat ch error. If thectrls field could
not be allocated, it reportsBadAl | oc error.

Thewhichmask specifies the individual fields of tbiels structure to be allocated and can
contain any of the valid masks defined in Table 10.7. Because none of the currently exist-
ing controls have any structures associated with them, which is currently of little practical
value in this call.

November 10, 1997 Library Version 1.0/Document Revision 1.1 80

The X Keyboard Extension 10 Keyboard Controls

To free memory used by tltrls member of aixkbDescRec structure, us&XkbFree-

Controls:

void XkbFreeControls(xkb, which, free_a)l
XkbDescPtr xkb; /* Xkb description in which to free controls components */
unsigned int which /* mask of components afrls to free */
Bool free_alt /* Tr ue => free everything + ctrls itself */

XkbFreeControldrees the specified components of tites field in thexkb keyboard
description and sets the corresponding structure component vaMdd tor zer 0. The
which mask specifies the fields ofrls to be freed and can contain any of the controls
components specified in Table 10.7.

If free_allis Tr ue, XkbFreeControldrees every notULL structure component in the
controls, frees thgkbCont r ol sRec structure referenced by tbls member okkb, and
setsctrls to NULL.

10.13 The Miscellaneous Per-client Controls

You can configure the boolean per-client controls which affecttiiereported in button
and key events. See section 12.1.1, 12.3, 12.5, and 16.3.11 of the XKB Protocol specifica-
tion for more details.

To get the current values of tper - cl i ent controls, us&XkbGetPerClientControls

Bool XkbGetPerClientControls(dpy, ctrls)
Display * dpy; [* connection to X server */
unsigned int * ctrls; /* 1 bit => corresponding control is on */

XkbGetPerClientControlbackfills ctrls with theper - cl i ent control attributes for this
particular client. It return$r ue if successful, anéfal se otherwise.

To change the current values of fiex - cl i ent control attributes, usékbSetPerClient-

Controls.

Bool XkbSetPerClientControls(dpy, ctrls)
Display * dpy; [* connection to X server */
unsigned int change /* 1 bit => change control */
unsigned int * value /* 1 bit => control on */

XkbSetPerClientControlshanges the per-client values for the controls selecteddnge

to the corresponding value walue.Legal values fochangeandvalueare:
XkbPCF_GrabsUseXKBStateMask, XkbPCF_LookupStateWhenGrabbed, and
XkbPCF_SendEventUsesXKBStdere than one control may be changed at one time by
OR-ing the values togethetkbSetPerClientControlsackfillsvaluewith theper - cl i -

ent control attributes for this particular client. It retuffraue if successful, an&al se
otherwise.

November 10, 1997 Library Version 1.0/Document Revision 1.1 81

The X Keyboard Extension 11 X Library Controls

11

111

X Library Controls

The Xkb extension is composed of two parts: a server extension, and a client-side X
library extension. Chapter 10 discusses functions used to modify controls affecting the
behavior of the server portion of the Xkb extension. This chapter discusses functions used
to modify controls that affect only the behavior of the client portion of the extension; these
controls are known as Library Controls.

All of the Library Controls are boolean flags that may be enabled and disabled. The con-
trols can be divided into several categories:

» Controls affecting general string lookups
» Controls affecting compose processing
» Controls affecting event delivery

There are two types of string lookups performeXhygokupStringThe first type

involves translating a single keycode into a string; the controls in the first category affect
this type of lookup. The second type involves translating a series of keysyms into a string;
the controls in the second category affect this type of lookup.

An Xkb implementation is required to support the programming interface for all of the
controls. However, an implementation may choose not to support the semantics associated
with the controls that deal with compose processing. In this case, a program that accesses
these controls should still function normally; however, the feedback that would normally
occur with the controls enabled may be missing.

Controls Affecting Keycode-to-String Translation

The first type of string lookups, which are here cafiedple string lookupsnvolves

translating a single keycode into a string. Because these simple lookups involve only a
single keycode, all of the information needed to do the translation is contained in the key-
board state in a single event. The controls affecting simple string lookups are:

For ceLat i n1Lookup
ConsuneLookupMds
Level OheUsesShi f t AndLock

11.1.1 ForcelatinlLookup

If the For ceLat i n1Lookup control is enabledLookupStringonly returns strings using

the Latinl character set.Fbr ceLat i n1Lookup is not enabledXLookupStringcan

return characters that are not in the Latinl set. By default, this control is disabled, allow-
ing characters outside of the Latinl set to be returned.

11.1.2 ConsumelLookupMods

Simple string lookups iXLookupStringnvolve two different translation phases. The first
phase translates raw device keycodes to individual keysyms. The second phase attempts to
map the resulting keysym into a string of one or more characters. In the first phase, some
of the modifiers are normally used to determine the appropriate shift level for a key.

The ConsuneLookupMods control determines whether or ntookupString consumes
the modifiers it uses during the first phase of processing (mapping a keycode to a key-
sym). When a modifier is consumed, it is effectively removed from the working copy of

November 10, 1997 Library Version 1.0/Document Revision 1.1 82

The X Keyboard Extension 11 X Library Controls

the keyboard state informatiofLookupStrings using and appears to be unset for the
remainder of the processing.

If the ConsuneLookupMbds control is enabled{LookupStringdoes not use the modifi-

ers used to translate the keycode of the event to a keysym when it is determining the string
associated with a keysym. For example, assume the keymap for the ‘A’ key only contains
the shift modifier and th€onsunmeLookupMbds control is enabled. If a user presses the

Shift key and the\ key while theNum_Lock key is lockedXLookupStringises théhi f t

modifier when mapping the keycode for the ‘a’ key to the keysym for ‘A’; subsequently, it
only uses thé&uniock modifier when determining the string associated with the keysym
‘A

If the ConsuneLookupMbds control is not enableXLookupStringuses all of the event
modifiers to determine the string associated with a keysym. This behavior mirrors the
behavior ofXLookupStringn the core implementation.

The ConsuneLookupMods control is unset by default. For more information on modifier
consumption, refer to Chapter 12.

11.1.3 AlwaysConsumeShiftAndLock

11.2

The Al waysConsureShi f t AndLock control, if enabled, forcesLookupStringo con-
sume theshi ft andLock modifiers when processing all keys, even if the definition for
the key type does not specify these modifiers. AlheaysConsuneShi f t AndLock con-
trol is unset by default. See section 15.2 for a discussion of key types.

Controls Affecting Compose Processing

The second type of string lookup performeddiypokupStringnvolves translating a

series of keysyms into a string. Because these lookups can involve more than one key
event, they requir&LookupStringo retain some state information between successive
calls. The process of mapping a series of keysyms to a string is kn@empgse pro-
cessing The controls affecting compose processing are:

ConsunekKeysConposeFai |
ConposelLED
BeepOnConposeFai |

Because different vendors have historically used different algorithms to implement com-
pose processing, and these algorithms may be incompatible with the semantics required
by the Xkb compose processing controls, implementation of the compose processing con-
trols is optional in an Xkb implementation.

11.2.1 ConsumeKeysOnComposekFalil

Some compose processing algorithms signal the start of a compose sequence by a key
event meaning “start compostrhe subsequent key events should normally result in a
valid composition yielding a valid translation to a string. If the subsequent key events do
not have a valid translation, some decision must be made about what to do with the key
events that were processed while attempting the compos€ohbaneKeysCom

1. Another possibility is to have the compose processing simply be the result of a finite state acceptor; a compose
sequence would never fail for a properly written finite state acceptor.

November 10, 1997 Library Version 1.0/Document Revision 1.1 83

The X Keyboard Extension 11 X Library Controls

poseFai | control allows a client to specify what happens with the key exrdskup-
String has been considering when it reaches a dead end in a compose sequence.

If the ConsuneKeysOnConposeFai | control is set, all keys associated with a failed
compose sequence should be consumed (discarded) frikeneKeysnhConpose-

Fai | control is not set, the key events associated with a failed compose sequence should
be processed as a normal sequence of key events.

The ConsunmeKeysnConposeFai | control is disabled by default.

11.2.2 ComposeLED

The ConposeLED control allows a client to specify whether or not an indicator should be
set and cleared to provide feedback when compose processing is in progress. The control
does not specify which indicator should be used; the mapping for this is up to the individ-
ual implementation. If th€nposeLED control is enabled, it specifies that an indicator
should be set when a compose sequence is in progress and cleared when one is not in
progress. Th€onposeLED control is disabled by default.

While the Xkb extension does not specify the type of type of indicator to be used when the
ConposeLED control is implemented, a consistent convention between implementations
is to everyone’s benefit. If a named indicator is used for this purpose, the recommended
name is Conpose”. Note that some implementations may use an unnamed, custom hard-
ware LED for this purpose.

11.2.3 BeepOnComposeFail

TheBeepOConposeFai | control allows a client to specify whether or not a bell should
be activated to provide feedback when a compose sequence fails. The control does not
specify the type of bell that should be used; the mapping for this is up to the individual
implementation. If thdeepOConposeFai | control is enabled, it specifies that a bell
should be activated when a compose sequence failBeEpEnConposeFai | control is
disabled by default. If implemented, the bell should be activated ¥&ingellor XkbDe-
viceBell

While the Xkb extension does not specify the type of bell to be used whBagpén-
ConposeFai | control is implemented, a consistent convention between implementations
is to everyone’s benefit. If a named bell is used for this purpose, the recommended name is
“ConposeFai | .

11.3 Controls Effecting Event Delivery

11.3.1 IgnoreNewKeyboards

When Xkb is initialized, it implicitly forces requests fdewKeyboar dNot i fy events.

These events may be used by the Xkb library extension internally; they are normally trans-
lated into core protocdVappi ngNot i fy events before being passed to the client. While
delivering the event to the client is appropriate in most cases, it is not appropriate for some
clients that maintain per-key data structures. This is because once the server has sent a
NewKeyboar dNot i fy event, it is free to send the client events for all keys in the new
range and that range may be outside of the per-key data structures the client is maintain-

ing.

November 10, 1997 Library Version 1.0/Document Revision 1.1 84

The X Keyboard Extension 11 X Library Controls

Thel gnor eNewKeyboar ds control, if enabled, prevents Xkb from mappMeyKey-
boar dN\ot i fy events to corbappi ngNot i fy events and passing them to the client. The
control is initially disabled.

11.4 Manipulating the Library Controls

The Library Controls are manipulated using functions that deal with bitmasks to indicate
which controls to manipulate. The controls are identified by the masks defined in Table

11.1.
Table 11.1 Library Control Masks

Library Control Mask Value
XkbLC_ ForcelLatinlLookup (1<<0)
XkbLC_ConsumeLookupMods 1<<1)
XKkbLC_AlwaysConsumeShiftAndLock 1<<2)
XkbLC IgnoreNewKeyboards (1<<3)
XkbLC_ConsumeKeysOnComposeFalil (1<<29
XkbLC_ComposeLED (1 << 30)
XkbLC BeepOnComposeFail (1<<31)
XkbLC_AlIControls (Oxc0000007)

11.4.1 Determining Which Library Controls are Implemented

To determine which Library Controls are actually implementedXubXIlibControlsim-
plemented

unsigned inXkbXlibControlsimplemented (display)
Display * display, [* connection to X server */

XkbXlibControlsimplementeturns a bitmask indicating the controls actually imple-
mented in the Xkb library and is composed of an inclusive OR of bits from Table 11.1.

11.4.2 Determining the State of the Library Controls
To determine the current state of the Library Controls Xkd&etXlibControls

unsigned inXkbGetXlibControls (display)
Display * display; [* connection to X server */

XkbGetXlibControlseturns the current state of the Library Controls as a bit mask that is
an inclusive OR of the control masks from Table 11.1 for the controls that are enabled. For
the optional compose processing controls, the fact that a control is enabled does not imply
that it is actually implemented.

11.4.3 Changing the State of the Library Controls
To change the state of the Library Controls, XikeSetXlibControls
Bool XkbSetXlibControls (display, bits_to_change, values_for_bits

Display * display, [* connection to X server */
unsigned long bits_to_change [* selects controls to be modified */
unsigned long values_for_bits [* turns selected controls on (1) or off (0) */

November 10, 1997 Library Version 1.0/Document Revision 1.1 85

The X Keyboard Extension 11 X Library Controls

XkbSetXlibControlsnodifies the state of the controls selectedity to_changeonly the
controls selected hyits_to_changare modified. If the bit corresponding to a control is
on inbits_to_changand also on inalues_for_bitsthe control is enabled. If the bit corre-
sponding to a control is on bits_to_changéut off invalues_for_bitsthe control is dis-
abled.bits_to_changehould be an inclusive OR of bits from Table 11.1.

November 10, 1997 Library Version 1.0/Document Revision 1.1 86

The X Keyboard Extension 12 Interpreting Key Events

12

12.1

Interpreting Key Events

Xkb provides functions to help developers interpret key events without having to directly
interpret Xkb data structures. Xkb also modifies the behavior of several core X library
functions.

Effects of Xkb on the Core X Library

When support for Xkb is built into the X library, t®penDisplayfunction looks for a
compatible version of Xkb on the server. If it finds a compatible version, it initializes the
extension and enabl@splicit supportfor Xkb in a number of X library functions. This

makes it possible for clients to take advantage of nearly all Xkb features without having to
be rewritten or even recompiled, if they are built with shared libraries. This implicit sup-
port is invisible to most clients, but it can have side effects, so the extension includes ways
to control or disable it.

12.1.1 Effects of Xkb on Event State

BecauseXOpenDisplayinitializes Xkb, some events contain an Xkb description of the
keyboard state instead of that normally used by the core protocol. See section 17.1.1 for
more information about the differences between Xkb keyboard state and that reported by
the core protocol.

12.1.2 Effects of Xkb on MappingNotify Events

When Xkb is missing or disabled, the X library tracks changes to the keyboard mapping
usingMappi ngNot i fy events. Whenever the keyboard mapping is changed, the server
sends all clients EBhppi ngNot i fy event to report the change. When a client receives a
Mappi ngNot i fy event, it is supposed to calRefreshKeyboardMappirtg update the
keyboard description used internally by the X library.

The X Keyboard Extension usgkbMapNot i fy andXkbNewKeyboar dNot i fy events

to track changes to the keyboard mapping. When an Xkb-aware client receives either
event, it should calkKkbRefreshKeyboardMappirtig update the keyboard description

used internally by the X library. To avoid duplicate events, the X server does not send core
protocolMappi ngNot i fy events to a client that has selectedXddoMapNot i f y events.

The implicit support for Xkb selects fokbMapNot i fy events. This means that clients
that do not explicitly use Xkb but that are using a version of the X library that has implicit
support for Xkb do not receiveappi ngNot i fy events over the wire. Clients that were

not written with Xkb in mind do not recognize or properly handle the new Xkb events, so
the implicit support converts them Mappi ngNot i fy events that report approximately

the same information, unless the client has explicitly selected for the Xkb version of the
event.

An Xkb-capable X server does not send events from keys that fall outside the legal range
of keycodes expected by that client. Once the server sends a chkitNenKeyboar d-

Not i fy event, it reports events from all keys because it assumes that any client that has
receieved axkbNewKeyboar dNot i fy event expects key events from the new range of
keycodes. The implicit support for Xkb asks ¥bNewKeyboar dN\ot i f y events, so the
range of keycodes reported to the client might vary without the client’'s knowledge. Most
clients don’t really care about the range of legal keycodes, but some clients maintain
information about each key and might have problems with events that come from unex-

November 10, 1997 Library Version 1.0/Document Revision 1.1 87

The X Keyboard Extension 12 Interpreting Key Events

pected keys. Such clients can setXkbLC | gnor eNewKeyboar ds library control (see
section 11.3.1) to prevent the implicit support from requesting notification of changes to
the legal range of keycodes.

12.1.3 X Library Functions Affected by Xkb
The following X library functions are modified by Xkb:

XKeycodeToKeysym
XKeysymToKeycode
XLookupKeysym
XLookupString
XRefreshKeyboardMapping
XRebindKeysym

The implicit support for Xkb replaces a number of X library functions with versions that
understand and use the X Keyboard Extension. In most cases, the semantics of the new
versions are identical to those of the old, but there are occasional visible differences. This
section lists all of the functions that are affected and the differences in behavior, if any,
that are visible to clients.

The XKeycodeToKeysyfanction reports the keysym associated with a particular index

for a single key. The index specifies a column of symbols in the core keyboard mapping
(that is, as reported by the core protaGetKeyboardMappingequest). The order of the
symbols in the core mapping does not necessarily correspond to the order of the symbols
used by Xkb; section 17.1.3 describes the differences.

The XKeysymToKeycodenction reports a keycode to which a particular keysym is

bound. When Xkb is missing or disabled, this function looks in each column of the core
keyboard mapping in turn and returns the lowest numbered key that matches in the lowest
numbered group. When XKkb is present, this function uses the Xkb ordering for symbols
instead.

The XLookupKeysyrfunction reports the symbol in a specific column of the key associ-
ated with an event. Whether or not Xkb is present, the column specifies an index into the
core symbol mapping.

The XLookupStringunction reports the symbol and string associated with a key event,
taking into account the keycode and keyboard state as reported in the event. When Xkb is
disabled or missing{LookupStringuses the rules specified by the core protocol and

reports only ISO Latin-1 characters. When Xkb is presdmpkupStringuses the

explicit keyboard group, key types, and rules specified by Xkb. When Xkb is present,
XLookupStrings allowed, but not required, to return strings in character sets other than
ISO Latin-1, depending on the current locale. If any key bindings are defihedkup-
Stringdoes not use any consumed modifiers (see sections 11.1.2 and 15.2) to determine
matching bindings.

TheXRefreshKeyboardMappirfgnction updates the X library’s internal representation of
the keyboard to reflect changes reportedvppi ngNot i fy events. When Xkb is miss-

ing or disabled, this function reloads the entire modifier map or keyboard mapping. When
Xkb is present, the implicit Xkb support keeps track of the changed components reported
by eachxkbMapNot i f y event and updates only those pieces of the keyboard description
that have changed. If the implicit support has not noted any keyboard mapping changes,
XRefreshKeyboardMappingpdates the entire keyboard description.

November 10, 1997 Library Version 1.0/Document Revision 1.1 88

The X Keyboard Extension 12 Interpreting Key Events

12.2

The XRebindKeysyrfunction associates a string with a keysym and a set of modifiers.
Xkb does not directly change this function, but it does affect the way that the state
reported in the event is compared to the state specifisReébindKeysymWhen Xkb is
missing or disabledLookupStringeturns the specified string if the modifiers in the

event exactly match the modifiers from this call. When Xkb is present, any modifiers used
to determine the keysym are consumed and are not used to look up the string.

Xkb Event and Keymap Functions

To find the keysym bound to a particular key at a specified group and shift level, use
XkbKeycodeToKeysym

KeySymXkbKeycodeToKeysyn(dpy, kc, group, levil

Display * dpy; [* connection to X server */
KeyCode kc; [* key of interest */
unsigned int group; /* group of interest */
unsigned int level, /* shift level of interest */

XkbKeycodeToKeysyraturns the keysym bound to a particular group and shift level for a
particular key on the core keyboardkdfis not a legal keycode for the core keyboard, or if
group or levelare out of range for the specified kékbKeycodeToKeysyraturnsNoSym

bol .

To find the set of modifiers bound to a particular keysym on the core keyboard, use
XkbKeysymToModifiers

unsigned inXkbKeysymToMadifiers(dpy, k9
Display * dpy; [* connection to X server */
KeySym ks /* keysym of interest */

XkbKeysymToModifiesnds the set of modifiers currently bound to the keyggmon the
core keyboard. The value returned is the mask of modifiers bound to the Key/$fy/rmo
modifiers are bound to the keysyKkbKeysymToModifieneturns zero; otherwise, it
returns the inclusive OR of zero or more of the followiy: f t Mask, Cont r ol Mask,
LockMask, Mod1Nask, Mod2Mask, Mod3Mask, Mbd4Mask, andMbd5Mask.

UseXkbLookupKeySyito find the symbol associated with a key for a particular state.
Bool XkbLookupKeySym (dpy, key state mods_rtr sym_rtrn)

Display * dpy, /* connection to X server */

KeyCode key, * key for which symbols are to be found */

unsigned int state [* state for which symbol should be found */

unsigned int * mods_rtrn /* backfilled with unconsumed modifiers */

KeySym * sym_rtrn * backfilled with symbol associated with key + state */

XkbLookupKeySyis the equivalent of the codookupKeySyrfunction. For the core
keyboard, given a keycodteyand an Xkb statstate XkbLookupKeySymeturns the sym-
bol associated with the key siym_rtrnand the list of modifiers that should still be
applied inmods_rtrn Thestateparameter is the state fronkKayPr ess or KeyRel ease
event.XkbLookupKeySymeturnsTr ue if it succeeds.

November 10, 1997 Library Version 1.0/Document Revision 1.1 89

The X Keyboard Extension 12 Interpreting Key Events

UseXkbLookupKeyBindintp find the string bound to a key BRebindKeySym
XkbLookupKeyBindings the equivalent of the cokdookupStringunction.

int XkbLookupKeyBinding (dpy, sym state buf, nbytes extra_rtrn)

Display * dpy; [* connection to server */

KeySym sym /* symbol to be looked up */

unsigned int state [* state for which string is to be looked up */
char * buf, [* buffer into which returned string is written */
int nbytes [* size of buffer in bytes */

int * extra_rtrry /* backfilled with number bytes overflow */

XRebindKeysyrhinds an ASCII string to a specified keysym, so that the string and key-
sym are returned when the key is pressed and a specified list of modifiers are also being
held downXkbLookupKeyBindingeturns inbufthe string associated with the keysym
symand modifier statetate bufis NULL terminated unless there’s an overflow. If the

string returned is larger thambytes a count of bytes that does not fit into the buffer is
returned inextra_rtrn XkbTranslateKeySymeturns the number of bytes that it placed

into buf.
To find the string and symbol associated with a keysym for a given keyboard state, use
XkbTranslateKeySym
int XkbTranslateKeySym(dpy, sym_inoutmods buf, nbytesextra_rtrn)
Display * dpy, [* connection to X server */
KeySym * sym_inout /* symbol to be translated; result of translation */
unsigned int mods /* modifiers to apply teym_inout/
char * buf, * buffer into which returned string is written */
int nbytes [* size of buffer in bytes */
int * extra_rtrry /* number of bytes overflow*/

XkbTranslateKeySyupplies the transformations specifiedrindsto the symbol speci-
fied by sym_inoutlt returns inbufthe string, if any, associated with the keysym for the
current locale. If the transformationsnrodschanges the keysymym_inouis updated
accordingly. If the string returned is larger thdoytes a count of bytes that does not fit
into the buffer is returned extra_rtrn XkbTranslateKeySyneturns the number of bytes
it placed intabuf.

To update the keyboard description that is internal to the X libraryklseefreshKey-
boardMapping

StatusXkbRefreshKeyboardMapping(event)
XkbMapNotifyEvent * event [* event initiating remapping */

XkbRefreshKeyboardMapping the Xkb equivalent of the cokRefreshKeyboardMap-
ping function. It requests that the X server send the current key mapping information to
this client. A client usually invokeskbRefreshKeyboardMappiradter receiving an
XkbMapNot i fy event.XkbRefreshKeyboardMappimgturnsSuccess if it succeeds and
BadMat ch if the event is not an Xkb event.

The XkbMapNot i fy event can be generated when some client XalkSetMap
XkbChangeMapXkbGetKeyboardByNamer any of the standard X library functions that
change the keyboard mapping or modifier mapping.

November 10, 1997 Library Version 1.0/Document Revision 1.1 90

The X Keyboard Extension 12 Interpreting Key Events

To translate a keycode to a key symbol and modifiersXkis&ranslateKeyCode
Booll XkbTranslateKeyCode(xkb, key, mods, mods_rtrn, keysym_rtrn)

XkbDescPtr xkby /* keyboard description to use for translation */
KeyCode key, /* keycode to translate */

unsigned int mods /* modifiers to apply when translatihgy*/
unsigned int * mods_rtrn /* backfilled with unconsumed modifiers */
KeySym * keysym _rtrn /* keysym resulting from translation */

mods_ rtrnis backfilled with the modifiers consumed by the translation progesdsis a bit-
wise inclusive OR of the legal modifier maskai f t Mask, LockMask, Cont r ol Mask,
Mod1Mask, Mod2Mask, Mbd3Mask, Mod4Mask, ModS5Mask. The Al waysConsurre-

Shi ft AndLock library control (see section 11.1.3), if enabled, cadddsT ranslateKeyCode
to consume shift and lockKkbTranslateKeyCodeturnsTr ue if the translation resulted in
a keysym, andral se if it resulted inNoSynbol .

November 10, 1997 Library Version 1.0/Document Revision 1.1

91

The X Keyboard Extension 13 Keyboard Geometry

13 Keyboard Geometry

The Xkb description of a keyboard includes an optiegboard geometmhat describes

the physical appearance of the keyboard. Keyboard geometry describes the shape, loca-
tion, and color of all keyboard keys or other visible keyboard components such as indica-
tors. The information contained in a keyboard geometry is sufficient to allow a client
program to draw an accurate two-dimensional image of the keyboard.

You can retrieve a keyboard geometry from an X server that supports Xkb, or you can
allocate it from scratch and initialize it in a client program. The keyboard geometry need
not have any correspondence with the physical keyboard that is connected to the X server.

Geometry measurements are specifidd T o units. The origin (0,0) is in the top left cor-

ner of the keyboard image. A component’s own origin is also its upper left corner. In some
cases a component needs to be drawn rotated. For example, a special keyboard may have a
section of keys arranged in rows in a rectangular area, but the entire rectangle may not be
in alignment with the rest of the keyboard, and instead, it is rotated from horizontal by

30°. Rotation for a geometry object is :~:pecifie€r/'gn)0 increments about its origin. An

example of a keyboard with rotated sections is shown in Figure 13.1.

N EE T e
9,
& ey S
y = 4
\ /

Rotated Sections

Figure 131 Rotated Keyboard Sections

Some geometry components includerarity, which indicates the order in which over-
lapping objects should be drawn. Objects should be drawn in order from highest priority
(0) to lowest (255).

The keyboard geometry’s top-lewddscription is stored inXkbGeonet r yRec structure.
This structure contains three types of information:

1. Lists of items, not used to draw the basic keyboard, but indexed by the geometry
descriptions that comprise the entire keyboard geometry (colors, geometry proper-
ties, key aliases, shapes)

2. A number of singleton items that describe the keyboard as a whole (keyboard
name, width and height, a color for the keyboard as a whole, and a color for key-
board key labels)

3. Alist of the keyboard’s sections and nonkey doodads
The top-level geometry is described in more detail in the following.

The lists of items used by components of the keyboard geometry description is as follows:

November 10, 1997 Library Version 1.0/Document Revision 1.1 92

The X Keyboard Extension 13 Keyboard Geometry

« The top-level keyboard geometry description includes a list of Max&ol or s (32)
color namesA color name is a string whose interpretation is not specified by Xkb.
The XkbCol or Rec structure provides a field for this name as well as a pixel field.
The pixel field is a convenient place for an application to store a pixel value or color
definition, if it needs to. All other geometry data structures refer to colors using their
indices in this global list.

« The top-level keyboard geometry description includes a ligeoinetry properties
A geometry property associates an arbitrary string with an equally arbitrary name.
Geometry properties can be used to provide hints to programs that display images of
keyboards, but they are not interpreted by Xkb. No other geometry structures refer to
geometry properties. As an example of a possible upeoplerties consider the
pause/break key on most PC keyboards: the “break” symbol is usually on the front of
the key and is often a different color. A program might set a property to:
LBL_PAUS = “{Pause/top/black,Break/front/red}"
and use the property information to draw the key with a front label as well as a top
label.

* The top-level keyboard geometry description includes a listphliasegsee Chapter
18). Key aliases allow the keyboard layout designer to assign multiple key names to a
single key.

Note Key aliases defined in the geometry component of a keyboard mapping override those
defined in the keycodes component of the server database, which are stored in the
XkbNaresRec (xkb->name} Therefore, consider the key aliases defined by the
geometry before considering key aliases supplied by the keycodes.

« The top-level keyboard geometry description includes a lishepesother keyboard
components refer to shapes by their index in this list. A shape consists of an arbitrary
name of type Atom and one or more closed-polygotiines All points in an outline
are specified relative to the origin of its enclosing shape, that is, whichever shape that
contains this outline in its list of outlines. One outline is the primary outline. The pri-
mary outline is by default the first outline, or it can be optionally specified kyrthe
maryfield in theXkbShapeRec structure. A keyboard display application can
generate a simpler but still accurate keyboard image by displaying only the primary
outlines for each shape. Nonrectangular keys must include a rectapptaxima-
tion as one of the outlines associated with the shape. The approximation is not nor-
mally displayed but can be used by very simple keyboard display applications to
generate a recognizable but degraded image of the keyboard.

TheXkbCGeonet r yRec top-level geometry description contains the following information
that pertains to the keyboard as a whole:

« A keyboard symbolic nanué type Atom to help users identify the keyboard.

- Thewidth andheightof the keyboard, il"/; 4. For nonrectangular keyboards, the
width and height describe the smallest bounding box that encloses the outline of the
keyboard.

e Thebase colowf the keyboard is the predominant color on the keyboard and is used
as the default color for any components whose color is not explicitly specified.

« Thelabel coloris the color used to draw the labels on most of the keyboard keys.

« Thelabel fontis a string that describes the font used to draw labels on most keys; label
fonts are arbitrary strings, because Xkb does not specify the format or name space for
font names.

The keyboard is subdivided into nanssttionf related keys andoodads The sections
and doodads on the keyboard are listed inkii®=ormret r yRec top-level keyboard
geometry description. Aectionis composed of keys that are physically together and logi-

November 10, 1997 Library Version 1.0/Document Revision 1.1 93

The X Keyboard Extension 13 Keyboard Geometry

cally related. Figure 13.2 shows a keyboard that is divided into four sectioclogdad
describes some visible aspect of the keyboard that is not a key and is not a section.

| Y

Editing |>|:| I O | o

Function o o o |
o o o

Alpha— | 11O O0C0COOCCC] L]
C10O0000CO00C0000c—1| O |([0dd

Keypad 1 1 o |

A

Figure 13.2 Keyboard with Four Sections

13.1 Shapes and Outlines
A shape used to draw keyboard components and store&ki8hapeRec structure, has:

* An arbitrary name of type Atom.

* Bounds (two x and y coordinates) that describe the corners of a rectangle containing
the shape’s top surface outline.

« Alist of one or more outlines (described below).

» Optional pointers to a primary and an approximation outline (described below). If
either of these pointers MJLL, the default primary/approximation outline is the first
one in the list of outlines for the shape.

An outling, stored in akbQut | i neRec structure, is a list of one or more points that
describes a single closed-polygon, as follows:

» Alist with a single point describes a rectangle with one corner at the origin of the shape
(0,0) and the opposite corner at the specified point.

» A list of two points describes a rectangle with one corner at the position specified by
the first point and the opposite corner at the position specified by the second point.

» A list of three or more points describes an arbitrary polygon. If necessary, the polygon
is automatically closed by connecting the last point in the list with the first.

» A nonzero value for theorner_radiusfield specifies that the corners of the polygon
should be drawn as circles with the specified radius.

All points in an outline are specified relative to the origin of the enclosing shape. Points in
an outline may have negative values for the X and Y coordinate.

One outline is the primary outline; a keyboard display application can generate a simple
but still accurate keyboard image by displaying only the primary outlines for each shape.
The default primary outline is the first in a shape’s list of outlines. Iptimeary field of

the XkbShapeRec structure is noNULL, it points to the primary outline. A rectangular
approximationmust be included for nonrectangular keys as one of the outlines associated
with the shape; the approximation is not normally displayed but can be used by very sim-
ple keyboard display applications to generate a recognizable but degraded image of the
keyboard.

November 10, 1997 Library Version 1.0/Document Revision 1.1 94

The X Keyboard Extension 13 Keyboard Geometry

13.2 Sections

As previously noted, a keyboard is subdivided s#otionsof related keys. Each section

has its own coordinate system — if a section is rotated, the coordinates of any components
within the section are interpreted relative to the edges that were on the top and left before
rotation. The components that make up a section, storegibSect i onRec, include:

An arbitrary name of type Atom.

A priority, to indicate drawing order. O is the highest priority, 255 the lowest.

Origin of the section, relative to the origin of the keyboard.

The width and height and the angle of rotation.

A list of rows A row is a list of horizontally or vertically adjacent keys. Horizontal

rows parallel the (prerotation) top of the section, and vertical rows parallel the (prerota-
tion) left of the section. All keys in a horizontal row share a common top coordinate; all
keys in a vertical row share a left coordinate. Figure 13.3 shows the alpha section from

the keyboard shown in Figure 13.2, divided into rows. Rows and keys are defined
below.

Row 1l NNNRNRINVNY NNV
Row 2 [IO I
Row 3 RXIRIRIRKI R RRIRKIERR B R EREARKI RRRXA
Row 4 EEEEEEEEEBEEEES
Row 5 [EETTIES

A0 A

Figure 13.3 Rows in a Section

An optional list ofdoodadsany type of doodad can be enclosed within a section.
Position and angle of rotation are relative to the origin and angle of rotation of the sec-
tions that contain them. Priority for doodads in a section is relative to the other compo-
nents of the section, not to the keyboard as a whole.

An optionaloverlaywith a name of type Atom and a list of overlay rows (described
below).

* Bounds (two x and y coordinates) that describe the corners of a rectangle containing
the entire section.

13.3 Rows and Keys

A row description XkbRowRec) consists of the coordinates of its origin relative to its
enclosing section, a flag indicating whether the row is horizontal or vertical, and a list of
keys in the row.

A key description XkbKeyRec) consists of a key name, a shape, a key color, and a gap.

The key name should correspond to one of the keys named in the keyboard names descrip-
tion, the shape specifies the appearance of the key, and the key color specifies the color of
the key (not the label on the key; the label color is stored ikkh€eonet r yRec). Keys

are normally drawn immediately adjacent to one another from left to right (or top to bot-
tom) within a row. The gap field specifies the distance between a key and its predecessor.

November 10, 1997 Library Version 1.0/Document Revision 1.1 95

The X Keyboard Extension 13 Keyboard Geometry

13.4 Doodads

Doodads can be global to the keyboard or part of a section. Doodads have symbolic names
of arbitrary length. The only doodad name whose interpretation is specified by Xkb is
“Edges”, which, if present, describes the outline of the entire keyboard.

Each doodad’s origin is stored in fields naneftlandtop, which are the coordinates of

the doodad’s origin relative to its enclosing object, whether it be a section or the top-level
keyboard. The priority for doodads that are listed in the top-level geometry is relative to
the other doodads listed in the top-level geometry and the sections listed in the top-level
geometry. The priority for doodads listed in a section are relative to the other components
of the section. Each doodad is stored in a structure viipedield, which specifies the

type of doodad.

Xkb supports five types of doodads:

« Anindicator doodadlescribes one of the physical keyboard indicators. Indicator
doodads specify the shape of the indicator, the indicator color when iig lic6lo)
and the indicator color when it is daxdf{_color).

« An outline doodadiescribes some aspect of the keyboard to be drawn as one or more
hollow, closed polygons. Outline doodads specify the shape, color, and angle of rota-
tion about the doodad origin at which they should be drawn.

» A solid doodadiescribes some aspect of the keyboard to be drawn as one or more
filled polygons. Solid doodads specify the shape, color, and angle of rotation about the
doodad origin at which they should be drawn.

« Atext doodadiescribes a text label somewhere on the keyboard. Text doodads specify
the label string, the font and color to use when drawing the label, and the angle of rota-
tion of the doodad about its origin.

« Alogo doodads a catch-all, which describes some other visible element of the key-
board. A logo doodad is essentially an outline doodad with an additional symbolic
name that describes the element to be drawn. If a keyboard display program recognizes
the symbolic name, it can draw something appropriate within the bounding region of
the shape specified in the doodad. If the symbolic name does not describe a recogniz-
able image, it should draw an outline using the specified shape, outline, and angle of
rotation. The Xkb extension does not specify the interpretation of logo names.

The structures these doodads are stored in and the valuesygfethelds are shown in

Table 13.1.

Table 13.1 Doodad Types
Doodad Structure Type
indicator doodad Xkbl ndi cat or DoodadRec XkbIndicatorDoodad
outline doodad XkbShapeDoodadRec XkbOutlineDoodad
solid doodad XkbShapeDoodadRec XkbSolidDoodad
text doodad XkbText DoodadRec XkbTextDoodad
logo doodad XkbLogoDoodadRec XkbLogoDoodad

13.5 Overlay Rows and Overlay Keys

An overlay row(XkbQOver | ayRowRec) contains a pointer to the row it overlays and a list
of overlay keys

Each overlay key definitiorXkbOver | ayKeyRec) indicates a key that can yield multiple
keycodes and consists of a field nameder, which specifies the primary name of the

November 10, 1997 Library Version 1.0/Document Revision 1.1 96

The X Keyboard Extension 13 Keyboard Geometry

key and a field namealver, which specifies the name for the key when the overlay key-
code is selected. The key specifiedimdermust be a member of the section that contains
the overlay key definition, while the key specifiecbirer must not be.

13.6 Drawing a Keyboard Representation
To draw a representation of the keyboard, draw in the following order:

Draw the top-level keyboard as a rectangle, using its width and height.
For each component (section or doodad) of the top-level geometry, in priority order:
If component is a section
For each row, in the order it appears in the section
Draw keys in the order they appear in the row
Draw doodads within the section in priority order.
Else draw doodad

November 10, 1997 Library Version 1.0/Document Revision 1.1 97

The X Keyboard Extension

13

Keyboard Geometry

13.7 Geometry Data Structures
In the following figures, a solid arrow denotes a pointer to an array of structures or a sin-
gleton structure. A dotted arrow denotes an index or a pointer into the array.
label_color "'/ XkbPropertyRec(s)
base color |- .‘: (array)
properties |
XkbColorRec(s) [
colors (array) | |
|
shapes !
: : r; outlines .
sections .. g J_u
I
doodads P approx -
key aliases | % primary il XkbOutlineRec(s)
— |
XkbGeometryR i bounds S arrey)
eometryRec
¥ Sl
I XkbShapeRec(s)
h (array)
.' | XkbBoundsRec
ll g
I
I
XkbKeyAliasRec(s) L :
(array) T -
I
P (See Figure 13.5
I
[: [I : :
< I I
o -
rows
> keys | doodads (s)
doodads bounds ' shape_ndx (array)
bounds
XkbRowRec(s) color_ndx
overlays L (array) XkbKeyRec(s)
XkbSectionRec(s) C (array)
(array)
C (See Figure 13.5
(See Figure 13.6 XkbBoundsRec

overlays (s)
(array)

doodads (s)
(array)

XkbBoundsRec

Figure 13.4 Xkb Geometry Data Structures

November 10, 1997

Library Version 1.0/Document Revision 1.1

98

The X Keyboard Extension

13 Keyboard Geometry

label_color XkbGeometryRec,
base_color XkbColorRec, and
XkbShapeRec
repeated from
properties Figure 16.4
colors
shapes
sections
doodads
key aliases
XkbGeometryRec
color_ndx |-..__
shape_ndx | —y
\\\ \-"“i = Y
XkbShapeDoodadRec(s). e/ J_u
"N XkbColorRec(s)
.) (array)
\\\\ ,’/:/ //
N 0
color_ndx S
> /
XkbTextDoodadRec(s) S
// // /
////// // \
/’ / / N
doodads array e
may contain S - »
any of these A Speeeme o :
doodad types shape_ndx |- / / outlines
/ 4 / /
on_color_ndx|" / approx
’ / //
off_color_ndx |’ // primary
) ,
XkbIndicatorDoodadRec(s) , bounds i
/ ’
/ XkbShapeRec(s)
/ - (array)

/
color_ndx L’

shape_ndx

XkbLogoDoodadRec(s)

Figure 13.5 Xkb Geometry Data Structures (Doodads)

November 10, 1997

Library Version 1.0/Document Revision 1.1

The X Keyboard Extension

13 Keyboard Geometry

rows

-

doodads

bounds

overlays

XkbSectionRec(s)
(array)

section_under

rows

bounds NC

XkbOverlayRec (s)
(array)

typedef struct _XkbGeometry {

- XkbSectionRec and
keys XkbRowRec
repeated from
bounds [P Figure 16.4
XkbRowRec(s)
(array)
g
XkbBoundsRec
I [
>
row_under L
keys N - J—u
XkbOverlayRowRec (s) XkbOverlayKeyRec(s)
(array) (array)
XkbBoundsRec

Figure 13.6 Xkb Geometry Data Structures (Overlays)

Atom
unsigned short
unsigned short
char *
XkbColorPtr
XkbColorPtr
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short

* top-level keyboard geometry structure */

name; /* keyboard name */
width_mm; I* keyboard widthTWY o */
height_mm; /* keyboard height'ff/; o */
label_font; [* font for key labels */
label_color; * color for key labels - pointer into colors array */
base_color; /* color for basic keyboard - pointer into colors array */

sz_properties; [* size of properties array */

sz_colors; [* size of colors array */
sz_shapes; [* size of shapes array */
sz_sections; [* size of sections array */
sz_doodads; I* size of doodads array */

sz_key aliases; /* size of key aliases array */

num_properties; /* number of properties in the properties array */
num_colors; /* number of colors in the colors array */
num_shapes; /* number of shapes in the shapes array */
num_sections; /* number of sections in the sections array */
num_doodads; /* number of doodads in the doodads array */

November

10, 1997

Library Version 1.0/Document Revision 1.1 100

The X Keyboard Extension 13 Keyboard Geometry

unsigned short num_key_aliases; /* number of key aliases in the key */

XkbPropertyPtr properties; [* properties array */
XkbColorPtr colors; [* colors array */
XkbShapePtr shapes; [* shapes array */
XkbSectionPtr sections; [* sections array */
XkbDoodadPtr doodads; /* doodads array */
XkbKeyAliasPtr key aliases; * key aliases array */

} XkbGeometryRec*XkbGeometryPtr;

Thedoodadsarray is only for doodads not contained in any oséaionghat has its own
doodads The key aliases contained in #tey_aliasesrray take precedence over any
defined in the keycodes componeiithe keyboard description.

typedef struct _XkbProperty {
char * name; [* property name */
char * value; [* property value */
} XkbPropertyRec,*XkbPropertyPtr;

typedef struct _XkbColor {

unsigned int pixel, * color */

char * spec; /* color name */
} XkbColorRec,*XkbColorPtr;

typedef struct _XkbKeyAliasRec {

char real[XkbKeyNamelLength]; /* real name of the key */
char alias[XkbKeyNameLength]; /* alias for the key */
} XkbKeyAliasRec,*XkbKeyAliasPtr;
typedef struct _XkbPoint { [* X,y coordinates */
short X;
short y;

} XkbPointRec, *XkbPointPtr;
typedef struct _XkbOutline {

unsigned short num_points; /* number of points in the outline */
unsigned short sz_points; [* size of the points array */

unsigned short corner_radius; /* draw corners as circles with this radius */
XkbPointPtr points; [* array of points defining the outline */

} XkbOutlineRec, *XkbOutlinePtr;

typedef struct _XkbBounds {
short x1,y1; /* upper left corner of the boundsMf/, o */
short X2,y2; /* lower right corner of the bounds,”?H}llo */
} XkbBoundsReg *XkbBoundsPtr;

typedef struct _XkbShape {
Atom name; [* shape’s name */
unsigned short num_outlines; /* number of outlines for the shape */
unsigned short sz_outlines; /* size of the outlines array */

XkbOutlinePtr outlines; /* array of outlines for the shape */

XkbOutlinePtr approx; /* pointer into the array to the approximating outline */
XkbOutlinePtr primary; [* pointer into the array to the primary outline */
XkbBoundsRec bounds; /* bounding box for the shape; encompasses all outlines */

} XkbShapeRe¢ *XkbShapePtr;

November 10, 1997 Library Version 1.0/Document Revision 1.1 101

The X Keyboard Extension 13 Keyboard Geometry

If approxand/orprimaryis NULL, the default value is used. The default primary outline is
the first element in the outlines array, as is the default approximating outline.

typedef struct _XkbKey { [* key in a row */
XkbKeyNameRec name; /* key name */
short gap; I* gap iﬁnmllo from previous key in row */
unsigned char shape_ndx; /* index of shape for key */
unsigned char color_ndx; /* index of color for key body */
} XkbKeyRec, *XkbKeyPtr;
typedef struct _XkbRow { [* row in a section */
short top; [* top coordinate of row origin, relative to section’s origin */
short left; * left coordinate of row origin, relative to section’s origin */

unsigned short num_keys; /* number of keys in the keys array */
unsigned short sz_keys; /* size of the keys array */
int vertical; /* Tr ue=>vertical row,Fal se=>horizontal row */
XkbKeyPtr keys; [* array of keys in the row*/
XkbBoundsRec bounds; /* bounding box for the row */

} XkbRowRec, *XkbRowPtr;

top andleft are in™"; .

typedef struct _XkbOverlayRec {

Atom name; /* overlay name */

XkbSectionPtr section_under; /* the section under this overlay */
unsigned short num_rows; /* number of rows in the rows array */
unsigned short SZ_rows; [* size of the rows array */
XkbOverlayRowPtr rows; [* array of rows in the overlay */
XkbBoundsPtr bounds; /* bounding box for the overlay */

} XkbOverlayRec,*XkbOverlayPtr;
typedef struct _XkbOverlayRow {

unsigned short row_under; /* index into the row under this overlay row */
unsigned short num_keys; /* number of keys in the keys array */
unsigned short sz_keys; [* size of the keys array */
XkbOverlayKeyPtr keys; [* array of keys in the overlay row */

} XkbOverlayRowRec,*XkbOverlayRowPtr;

row_underis an index into the array afwsin the section under this overlay. The section
under this overlay row is the one pointed tosbgtion_undein this overlay row’s

XkbOver | ayRec.

typedef struct _XkbOverlayKey {
XkbKeyNameRec over,; /* name of this overlay key */
XkbKeyNameRec under; /* name of the key under this overlay key */

} XkbOverlayKeyRec,*XkbOverlayKeyPtr;
typedef struct _XkbSection {

Atom name; [* section name */

unsigned char priority; [* drawing priority, 0=>highest, 255=>lowest */
short top; /* top coordinate of section origin */

short left; /* left coordinate of row origin */

unsigned short width; I* section width, ", o */

unsigned short height; I* section height)"1A%1*/

November 10, 1997 Library Version 1.0/Document Revision 1.1 102

The X Keyboard Extension 13 Keyboard Geometry

short angle; /* angle of section rotation, counterclockwise */
unsigned short num_rows; /* number of rows in the rows array */
unsigned short num_doodads; /* number of doodads in the doodads array */
unsigned short num_overlays; /* number of overlays in the overlays array */
unsigned short SZ_rows; I* size of the rows array */

unsigned short sz_doodads; /* size of the doodads array */

unsigned short sz_overlays; /* size of the overlays array */

XkbRowPtr rows; * section rows array */

XkbDoodadPtr doodads; /* section doodads array */

XkbBoundsRec bounds; /* bounding box for the section, before rotation*/
XkbOverlayPtr overlays; [* section overlays array */

} XkbSectionReg *XkbSectionPtr;

top andleft are the origin of the section, relative to the origin of the keyboafdip,
angleis in Y,y degrees.

DoodadRec Structures

The doodad arrays in thé&bGeonet r yRec and thexkbSect i onRec may contain any
of the doodad structures and types shown in Table 13.1.

The doodad structures form a union:
typedef union _XkbDoodad {

XkbAnyDoodadRec any;
XkbShapeDoodadRec shape;
XkbTextDoodadRec text;
XkbiIndicatorDoodadRec indicator;
XkbLogoDoodadRec logo;

} XkbDoodadReg *XkbDoodadPtr;

Thetop andleft coordinates of each doodad are the coordinates of the origin of the doodad
relative to the keyboard'’s origin if the doodad is inXkbGeoret r yRec doodad array,

and with respect to the section’s origin if the doodad isXklesect i onRec doodad
array.Thecolor_ndxor on_color_ndxandoff_color_ndxields are color indices into the
XkbGeonet r yRec’s color array and are the colors to draw the doodads with. Similarly, the
shape_ndxields are indices into thé&bGeonet r yRec’s shape array.

typedef struct _XkbShapeDoodad {

Atom name; [* doodad name */

unsigned char type; MXkbQut | i neDoodad or XkbSol i dDoodad*/
unsigned char priority; * drawing priority, 0=>highest, 255=>lowest */
short top; /* top coordinate, "Y1 */

short left; /* left coordinate, i/ */

short angle; /* angle of rotation, cIockwise,liﬁo degrees */
unsigned short color_ndx; [* doodad color */

unsigned short shape_ndx; /* doodad shape */

} XkbShapeDoodadRec*XkbShapeDoodadPtr;
typedef struct _XkbTextDoodad {

Atom name; [* doodad name */

unsigned char type; MXkbText Doodad */

unsigned char priority; /* drawing priority, 0=>highest, 255=>lowest */
short top; /* top coordinate, ™1 */

November 10, 1997 Library Version 1.0/Document Revision 1.1 103

The X Keyboard Extension 13 Keyboard Geometry

short left; /* left coordinate, i1 */

short angle; /* angle of rotation, C|0CkWise,liﬂ'10 degrees */
short width; 1* width in™", 0%/

short height; I* height i/ 5 */

unsigned short color_ndx; [* doodad color */

char * text; /* doodad text */

char * font; * arbitrary font name for doodad text */

} XkbTextDoodadReg *XkbTextDoodadPtr;
typedef struct _XkbIndicatorDoodad {

Atom name; [* doodad name */

unsigned char type; MXkbl ndi cat or Doodad */

unsigned char priority; /* drawing priority, 0=>highest, 255=>lowest */
short top; /* top coordinate, "Y1 */

short left: /* left coordinate, i/ */

short angle; /* angle of rotation, clockwise,liqo degrees */
unsigned short shape_ndx; /* doodad shape */

unsigned short on_color_ndx; /* color for doodad if indicator is on */
unsigned short off_color_ndx; /* color for doodad if indicator is off */
} XkbIndicatorDoodadRec, *XkbIndicatorDoodadPtr;

typedef struct _XkbLogoDoodad {

Atom name; [* doodad name */

unsigned char type; XkbLogoDoodad */

unsigned char priority; /* drawing priority, 0=>highest, 255=>lowest */
short top; /* top coordinate, "Y1 */

short left: /* left coordinate, i/ */

short angle; /* angle of rotation, clockwise,liqo degrees */
unsigned short color_ndx; [* doodad color */

unsigned short shape_ndx; /* doodad shape */

char * logo_name; [* text for logo */

} XkbLogoDoodadRe¢ *XkbLogoDoodadPtr

13.8 Getting Keyboard Geometry From the Server

You can load a keyboard geometry as part of the keyboard description retuiidal by
GetKeyboardHowever, if a keyboard description has been previously loaded, you can
instead obtain the geometry by calling ¥XldoGetGeometryn this case, the geometry
returned is the one associated with the keyboard whose device ID is contained in the key-
board description.

To load a keyboard geometry if you already have the keyboard descriptiotkhGet-

Geometry
StatusXkbGetGeometry(dpy, xkb
Display * dpy; [* connection to the X server */
XkbDescPtr Xkl /* keyboard description that contains the ID for the keyboard

and into which the geometry should be loaded */

XkbGetGeometrgan returrBadVal ue, Badl npl enent at i on, BadNare, BadAl | oc,
or BadLengt h errors orSuccess if it succeeds.

November 10, 1997 Library Version 1.0/Document Revision 1.1 104

The X Keyboard Extension 13 Keyboard Geometry

13.9

It is also possible to load a keyboard geometry by name. The X server maintains a data-
base of keyboard components (see Chapter 20). To load a keyboard geometry description
from this database by name, x8dbGetNamedGeometry

StatusXxkbGetNamedGeometry(dpy, xkh nameg

Display * dpy; [* connection to the X server */
XkbDescPtr xkb; /* keyboard description into which the geometry should be loaded */
Atom name /* name of the geometry to be loaded */

XkbGetNamedGeometean returrBadNane if the namecannot be found.

Using Keyboard Geometry

Xkb provides a number of convenience functions to help use a keyboard geometry. These
include functions to return the bounding box of a shape’s top surface and to update the
bounding box of a shape row or section.

A shape is made up of a number of outlines. Each outline is a polygon made up of a num-
ber of points. The bounding box of a shape is a rectangle that contains all the outlines of
that shape.

. —]

actual key approximating primary detailed bounding
surface outline outline outline box

I outline array |
Figure 13.7 Key Surface, Shape Outlines, and Bounding Box

To determine the bounding box of the top surface of a shapgkb&omputeShapeTop

Bool XkbComputeShapeTogshape bounds_rtri
XkbShapePtr shape /* shape to be examined */
XkbBoundsPtr bounds_rtrn /* backfilled with the bounding box for the shape */

XkbComputeShapeTopturns @BoundsRec that contains two x and y coordinates. These
coordinates describe the corners of a rectangle that contains the outline that describes the
top surface of the shape. The top surface is defined to be the approximating outline if the
approxfield of shapeis notNULL. If approxis NULL, the top surface is defined as the last
outline in theshapés array of outlinesXxkbComputeShapeTopturnsFal se if shapeis

NULL or if there are no outlines for the shape; otherwise, it refuras.

A ShapeRec contains @oundsRec that describes the bounds of the shape. If you add or
delete an outline to or from a shape, the bounding box must be updated. To update the
bounding box of a shape, ugskbComputeShapeBounds

Bool XkbComputeShapeBoundg¢shapé
XkbShapePtr shape /* shape to be examined */

XkbComputeShapeBounaisdates th®oundsRec contained in thehapeby examining
all the outlines of the shape and settingBbendsRec to the minimum x and minimum

November 10, 1997 Library Version 1.0/Document Revision 1.1 105

The X Keyboard Extension 13 Keyboard Geometry

13.10

y, and maximum x and maximum y values found in those outMid=ComputeShape-
BoundsreturngFal se if shapeis NULL or if there are no outlines for the shape; otherwise,
it returnsTr ue.

If you add or delete a key to or from a row, or if you update the shape of one of the keys
in that row, you may need to update the bounding box of that row. To update the bounding
box of a row, usXkbComputeRowBounds

Bool XkbComputeRowBoundggeom section row)

XkbGeometryPtrgeom [* geometry that contains treection*/
XkbSectionPtr section /* section that contains the row */
XkbRowPtr row; /* row to be examined and updated */

XkbComputeRowBoundsecks the bounds of all keys in te and updates the bound-
ing box of the row if necessa{kbComputeRowBoundsturnsFal se if any of the argu-
ments iSNULL; otherwise, it return3r ue.

If you add or delete a row to or from a section, or if you change the geometry of any of the
rows in that section, you may need to update the bounding box for that section. To update
the bounding box of a section, uskbComputeSectionBounds

Bool XkbComputeSectionBoundggeom sectior)
XkbGeometryPtrgeom /* geometry that contains tleection*/
XkbSectionPtr section [* section to be examined and updated */

XkbComputeSectionBounesamines all the rows of tlsectionand updates the bounding
box of that section so that it contains all roWkbComputeSectionBoundgurnsFal se
if any of the arguments NULL; otherwise, it return3r ue.

Keys that can generate multiple keycodes may be associated with multiple names. Such
keys have a primary name and an alternate name. To find the alternate name by using the
primary name for a key that is part of an overlay, XideFindOverlayForKey

char *XkbFindOverlayForKey (geom section undel)

XkbGeometryPtrgeom [* geometry that contains trsection*/
XkbSectionPtr section /* section to be searched for matching keys */
char * under [* primary name of the key to be considered */

XkbFindOverlayForKeyses the primary name of the kapder, to look up the alternate
name, which it returns.

Adding Elements to a Keyboard Geometry

Xkb provides functions to add a single new element to the top-level keyboard geometry.
In each case theum_x fields of the corresponding structure is incremented by 1. These
functions do not changez_» unless there is no more room in the array. Some of these
functions fill in the values of the element’s structure from the arguments. For other func-
tions, you must explicitly write code to fill the structure’s elements.

The top-level geometry description includes a lisgg@dmetry propertiesA geometry

property associates an arbitrary string with an equally arbitrary name. Programs that dis-
play images of keyboards can use geometry properties as hints, but they are not inter-
preted by Xkb. No other geometry structures refer to geometry properties.

November 10, 1997 Library Version 1.0/Document Revision 1.1 106

The X Keyboard Extension 13 Keyboard Geometry

To add one property to an existing keyboard geometry descriptioXkbgeldGeomPro-

perty.

XkbPropertyPtiXkbAddGeomProperty (geom name value
XkbGeometryPtrgeom /* geometry to be updated */
char * name /* name of the new property */
char * value [* value for the new property */

XkbAddGeomPropertgdds one property with the specifieimeandvalueto the key-
board geometry specified lggom XkbAddGeomProperteturnsNULL if any of the
parameters is empty or if it was not able to allocate space for the property. To allocate
space for an arbitrary number of properties, usXkiAllocGeomPropfunction.

To add one key alias to an existing keyboard geometry descriptioXkbdedGeomKey-

Alias.

XkbKeyAliasPtrXkbAddGeomKeyAlias(geom alias, rea)
XkbGeometryPtrgeom /* geometry to be updated */
char * alias; /* alias to be added */
char * real; /* real name to be bound to the new alias */

XkbAddGeomKeyAliaadds one key alias with the valaleas to the geometrgeom and
associates it with the key whose real nanreas XkbAddGeomKeyAliagturnsNULL if
any of the parameters is empty or if it was not able to allocate space for the alias. To allo-
cate space for an arbitrary number of aliases, us€kihallocGeomKeyAliasdanction.

To add one color name to an existing keyboard geometry descriptiokkindddGeom-

Color.

XkbColorPtrXkbAddGeomColor(geom speg pixel)
XkbGeometryPtrgeom /* geometry to be updated */
char * spec [* color to be added */
unsigned int pixel /* color to be added */

XkbAddGeomColoadds the specified coloameandpixel to the specified geometry

geom The top-level geometry description includes a list of ugataCol or s (32) color
namesA colornameis a string whose interpretation is not specified by Xkb and neither is
thepixel value’s interpretation. All other geometry data structures refer to colors using
their indices in this global list or pointers to colors in this ¥bAddGeomColoreturns

NULL if any of the parameters is empty or if it was not able to allocate space for the color.
To allocate space for an arbitrary number of colors to a geometry, uskiAbocGeom-
Colorsfunction.

To add one outline to an existing shape, XiseAddGeomOutline

XkbOutlinePtrXxkbAddGeomOutline(shape sz_points
XkbShapePtr shape [* shape to be updated */
int sz_points /* number of points to be reserved */

An outline consists of an arbitrary number of poiXisdbAddGeomOutlinadds an outline

to the specifiedhapeby reservingz_pointgoints for it. The new outline is allocated and
zeroed XkbAddGeomOutlineeturnsNULL if any of the parameters is empty or if it was

not able to allocate space. To allocate space for an arbitrary number of outlines to a shape,
useXkbAllocGeomOutlines

November 10, 1997 Library Version 1.0/Document Revision 1.1 107

The X Keyboard Extension 13 Keyboard Geometry

To add a shape to a keyboard geometry XkbAddGeomShape
XkbShapePtXkbAddGeomShapdgeom name sz_outlines

XkbGeometryPtrgeom /* geometry to be updated */
Atom name /* name of the new shape */
int sz_outlines /* number of outlines to be reserved */

A geometry contains an arbitrary number of shapes, each of which is made up of an arbi-
trary number of outlineXxkbAddGeomShalds a shape to a geomajgomby allocat-

ing space fosz_outlineoutlines for it and giving it the name specifiedriame If a

shape with nameamealready exists in the geometry, a pointer to the existing shape is
returned XkbAddGeomShapeturnsNULL if any of the parameters is empty or if it was

not able to allocate space. To allocate space for an arbitrary number of geometry shapes,
useXkbAllocGeomShapes

To add one key at the end of an existing row of keysXub&ddGeomKey

XkbKeyPtrXkbAddGeomKey(row)
XkbRowPtr row; /* row to be updated */

Keys are grouped into ron8kbAddGeomKegdds one key to the end of the specified

row. The key is allocated and zero&ttbAddGeomKerseturnsNULL if row is empty or if

it was not able to allocate space for the key. To allocate space for an arbitrary number of
keys to a row, usEkbAllocGeomKeys

To add one section to an existing keyboard geometryXkisaddGeomSection

XkbSectionPtiXxkbAddGeomSection(geom name sz_rowssz_doodadssz_overlays

XkbGeometryPtrgeom /* geometry to be updated */

Atom name /* name of the new section */

int SZ_rows /* number of rows to reserve in the section */

int sz_doodads /* number of doodads to reserve in the section */
int sz_overlays /* number of overlays to reserve in the section */

A keyboard geometry contains an arbitrary number of sectididddGeomSectiadds

one section to an existing keyboard geomgé&ym The new section contains space for

the number of rows, doodads, and overlays specifiext bgwssz_doodadsand
sz_overlaysThe new section is allocated and zeroed and given the name specified by
name If a section with nameamealready exists in the geometry, a pointer to the existing
section is returnecKkbAddGeomSectiorturnsNULL if any of the parameters is empty or

if it was not able to allocate space for the section. To allocate space for an arbitrary num-
ber of sections to a geometry, dbAllocGeomSections

To add a row to a section, uskbAddGeomRaow

XkbRowPtrXkbAddGeomRow(section sz_keys
XkbSectionPtr section [* section to be updated */
int sz_keys /* number of keys to be reserved */

One of the components of a keyboard geometry section is one or more rows of keys.
XkbAddGeomRowadds one row to the specifisdction The newly created row contains
space for the number of keys specifiedankeysThey are allocated and zeroed, but other-
wise uninitialized XkbAddGeomRoweturnsNULL if any of the parameters is empty or if

it was not able to allocate space for the row. To allocate space for an arbitrary number of
rows to a section, use th&bAllocGeomRowiinction.

November 10, 1997 Library Version 1.0/Document Revision 1.1 108

The X Keyboard Extension 13 Keyboard Geometry

To add one doodad to a section of a keyboard geometry or to the top-level geometry, use

XkbAddGeomDoodad

XkbDoodadPtiXkbAddGeomDoodadgeom section namé
XkbGeometryPtrgeom /* geometry to which the doodad is added */
XkbSectionPtr section [* section, if any, to which the doodad is added */
Atom name /* name of the new doodad */

A doodaddescribes some visible aspect of the keyboard that is not a key and is not a sec-
tion. XkbAddGeomDoodaadds a doodad with name specifiediyneto the geometry

geomif sectionis NULL or to the section of the geometry specifiedsbgtionif sectionis

not NULL. XkbAddGeomDoodackturnsNULL if any of the parameters is empty or if it

was not able to allocate space for the doodad. If there is already a doodad with the name
namein the doodad array for the geometrysgictionis NULL) or the section (ifectionis
nonNULL), a pointer to that doodad is returned. To allocate space for an arbitrary number
of doodads to a section, use XibAllocGeomSectionDoodafisction. To allocate

space for an arbitrary number of doodads to a keyboard geometry, Xsd&lowcGeom-
Doodadsfunction.

To add one overlay to a section, dddAddGeomOverlay

XkbOverlayPtrXkbAddGeomOverlay(section name sz_row$

XkbSectionPtr section [* section to which an overlay will be added */
Atom name /* name of the overlay */
int SZ_rows /* number of rows to reserve in the overlay */

XkbAddGeomOverlagdds an overlay with the specified name to the specéetion

The new overlay is created with space allocateddorowsows. If an overlay with name
namealready exists in the section, a pointer to the existing overlay is returned.
XkbAddGeomOverlageturnsNULL if any of the parameters is empty or if it was not able

to allocate space for the overlay. To allocate space for an arbitrary number of overlays to a
section, use th¥kbAllocGeomOverlafunction.

To add a row to an existing overlay, bdbAddGeomOverlayRow

XkbOverlayRowPtiXkbAddGeomOverlayRow(overlay row_under, sz_keys
XkbOverlayPtr overlay, /* overlay to be updated */
XkbRowPtr row_under /* row to be overlayed in the sectionerlayoverlays */
int sz_keys /* number of keys to reserve in the row */

XkbAddGeomOverlayRoadds one row to thaverlay. The new row contains space for
sz_keykeys. Ifrow_underspecifies a row that doesn’t exist on the underlying section,
XkbAddGeomOverlayRoreturnsNULL and doesn’t change the overladkbAddGeo-
mOverlayRoweturnsNULL if any of the parameters is empty or if it was not able to allo-
cate space for the overlay.

To add a key to an existing overlay row, X¥sdAddGeomOverlayKey

XkbOverlayKeyPtriXkbAddGeomOverlayKey(overlay row, undey
XkbOverlayPtr overlay, [* overlay to be updated */
XkbRowPtr row, /* row in overlay to be updated */
char * under, /* primary name of the key to be considered */

XkbAddGeomOverlayKeadds one key to threw in theoverlay: If there is no key named
underin the row of the underlying sectioikbAddGeomOverlayKeagturnsNULL.

November 10, 1997 Library Version 1.0/Document Revision 1.1 109

The X Keyboard Extension 13 Keyboard Geometry

13.11 Allocating and Freeing Geometry Components

Xkb provides a number of functions to allocate and free subcomponents of a keyboard
geometry. Use these functions to create or modify keyboard geometries. Note that these
functions merely allocate space for the new element(s), and it is up to you to fill in the val-
ues explicitly in your code. These allocation functions increasebut never touch

num x (unless there is an allocation failure, in which case they resesbetandnum x

to zero). These functions retudaccess if they succeedBadAl | oc if they are not able

to allocate space, @adVal ue if a parameter is not as expected.

To allocate space for an arbitrary number of outlines to a shap€kibddocGeomOut-

lines

StatusXkbAllocGeomOutlines(shape num_needed
XkbShapePtr shape * shape for which outlines should be allocated */
int num_needed™* number of new outlines required */

XkbAllocGeomOutlineallocates space foum_neededutlines in the specifieshape
The outlines are not initialized.

To free geometry outlines, u¥&bFreeGeomOutlines

void XkbFreeGeomOutlinegshapefirst, count free_al)

XkbShapePtr shape /* shape in which outlines should be freed */
int first; [* first outline to be freed */

int count /* number of outlines to be freed */

Bool free_all; /* Tr ue => all outlines are freed */

If free_allis Tr ue, all outlines are freed regardless of the valuigrsifor count Other-
wise,countoutlines are freed beginning with the one specifietirby,

To allocate space for an arbitrary number of keys to a rowXkis&llocGeomKeys

StatusXkbAllocGeomKeys(row, num_neede&d
XkbRowPtr row; /* row to which keys should be allocated */
int num_needed* number of new keys required */

XkbAllocGeomKeyallocatesium_neede#leys and adds them to thewv. No initializa-
tion of the keys is done.

To free geometry keys, ud&bFreeGeomKeys

void XkbFreeGeomKeygrow, first, count free_al)

XkbRowPtr row, /* row in which keys should be freed */
int first; [* first key to be freed */

int count /* number of keys to be freed */

Bool free_all; /* Tr ue => all keys are freed */

If free_allis Tr ue, all keys are freed regardless of the valugrsf or count Otherwise,
countkeys are freed beginning with the one specifiedirsy.

To allocate geometry properties, dddbAllocGeomProps

StatusXkbAllocGeomProps(geom num_needéd
XkbGeometryPtrgeom /* geometry for which properties should be allocated */
int num_needed* number of new properties required */

November 10, 1997 Library Version 1.0/Document Revision 1.1 110

The X Keyboard Extension 13 Keyboard Geometry

XkbAllocGeomPropallocates space foum_needegroperties and adds them to the
specified geometrgeom No initialization of the properties is done. A geometry property
associates an arbitrary string with an equally arbitrary name. Geometry properties can be
used to provide hints to programs that display images of keyboards, but they are not inter-
preted by Xkb. No other geometry structures refer to geometry properties.

To free geometry properties, uskbFreeGeomProperties

void XkbFreeGeomPropertieggeom first, count free_al)

XkbGeometryPtrgeom /* geometry in which properties should be freed */
int first; [* first property to be freed */

int count /* number of properties to be freed */

Bool free_all; [* Tr ue => all properties are freed */

If free_allis Tr ue, all properties are freed regardless of the valdestfor count Other-
wise, countproperties are freed beginning with the one specifiefir &ty

To allocate geometry key aliases, XdbAllocGeomKeyAliases

StatusXkbAllocGeomKeyAliase§geom hum_needed
XkbGeometryPtrgeom /* geometry for which key aliases should be allocated */
int num_needed* number of new key aliases required */

XkbAllocGeomKeyAliasedlocates space foum_neede#ley aliases and adds them to
the specified geometigeom A key alias is a pair of strings that associates an alternate
name for a key with the real name for that key.

To free geometry key aliases, udédbFreeGeomKeyAliases

void XkbFreeGeomKeyAliaseggeom first, count free_al)

XkbGeometryPtrgeom /* geometry in which key aliases should be freed */
int first; [* first key alias to be freed */

int count /* number of key aliases to be freed */

Bool free_all; [* Tr ue => all key aliases are freed */

If free_allis Tr ue, all aliases in the top level of the specified geomgégmare freed
regardless of the value fifst or count Otherwisecountaliases irgeomare freed begin-
ning with the one specified byst.

To allocate geometry colors, ugkbAllocGeomColors

StatusXkbAllocGeomColors(geom num_needed
XkbGeometryPtrgeom /* geometry for which colors should be allocated */
int num_needed* number of new colors required. */

XkbAllocGeomColorallocates space farum_neededolors and adds them to the speci-
fied geometrygeom A color name is a string whose interpretation is not specified by Xkb.
All other geometry data structures refer to colors using their indices in this global list or
pointers to colors in this list.

November 10, 1997 Library Version 1.0/Document Revision 1.1 111

The X Keyboard Extension 13 Keyboard Geometry

To free geometry colors, ud&bFreeGeomColors

void XkbFreeGeomColorggeom first, count free_al)

XkbGeometryPtrgeom /* geometry in which colors should be freed */
int first; [* first color to be freed */

int count /* number of colors to be freed */

Bool free_all; /* Tr ue => all colors are freed */

If free_allis Tr ue, all colors are freed regardless of the valuférsf or count Otherwise,
countcolors are freed beginning with the one specifiefirsy.

To allocate points in an outline, usgbAllocGeomPoints

StatusXkbAllocGeomPoints(outling num_needed
XkbOutlinePtr outline /* outline for which points should be allocated */
int num_needed* number of new points required */

XkbAllocGeomPointallocates space foium_needegoints in the specifiedutline The
points are not initialized.

To free points in a outline, us&kbFreeGeomPoints

void XkbFreeGeomPointgoutling first, count free_al)

XkbOutlinePtr outline [* outline in which points should be freed */
int first; [* first point to be freed. */

int count /* number of points to be freed */

Bool free_all; /* Tr ue => all points are freed */

If free_allis Tr ue, all points are freed regardless of the valursf andcount Other-
wise, the number of points specifieddnuntare freed, beginning with the point specified
by first in the specified outline.

To allocate space for an arbitrary number of geometry shapeskindiocGeomShapes

StatusXkbAllocGeomShapeggeom num_needed
XkbGeometryPtrgeom /* geometry for which shapes should be allocated */
int num_needed* number of new shapes required */

XkbAllocGeomShapedlocates space foum_neededhapes in the specified geometry
geom The shapes are not initialized.

To free geometry shapes, UsebFreeGeomShapes

void XkbFreeGeomShape&eom first, count f ree_al)

XkbGeometryPtrgeom /* geometry in which shapes should be freed */
int first; [* first shape to be freed */

int count /* number of shapes to be freed */

Bool free_all; /* Tr ue => all shapes are freed */

If free_allis Tr ue, all shapes in the geometry are freed regardless of the valirss afid
count Otherwisecountshapes are freed, beginning with the shape specifiicsby

To allocate geometry sections, d&bAllocGeomSections

StatusXkbAllocGeomSectionggeom num_needéd
XkbGeometryPtrgeom /*geometry for which sections should be allocated */
int num_needed* number of new sections required */

November 10, 1997 Library Version 1.0/Document Revision 1.1 112

The X Keyboard Extension 13 Keyboard Geometry

XkbAllocGeomSectioralocatesnum_neededections and adds them to the geometry
geom No initialization of the sections is done.

To free geometry sections, uskbFreeGeomsSections

void XkbFreeGeomSectionggeom first, count free_al)

XkbGeometryPtrgeom /* geometry in which sections should be freed */
int first; [* first section to be freed. */

int count /* number of sections to be freed */

Bool free_all; /* Tr ue => all sections are freed */

If free_allis Tr ue, all sections are freed regardless of the valdestfandcount Other-
wise, the number of sections specifiedcbhyntare freed, beginning with the section spec-
ified by first in the specified geometry.

To allocate rows in a section, uskbAllocGeomRows

StatusXkbAllocGeomRowgsection num_needed
XkbSectionPtr section [* section for which rows should be allocated */
int num_needed* number of new rows required */

XkbAllocGeomRowallocatesnum_neededows and adds them to teection No initial-
ization of the rows is done.

To free rows in a section, u¥&bFreeGeomRows

void XkbFreeGeomRowgsection first, count free_al)

XkbSectionPtr section /* section in which rows should be freed */
int first; /* first row to be freed. */

int count /* number of rows to be freed */

Bool free_all; /* Tr ue => all rows are freed */

If free_allis Tr ue, all rows are freed regardless of the valugiref andcount Otherwise,
the number of rows specified bbpuntare freed, beginning with the row specifiedfiogt
in the specified section.

To allocate overlays in a section, 0&ddbAllocGeomOverlays

StatusXkbAllocGeomOverlays(section num_needed
XkbSectionPtr section [* section for which overlays should be allocated */
int num_needed* number of new overlays required */

XkbAllocGeomRowallocatesnum_neededverlays and adds them to section No ini-
tialization of the overlays is done.

To free rows in an section, uX&bFreeGeomOverlays

void XkbFreeGeomOverlaygsection first, count free_al)

XkbSectionPtr section [* section in which overlays should be freed */
int first; [* first overlay to be freed. */

int count /* number of overlays to be freed */

Bool free_all; /* Tr ue => all overlays are freed */

If free_allis Tr ue, all overlays are freed regardless of the valugstfandcount Other-
wise, the number of overlays specifieddmuntare freed, beginning with the overlay
specified byfirst in the specified section.

November 10, 1997 Library Version 1.0/Document Revision 1.1 113

The X Keyboard Extension 13 Keyboard Geometry

To allocate rows in a overlay, us&bAllocGeomOverlayRows

StatusXkbAllocGeomOverlayRowgoverlay num_needéed
XkbSectionPtr overlay * section for which rows should be allocated */
int num_needed™* number of new rows required */

XkbAllocGeomOverlayRovedlocatesium_needetbws and adds them to tbeerlay No
initialization of the rows is done.

To free rows in an overlay, u¥&bFreeGeomOverlayRows

void XkbFreeGeomOverlayRowgoverlay first, count free_al)

XkbSectionPtr overlay, [* section in which rows should be freed */
int first; [* first row to be freed. */

int count /* number of rows to be freed */

Bool free_all; /* Tr ue => all rows are freed */

If free_allis Tr ue, all rows are freed regardless of the valugiref andcount Otherwise,
the number of rows specified bbpuntare freed, beginning with the row specifiedfiogt
in the specified overlay.

To allocate keys in an overlay row, uskbAllocGeomOverlayKeys

StatusXkbAllocGeomOverlayKeys(row, num_needéd
XkbRowPtr row, [* section for which rows should be allocated */
int num_needed* number of new rows required */

XkbAllocGeomOverlayKeydlocatesium_neede#leys and adds them to thav. No ini-
tialization of the keys is done.

To free keys in an overlay row, ugk&bFreeGeomOverlayKeys

void XkbFreeGeomOverlayKeygrow, first, count free_al)

XkbRowPtr row; /* row in which keys should be freed */
int first; [* first key to be freed. */

int count /* number of keys to be freed */

Bool free_all; /* Tr ue => all keys are freed */

If free_allis Tr ue, all keys are freed regardless of the valugrsif andcount Otherwise,
the number of keys specified bguntare freed, beginning with the key specifiedfibst
in the specified row.

To allocate doodads that are global to a keyboard geometiykbgdlocGeomDoodads

StatusXkbAllocGeomDoodadggeom num_needed
XkbGeometryPtrgeom /* geometry for which doodads should be allocated */
int num_needed* number of new doodads required */

XkbAllocGeomDoodadsllocatesnum_neededoodads and adds them to the specified
geometrygeom No initialization of the doodads is done.

To allocate doodads that are specific to a sectionXkisallocGeomSectionDoodads

StatusXkbAllocGeomSectionDoodadésection num_needed
XkbSectionPtr section * section for which doodads should be allocated */
int num_needed* number of new doodads required */

November 10, 1997 Library Version 1.0/Document Revision 1.1 114

The X Keyboard Extension 13 Keyboard Geometry

XkbAllocGeomSectionDoodadBocatesium_neededoodads and adds them to the spec-
ified section No initialization of the doodads is done.

To free geometry doodads, uskbFreeGeomDoodads

void XkbFreeGeomDoodadg¢doodadscount free_al)
XkbDoodadPtr doodads /* doodads to be freed */
int count /* number of doodads to be freed */
Bool free_all; /* Tr ue => all doodads are freed */

If free_allis Tr ue, all doodads in the array are freed, regardless of the vatoint
Otherwise countdoodads are freed.

To allocate an entire geometry, d&bAllocGeometry

StatusXkbAllocGeometry(xkb, size$
XkbDescPtr xkhy /* keyboard description for which geometry is to be allocated */
XkbGeometrySizesPtrsizes /* initial sizes for all geometry components */

XkbAllocGeometrallocates a keyboard geometry and adds it to the keyboard description
specified bykkb.The keyboard description should be obtained vixXkiEGetKeyboarar
XkbAllockeyboardunctions. Thesizesparameter specifies the number of elements to be
reserved for the subcomponents of the keyboard geometry and can be zero or more. These
subcomponents include tpeoperties, colors, shapes, sections, and doodads

To free an entire geometry, uskbFreeGeometry
void XkbFreeGeometry(geom which free_al)

XkbGeometryPtrgeom /* geometry to be freed */
unsigned int which /* mask of geometry components to be freed */
Bool free_all; [* Tr ue => the entire geometry is freed. */

The values oWwhichandfree_alldetermine how much of the specified geometry is freed.
The valid values fowhichare:

#define XkbGeomPropertiesMask (1<<0)
#define XkbGeomColorsMask (1<<1)
#define XkbGeomShapesMask (1<<2)
#define XkbGeomSectionsMask (1<<3)
#define XkbGeomDoodadsMask (1<<4)
#define XkbGeomAllMask (0Ox1f)

If free_allis Tr ue, the entire geometry is freed regardless of the valwdhmh Other-
wise, the portions of the geometry specifiedahych are freed.

November 10, 1997 Library Version 1.0/Document Revision 1.1 115

The X Keyboard Extension 14 Xkb Keyboard Mapping

14

14.1

Xkb Keyboard Mapping

The Xkb keyboard mapping contains all the information the server and clients need to
interpret key events. This chapter provides an overview of the terminology used to
describe an Xkb keyboard mapping and introduces common utilities for manipulating the
keyboard mapping.

The mapping consists of two components, a server map and a client mapeftmaap

is the collection of information a client needs to interpret key events from the keyboard. It
contains a global list of key types and an array of key symbol maps, each of which
describes the symbols bound to a key and the rules to be used to interpret those symbols.
Theservermap contains the information the server needs to interpret key events. This
includes actions and behaviors for each key, explicit components for a key, and the virtual
modifiers and the per-key virtual modifier mapping.

For detailed information on particular components of the keyboard map, refer to Chapter
15, “Xkb Client Keyboard Mapping” and Chapter 16, “Xkb Server Keyboard Mapping.”

Notation and Terminology

The graphic characters or control functions that may be accessed by one key are logically
arranged in groups and levels, whgreup andlevelare defined as in the ISO9995 stan-
dard:

Group: A logical state of a keyboard providing access to a collection of graphic char-
acters. Usually these graphic characters logically belong together and may be
arranged on several levels within a group.

Level: One of several states (normally 2 or 3) governing which graphic character is
produced when a graphic key is actuated. In certain cases the level may also
affect function keys.

These definitions, taken from the ISO standard, refer to graphic keys and characters. In the
context of Xkb, Group and Level are not constrained to graphic keys and characters; they
may be used with any key to access any character the key is capable of generating.

Level is often referred to as “Shift Level”. Levels are numbered sequentially starting at
one.

Note Shift level is derived from the modifier state, but not necessarily in the same way for
all keys. For example, tHghi f t modifier selects shift level 2 on most keys, but for
keypad keys the modifier boundNoam_Lock (that is, theNuniock virtual modi-
fier) also selects shift level 2.

November 10, 1997 Library Version 1.0/Document Revision 1.1 116

The X Keyboard Extension 14 Xkb Keyboard Mapping

For example, consider the following key (the gray characters indicate symbols that are
implied or expected but are not actually engraved on the key):

N

% gl'—;:z L1 L2 L1 L2 L1 L2

@ 1L2 = Glal|A

= G2Ll=ee ajAj=|E

s GoL2 = [E Gl G2 Glee| A
Group -

Physical Key Symbols Core Symbols Xkb Symbols

Figure 14.1 Shift Levels and Groups

This key has two groups, indicated by the columns, and each group has two shift levels.
For the first group (Groupl), the symbol shift level one iand the symbol for shift level

two isA. For the second group, the symbol for shift level orse,iand the symbol for

shift level two is/.

14.1.1 Core Implementation

The standard interpretation rules for the core X keymap only allow clients to access keys
such as the one shown in Figure 14.1. That is, clients using the standard interpretation
rules can only access one of four keysyms for any dfegi®r ess event — two different
symbols in two different groups.

In general, théshi ft modifier, theLock modifier, and the modifier bound to the
Num_Lock key are used to change between shift level 1 and shift level 2. To switch
between groups, the core implementation uses the modifier boundviodbeswitch

key. When thdvbde sw t ch modifier is set, the keyboard is logically in Group 2. When
theMbde_swi t ch modifier is not set, the keyboard is logically in Group 1.

The core implementation does not clearly specify the behavior of keys. For example, the
locking behavior of th€apsLock andNum_Lock keys depends on the vendor.

14.1.2 Xkb Implementation

Xkb extends the core implementation by providing access to up to four keyboard groups
with up to 63 shift levels per kéyin addition, Xkb provides precise specifications regard-
ing the behavior of keys. In Xkb, modifier state and the current group are independent
(with the exception of compatibility mapping, discussed in Chapter 17).

Xkb handles switching between groups via key actions, independent of any modifier state
information. Key actions are in the server map component and are described in detail in
section 16.1.4.

Xkb handles shift levels by associating a key type with each group on each key. Each key
type defines the shift levels available for the groups on keys of its type and specifies the
modifier combinations necessary to access each level.

1. The core implementation restricts the number of symbols per key to 255. With four groups, this allows for up to 63
symbols (or shift levels) per group. Most keys will only have a few shift levels.

November 10, 1997 Library Version 1.0/Document Revision 1.1 117

The X Keyboard Extension 14 Xkb Keyboard Mapping

For example, Xkb allows key types where @oat r ol modifier can be used to access the
shift level two of a key. Key types are in the client map component and are described in
detail in section 15.2.

Xkb provides precise specification of the behavior of a key using key behaviors. Key
behaviors are in the server map component and are described in detail in section 16.2.

14.2 Getting Map Components from the Server

Xkb provides two functions to obtain the keyboard mapping components from the server.
The first function XkbGetMap allocates aixkbDescRec structure, retrieves mapping
components from the server, and stores them ikbBescRec structure it just allo-

cated. The second functiokkbGetUpdatedMapetrieves mapping components from the
server and stores them in dkbDescRec structure that has previously been allocated.

To allocate arXkbDescRec structure and populate it with the server’s keyboard client
map and server map, uBkbGetMap. XkbGetMap similar toXkbGetKeyboardsee sec-
tion 6.2), but is used only for obtaining the address ofdrbescRec structure that is
populated with keyboard mapping components. It allows finer control over which sub-
structures of the keyboard mapping components are to be popXkb€setKeyboard
always returns fully populated components, whikbGetMapcan be instructed to return
a partially populated component.

XkbDescPtiXkbGetMap (display, which, device_spec

Display * display, [* connection to X server */
unsigned int which /* mask selecting subcomponents to populate */
unsigned int device_spec /* device_id, orXkbUseCor eKbd */

Thewhichmask is a bitwise inclusive OR of the masks defined in Table 14.1. Only those
portions of the keyboard server map and the keyboard client maps that are specified in
whichare allocated and populated.

In addition to allocating and obtaining the server map and the clienikla@etMapalso
sets thalevice_spedhemin_key codegandmax_key codgelds of the keyboard descrip-
tion.

XkbGetMaps synchronous; it queries the server for the desired information, waits for a
reply, and then returns. If successiXkbGetMapreturns a pointer to thékbDescRec
structure it allocated. If unsuccessiXikbGetMapreturnsNULL. When unsuccessful, one

of the following protocol errors is also generatBadAl | oc (unable to allocate the
XkbDescRec structure)BadVal ue (some mask bits iwhichare undefined) or Badl m

pl enent at i on (a compatible version of the Xkb extension is not available in the server).
To free the returned data, uskbFreeClientMap

Xkb also provides convenience functions to get partial component definitions from the
server. These functions are specified in the “convenience functions” column in Table 14.1.
Refer to the sections listed in the table for more information on these functions.

Table 14.1 Xkb Mapping Component Masks and Convenience Functions

Mask Value Map Fields Convenience Functions Section

XkbKeyTypesMask (1<<0) client types XkbGetKeyTypes 15.2
size_types XkbResizeKeyType
num_types XkbCopyKeyType
XkbCopyKeyTypes

November 10, 1997 Library Version 1.0/Document Revision 1.1 118

The X Keyboard Extension 14 Xkb Keyboard Mapping

Table 14.1 Xkb Mapping Component Masks and Convenience Functions

Mask Value Map Fields Convenience Functions Section

XkbKey SymsMask (1<<1) client syms XkbGetKeySyms 15.3
size_syms XkbResizeKeySyms
num_syms XkbChangeTypesOfKey
key_sym_map

XkbModi fi er MapMask (1<<2) client modmap XkbGetKeyModifierMap 15.4
XkbExpl i ci t Conponent sivask (1<<3) server explicit XkbGetKeyExplicitComponents 16.3
XkbKeyAct i onsMask (1<<4) server key acts XkbGetKeyActions 16.1

acts XkbResizeKeyActions

num_acts

size_acts
XkbKeyBehavi or sMask (1<<5) server behaviors XkbGetKeyBehaviors 16.2
XkbVi r t ual ModsMask (1<<6) server vmods XkbGetVirtualMods 16.4
XkbVi r t ual ModMapMask (1<<7) server vmodmap XkbGetVirtualModMap 16.4

Xkb defines combinations of these masks for convenience:

#define XkbResizablelnfoMask (XkbKeyTypesMask)

#define XkbAllClientinfoMask (XkbKeyTypesMask | XkbKeySymsMask |
XkbModifierMapMask)

#define XkbAllServerinfoMask (XkbExplicitComponentsMask |

XkbKeyActionsMask| XkbKeyBehaviorsMask |
XkbVirtualModsMask | XkbVirtualModMapMask)
#define XkbAllIMapComponentsMask (XkbAllIClientinfoMask|XkbAllServerinfoMask)

Key types, symbol maps, and actions are all interrelated: changes in one require changes
in the others. The convenience functions make it easier to edit these components and han-
dle the interdependencies.

To update the client or server map information in an existing keyboard description, use

XkbGetUpdatedMap

StatusXkbGetUpdatedMap(display, which, xkpb
Display * display; [* connection to X server */
unsigned int which /* mask selecting subcomponents to populate */
XkbDescPtr xkby /* keyboard description to be updated */

Thewhich parameter is a bitwise inclusive OR of the masks in Table 14.1. If the needed
components of thekb structure are not already allocat¥#tbGetUpdatedMapllocates
them.XkbGetUpdatedMafetches the requested information for the device specified in
the XkbDescRec passed in thekb parameter.

XkbGetUpdatedMaps synchronous; it queries the server for the desired information,
waits for a reply, and then returns. If successfubGetUpdatedMapeturnsSuccess. If
unsuccessfulXkbGetUpdatedMapeturns one of the followindg@adAl | oc (unable to
allocate a component in tix&bDescRec structure)BadVal ue (some mask bits iwhich
are undefined)Badl npl enment at i on (a compatible version of the Xkb extension is not
available in the server or the reply from the server was invalid).

November 10, 1997 Library Version 1.0/Document Revision 1.1 119

The X Keyboard Extension 14 Xkb Keyboard Mapping

14.3 Changing Map Components in the Server

There are two ways to make changes to map components: either change a local copy of the
keyboard map and caflkbSetMapo send the modified map to the server, or, to reduce
network traffic, use akbMapChangesRec structure and cakkbChangeMap

Bool XkbSetMap(dpy, which xkb

Display * dpy; /* connection to X server */
unsigned int which /* mask selecting subcomponents to update */
XkbDescPtr xkby /* description from which new values are taken */

UseXkbSetMapo send a complete new set of values for entire components (for example,
all symbols, all actions, and so on) to the server.Wiieh parameter specifies the com-
ponents to be sent to the server, and is a bitwise inclusive OR of the masks listed in Table
14.1. Thexkbparameter is a pointer to ZkbDescRec structure and contains the infor-
mation to be copied to the server. For each bit set iwlieh parameterXkbSetMap

takes the corresponding structure values fronxkibgparameter and sends it to the server
specified bydpy.

If any components specified lyhichare not present in thékb parameterXkbSetMap
returnskFal se. Otherwise, it sends the update request to the server and fEtumsKkb-
SetMapcan generatBadAl | oc, BadLengt h, andBadVal ue protocol errors.

Key types, symbol maps, and actions are all interrelated; changes in one require changes
in the others. Xkb provides functions to make it easier to edit these components and han-

dle the interdependencies. Table 14.1 lists these helper functions and provides a pointer to
where they are defined.

14.3.1 The XkbMapChangesRec Structure

Use thexkbMapChangesRec structure to identify and track partial modifications to the
mapping components and to reduce the amount of traffic between the server and clients.

typedef struct _XkbMapChanges {

unsigned short changed; /* identifies valid components in structure */
KeyCode min_key code; /* lowest numbered keycode for device */
KeyCode max_key code; /* highest numbered keycode for device */
unsigned char first_type; * index of first kegpemodified */

unsigned char num_types; [* # types modified */

KeyCode first_key sym; [* first key whokey sym_maphanged */
unsigned char num_key syms; /&y _sym_mapntries changed */
KeyCode first_key act; [* first key whogey_actentry changed */
unsigned char num_key acts; /k#y_actsntries changed */

KeyCode first_key_ behavior; [* first key whosehaviorschanged */
unsigned char num_key behaviors; /béhaviorsentries changed */

KeyCode first_key_explicit; [* first key whosplicitentry changed */
unsigned char num_key_explicit; I*&kplicit entries changed */

KeyCode first_modmap_key; [* first key whas@dmapentry changed */
unsigned char num_modmap_keys; /frddmapentries changed */

KeyCode first_vmodmap_key; /*first key whoamodmapchanged */
unsigned char num_vmodmap_keys; Rrtodmapentries changed */

unsigned char padl; [* reserved */

November 10, 1997 Library Version 1.0/Document Revision 1.1 120

The X Keyboard Extension 14 Xkb Keyboard Mapping

unsigned short vmods; /* mask indicating whishodschanged */
} XkbMapChangesReg¢*XkbMapChangesPtr;

Thechangedield identifies the map components that have changedXklalbescRec
structure and may contain any of the bits in Table 14.1, which are also shown in Table
14.2. Every 1 bit ithangedalso identifies which other fields in tb&bMapChangesRec
structure contain valid values, as indicated in Table 14.2mlihe&ey codand
max_key_codéelds are for reference only; they are ignored on any requests sent to the
server and are always updated by the server whenever it returns the data for an

XkbMapChangesRec.
Table 14.2 XkbMapChangesRec Masks

Valid : -

Mask XkbMapChangesReékaESCReC Field Containing
: hanged Data

Fields
XkbKeyTypesMask first_type, map->typelfirst_type] ..

num_types map->typelfirst_type + num_types - 1]
XkbKeySynsMask first_key sym, map->key_sym_maplfirst_key sym] ..

num_key syms map->key sym_map[first_ key sym +

num_key syms - 1]

XkbModi fi er MapMask first._ modmap_key, map->modmap[first_ modmap_key] ..

num_modmap_keys map->modmapfirst_ modmap_key +
num_modmap_keys-1]
XkbExpl i ci t Conponent sMask first_key explicit, server->explicit[first_key_explicit] ..
num_key_explicit server->explicit[first_key_explicit +
num_key_explicit - 1]

XkbKeyAct i onsMask first_key act, server->key acts[first_key act] ..
num_key acts server->key acts[first_key act +
num_key acts - 1]
XkbKeyBehavi or sMask first_key behavior, server->behaviors|first_key behavior] ..

num_key behaviors server->behaviors|first_key behavior +
num_key behaviors - 1]

XkbVi rt ual ModsMask vmods server->vmods|[*]
XkbVi r t ual ModMapMask first_vmodmap_key, server->vmodmaplfirst_ vmodmap_key]
num_vmodmap_keys ..
server->vmodmap[first_ vmodmap_key
+ num_vmodmap_keys - 1]

To update only partial components of a keyboard description, modify the appropriate
fields in the server and map components of a local copy of the keyboard description, then
call XkbChangeMapvith anXkbMapChangesRec structure indicating which compo-

nents have changed.

Bool XkbChangeMap(dpy, xkkb change¥
Display * dpy; [* connection to X server */
XkbDescPtr xkby /* description from which new values are taken */
XkbMapChangesPtr changes /*identifies component parts to update */

XkbChangeMajgopies any components specified bythangesstructure from the key-
board descriptiorxkb, to the X server specified lapy.

November 10, 1997 Library Version 1.0/Document Revision 1.1 121

The X Keyboard Extension 14 Xkb Keyboard Mapping

14.4

If any components specified lohhangesare not present in thékb parameter,
XkbChangeMapeturnsFal se. Otherwise, it sends a request to the server and returns
Tr ue.

XkbChangeMajgan generatBadAl | oc, BadLengt h, andBadVal ue protocol errors.

Tracking Changes to Map Components

The Xkb extension repordékbMapNot i f y events to clients wanting notification when-

ever a map component of the Xkb description for a device changes. There are many differ-
ent types of Xkb keyboard map changes. Xkb uses an event detail mask to identify each
type of change. The event detail masks are identical to the masks listed in Table 14.1.

To receivexkbMapNot i f y events under all possible conditions, X&kbSelectEven(see
section 4.3) and pad&bMapNot i f yMask in bothbits_to_changandvalues_for_bits

To receivexkbMapNot i fy events only under certain conditions, Xs#bSelectEventDe-
tails usingXkbMapNot i f y as theevent_typend specifying the desired map changes in
bits_to_changendvalues_for_bitsising mask bits from Table 14.1.

The structure fokkbMapNot i fy events is:

typedef struct {
int type; /* Xkb extension base event code */
unsigned long serial; [* X server serial number for event */
Bool send_event; /AT ue => synthetically generated */
Display * display; [* server connection where event generated */
Time time; [* server time when event generated */
int xkb_type; [*XkbMapNot i fy */
int device; * Xkb device ID, will not b&XkbUseCor eKbd */
unsigned int changed; /* identifies valid fields in rest of event */
unsigned int resized,; [* reserved */
int first_type; /* index of first keyype modified */
int num_types * # types modified */
KeyCode min_key code; /* minimum keycode for device */
KeyCode max_key_code; /* maximum keycode for device */
KeyCode first_key sym; [* first key who&ey_sym_maphanged */
KeyCode first_key_act; [* first key whogey_actentry changed */
KeyCode first_key behavior; /* first key whosehaviorschanged */
KeyCode first_key explicit; /* first key whosxplicitentry changed */
KeyCode first._ modmap_key; /* first key whas@dmapentry changed */
KeyCode first_vmodmap_key; /*modmapentries changed */
int num_key_syms; /* #ey_sym_magpntries changed */
int num_key acts; /* ey _actentries changed */
int num_key behaviors; /* #ehaviorsentries changed */
int num_key explicit; /* #explicitentries changed */
int num_modmap_keys; /*thodmapentries changed */
int num_vmodmap_keys; /* ¥#modmapentries changed */
unsigned int vmods; /* mask indicating whigmodschanged */

} XkbMapNotifyEvent ;

Thechangedield specifies the map components that have changed and is the bitwise
inclusive OR of the mask bits defined in Table 14.1. The other fields in this event are

November 10, 1997 Library Version 1.0/Document Revision 1.1 122

The X Keyboard Extension 14 Xkb Keyboard Mapping

14.5

interpreted as the like-named fields inXkbMapChangesRec (see section 14.3.1). The
XkbMapNot i f yEvent structure also has an additionesizedfield that is reserved for
future use.

Allocating and Freeing Client and Server Maps

Calling XkbGetMap(see section 14.2) should be sufficient for most applications to get cli-
ent and server maps. As a result, most applications do not need to directly allocate client
and server maps.

If you change the number of key types or construct map components without loading the
necessary components from the X server, do not allocate any map components directly
usingmallocor Xmalloc Instead, use the Xkb allocatoxkbAllocClientMapandXkbAl-
locServerMap

Similarly, use the Xkb destructobskbFreeClientMapandXkbFreeServerMamstead of
free or Xfree

14.5.1 Allocating an Empty Client Map

To allocate and initialize an empty client map description recordgkisallocClientMap.
StatusXkbAllocClientMap (xkb, which, type_count

XkbDescPtr xkby * keyboard description in which to allocate client map */
unsigned int which /* mask selecting map components to allocate */
unsigned int type_count /* value ofnum_typesield in map to be allocated */

XkbAllocClientMapallocates and initializes an empty client map inrttagofield of the

keyboard description specified kigh Thewhich parameter specifies the particular com-
ponents of the client map structure to allocate and is a mask composed by a bitwise inclu-
sive OR of one or more of the masks shown in Table 14.3.

Table 14.3 XkbAllocClientMap Masks

Mask Effect

XkbKeyTypesMask Thetype_counfield specifies the number of entries to pre-
allocate for thaypesfield of the client map. If the
type_counfield is less tharxkbNunRequi r edTypes (see
section 15.2.1), returrBadVal ue.

XkbKeySymsMask Thenin_key codandmax_key codéelds of thexkb
Parameter are used to allocate sgmsandkey _sym_map
ields of the client map. The fields are allocated to contain
the maximum number of entries necessary for
max_key codemin_key code 1 keys

XkbModifierMapMask Themin_key_codandmax_key codgelds of thexkb
parameter are used to allocate tiedmagfield of the cli-
ent map. The field is allocated to contain the maximum
number of entries necessary foax_key code
min_key_code 1 keys.

Note Themin_key codendmax_key_ codgelds of thexkbparameter must be legal values
if the XkbKey SynsMask or XkbModi f i er MapMask masks are set in thehich
parameter. If they are not validkbAllocClientMagpreturnsBadVal ue.

If the client map of the keyboard description is NAtL, and any fields are already allo-
cated in the client magkbAllocClientMapdoes not overwrite the existing values; it sim-

November 10, 1997 Library Version 1.0/Document Revision 1.1 123

The X Keyboard Extension 14 Xkb Keyboard Mapping

ply ignores that part of the request. The only exception iygesarray. Iftype_counts
greater than the currentim_typedield of the client mapXkbAllocClientMapresizes the
typesarray and resets timaim_typedield accordingly.

If XkbAllocClientMaps successful, it returrfBiccess. Otherwise, it can return either
BadMat ch, BadAl | oc, orBadVal ue errors.

14.5.2 Freeing a Client Map

To free memory used by the client map member ofldobbescRec structure, use
XkbFreeClientMap.

void XkbFreeClientMap (xkb, which, free_all

XkbDescPtr xkby; /* keyboard description containing client map to free */
unsigned int which /* mask identifying components of map to free */
Bool free_alt [* Tr ue => free all client components and map itself */

XkbFreeClientMagrees the components of client map specifiesvhichin theXkbDes-
cRec structure specified by thekb parameter and sets the corresponding structure com-
ponent values tblULL. Thewhich parameter specifies a combination of the client map
masks shown in Table 14.3.

If free_allis Tr ue, whichis ignored;XkbFreeClientMagrees every notNULL structure
component in the client map, frees ¥id i ent MapRec structure referenced by the
mapmember of theckb parameter, and sets thpmember ta\NULL.

14.5.3 Allocating an Empty Server Map
To allocate and initialize an empty server map description recor&XkigdlocServer-

Map.

StatusXkbAllocServerMap (xkb, which, count_acks
XkbDescPtr xkby * keyboard description in which to allocate server map */
unsigned int which /* mask selecting map components to allocate */
unsigned int count_acts /* value ofnum_actdield in map to be allocated */

XkbAllocServerMapllocates and initializes an empty server map irséneerfield of the
keyboard description specified Righ Thewhich parameter specifies the particular com-
ponents of the server map structure to allocate, as specified in Table 14.4.

Table 14.4 XkbAllocServerMap Masks

Mask Effect

XkbExplicitComponentsMaskrhemin_key codandmax_key_codgelds of thexkbparameter
are used to allocate treplicitfield of the server map.

XkbKeyActionsMask Themin_key_codandmax_key_codgelds of thexkbparameter
are used to allocate they_actdield of the server map. The
count_actgarameter is used to allocate #uotsfield of the
server map.

XkbKeyBehaviorsMask Themin_key_codandmax_key_codgelds of thexkbparameter
are used to allocate thehaviorsfield of the server map.

XkbVirtualModMapMask Themin_key codandmax_key codgelds of thexkbparameter
are used to allocate tkenodmagield of the server map.

Note Themin_key_ codandmax_key_codgelds of thexkb parameter must be legal val-
ues. If they are not valickkbAllocServerMapeturnsBadVal ue.

November 10, 1997 Library Version 1.0/Document Revision 1.1 124

The X Keyboard Extension 14 Xkb Keyboard Mapping

If the server map of the keyboard description ishkdil. and any fields are already allo-
cated in the server ma}kbAllocServerMapgloes not overwrite the existing values. The
only exception is with thactsarray. If thecount_actgparameter is greater than the cur-
rentnum_actdield of the server mapkbAllocServerMapesizes thactsarray and
resets theum_actdield accordingly.

If XkbAllocServerMayjis successful, it returrBuccess. Otherwise, it can return either
BadMat ch or BadAl | oc errors.

14.5.4 Freeing a Server Map
To free memory used by the server member ofldiDescRec structure, use

XkbFreeServerMap.

void XkbFreeServerMap(xkb, which, free_a)l
XkbDescPtr xkb; /* keyboard description containing server map to free */
unsigned int which /* mask identifying components of map to free */
Bool free_alt /* Tr ue => free all server map components and server itself */

The XkbFreeServerMafunction frees the specified components of server map in the
XkbDescRec structure specified by thekb parameter and sets the corresponding struc-
ture component values MLL. Thewhichparameter specifies a combination of the
server map masks and is a bitwise inclusive OR of the masks listed in Table 14.4. If
free_allis Tr ue, whichis ignored ankbFreeServerMafrees every nomULL structure
component in the server map, freesXkbSer ver MapRec structure referenced by the
servermember of thekb parameter, and sets tbervermember taNULL.

November 10, 1997 Library Version 1.0/Document Revision 1.1 125

The X Keyboard Extension

15 Xkb Client Keyboard Mapping

15

Xkb Client Keyboard Mapping

The Xkb client map for a keyboard is the collection of information a client needs to inter-
pret key events from the keyboard. It contains a global list of key types and an array of key
symbol maps, each of which describes the symbols bound to a key and the rules to be used
to interpret those symbols.

Figure 15.1 shows the relationships between elements in the client map:

unsigned char

(array)

Figure 15.1 Xkb Client Map

size_types
num_types - B
types —» mods
size_syms ! num_levels . J_u
num_syms E map_count :
' ma XkbKTMapEntryRec(s)
Syms | P (array)
key_sym_ma ! preserve
|
modmap - ! name .
! level_names | |
XkbClientMapRec |
i XkbKeyTypeRec(s) Atom(s)
! (array) (array)
I
_____________ .
| o - ﬂj
= >
I
wevcode L -.>' I E : KeySym(s)
I
: kt_index[0] L (array)
: kt_index[1] :
| |
! kt_index[2] |
|
| kt_index(3] :
! group_info |
I
| width |
| offset R
|]
|
| XkbSymMapRec(s)
[(array)
I
|
|
I_ _|_ _ -->| [J-u

November 10, 1997

Library Version 1.0/Document Revision 1.1

126

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

15.1

15.2

The XkbClientMapRec Structure

Themapfield of the complete Xkb keyboard description (see section 6.1) is a pointer to
the Xkb client map, which is of typ&bd i ent MapRec:

typedef struct { [* Client Map */
unsigned char size_types; [* # occupied entriggpes*/
unsigned char num_types; [* # entriesyipes*/
XkbKeyTypePtr types; [* vector of key types used by this keymap */
unsigned short size_syms; * length of #yensarray */
unsigned short num_syms; [* # entriesyms*/
KeySym * syms; /* linear 2d tables of keysyms, 1 per key */
XkbSymMapPtr key sym_map; /* 1 per keycode, maps keycodgma*/
unsigned char * modmap; /* 1 per keycode, real mods bound to key */

} XkbClientMapRec, *XkbClientMapPtr;

The following sections describe each of the elements ofikh€l i ent MapRec structure
in more detalil.

Key Types

Key types are used to determine the shift level of a key given the current state of the key-
board. The set of all possible key types for the Xkb keyboard description are held in the
typesfield of the client map, whose total size is storesize_typesand whose total num-

ber of valid entries is stored mum_typesKey types are defined using the following
structures:

typedef struct { I* Key Type */
XkbModsRec mods; /* maodifiers used to compute shift level */
unsigned char num_levels; /* total # shift levels, do not modify directly */
unsigned char map_count; [* # entriesmap, preservéif non-NULL) */
XkbKTMapEntryPtr map; * vector of madifiers for each shift level */
XkbModsPtr preserve; /* mods to preserve for correspondimgpentry */
Atom name; [* name of key type */
Atom * level_names; /* array of names of each shift level */

} XkbKeyTypeRec, *XkbKeyTypePtr;

typedef struct { /* Modifiers for a key type */
Bool active; /*Tr ue => entry active when determining shift level */
unsigned char level, * shift level if modifiers matciods*/
XkbModsRec mods; /* mods needed for this level to be selected */

} XkbKTMapEntryRec ,*XkbKTMapEntryPtr;

Themodsfield of a key type is akkbMbdsRec (see section 7.2) specifying the modifiers

the key type uses when calculating the shift level, and can be composed of both the core
modifiers and virtual modifiers. To set the modifiers associated with a key type, modify
thereal_modsandvmodsfields of themodsXkbMbdsRec accordingly. Thenaskfield of

the XkbMbdsRec is reserved for use by Xkb and is calculated fronrélaé modsand
vmodsfields.

Thenum_leveldield holds the total number of shift levels for the key type. Xkb uses
num_leveldo ensure the array of symbols bound to a key is large enough. Do not modify
num_levelglirectly to change the number if shift levels for a key type. Insteakiofee-
sizeKeyTypésee section 15.2.3).

November 10, 1997 Library Version 1.0/Document Revision 1.1 127

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

Themapfield is a vector oKkbKTMapEnt r yRec structures, withmap_coungentries, that
specify the modifier combinations for each possible shift level. Each map entry contains
anactivefield, amodsfield, and develfield. Theactivefield determines whether the
modifier combination listed in thmodsfield should be considered when determining shift
level. If activeis Fal se, thismapentry is ignored. l&ctiveis Tr ue, thelevelfield of the
mapentry specifies the shift level to use when the current modifier combination matches
the combination specified in tmeodsfield of themapentry.

Any combination of modifiers not explicitly listed somewhere inrttagyields shift level
one. In additionmapentries specifying unbound virtual modifiers are not considered.

Any modifiers specified imodsare normallyconsumedby XkbTranslateKeyCodgsee
section 12.1.3). For those rare occasions a modgifieuldbe considered despite having
been used to look up a symbol, key types include an oppoeseérveield. If apreserve
member of a key type is nBbLL, it represents a list of modifiers where each entry corre-
sponds directly to one of the key typaigp Each entry lists the modifiers that shontd

be consumed if the matching map entry is used to determine shift level.

Each shift level has a name and these names are heldewé¢henamesrray, whose
length isnum_levelsThe type itself also has a name, which is held im#mefield.

For example, consider how the server handles the following possible symbolic description
of a possible key type (note that the format used to specify keyboard mappings in the
server database is not specified by the Xkb extension, although this format is one possible

example):
Table 15.1 Example Key Type

Symbolic Description Key Type Data Structure

type “ALPHATHREE" { Xkb->map->types[i].name
modifiers = Shift+Lock+LevelThree; Xkb->map->types[i].mods
map[None]= Levell; Xkb->map->types[i].map|[0]
map[Lock]= Levell,; Xkb->map->types]i].map[1]
map[Shift]= Level2; Xkb->map->types][i].map[2]
map|[LevelThree]= Level3; Xkb->map->types[i].map[3]
map|[Shift+LevelThree]= Level3; Xkb->map->types][i].map[4]
preserve[None]= None; Xkb->map->types]i].perserve[0]
preserve[Lock]= Lock; Xkb->map->types]i].preserve[1]
preserve[Shift]= None; Xkb->map->types]i].preserve[2]
preserve[LevelThree]= None; Xkb->map->types]i].preserve[3]
preserve[Shift+Level3]= None; Xkb->map->types]i].preserve[4]
level_name[Levell]= “Base”; Xkb->map->types]i].level _names|[0]
level_name[Level2]= “Caps”; Xkb->map->types]i].level_names[1]
level_name[Level3]= “Level3”; Xkb->map->types]i].level _names|[2]

¥

Thenameof the example key type is “ALPHATHREE,” and the modifiers it pays atten-
tion to areshi f t, Lock, and the virtual modifiekevel Thr ee. There are three shift lev-
els. The name of shift level one is “Base,” the name of shift level two is “Caps,” and the
name of shift level three is “Level3.”

November 10, 1997 Library Version 1.0/Document Revision 1.1 128

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

Given the combination of thmapandpreservespecifications, there are fiveapentries.

The first map entry specifies that shift level one is to be used if no modifiers are set. The
second entry specifies theck modifier alone also yields shift level one. The third entry
specifies theshi ft modifier alone yields shift level two. The fourth and fifth entries
specify that the virtudlevel Thr ee modifier alone, or in combination with tishi f t

modifier, yields shift level three.

Note Shift level three can be reached only if the virtual modifevel Thr ee is bound to
a real modifier (see section 16.4)L&#vel Thr ee is not bound to a real modifier, the
mapentries associated with it are ignored.

Because theock modifier is to be preserved for further event processingrémserve

list is notNULL and parallels thenaplist. All preserveentries, except for the one corre-
sponding to thenapentry that specifies tHeock modifier, do not list any modifiers. For
themapentry that specifies theock modifier, the correspondireservdist entry lists
theLock modifier, meaning do not consume theck modifier. In this particular case, the
preserved modifier is passed to Xlib translation functions and causes them to notice that
theLock modifier is set; consequently, the Xlib functions apply the appropriate capitali-
zation rules to the symbol. Because this preserve entry is set only for a modifier that yields
shift level one, the capitalization occurs only for level-one symbols.

15.2.1 The Canonical Key Types

Xkb allows up taxkbMaxKeyTypes (255) key types to be defined, but requires at least
XkbNunRequi r edTypes (4) predefined types to be in a key map. These predefined key
types are referred to as the canonical key types and describe the types of keys available on
most keyboards. The definitions for the canonical key types are held in thé&bMim

Requi r edTypes entries of theéypesfield of the client map and are indexed using the fol-
lowing constants:

XkbOnelLevel | ndex
XkbTwoLevel I ndex
XkbAl phabet i cl ndex
XkbKeypadl ndex

ONE_LEVEL

The ONE_LEVEL key type describes groups that have only one symbol. The default
ONE_LEVEL key type has no map entries and does not pay attention to any modifiers. A
symbolic representation of this key type could look like the following:

type “ONE_LEVEL” {
modifiers = None;
map[None]= Levell,;
level_name[Levell]= “Any”;

¥
The description of the ONE_LEVEL key type is stored intyipegXkbOhelLevel | n-
dex] entry of the client key map.

TWO_LEVEL

The TWO_LEVEL key type describes groups that consist of two symbols but are neither
alphabetic nor numeric keypad keys. The default TWO_LEVEL type uses or8githe

November 10, 1997 Library Version 1.0/Document Revision 1.1 129

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

modifier. It returns shift level two hi f t is set, and level one if it is not. A symbolic
representation of this key type could look like the following:

type “TWO_LEVEL” {
modifiers = Shift;
map[Shift]= Level2;
level_name[Levell]= “Base”;
level_name[Level2]= “Shift”";
¥
The description of the TWO_LEVEL key type is stored intyipe$XkbTwolLevel | n-
dex] entry of the client key map.

ALPHABETIC

The ALPHABETIC key type describes groups consisting of two symbols: the lowercase
form of a symbol followed by the uppercase form of the same symbol. The default
ALPHABETIC type implements locale-sensitive “Shift cancels CapsLock” behavior
using both thé&hi ft andLock modifiers as follows:

« If Shi ft andLock are both set, the default ALPHABETIC type yields level one.

e If Shift alone is set, it yields level two.

 If Lock alone is set, it yields level one, but preserved.tiek modifier so Xlib
notices and applies the appropriate capitalization riiles. Xlib functions are
locale-sensitive and apply different capitalization rules for different locales.

« If neitherShi ft norLock is set, it yields level one.

A symbolic representation of this key type could look like the following:

type “ALPHABETIC” {
modifiers = Shift+Lock;
map[Shift]= Level2;
preserve[Lock]= Lock;
level_name[Levell]= “Base”;
level_name[Level2]= “Caps”;

¥
The description of the ALPHABETIC key type is stored intipe$XkbA phabe-
ti cl ndex] entry of the client key map.

KEYPAD

The KEYPAD key type describes groups that consist of two symbols, at least one of
which is a numeric keypad symbol. The numeric keypad symbol is assumed to reside at
level two. The default KEYPAD key type implements “Shift cancels NumLock” behavior
using the Shift modifier and the real modifier bound to the virtual modifier named “Num-
Lock,” known as théluniLock modifier, as follows:

If Shi ft andNumnLock are both set, the default KEYPAD type yields level one.
If Shi ft alone is set, it yields level two.

If NunmLock alone is set, it yields level two.

If neitherShi ft norNumLock is set, it yields level one.

November 10, 1997 Library Version 1.0/Document Revision 1.1 130

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

A symbolic representation of this key type could look like the following:

type “KEYPAD” {
modifiers = Shift+NumLock;
map[None]= Levell,;
map[Shift]= Level2;
map[NumLock]= Level2;
map[Shift+NumLock]= Levell,;
level_name[Levell]= “Base”;
level_name[Level2]= “Caps”;
¥
The description of the KEYPAD key type is stored intgpe$XkbKeypadl ndex] entry
of the client key map.

Initializing the Canonical Key Types in a New Client Map

To set the definitions of the canonical key types in a client map to their default values, use
XkbInitCanonicalKeyTypes.

StatusXkblnitCanonicalKeyTypes(xkb, which, keypadvVMod

XkbDescPtr xkby; /* keyboard description containing client map to initialize */
unsigned int which /* mask of types to initialize */
int keypadVMog /* index of NumLock virtual modifier */

XkblInitCanonicalKeyTypasitializes the firsikkbNunRequi r edTypes key types of the
keyboard specified by the&b parameter to their default values. TMieich parameter

specifies what canonical key types to initialize and is a bitwise inclusive OR of the follow-
ing masksXkbOneLevel Mask, XkbTwoLevel Mask, XkbA phabet i cMask, and
XkbKeypadMask. Only those canonical types specified bywiech mask are initialized.

If XkbKeypadMask is set in thavhich parameterXkbinitCanonicalKeyTypdsoks up the
Nuniock named virtual modifier to determine which virtual modifier to use when initial-
izing the KEYPAD key type. If th&urmLock virtual modifier does not exisKkbInitCa-
nonicalKeyTypesreates it.

XkbInitCanonicalKeyTypeasormally returns Success. It retuBedAccess if the Xkb
extension has not been properly initialized, BadAccess if the xkb parameter is not
valid.

15.2.2 Getting Key Types from the Server
To obtain the list of available key types in the server’s keyboard mappingkb&et-

KeyTypes
StatusXkbGetKeyTypes(dpy; first, num xkb
Display * dpy; [* connection to X server */
unsigned int first; /* index to first type to get, 0 => 1st type */
unsigned int numn /* number of key types to be returned */
XkbDescPtr xkby /* keyboard description containing client map to update */

Note XkbGetKeyTypes used to obtain descriptions of the key types themselves, not the
key types bound to individual keys. To obtain the key types bound to an individual
key, refer to thé&ey sym_mafield of the client map (see section 15.3.1).

November 10, 1997 Library Version 1.0/Document Revision 1.1 131

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

XkbGetKeyTypegueries the server for the desired types, waits for a reply, and returns the
desired types in thekb->map->typeslf successful, it returns Success.

XkbGetKeyTypeeturnsBadAccess if the Xkb extension has not been properly initial-
ized andBadVal ue if the combination ofirst andnumresults in numbers out of valid
range.

15.2.3 Changing the Number of Levels in a Key Type
To change the number of levels in a key type XldeResizeKeyType
StatusXkbResizeKeyTypdxkb, type_ndxmap_countwant_preservenew_num_Ivls

XkbDescPtr xkb; * keyboard description containing client map to update */
int type_ndx /* index in xkb->map->types of type to change */

int map_count /* total # of map entries needed for the type */

Bool want_preserve /* Tr ue => list of preserved modifiers is necessary */

int new_num_lIvls /* new max # of levels for type */

XkbResizeKeyTypshanges the type specified Xiyb->map->typeftype_ndk and reallo-
cates the symbols and actions bound to all keys that use the type, if necédsasy.
sizeKeyTypepdates only the local copy of the typegki; to update the server’s copy for
the physical device, usé&kbSetMapr XkbChangeMagafter callingXkbResizeKeyType

Themap_counparameter specifies the total number of map entries needed for the type,
and can be zero or greatermap_counts zero XkbResizeKeyTygeees the existinghap
andpreserveentries for the type if they exist and sets themUoL.

Thewant_preservg@arameter specifies whethepr@servdist for the key should be cre-
ated. Ifwant_preservés Tr ue, thepreservdist with map_counentries is allocated or
reallocated if it already exists. Otherwisewdnt_preservés Fal se, thepreservdield is
freed if necessary and setNoLL.

Thenew_num_Ivliparameter specifies the new maximum number of shift levels for the
type and is used to calculate and resize the symbols and actions bound to all keys that use
the type.

If type_ndxdoes not specify a legal typeew_num_Iviss less than 1, or threap_counts
less than zeroKkbResizeKeyTypeturnsBadVal ue. If XkbResizeKeyTymncounters
any problems with allocation, it returBadAl | oc. Otherwise, it returnSuccess.

15.2.4 Copying Key Types
UseXkbCopyKeyTypandXkbCopyKeyType® copy one or morgkbKeyTypeRec

structures.

StatusXkbCopyKeyType(from, into)
XkbKeyTypePtr from; /* pointer to XkbKeyTypeRec to be copied */
XkbKeyTypePtr into; /* pointer to XkbKeyTypeRec to be changed */

XkbCopyKeyTypeopies the key type specified fsjpm to the key type specified bgto.
Both must point to legatkbKeyTypeRec structures. Xkb assum&em andinto point to
different places. As a result, overlaps can be fatddCopyKeyTyp#&ees any existing
map preserve andlevel _name#n into prior to copying. If any allocation errors occur
while copyingfrom to into, XkbCopyKeyTypeeturnsBadAl | oc. Otherwise XkbCopy-
KeyTypecopiesfrom to into and return$Success.

November 10, 1997 Library Version 1.0/Document Revision 1.1 132

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

15.3

StatusXkbCopyKeyTypes(from, into, num_typeps

XkbKeyTypePtr from; [* pointer to array of XkbKeyTypeRecs to copy */
XkbKeyTypePtr into; [* pointer to array of XkbKeyTypeRecs to change */
int num_types /* number of types to copy */

XkbCopyKeyTypaesopiesnum_typeXkbKeyTypeRec structures from the array specified

by frominto the array specified bgto. It is intended for copying between, rather than
within, keyboard descriptions, so it doesn’t check for overlaps. The same rules that apply
to thefrom andinto parameters iXkbCopyKeyTypapply to each entry of tHeom and

into arrays oiXkbCopyKeyType# any allocation errors occur while copyifrgmtointo,
XkbCopyKeyTypea=turnsBadAl | oc. Otherwise XkbCopyKeyTypesopiesfrom to into

and returnsuccess.

Key Symbol Map

The entire list of key symbols for the keyboard mapping is held isytimafield of the cli-

ent map. Whereas the core keyboard mapping is a two-dimensional akeySghs

whose rows are indexed by keycode,dpmsfield of Xkb is a linear list oKeySyns that

needs to be indexed uniquely for each key. This section describes the key symbol map and
the methods for determining the symbols bound to a key.

The reason theymsfield is a linear list oKeySyns is to reduce the memory consumption
associated with a keymap; because Xkb allows individual keys to have multiple shift lev-
els and a different number of groups per key, a single two-dimensional akayS3yis

would potentially be very large and sparse. Instead, Xkb provides a small two-dimen-
sional array oKeySyns for each key. To store all of these individual arrays, Xkb concat-
enates each array together in sigensfield of the client map.

In order to determine whidkeySyns in thesymsfield are associated with each keycode,
the client map contains an array of key symbol mappings, held keyhasym_mapeld.
Thekey_sym_mafield is an array oKkbSynmivapRec structures indexed by keycode. The
key sym_maaprray hasnin_key codenused entries at the start to allow direct indexing
using a keycode. All keycodes falling between the minimum and maximum legal key-
codes, inclusive, havey sym_magprrays, whether or not any key actually yields that
code. ThekeySynmivapRec structure is defined as follows:

#define XkbNumKbdGroups 4

#define XkbMaxKbdGroup (XkbNumKbdGroups-1)

typedef struct { /* map to keysyms for a single keycode */
unsigned char kt_index[XkbNumKbdGroups]; /* key type index for each group */
unsigned char group_info; [* # of groups and out of range group handling */
unsigned char width; /* max # of shift levels for key */
unsigned short offset; /* index to keysym tablesymsarray */

} XkbSymMapRec, *XkbSymMapPtr;
These fields are described in detail in the following sections.

15.3.1 Per-Key Key Type Indices

Thekt_indexarray of thexkbSynivapRec structure contains the indices of the key types
(see section 15.2) for each possible group of symbols associated with the key. To obtain
the index of a key type or the pointer to a key type, Xkb provides the following macros, to
access the key types:

November 10, 1997 Library Version 1.0/Document Revision 1.1 133

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

Note The array of key types is of fixed width and is large enough to hold key types for the
maximum legal number of group¥KbNunkKbdQG oups, currently four); if a key has
fewer thanXkbNunkKbdG oups groups, the extra key types are reported but ignored.

int XkbKeyTypelndex(xkb, keycode, groQp /* macro*/

XkbDescPtr xkby /* Xkb description of interest */
KeyCode keycode /* keycode of interest */
int group [* group index */

XkbKeyTypelndegomputes an index into tiygpesvector of the client map ixkbfrom
the givenkeycodeandgroupindex.

XkbKeyTypePtrXkbKeyType (xkb, keycode, grogpg* macro */

XkbDescPtr xkby /* Xkb description of interest */
KeyCode keycode /* keycode of interest */
int group, [* group index */

XkbKeyTypeeturns a pointer to the key type in tigpesvector of the client map ixkb
corresponding to the givéeycodeandgroupindex.

15.3.2 Per-Key Group Information

Thegroup_infofield of anXkbSyniapRec is an encoded value containing the number of
groups of symbols bound to the key as well as the specification of the treatment of
out-of-range groups. It is legal for a key to have zero groups, in which case it also has zero
symbols and all events from that key yiélaSynbol . To obtain the number of groups of
symbols bound to the key, us&bKeyNumGroupso change the number of groups

bound to a key, usékbChangeTypesOfKégee section 15.3.6). To obtain a mask that
determines the treatment of out-of-range groupsXub&eyGrouplnfandXkbOutOf-
RangeGrouplinfo

The keyboard controls (see Chapter 10) contgiroaps_wragfield specifying the han-

dling of illegal groups on a global basis. That is, when the user performs an action causing
the effective group to go out of the legal range giteeips_wragfield specifies how to
normalize the effective keyboard group to a group that is legal for the keyboard as a
whole, but there is no guarantee that the normalized group will be within the range of legal
groups for any individual key. The per-kgsoup_infofield specifies how a key treats a

legal effective group if the key does not have a type specified for the group of concern.
For example, thént er key usually has just one group defined. If the user performs an
action causing the global keyboard group to chan@® eap2, thegroup_infofield for

theEnt er key describes how to handle this situation.

Out-of-range groups for individual keys are mapped to a legal group using the same
options as are used for the overall keyboard group. The particular type of mapping used is
controlled by the bits set in tiggoup_infoflag, as shown in Table 15.2. See section 10.7.1

for more details on the normalization methods in this table.

Table 15.2 group_info Range Normalization

Bits set in group_info Normalization method
XkbRedirectintoRange XkbRedirectintoRange
XkbClamplintoRange XkbClamplIntoRange
none of the above XkbWraplntoRange

November 10, 1997 Library Version 1.0/Document Revision 1.1 134

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

Xkb provides the following macros to access group information:

int XkbKeyNumGroups(xkb, keycode /* macro */

XkbDescPtr xkby /* Xkb description of interest */

KeyCode keycode [* keycode of interest */
XkbKeyNumGroupeeturns the number of groups of symbols bound to the key corre-
sponding tckeycode
unsigned chaXkbKeyGrouplnfo (xkb, keycode /*macro */

XkbDescPtr xkby /* Xkb description of interest */

KeyCode keycode /* keycode of interest */

XkbKeyGrouplnfaeturns theyroup_infofield from theXkbSyniapRec structure associ-
ated with the key correspondingkeycode

unsigned chaxkbOutOfRangeGrouplnfo (grp_inf)/* macro */
unsigned char grp_inf, /* group_info field ofXkbSynivapRec */

XkbOutOfRangeGrouplnf@turns only the out-of-range processing information from the
group_infofield of anXkbSynivapRec structure.

unsigned chaxkbOutOfRangeGroupNumber(grp_inf)/* macro */
unsigned char grp_inf, I* group_info field ofXkbSynivapRec */

XkbOutOfRangeGroupNumbesturns the out-of-range group number, represented as a
group index, from thgroup_infofield of anXkbSyniapRec structure.

15.3.3 Key Width

The maximum number of shift levels for a type is also referred to as the width of a key
type. Thewidth field of thekey sym_mapntry for a key contains the width of the widest
type associated with the key. Thalth field cannot be explicitly changed; it is updated
automatically whenever the symbols or set of types bound to a key are changed.

15.3.4 Offset in to the Symbol Map

The key width and number of groups associated with a key are used to form a small
two-dimensional array dfeySyns for a key. This array may be different sizes for differ-

ent keys. The array for a single key is stored as a linear list, in row-major order. The arrays
for all of the keys are stored in tegmsfield of the client map. There is one row for each
group associated with a key and one column for each level. The index corresponding to a
given group and shift level is computed as:

idx = group_index * key_width + shift_level

Theoffsetfield of thekey sym_magpntry for a key is used to access the beginning of the
array.

Xkb provides the following macros for accessingwhéth andoffsetfor individual keys,
as well as macros for accessing the two-dimensional array of symbols bound to the key:

int XkbKeyGroupsWidth (xkb, keycode /* macro */
XkbDescPtr xkby /* Xkb description of interest */
KeyCode keycode /* keycode of interest */

November 10, 1997 Library Version 1.0/Document Revision 1.1 135

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

XkbKeyGroupsWidthomputes the maximum width associated with the key correspond-
ing tokeycode

int XkbKeyGroupWidth (xkb, keycode, gip /* macro */
XkbDescPtr xkby /* Xkb description of interest */
KeyCode keycode /* keycode of interest */
int arp; /* group of interest */

XkbKeyGroupWidtltomputes the width of the type associated with the ggopifor the
key corresponding tkeycode

int XkbKeySymsOffsei(xkb, keycode /* macro */
XkbDescPtr xkby /* Xkb description of interest */
KeyCode keycode /* keycode of interest */

XkbKeySymsOffsetturns the offset of the two-dimensional array of keysyms for the key
corresponding t&eycode

int XkbKeyNumSyms(xkb, keycode /* macro */
XkbDescPtr xkb; /* Xkb description of interest */
KeyCode keycode /* keycode of interest */

XkbKeyNumSymeturns the total number of keysyms for the key correspondikeyto
code

KeySym * XkbKeySymsPtr(xkb, keycode /* macro */
XkbDescPtr xkby /* Xkb description of interest */
KeyCode keycode /* keycode of interest */

XkbKeySymsPtreturns the pointer to the two-dimensional array of keysyms for the key
corresponding t&eycode

KeySymXkbKeySymEntry (xkb, keycode, shift, gyfy macro */

XkbDescPtr xkby /* Xkb description of interest */
KeyCode keycode /* keycode of interest */

int shift, I* shift level of interest */

int arp; /* group of interest */

XkbKeySymEntrieturns th&keysymcorresponding to shift levehiftand grougrp from
the two-dimensional array of keysyms for the key correspondikeytmode

15.3.5 Getting the Symbol Map for Keys from the Server

To obtain the symbols for a subset of the keys in a keyboard descriptiotkhGetKey-
Syms

StatusXkbGetKeySymgdpy; first, num xkb)

Display * dpy; /* connection to X server */

unsigned int first; [* keycode of first key to get */

unsigned int numn /* number of keycodes for which syms desired */
XkbDescPtr xkby /* Xkb description to be updated */

XkbGetKeySymsends a request to the server to obtain the set of keysyms baowmd to
keys starting with the key whose keycodérs. It waits for a reply and returns the key-
syms in themap.symdield of xkb. If successfulXkbGetKeySym=turnsSuccess. The
xkb parameter must be a pointer to a valid Xkb keyboard description.

November 10, 1997 Library Version 1.0/Document Revision 1.1 136

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

If the clientmapin thexkb parameter has not been allocabeklhGetKeySynmallocates
and initializes it before obtaining the symbols.

If a compatible version of Xkb is not available in the server or the Xkb extension has not
been properly initialized{kbGetKeySym®turnsBadAccess. If numis less than 1 or
greater thanxkbMaxKeyCount , XkbGetKeySym=turnsBadVal ue. If any allocation

errors occurXkbGetKeySymeturnsBadAl | oc.

15.3.6 Changing the Number of Groups and Types Bound to a Key
To change the number of groups and the types bound to a ke¥khuSkangeType-

sOfKey

StatusXkbChangeTypesOfKey(xkb, key, n_groups groups new_types_inp_changes
XkbDescPtr xkby /* keyboard description to be changed */
int key, /* keycode for key of interest */
int n_groups /* new number of groups for key */
unsigned int groups /* mask indicating groups to change */
int * new_types_in /* indices for new groups specified gnoups*/

XkbMapChangesPtr p_changes /* notes changes madexkb*/

XkbChangeTypesOfKegallocates the symbols and actions bound to the key, if necessary,
and initializes any new symbols or action®\NBynbol or NoAct i on, as appropriate. If
thep_changeparameter is ndtULL, XkbChangeTypesOfKeylds thexkbKey Syns-

Mask to thechangedield of p_changesand modifies théirst_key synand

num_key synftelds ofp_changeso include th&keythat was changed. See section 14.3.1
for more information on thgkbMapChangesPt r structure. If successfukkbChange-
TypesOfKeyeturnsSuccess.

Then_groupsparameter specifies the new number of groups for the keygroes
parameter is a mask specifying the groups for which new types are supplied and is a bit-
wise inclusive OR of the following mask&kb@ ouplMask, XkbG oup2Mask,

Xkb@G oup3Mask, andXkbG oup4Mask.

Thenew_types_iparameter is an integer array of lengtlgroups Each entry represents
the type to use for the associated group and is an indexkidtemap->types The
new_types_imrray is indexed by group index;nf groupsis four andgroupsonly has

Q ouplMask and@ oup3Mask set,new_types_imooks like this:

new_types_in[0] = type for Groupl
new_types_in[1] = ignored
new_types_in[2] = type for Group3
new_types_in[3] = ignored
For convenience, Xkb provides the following constants to use as indices to the groups:

Table 15.3 Group Index Constants

Constant Name Value
XkbGrouplindex 0
XkbGroup2Iindex 1
XkbGroup3index 2
XkbGroup4index 3

November 10, 1997 Library Version 1.0/Document Revision 1.1 137

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

If the Xkb extension has not been properly initiali2eklhChangeTypesOfKegturns
BadAccess. If the xkb parameter it not valid (that is, itMJLL or it does not contain a
valid client map) XkbChangeTypesOfKegturnsBadMatch. If thekeyis not a valid key-
code,n_groupsis greater thaXxkbNunkKbdQ@ oups, or thegroupsmask does not contain
any of the valid group mask biskbChangeTypesOfKegturnsBadVal ue. If it is neces-
sary to resize the key symbols or key actions arrays and any allocation errors occur,
XkbChangeTypesOfKegturnsBadAl | oc.

15.3.7 Changing the Number of Symbols Bound to a Key

154

To change the number of symbols bound to a keyXib&esizeKeySyms
KeySym *XkbResizeKeySymgéxkb, key needell

XkbDescRec * xkby [* keyboard description to be changed */
int key, /* keycode for key to modify */
int needed /* new number of keysyms required for key */

XkbResizeKeySynsserves the space neededieededkeysyms and returns a pointer to
the beginning of the new array that holds the keysyms. It adjustéfsletfield of the

key sym_maepntry for the key if necessary and can also changgy/thenum_symsand
size_sym8$elds ofxkb->mapif it is necessary to reallocate tsymsarray.XkbResizeKey-
Symsdoes not modify either the width or number of groups associated with the key.

If neededs greater than the current number of keysyms for theXiddyResizeKeySyms
initializes all new keysyms in the arrayNoSynbol .

Because the number of symbols needed by a key is normally computed as width * number
of groups, ankbResizeKeySymses not modify either the width or number of groups

for the key, a discrepancy exists upon return fikhResizeKeySyrbstween the space
allocated for the keysyms and the number required. The unused entries in the list of sym-
bols returned bXkbResizeKeySyrage not preserved across future calls to any of the map
editing functions, so you must update the key symbol mapping (which updates the width
and number of groups for the key) before calling another allocator function. A call to
XkbChangeTypesOfKawill update the mapping.

If any allocation errors occur while resizing the number of symbols bound to the key,
XkbResizeKeySymasturnsNULL.

Note A change to the number of symbols bound to a key should be accompanied by a
change in the number of actions bound to a key. Refer to section 16.1.16 for more
information on changing the number of actions bound to a key.

The Per-Key Modifier Map

Themodmapentry of the client map is an array, indexed by keycode, specifying the real
modifiers bound to a key. Each entry is a mask composed of a bitwise inclusive OR of the
legal real modifiersshi f t Mask, LockMask, Cont r ol Mask, Mod1NMask, Mod2Mask,
Mod3Mask, Mod4Mask, andMbd5Mask. If a bit is set in anodmapentry, the correspond-

ing key is bound to that modifier.

Pressing or releasing the key bound to a modifier changes the modifier set and unset state.
The particular manner in which the modifier set and unset state changes is determined by
the behavior and actions assigned to the key (see Chapter 16).

November 10, 1997 Library Version 1.0/Document Revision 1.1 138

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

15.4.1 Getting the Per-Key Modifier Map from the Server

To update the modifier map for one or more of the keys in a keyboard description, use

XkbGetKeyModifierMap
StatusXkbGetKeyModifierMap (dpy, first, num xkb)
Display * dpy, [* connection to X server */
unsigned int first; /* keycode of first key to get */
unsigned int num /* number of keys for which information is desired */
XkbDescPtr xkby /* keyboard description to update */

XkbGetKeyModifierMagends a request to the server for the modifier mappingsifior
keys starting with the key whose keycodérs. It waits for a reply and places the results
in thexkb->map->modmap array. If successiXikbGetKeyModifiereturnsSuccess.

If the map component of thékb parameter has not been allocatéklhGetKeyModifier-
Map allocates and initializes it.

If a compatible version of Xkb is not available in the server or the Xkb extension has not
been properly initialized{kbGetKeySym=turnsBadAccess. If any allocation errors
occur while obtaining the modifier maykbGetKeyModifierMapeturnsBadAl | oc.

November 10, 1997 Library Version 1.0/Document Revision 1.1 139

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

16 Xkb Server Keyboard Mapping

Theserverfield of the complete Xkb keyboard description (see section 6.1) is a pointer to
the Xkb server map.

Figure 16.1 shows the relationships between elements in the server map:

num_acts
size_acts S
1 I
acts — J—u
- I
behaviors — J_u | XkbActions(s)
key acts — | (aray)
— | XkbBehaviors(s) '
explicit : (array) :
vmods[16] | |
| |
vmodmap | J_u 7777 l
|
|
XkbServerMapRec : unsigned short(s)
! (array)
|
:
| [
g
| —
KeyCode ----- ¥ unsigned char(s)
! (array)
:
! I
L -
. I
unsigned short(s)
(array)

Figure 16.1 Server Map Relationships

The Xkb server map contains the information the server needs to interpret key events and
is of typeXkbSer ver MapRec:

#define XkbNumVirtualMods 16
typedef struct { [* Server Map */
unsigned short num_acts; [* # of occupied entriesciis*/
unsigned short size_acts; [* # of entriesats*/
XkbAction * acts; /* linear 2d tables of key actions, 1 per keycode */
XkbBehavior * behaviors; /* key behaviors,1 per keycode */
unsigned short* key_acts; /* index indots 1 per keycode */
unsigned char * explicit; /* explicit overrides of core remapping, 1 per key */
unsigned char vmods[XkbNumVirtualMods]; /* real mods bound to virtual mods */

November 10, 1997 Library Version 1.0/Document Revision 1.1 140

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

16.1

unsigned short* vmodmap; /* virtual mods bound to key, 1 per keycode*/
} XkbServerMapRec, *XkbServerMapPtr;

Thenum_actssize_actsacts andkey_actdields specify the key actions, defined in sec-
tion 16.1. Théehaviordfield describes the behavior for each key and is defined in section
16.2. Theexplicitfield describes the explicit components for a key and is defined in sec-
tion 16.3. Thermodsand thevmodmaields describe the virtual modifiers and the
per-key virtual modifier mapping and are defined in section 16.4.

Key Actions

A key action defines the effect key presses and releases have on the internal state of the
server. For example, the expected key action associated with pressanifttkey is to

set theShi ft modifier. There is zero or one key action associated with each keysym
bound to each key.

Just as the entire list of key symbols for the keyboard mapping is heldsyntiskeld of
the client map, the entire list of key actions for the keyboard mapping is heldactshe
array of the server map. The total sizecsis specified byize actsand the number of
entries is specified byum_acts

Thekey_actsarray, indexed by keycode, describes the actions associated with a key. The
key actsarray hasnin_key codenused entries at the start to allow direct indexing using

a keycode. If &ey_actentry iszer o, it means the key does not have any actions associ-
ated with it. If an entry is nater o, the entry represents an index into dleesfield of the

server map, much as tbésetfield of akKeySynmMapRec structure is an index into the
symsfield of the client map.

The reason thactsfield is a linear list okkbAct i ons is to reduce the memory consump-
tion associated with a keymap. Because Xkb allows individual keys to have multiple shift
levels and a different number of groups per key, a single two-dimensional akiey- of

Syns would potentially be very large and sparse. Instead, Xkb provides a small
two-dimensional array ofkbAct i ons for each key. To store all of these individual

arrays, Xkb concatenates each array together iadfsdéield of the server map.

The key action structures consist only of fields of type char or unsigned char. This is done
to optimize data transfer when the server sends bytes over the wire. If the fields are any-
thing but bytes, the server has to sift through all of the actions and swap any nonbyte
fields. Because they consist of nothing but bytes, it can just copy them out.

Xkb provides the following macros, to simplify accessing information pertaining to key
actions:

Bool XkbKeyHasActions(xkb, keycode /* macro */
XkbDescPtr xkby /* Xkb description of interest */
KeyCode keycode /* keycode of interest */

XkbKeyHasActioneeturnsTr ue if the key corresponding teycodéhas any actions asso-
ciated with it; otherwise, it returrial se.

int XkbKeyNumActions(xkb, keycode /* macro */
XkbDescPtr xkby /* Xkb description of interest */
KeyCode keycode /* keycode of interest */

November 10, 1997 Library Version 1.0/Document Revision 1.1 141

The X Keyboard Extension

16 Xkb Server Keyboard Mapping

XkbKeyNumActionsomputes the number of actions associated with the key correspond-
ing tokeycode This should be the same value as the resi{kbKeyNumSyni{see sec-
tion 15.3.3).

XkbKeyActionPtrXkbKeyActionsPtr (xkb, keycodé¢* macro */
XkbDescPtr xkby /* Xkb description of interest */
KeyCode keycode /* keycode of interest */

XkbKeyActionsPtreturns a pointer to the two-dimensional array of key actions associated
with the key corresponding ®ycodeUseXkbKeyActionsPtonly if the key actually has
some actions associated with it, thaikbKeyNumActiorfgkb, keycode) returns some-
thing greater than zero.

XkbAction XkbKeyAction (xkb, keycode, igx /* macro */
XkbDescPtr xkby /* Xkb description of interest */
KeyCode keycode /* keycode of interest */
int idx; /* index for group and shift level */

XkbKeyActiorreturns the key action indexed ol in the two-dimensional array of key
actions associated with the key correspondingeya@odeidx may be computed from the
group and shift level of interest as follows:

idx = group_index * key_width + shift_level
XkbAction XkbKeyActionEntry (xkb, keycode, shift, gyff macro */

XkbDescPtr xkby /* Xkb description of interest */
KeyCode keycode /* keycode of interest */

int shift; [* shift level within group */

int arp; [* group index for group of interest */

XkbKeyActionEntryeturns the key action corresponding to grgrgand shift levelvl
from the two-dimensional table of key actions associated with the key corresponding to
keycode

16.1.1 The XkbAction Structure

The description for an action is held inJ8bAct i on structure, which is a union of all
possible Xkb action types:

typedef union _XkbAction {

XkbAnyAction any,
XkbModAction mods;
XkbGroupAction group;
XkbISOAction iSO;
XkbPtrAction ptr;
XkbPtrBtnAction btn;
XkbPtrDfltAction dflt;
XkbSwitchScreenAction screen;
XkbCtrlsAction ctrls;
XkbMessageAction msg;
XkbRedirectKeyAction redirect;
XkbDeviceBtnAction devbtn;

XkbDeviceValuatorAction devval;

November 10, 1997

Library Version 1.0/Document Revision 1.1

142

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

unsigned char type;
} XkbAction;

Thetypefield is provided for convenience and is the same as the type field in the individ-
ual structures. The following sections describe the individual structures for each action in
detail.

16.1.2 The XkbAnyAction Structure
The XkbAnyAct i on structure is a convenience structure that refers to any of the actions:

#define XkbAnyActionDataSize 7
typedef struct XkbAnyAction {
unsigned char type; [* type of action; determines interpretation for data */

unsigned char data[XkbAnyActionDataSize];
} XkbAnyAction ;

Thedatafield represents a structure for an action, and its interpretation depends on the
typefield. The valid values for thigpefield, and the data structures associated with them
are shown in Table 16.1:

Table 16.1 Action Types

XkbAction .
Type Structure for Data Union MemberseCt'on
XkbSA NoAct i on XkbSA NoAct i on means the server any

does not perform an action for the key;
this action does not have an associated
data structure.

XkbSA Set Mods XkbModAct i on mods 16.1.3
XkbSA Lat chMbds
XkbSA LockMods

XkbSA Set G oup XkbG oupActi on group 16.1.4
XkbSA Lat chG oup
XkbSA LockG oup

XkbSA MovePt r XkbPt r Action ptr 16.1.5
XKbSA PtrBtn XkbPt r Bt nActi on btn 16.1.6
XkbSA LockPtrBtn

XkbSA Set PtrDf It XkbPt rDf I t Acti on dfit 16.1.7
XkbSA | SQLock Xkbl SQAct i on iso 16.1.8
XkbSA Swi t chScreen XkbSwi t chScr eenActi on screen 16.1.9
XkbSA Set Control s XkbCirl sAction ctrls 16.1.10
XkbSA LockControl s

XkbSA ActionMessage XkbMessgeActi on msg 16.1.11
XkbSA Redi r ect Key XkbRedi r ect KeyAct i on redirect 16.1.12
XkbSA Devi ceBtn XkbDevi ceBt nActi on devbtn 16.1.13
XKbSA LockDevi ceBtn

XkbSA Devi ceVal uat or XkbDevi ceVal uat or Acti on devval 16.1.14

16.1.3 Actions for Changing Modifiers’ State

Actions associated with thiékbMbdAct i on structure change the state of the modifiers
when keys are pressed and released (see Chapter 7 for a discussion of modifiers):

November 10, 1997 Library Version 1.0/Document Revision 1.1 143

The X Keyboard Extension

16 Xkb Server Keyboard Mapping

typedef struct _XkbModAction {

unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
} XkbModAction ;

type; MXKkbSA { Set | Lat ch| Lock} Mods */
flags; /* wittype controls the effect on modifiers */
mask; Bame asnaskfield of a modifier descriptioty

real_mods; /* samer@al_modsield of a modifier descriptiot/
vmodsl; /* derived frormodsfield of a modifier descriptiory
vmods2; /* derived frormodsfield of a modifier descriptiory

In the following description, the teraction modifiersneans the real modifier bits associ-
ated with this action. Depending on the valudas (see Table 16.3), these are desig-
nated either in thenaskfield of theXkbMbdAct i on structure itself or the real modifiers
bound to the key for which the action is being used. In the latter case, this is the client
map->modmajpkeycodéfield.

Thetypefield can have any of the values shown in Table 16.2.

Table 16.2 Modifier Action Types

Type

Effect

XkbSA Set Mods

XkbSA Lat chMbds

XkbSA LockMods

A key press adds any action modifiers to the keyboard’s base modi-
fiers.

A key release clears any action modifiers in the keyboard’s base
modifiers, provided no other key affecting the same modifiers is
logically down.

If no other keys are physically depressed when this key is released,
andXkbSA d ear Locks is set in thdlagsfield, the key release
unlocks any action modifiers.

Key press and key release events have the same effect as for
XkbSA Set Mods; if no keys are physically depressed when this
key is released, key release events have the following additional
effects:

Modifiers unlocked due t8kbSA O ear Locks have no further
effect.

If XkbSA Lat chToLock is set in thdlagsfield, a key release
locks and then unlatches any remaining action modifiers that are
already latched.

A key release latches any action modifiers not used by the
XkbSA O ear Locks andXkbSA Lat chToLock flags.

A key press sets the base state of any action modifiers. If

XkbSA LockNoLock is set in thdlagsfield, a key press also sets
the locked state of any action modifiers.

A key release clears any action modifiers in the keyboard’s base
modifiers, provided no other key that affects the same modifiers is
down. If XkbSA LockNoUnl ock is not set in thélagsfield, and

any of the action modifiers were locked before the corresponding
key press occurred, a key release unlocks them.

November 10, 1997

Library Version 1.0/Document Revision 1.1 144

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

Theflagsfield is composed of the bitwise inclusive OR of the masks shown in Table 16.3.
A general meaning is given in the table, but the exact meaning depends on thig/petion

Table 16.3 Modifier Action Flags

Flag Meaning

XkbSA UseModMapMods If set, the action modifiers are determined by the modifiers
bound by the modifier mapping of the key. Otherwise, the
action modifiers are set to the modifiers specified by the
mask real_modsvmodl andvmod2fields.

XkbSA O ear Locks If set and no keys are physically depressed when this key
transition occurs, the server unlocks any action modifiers.

XkbSA Lat chTolLock If set, and the action type ¥kbSA Lat chMods, the server
locks the action maodifiers if they are already latched.

XkbSA LockNoLock If set, and the action type #&bSA LockMbds, the server
only unlocks the action modifiers.

XkbSA LockNoUnl ock If set, and the action BkbSA LockMods, the server only

locks the action modifiers.

If XkbSA UseMbdMapMods is not set in thélagsfield, themaskreal modsvmodsland
vmodsZields are used to determine the action modifiers. Otherwise they are ignored and
the modifiers bound to the key (cliambap>modmajpkeycod$) are used instead.

Themaskreal _modsvmods] andvmodsZields represent the components of an Xkb
modifier description (see section 7.2). While thaskandreal _moddields correspond
directly to themaskandreal _moddields of an Xkb modifier description, tvenodsland
vmodsZields are combined to correspond to ¥ineodsfield of an Xkb modifier descrip-
tion. Xkb provides the following macros, to convert between the two formats:

unsigned shorXkbModActionVMods (act) [* macro */
XkbAction act [* action from which to extract virtual mods */

XkbModActionVModseturns the'emodslandvmodsZields ofactconverted to themods
format of an Xkb modifier description.

void XkbSetModActionVMods(act, vmod} /* macro */
XkbAction act; [* action in which to set vmods */
unsigned short vmods [* virtual mods to set */

XkbSetModActionVModsets theyrmodslandvmodsZields ofactusing thevmodsformat
of an Xkb modifier description.

Note Despite the fact that the first parameter of these two macros is of type XkbAction,
these macros may be used only with Actions of ¥peMbdAct i on andXkbl SG
Action.

16.1.4 Actions for Changing Group State

Actions associated with thékbG oupAct i on structure change the current group state
when keys are pressed and released (see Chapter 5 for a description of groups and key-
board state):

typedef struct _XkbGroupAction {
unsigned char type; XkbSA {Set | Lat ch| Lock} G oup */
unsigned char flags; [* wittype controls the effect on groups */

November 10, 1997 Library Version 1.0/Document Revision 1.1 145

The X Keyboard Extension

16 Xkb Server Keyboard Mapping

char

} XkbGroupAction ;

group_XXX; /[* represents a group index or delta */

Thetypefield can have any of the following values:

Table 16.4 Group Action Types

Type

Effect

XkbSA Set G oup

XkbSA Lat chG oup

XkbSA LockG oup

« If the XkbSA G oupAbsol ut e bit is set in thdlagsfield, key press
events change the base keyboard group to the group specified by the
group_XXXfield. Otherwise, key press events change the base key-
board group by adding tlgroup_XXXfield to the base keyboard
group. In either case, the resulting effective keyboard group is brought
back into range depending on the value ofjteeips_wragfield of the
controls structure (see section 10.7.1).

« If a key with anXkbSA | SOLock action (see section 16.1.8) is
pressed while this key is down, the key release of this key has no
effect. Otherwise, the key release cancels the effects of the key press.

* If the XkbSA _Q ear Locks bit is set in the flags field, and no keys
are physically depressed when this key is released, the key release also
sets the locked keyboard grouplooupl.

» Key press and key release events have the same effect as for
XkbSA Set G oup; if no keys are physically depressed when this key
is released, key release events have the following additional effects.

* If the XkbSA Lat chToLock bit is set in thdlagsfield and the
latched keyboard group index is nonzero, the key release adds the
delta applied by the corresponding key press to the locked keyboard
group and subtracts it from the latched keyboard group. The locked
and effective keyboard group are brought back into range according to
the value of thgroups_wragfield of the controls structure.

» Otherwise, the key press adds the key press delta to the latched key-
board group.

* If the XkbSA_ G oupAbsol ut e is set in thdlagsfield, key press
events set the locked keyboard group to the group specified by the
group_XXXfield. Otherwise, key press events add the group specified
by thegroup_XXXfield to the locked keyboard group. In either case,
the resulting locked and effective keyboard groups are brought back
into range depending on the value of gineups_wragfield of the con-
trols structure.

» A key release has no effect.

Theflagsfield is composed of the bitwise inclusive OR of the masks shown in Table 16.5.
A general meaning is given in the table, but the exact meaning depends on thigypetion

Table 16.5 Group Action Flags

Flag

Meaning

XkbSA O ear Locks

XkbSA Lat chToLock

If set and no keys are physically depressed when this key
transition occurs, the server sets the locked keyboard group
to G oupl on a key release.

If set, and the action type 8\ Lat ch@ oup, the server
locks the action group if it is already latched.

XkbSA Gr oupAbsol ut e If set, thegroup_XXXfield represents an absolute group

number. Otherwise, it represents a group delta to be added to
the current group to determine the new group number.

November 10, 1997

Library Version 1.0/Document Revision 1.1 146

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

Thegroup_XXXfield represents a signed character. Xkb provides the following macros to
convert between a signed integer value and a signed character:

int XkbSAGroup (act) /* macro */
XkbAction act; [* action from which to extract group */

XkbSAGroupeturns thegroup_XXXfield of act converted to a signed int.

void XkbSASetGroup(act, grp /* macro */
XkbAction act; /* action from which to set group */
int arp; [* group index to set igroup_ XXX/

XkbSASetGroupets theggroup_XXXfield of act from the group indegrp.

Note Despite the fact that the first parameter of these two macros is of type XkbAction,
these macros may only be used with Actions of ¥peQ oupAct i on andXkbl -
SQActi on.

16.1.5 Actions for Moving the Pointer

Actions associated with thé&bPt r Act i on structure move the pointer when keys are
pressed and released:

typedef struct _XkbPtrAction {

unsigned char type; MXkbSA MovePtr */

unsigned char flags; [* determines type of pointer motion */
unsigned char high_XXX; /* x coordinate, high bits*/

unsigned char low_XXX; /* y coordinate, low bits */

unsigned char high_YYY; /* x coordinate, high bits */

unsigned char low_YYY; /*y coordinate, low bits */

} XkbPtrAction ;

If the MouseKeys control is not enabled (see section 10.5&y,Pr ess andKeyRe-
| ease events are treated as though the actiofkisSA NoAct i on.

If the MbuseKeys control is enabled, a server action of tyfs®SA MovePt r instructs

the server to generate core poirlébt i onNot i f y events rather than the ust@aly-

Pr ess event, and the correspondidgyRel ease event disables any mouse keys timers
that were created as a result of handlingdieSA MovePt r action.

Thetypefield of theXkbPt r Act i on structure is alway¥kbSA MovePtr.
Theflagsfield is a bitwise inclusive OR of the masks shown in Table 16.6.
Table 16.6 Pointer Action Types

Action Type Meaning

XkbSA NoAccel eration If not set, and thbbuseKeysAccel control is enabled (see
section 10.5.2), thKeyPr ess initiates a mouse keys timer
for this key; every time the timer expires, the cursor moves.

XkbSA MoveAbsol ut eX If set, the X portion of the structure specifies the new pointer
X coordinate. Otherwise, the X portion is added to the cur-
rent pointer X coordinate to determine the new pointer X
coordinate.

November 10, 1997 Library Version 1.0/Document Revision 1.1 147

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

Table 16.6 Pointer Action Types

Action Type Meaning

XkbSA MoveAbsol ut eY If set, the Y portion of the structure specifies the new
pointer Y coordinate. Otherwise, the Y portion is added
to the current pointer Y coordinate to determine the new
pointer Y coordinate.

Each of the X and Y coordinantes of #ebPt r Act i on structure is composed of two
signed 16-bit values, that is, the X coordinate is composkigjlof XXXandlow XXX
and similarly for the Y coordinate. Xkb provides the following macros, to convert
between a signed integer and two signed 16-bit valudshiRt r Act i on structures:

int XkbPtrActionX (act) /* macro */
XkbPtrAction act /* action from which to extract X */

XkbPtrActionXreturns thénigh_XXXandlow_XXXfields ofact converted to a signed int.

int XkbPtrActionY (act) /* macro */

XkbPtrAction act [* action from which to extract Y */
XkbPtrActionYreturns thénigh_YYYandlow_YYYfields ofact converted to a signed int.
void XkbSetPtrActionX (act, X) /* macro */

XkbPtrAction act /* action in which to set X */

int X; /* new value to set */
XkbSetPtrAction)sets thénigh_XXXandlow_XXXfields ofact from the signed integer
valuex.
void XkbSetPtrActionY (act, y) /* macro */

XkbPtrAction act /* action in which to set 'Y */

int y; /* new value to set */
XkbSetPtrActionXsets thenigh_YYYandlow_YYYfields ofact from the signed integer
valuey.

16.1.6 Actions for Simulating Pointer Button Press and Release

Actions associated with thékbPt r Bt nAct i on structure simulate the press and release
of pointer buttons when keys are pressed and released:

typedef struct _XkbPtrBtnAction {
unsigned char type; XkbSA PtrBtn, XkbSA LockPtrBtn*
unsigned char flags; /* wittype controls the effect on pointer buttons*/
unsigned char count; /* controls number of ButtonPress and ButtonRelease events */
unsigned char button; /* pointer button to simulate */
} XkbPtrBtnAction ;

If the MbuseKeys (see section 10.5.1) control is not enabksy,Pr ess andKeyRe-
| ease events are treated as though the actiofkixsSA NoAct i on.

November 10, 1997 Library Version 1.0/Document Revision 1.1 148

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

Thetypefield can have any one of the values shown in Table 16.7.
Table 16.7 Pointer Button Action Types

Type Effect

XkbSA_PtTBtn « If XkbSA UseDf | t Butt on is set in thdlagsfield, the event is gen-
erated for the pointer button specified by e dflt_btnattribute of
theMouseKeys control (seesection 10.5.)1 Otherwise, the event is
generated for the button specified by gtonfield.

« If the mouse button specified for this action is logically down, the key
press and corresponding key release are ignored and have no effect.
Otherwise, a key press causes one or more core pointer button events
instead of the usu#leyPr ess event. Ifcountis zer o, a key press
generates a singBut t onPr ess event; ifcountis greater thamer o,

a key press generatesuntpairs ofBut t onPr ess andBut t onRe-
| ease events.

« If countis zer 0, a key release generates a core poBiiet onRe-
| ease that matches the event generated by the correspokeing
Pr ess; if countis nonzero, a key release does not cause a
But t onRel ease event. A key release never generates aKesyRe-
| ease event.

XkbSA _LockPtrBtn . |t the button specified by tHébuseKeys default button obuttonis
not locked, a key press causeBuat onPr ess event instead of a
KeyPr ess event and locks the button. If the button is already locked
or if XkbSA LockNoUnl ock is set in thdlagsfield, a key press is
ignored and has no effect.

« If the corresponding key press was ignored, and if

XkbSA LockNoLock is not set in théagsfield, a key release gener-
ates aBut t onRel ease event instead of leyRel ease event and
unlocks the specified button. If the corresponding key press locked a
button, the key release is ignored and has no effect.

Theflagsfield is composed of the bitwise inclusive OR of the masks shown in Table 16.8.
A general meaning is given in the table, but the exact meaning depends on thiypetion

Table 16.8 Pointer Button Action Flags

Flag Meaning

XkbSA UseDf It Button If set, the action uses the pointer button specified by the
mk_dflt_btnattribute of thévbuseKeys control (see section
10.5.1). Otherwise, the action uses the pointer button specified by
the buttonfield.

XkbSA LockNoLock If set, and the action type ¥kbSA LockPt r Bt n, the server
only unlocks the pointer button.

XkbSA LockNouUnl ock If set, and the action type ¥kbSA LockPt r Bt n, the server
only locks the pointer button.

16.1.7 Actions for Changing the Pointer Button Simulated

Actions associated with thékbPt r Df | t Act i on structure change thrak_dflt_btn
attribute of thévbuseKeys control 6eesection 10.5.1):

typedef struct _XkbPtrDfltAction {

unsigned char type; XkbSA Set PtrDfl t */
unsigned char flags; /* controls the pointer button number */
unsigned char affect; XKbSA AffectDil tBtn*

November 10, 1997 Library Version 1.0/Document Revision 1.1 149

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

char valueXXX; /* new default button member */
} XkbPtrDfltAction ;

If the MouseKeys control is not enabledeyPr ess andKeyRel ease events are treated
as though the action ¥kbSA NoAct i on. Otherwise, this action changes thie_dflt_btn
attribute of thevbusekKeys control.

Thetypefield of theXkbPt r Df | t Act i on structure should always be
XKbSA SetPtrDflt.

Theflagsfield is composed of the bitwise inclusive OR of the values shown in Table 16.9
(currently there is only one value defined).

Table 16.9 Pointer Default Flags

Flag Meaning

XkbSA D¥ | t Bt nAbsol ut e If set, thevaluefield represents an absolute pointer button.
Otherwise, theraluefield represents the amount to be added
to the current default button.

Theaffectfield specifies what changes as a result of this action. The only valid value for
theaffectfield is XkbSA Affect Dfl t Bt n.

ThevalueXXXfield is a signed character that represents the new button value for the
mk_dflt_btnattribute of thevbuseKeys control (see section 10.5.1). If

XkbSA DX | t Bt nAbsol ut e is set inflags valueXXXspecifies the button to be used; oth-
erwise,valueXXXspecifies the amount to be added to the current default button. In either
case, illegal button choices are wrapped back around into range. Xkb provides the follow-
ing macros, to convert between the integer and signed character vatise®tim O | -

t Act i on structures:

int XkbSAPtrDfltValue (act) /* macro */

XkbAction act, /* action from which to extract group */
XkbSAPtrDfltValugeturns thevalueXXXfield of act converted to a signed int.
void XkbSASetPtrDfltValue (act, va) /* macro */

XkbPtrDfltAction act /* action in which to setalueXXXx*/

int val; /* value to set invalueXXX*/

XkbSASetPtrDfltValusets thevalueXXXfield of act from val.

16.1.8 Actions for Locking Modifiers and Group

Actions associated with thékbl SQAct i on structure lock modifiers and the group
according to the 1ISO9995 specification.

Operated by itself, thekbl SQAct i on is just a caps lock. Operated simultaneously with
another modifier key, it transforms the other key into a locking key. For example, press
ISO_Lock, press and releagiontrol_L, releaseSO_Lock ends up locking th€ont r ol
modifier.

The default behavior is to convert:

{Set,Latch}Mods to: LockMods
{Set,Latch}Group to: LockGroup
SetPtrBtn to: LockPtrBtn

November 10, 1997 Library Version 1.0/Document Revision 1.1 150

The X Keyboard Extension

16 Xkb Server Keyboard Mapping

SetControls to: LockControls

Theaffectsfield allows you to turn those effects on or off individually. Set
XkbSA | SONoAf f ect Mods to disable the firsbkbSA | SONoAf f ect G oup to disable

the second, and so forth.

typedef struct _XkbISOAction {

unsigned char type;
unsigned char flags;
unsigned char mask;

MXKkbSA | SCLock */
/* controls changes to group or modifier state */
Bame asnaskfield of a modifier descriptioty

unsigned char real_mods;/* sameraal_moddfield of a modifier descriptiot/
char group_XXX;/* group index or delta group */

unsigned char affect;

I* specifies whether to affect mods, group, ptrbtn, or controls*/

unsigned char vmodsl; /* derived frormodsfield of a modifier descriptio®y
unsigned char vmods2; /* derived frarmodsfield of a modifier descriptio®y

} XkbISOAction;

Thetypefield of thexkbl SQAct i on structure should always B&bSA | SOLock.
The interpretation of thi#éagsfield depends on whether thebSA | SCDf | t | sG oup is

set in theflagsfield or not.

If the XkbSA | SCDX | t | sG oup is set in thdlagsfield, the action is used to change the
group state. The remaining valid bits of flegsfield are composed of a bitwise inclusive
OR using the masks shown in Table 16.10.

Table 16.10 1SO Action Flags when XkbSA ISODfltisGroup is Set

Flag

Meaning

XkbSA | SCDf I t 1 sG oup

XkbSA Gr oupAbsol ut e

XkbSA | SONoAf f ect Mods

XkbSA | SONoAf f ect G oup

XkbSA | SONoAf fect Pt r

XkbSA | SONoAffectCrl s

If set, the action is used to change the base group state. Must
be set for the remaining bits in this table to carry their inter-
pretations.

A key press sets the base group as specified by the
%roup_X)_OGleld and thexkbSA_G oupAbsol ut e bit of
theflagsfield (see section Note). If no other actions are
transformed by th&kbl SO Lock action, a key release
locks the group. Otherwise, a key release clears group
set by the key press.

If set, thegroup_XXXfield represents an absolute group
number. Otherwise, it represents a group delta to be added to
the current group to determine the new group number.

If not set, anyxkbSA Set Mods or XkbSA Lat chMbds
actions that occur simultaneously with XiebSA | SOLock
action are treated a&bSA LockMbd actions instead.

If not set, anyxkbSA Set G oup or XkbSA Lat ch@ oup
actions that occur simultaneously with XiebSA | SOLock
action are treated a&bSA Lock Q& oup actions instead.

If not set, anyxkbSA Pt r Bt n actions that occur simulta-
neously with thexkbSA | SOLock action are treated as
XkbSA LockPt r Bt n actions instead.

If not set, anyxkbSA Set Cont r ol s actions that occur
simultaneously with th&kbSA | SOLock action are treated
asXkbSA LockContr ol s actions instead.

November 10, 1997 Library Version 1.0/Document Revision 1.1 151

The X Keyboard Extension

16 Xkb Server Keyboard Mapping

If the XkbSA | SCDY | t | sG oup is not set in théagsfield, the action is used to change
the modifier state and the remaining valid bits offthgsfield are composed of a bitwise
inclusive OR using the masks shown in Table 16.11.

Table 16.11 1SO Action Flags when XkbSA_ISODfltisGroup is Not Set

Flag

Meaning

XkbSA | SCDf [t 1 sG oup

XkbSA UseMbdMapMods

XkbSA LockNoLock
XkbSA LockNouUnl ock
XkbSA | SONoAf f ect Mods

XkbSA | SONoAf f ect G oup

XkbSA | SONoAf fect Pt r

XkbSA | SONoAf fectCtrl s

If not set, action is used to change the base modifier state.
Must not be set for the remaining bits in this table to carry
their interpretations.

A key press sets the action modifiers in the keyboard’s base
modifiers usinghe mask real_modsvmods]and
vmodsZields (see section 16.1.3). Mo other actions are
transformed by th#kbl SO Lock action, a key release
locks the action modifiers. Otherwise, a key release
clears the base modifiers set by the key press.

If set, the action modifiers are determined by the modifiers
bound by the modifier mapping of the key. Otherwise, the
action modifiers are set to the modifiers specified by the
mask real_modsvmodl andvmodZ2fields.

If set, the server only unlocks the action modifiers.
If set, the server only locks the action modifiers.

If not set, anyxkbSA Set Mbds or XkbSA Lat chMbds
actions that occur simultaneously with XiebSA | SOLock
action are treated a&bSA LockMbd actions instead.

If not set, anyxkkbSA Set G oup or XkbSA Lat chG oup
actions that occur simultaneously with XiebSA | SOLock
action are treated a&bSA Lock@& oup actions instead.

If not set, anyXkbSA Pt r Bt n actions that occur simulta-
neously with thexkbSA | SOLock action are treated as
XkbSA LockPt r Bt n actions instead.

If not set, anyxkbSA Set Cont r ol s actions that occur
simultaneously with th&kbSA | SOLock action are treated
asXkbSA LockContr ol s actions instead.

Thegroup_XXXfield represents a signed character. Xkb provides macros to convert
between a signed integer value and a signed character as shown in section Note.

Themask real_modsvmods] andvmodsZields represent the components of an Xkb
modifier description (see section 7.2). While thaskandreal _moddfields correspond

directly to themaskandreal moddields of an Xkb modifier description, tlvenodsland
vmodsZields are combined to correspond to vineodsfield of an Xkb modifier descrip-

tion. Xkb provides macros to convert between the two formats as shown in section 16.1.3.

Theaffectfield is composed of a bitwise inclusive OR using the masks shown in Table

16.11.

Table 16.12 ISO Action Affect Field Values

Affect

Meaning

XkbSA | SCDNoAf f ect Mods

If XkbSA | SONoAf f ect Mods is not set, an$pA_Set Mods
or SA_Lat chMbds actions occurring simultaneously with
theXkbl SQAct i on are treated aSA LockMbods instead.

November 10, 1997 Library Version 1.0/Document Revision 1.1 152

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

Table 16.12 ISO Action Affect Field Values

Affect Meaning

XkbSA | SONoAf fect G oup If XkbSA | SONoAf f ect G oup is not set, any
SA Set G oup or SA_Lat ch@ oup actions occurring
simultaneously with thkbl SOAct i on are treated as
SA Lock@ oup instead.

XkbSA | SONoAf fect Pt r If XkbSA | SONoAf f ect Pt r is not set, anpgA PtrBt n
actions occurring simultaneously with tebl SQAct i on
are treated aSA _LockPt r Bt n instead.

XkbSA | SONoAffect rls If XkbSA | SONoAf fect O rl s is not set, any
SA_Set Cont r ol s actions occurring simultaneously with
theXkbl SQAct i on are treated aSA LockControl s
instead.

16.1.9 Actions for Changing the Active Screen

Actions associated with th&bSwi t chScr een action structure change the active screen
on a multiscreen display:

Note This action is optional. Servers are free to ignore the action or any of its flags if they
do not support the requested behavior. If the action is ignored, it behaves like
XkbSA NoAct i on. Otherwise, key press and key release events do not generate an

event.
typedef struct _XkbSwitchScreenAction {
unsigned char type; MXKkbSA Swi t chScreen */
unsigned char flags; [* controls screen switching */
char screenXXX; /* screen number or delta */

} XkbSwitchScreenAction

Thetypefield of theXkbSwi t chScr eenAct i on structure should always be
XkbSA Swi t chScr een.

Theflagsfield is composed of the bitwise inclusive OR of the masks shown in Table

16.13.
Table 16.13 Switch Screen Action Flags
Flag Meaning
XkbSA Swi t chAbsol ut e If set, thescreenXXXield represents the index of the

new screen. Otherwise, it represents an offset from the
current screen to the new screen.

XkbSA Swi t chApplication If not set, the action should switch to another screen on
the same server. Otherwise, it should switch to another X
server or application that shares the same physical dis-

play.

ThescreenXXXield is a signed character value that represents either the relative or abso-
lute screen index, depending on the state oKkiSA Swi t chAbsol ut e bit in theflags

field. Xkb provides the following macros to convert between the integer and signed char-
acter value for screen numbersdbSwi t chScr eenAct i on structures:

int XkbSAScreer(act) /* macro */
XkbSwitchScreenAction act /* action from which to extract screen */

XkbSAScreereturns thescreenXXXield of act converted to a signed int.

November 10, 1997 Library Version 1.0/Document Revision 1.1 153

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

void XkbSASetScreelfact, 9 /* macro */
XkbSwitchScreenAction act /* action in which to sescreenXXX/
int S /* value to set irscreenXXX/

XkbSASetScreawts thescreenXXXield of actfrom s.

16.1.10Actions for Changing Boolean Controls State

Actions associated with thé&bCt r | sAct i on structure change the state of the boolean
controls (see section 10.1):

typedef struct _XkbCtrisAction {
unsigned char type; MXKbSA Set Controls, XkbSA LockControl s */

unsigned char flags; [* wittype controls enabling and disabling of controls */
unsigned char ctrls3; ftrlsO throughctris3represent the boolean contrals
unsigned char ctrls2; fétrlsO throughctris3 represent the boolean contrals
unsigned char ctrlsl; /ftrlsOthroughctris3represent the boolean contrals
unsigned char ctrlsO; /trlsO throughctris3represent the boolean contrals

} XkbCtrlsAction ;
Thetypefield can have any one of the values shown in Table 16.14.
Table 16.14 Controls Action Types
Type Effect

XkbSA_Set Control s « A key press enables any boolean controls specified icttise
fields that were not already enabled at the time of the key press.
* A key release disables any controls enabled by the key press.
 This action can caus&kbCont r ol sNot i f y events (see sec-
tion 10.1).

XkbSA_LockControl s « If the XkbSA LockNoLock bit is not set in théagsfield, a
key press enables any controls specified ircthig fields that
were not already enabled at the time of the key press.

If the XkbSA LockNoUnl ock bit is not set in thélagsfield, a
key release disables any controls specified irctitiefields

that were not already disabled at the time of the key press.
 This action can causé&kbCont r ol sNot i fy events (see sec-

tion 10.1).
Theflagsfield is composed of the bitwise inclusive OR of the masks shown in Table
16.15.

Table 16.15 Control Action Flags

Flag Meaning
XkbSA LockNoLock If set, and the action type ¥kbSA LockCont r ol s, the

server only disables controls.
XkbSA LockNoUnl ock If set, and the action type #&bSA LockContr ol s, the

server only enables controls.

TheXkbSA Set Cont r ol s action implements a key that enables a boolean control when
pressed and disables it when released XkiSA LockCont r ol s action is used to
implement a key that toggles the state of a boolean control each time it is pressed and
released. ThakbSA LockNoLock andXkbSA LockNoUnl ock flags allow modifying

the toggling behavior to only unlock or only lock the boolean control.

November 10, 1997 Library Version 1.0/Document Revision 1.1 154

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

ThectrlsQ, ctrlsl, ctrls2, andctris3 fields represent the boolean controls in the
enabled_ctrldield of the controls structurade section 10)1Xkb provides the following
macros, to convert between the two formats:

unsigned inXkbActionCtrls (act) /* macro */
XkbCtrisAction act /* action from which to extract controls */

XkbActionCtrlsreturns thetrls fields ofact converted to an unsigned int.

void XkbSAActionSetCtrls(act, ctrlg /* macro */
XkbCtrisAction act; [* action in which to set ctrlsO-ctrls3 */
unsigned int ctrls; [* value to set in ctrlsO-ctrls3 */

XkbSAActionSetCtrisets thetrls0O throughctrls3 fields ofact from ctrls.

16.1.11Actions for Generating Messages

Actions associated with th&kbMessageAct i on structure generafékbAct i onMes-
sage events:

#define XkbActionMessagelLength 6
typedef struct _XkbMessageAction {

unsigned char type; MXKkbSA Acti onMessage */
unsigned char flags; [* controls event generation via key presses and releases */
unsigned char message[XkbActionMessagelLength]; /* message */

} XkbMessageAction

Thetypefield of theXxkbMessageAct i on structure should always be
XkbSA Acti onMessage.

Theflagsfield is composed of the bitwise inclusive OR of the masks shown in Table

16.16.
Table 16.16 Message Action Flags
Flag Meaning
XkbSA MessageOnPr ess If set, key press events generateXbAct i onMes-

sage event that reports the keycode, event type, and
contents of thenessagédield.

XkbSA MessageOnRel ease If set, key release events generat&lapAct i onMes-
sage event that reports the keycode, event type, and
contents of thenessagéield.

XkbSA MessageCGenKeyEvent If set, key press and key release events geniéegte
Pr ess andKeyRel ease events, regardless of whether
they generatxkbAct i onMessage events.

Themessagdield is an array oKkbAct i onMessagelengt h unsigned characters and
may be set to anything the keymap designer wishes.
Detecting Key Action Messages

To receiveXkbAct i onMessage events by calling eithetkbSelectEventsr XkbSelect-
EventDetaildsee section 4.3).

To receiveXkbAct i onMessage events under all possible conditions, M&bSelect-
Eventsand pas¥kbAct i onMessageMask in bothbits_to_changandvalues_for_bits

November 10, 1997 Library Version 1.0/Document Revision 1.1 155

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

The XkbAct i onMessage event has no event details. However, you canddiBelect-
EventDetailausingXkbAct i onMessage as theevent_typand specifyingkbAl | Ac-

t i onMessageMask in bits_to_changandvalues_for_bitsThis has the same effect as a
call toXkbSelectEvents

The structure for th#&kbAct i onMessage event is defined as follows:

typedef struct _XkbActionMessage {

int type; /* Xkb extension base event code */

unsigned long serial; [* X server serial number for event */

Bool send_event; /AT ue => synthetically generated */

Display * display; [* server connection where event generated */
Time time; /* server time when event generated */

int xkb_type; [*XkbAct i onMessage */

int device; /* Xkb device ID, will not bXkbUseCor eKbd */
KeyCode keycode; I* keycode of key triggering event */

Bool press; I*Tr ue => key pressi-al se => release */

Bool key event_follows; /Tr ue => KeyPress/KeyRelease follows */
char message[XkbActionMessageLength+1]; /* message text */

} XkbActionMessageEvent

Thekeycodds the keycode of the key that was pressed or releasegrdssdield speci-
fies whether the event was the result of a key press or key release.

Thekey_event_followspecifies whether ey Pr ess (if pressis Tr ue) or KeyRel ease

(if pressis Fal se) event is also sent to the client. As with all other Xkb evetisAc-

ti onMessageEvent s are delivered to all clients requesting them, regardless of the cur-
rent keyboard focus. However, tHeyPr ess or KeyRel ease event that conditionally
follows anXkbAct i onMessageEvent is sent only to the client selected by the current
keyboard focuskey event_followis Tr ue only for the client that is actually sent the fol-
lowing KeyPr ess or KeyRel ease event.

Themessagdield is set to the message specified in the action and is guaranteed to be
NULL-terminated; the Xkb extension forceBld_L into messagekbAct i onMessage-
Lengt h].

16.1.12Actions for Generating a Different Keycode

Actions associated with thi&bRedi r ect KeyAct i on structure generateyPr ess and
KeyRel ease events containing a keycode different from the key that was pressed or
released:

typedef struct_XkbRedirectKeyAction {
unsigned char type; XkbSA Redi r ect Key */
unsigned char new_key; /* keycode to be put in event */
unsigned char mods_mask; /* mask of real mods to be reset */
unsigned char mods; /* mask of real mods to take values from */
unsigned char vmods_maskO0;/* first half of mask of virtual mods to be reset */
unsigned char vmods_mask1;/* other half of mask of virtual mods to be reset */
unsigned char vmodsO; [* first half of mask of virtual mods to take values from */
unsigned char vmods1; /* other half of mask of virtual mods to take values from */
} XkbRedirectKeyAction;

November 10, 1997 Library Version 1.0/Document Revision 1.1 156

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

Thetypefield for thexXkbRedi r ect KeyAct i on structure should always be
XkbSA Redi r ect Key.

Key presses causekayPr ess event for the key specified by thew_keyield instead of

the actual key. The state reported in this event reports the current effective modifiers
changed as follows: any real modifiers selected byribhés maskield are set to corre-
sponding values from theodsfield. Any real modifiers bound to the virtual modifiers
specified by theemods_mask@ndvmods_maskfields are either set or cleared, depend-
ing on the corresponding values in tlrodsCandvmodsIfields. If the real and virtual
modifier definitions specify conflicting values for a single modifier, the real modifier def-
inition has priority.

Key releases causekayRel ease event for the key specified by thew_keyfield
instead of the actual key. The state for this event consists of the effective keyboard modi-
fiers at the time of the release, changed as described previously.

TheXkbSA Redi r ect Key action normally redirects to another key on the same device

as the key that caused the event, unless that device does not belong to the input extension
Keyd ass, in which case this action causes an event on the core keyboard device. (The
input extension categorizes devices by breaking them into classes. Keyboards, and other
input devices with keys, are classifiedk&y Cl ass devices by the input extension.)

Thevmods_maska@ndvmods_maskfields actually represent onenods_maskalue, as
described in Chapter 7. Xkb provides the following macros, to convert between the two

formats:
unsigned inXkbSARedirectYModsMask(act) /* macro */
XkbRedirectKeyAction act, /* action from which to extract vmods */

XkbSARedirectVModsMasgturns thesrmods_maskBndvmods_maskfields ofact con-
verted to an unsigned int.

void XkbSARedirectSetVModsMaskact, vi) /* macro */

XkbRedirectKeyAction act, /* action in which to set vmods */

unsigned int v /* new value for virtual modifier mask */
XkbSARedirectSetVModsMasits theymods _mask@ndvmods_maskfields ofactfrom
vm

Similarly, thevmodsGandvmodsIfields actually represent onenodsvalue, as described
in Chapter 7. To convert between the two formats, Xkb provides the following conve-
nience macros:

unsigned inXkbSARedirectVMods(act) /* macro */
XkbRedirectKeyAction act, /* action from which to extract vmods */

XkbSARedirectVModsMas&turns thermodsOandvmodsIfields ofact converted to
an unsigned int.

void XkbSARedirectSetVModgact, vim /* macro */
XkbRedirectKeyAction act, /* action in which to set vmods */
unsigned int v, /* new value for virtual modifiers */

XkbSARedirectSetVModsMasits thermodsOandvmodslof act from v.

November 10, 1997 Library Version 1.0/Document Revision 1.1 157

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

16.1.13Actions for Generating DeviceButtonPress and DeviceButtonRelease

Actions associated witkkbDevi ceBt nAct i on structures generaf@evi ceBut t on-
Press andDevi ceBut t onRel ease events instead of normiéyPr ess andKeyRe-
| ease events:

typedef struct _XkbDeviceBtnAction {
unsigned char type; XkbSA Devi ceBtn, XkbSA LockDevi ceBtn */
unsigned char flags; I* wittype specifies locking or unlocking */
unsigned char count; /* controls number of DeviceButtonPress and Release events */
unsigned char button; /* index of button device*/
unsigned char device; /* device ID of an X input extension device */
} XkbDeviceBtnAction;

Thetypefield can have any one of the values shown in Table 16.17.
Table 16.17 Device Button Action Types

Type Effect
XkbSA Devi ceBtn .

If the button specified by this action is logically down, the key
press and corresponding release are ignored and have no effect.
If the device or button specified by this action are illegal, this
action behaves likdkbSA NoAct i on.

» Otherwise, key presses cause one or more input extension
device events instead of the usual key press event. dbtira
field is zero, a key press generates a sibgle ceBut t on-

Pr ess event. If count is greater than zero, a key press event
generatesountpairs ofDevi ceBut t onPr ess andDevi ce-
But t onRel ease events.

* If countis zero, a key release generates an input extension

Devi ceBut t onRel ease event that matches the event gener-

ated by the corresponding key presediintis nonzero, a key

release does not causBevi ceBut t onRel ease event. Key
releases never caukeyRel ease events.

XkbSA_LockDevi ceBt n « If the device or button specified by this action are illegal, this

action behaves likdkbSA NoAct i on.

» Otherwise, if the specified button is not locked and the
XkbSA LockNoLock bit is not set in th#agsfield, a key
press generates an input extendderi ceBut t onPr ess
event instead of HeyPr ess event and locks the button. If the
button is already locked or¥kbSA LockNoLock bit is setin
theflagsfield, the key press is ignored and has no effect.

* If the corresponding key press was ignored, and if the
XkbSA LockNoUnl ock bit is not set in thélagsfield, a key
release generates an input extenflewi ceBut t onRe-
| ease event instead of KeyRel ease event and unlocks the
button. If the corresponding key press locked a button, the key
release is ignored and has no effect.

Theflagsfield is composed of the bitwise inclusive OR of the masks shown in Table

16.18.
Table 16.18 Device Button Action Flags
Flag Meaning
XkbSA LockNoLock If set, and the action type #¥bSA LockDevi ceBt n, the

server only unlocks the button.

November 10, 1997 Library Version 1.0/Document Revision 1.1 158

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

Table 16.18 Device Button Action Flags

Flag Meaning

XkbSA LockNoUnl ock If set, and the action type #¥bSA LockDevi ceBt n, the
server only locks the button.

16.1.14Actions for Simulating Events from Device Valuators

A valuator manipulates a range of values for some entity, like a mouse axis, a slider or a
dial. Actions associated witkkbDevi ceVal uat or Act i on structures are used to simu-
late events from one or two input extension device valuators.

typedef struct _XkbDeviceValuatorAction {
unsigned char type; XkbSA Devi ceVal uat or */
unsigned char device; [* device ID */
unsigned char vl what; /* determines how valuator is to behave for valuator 1 */
unsigned char vl _ndx; /* specifies a real valuator */
unsigned char v1_value; /* the value for valuator 1 */
unsigned char v2_what; /* determines how valuator is to behave for valuator 2 */
unsigned char v2_ndx; /* specifies a real valuator */
unsigned char v2_value; /*the value for valuator 1 */
} XkbDeviceValuatorAction;

If deviceis illegal or if neithenv1l_ndxnorv2_ndxspecifies a legal valuator, this action
behaves likekbSA NoAct i on.

The low four bits ofrl_whatandv2_whatspecify the corresponding scale value (denoted
val <n>Scal e in Table 16.1Y, if needed. The high four bits e1_whatandv2_whatspecify
the operation to perform to set the valuEse high four bits o¥1_whatandv2_whatcan
have the values shown in Table 16.17; the usab&n>Scal e is shown in that table

also.

Table 16.19 Device Valuator v<n>_what High Bits Values
Value of high bits Effect
XkbSA | gnor eVal No action
XkbSA Set Val M n v<n>_valueis set to its minimum legal value.
XkbSA Set Val Cent er v<n>_valueis centered (to (max-min)/2).
XkbSA Set Val Max v<n>_valueis set to its maximum legal value.

XkbSA Set Val Rel ative v<n> value* (2V@<n>SCal¢ i aqded ta<n>_value
XkbSA Set Val Absol ute v<n>_valueis set to (¥2<n>Scal¢

lllegal values foXkbSA Set Val Rel at i ve or XkbSA Set Val Absol ut e are clamped into
range. Note that all of these possibilities are legal for absolute valuators. For relative valuators,
only XkbSA Set Val Rel at i ve is permitted. Part of the input extension description of a device
is the range of legal values for all absolute valuators, whence the maximum and minimum legal
values shown ifable 16.17

The following two masks are provided as a convenience to select either portion of
vl whatorv2_what

#define XkbSA_ValOpMask (Ox70)
#define XkbSA_ValScaleMask (0x07)

November 10, 1997 Library Version 1.0/Document Revision 1.1 159

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

vl ndxandv2_ndxspecify valuators that actually exists. For example, most mice have
two valuators (x and y axes) so the only legal values for a mouse would be 0 and 1. For a
dial box with eight dials, any value in the range 0..7 would be correct.

16.1.150btaining Key Actions for Keys from the Server

To update the actions (thkey_actsarray) for a subset of the keys in a keyboard descrip-
tion, useXkbGetKeyActions

StatusXkbGetKeyActions(dpy; first, num xkb

Display * dpy; [* connection to X server */

unsigned int first; * keycode of first key of interest */

unsigned int num /* number of keys desired */

XkbDescPtr xkby * pointer to keyboard description where result is stored */

XkbGetKeyActionsends a request to the server to obtain the actionsifiokeys on the
keyboard starting with kefyrst. It waits for a reply and returns the actions in the
server>key actdield of xkb. If successfulXkbGetKeyActioneeturnsSuccess. Thexkb
parameter must be a pointer to a valid Xkb keyboard description.

If the servermap in thexkb parameter has not been allocabdklhyGetKeyActionallocates
and initializes it before obtaining the actions.

If the server does not have a compatible version of Xkb, or the Xkb extension has not been
properly initialized XkbGetKeyActioneeturnsBadAccess. If numis less than 1 or

greater thanxkbMaxKeyCount , XkbGetKeyActionseturnsBadVal ue. If any allocation

errors occurXkbGetKeyActionseturnsBadAl | oc.

16.1.16Changing the Number of Actions Bound to a Key
To change the number of actions bound to a keyXkb&esizeKeyAction
XkbAction *XkbResizeKeyActiongxkb, key needejl

XkbDescRec * xkby /* keyboard description to change */
int key, /* keycode of key to change */
int needed /* new number of actions required */

Thexkbparameter points to the keyboard description containingeywhose number of
actions is to be changed. Tkeyparameter is the keycode of the key to change, and
neededspecifies the new number of actions required for the key.

XkbResizeKeyActiomsserves the space needed for the actions and returns a pointer to the
beginning of the new array that holds the actions. It can changettheum_actsand
size_actdields ofxkb->serverif it is necessary to reallocate thetsarray.

If neededs greater than the current number of keysyms for theXdédyResizeKeyActions
initializes all new actions in the arrayNbAct i on.

Because the number of actions needed by a key is normally computed as width * number
of groups, an&KkbResizeKeyActiomkwes not modify either the width or number of groups

for the key, a discrepancy exists on return fddkbResizeKeyActiometween the space
allocated for the actions and the number required. The unused entries in the list of actions
returned byXkbResizeKeyActiorae not preserved across future calls to any of the map
editing functions, so you must update the key actions (which updates the width and num-

November 10, 1997 Library Version 1.0/Document Revision 1.1 160

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

16.2

ber of groups for the key) before calling another allocator function. A cgkti&hange-
TypesOfKeyipdates these.

If any allocation errors occur while resizing the number of actions bound to the key,
XkbResizeKeyActiomsturnsNULL.

Note A change to the number of actions bound to a key should be accompanied by a change
in the number of symbols bound to a key. Refer to section 15.3.7 for more information
on changing the number of symbols bound to a key.

Key Behavior

Key behavior refers to the demeanor of a key. For example, the expected behavior of the
CapsLock key is that it logically locks when pressed, and then logically unlocks when
pressed again.

16.2.1 Radio Groups

Keys that belong to the same radio group haveid<B Radi oG oup type in thetype

field and the radio group index specified in taafield in thexkbBehavi or structure.

If the radio group has a name in KebNanmesRec structure, the radio group index is the
index into theadio_grouparray in thexkbNanmesRec structure. A radio group key when
pressed stays logically down until another key in the radio group is pressed, when the first
key becomes logically up and the new key becomes logically down. Setting the
XkbKB_RCAl | owNone bit in the behavior for all of the keys of the radio group means that
pressing the logically down member of the radio group causes it to logically release, in
which case none of the keys of the radio group would be logically down. If

XkbKB_RCGAI | owNone is not set, there is no way to release the logically down member of
the group.

The low five bits of thelatafield of theXkbBehavi or structure are the group number,
the high three bits are flags. The only flag currently defined is:

#define XkbRG_AllowNone 0x80

16.2.2 The XkbBehavior Structure

Thebehaviorsfield of the server map is an arrayXdoBehavi or structures, indexed by
keycode, and contains the behavior for each key Xkb&ehavi or structure is defined
as follows:

typedef struct _XkbBehavior {
unsigned char type; I* behavior type + optiodabKB_Per manent bit */
unsigned char data;

} XkbBehavior;

Thetypefield specifies the Xkb behavior, and the value ofdaefield depends on the
type Xkb supports the key behaviors shown in Table 16.20.

Table 16.20 Key Behaviors

Type Effect
XkbKB_Def aul t Press and release events are processed normallglafdfesld is unused.

November 10, 1997 Library Version 1.0/Document Revision 1.1 161

The X Keyboard Extension

16 Xkb Server Keyboard Mapping

Table 16.20 Key Behaviors

Type

Effect

XkbKB_Lock

XkbKB_Radi oG oup

XkbKB_Over | ayl

XkbKB_Over | ay?2

If a key is logically up (that is, the corresponding bit of the core key map

is cleared) when it is pressed, the key press is processed normally and the
corresponding release is ignored. If the key is logically down when
pressed, the key press is ignored but the corresponding release is pro-
cessed normally. Theatafield is unused.

If another member of the radio group is logically down (all members of
the radio group have the same index, specifiehig) when a key is

pressed, the server synthesizes a key release for the member that is logi-
cally down and then processes the new key press event normally.

If the key itself is logically down when pressed, the key press event is
ignored, but the processing of the corresponding key release depends on
the value of thexkb_RGAl | owNone bit in flags If it is set, the key

release is processed normally; otherwise, the key release is also ignored.

All other key release events are ignored.

If the Over | ayl control is enabled (see section 10d8tais interpreted

as a keycode, and events from this key are reported as if they came from
datas keycode. Otherwise, press and release events are processed nor-
mally.

If the Over | ay2 control is enabled (see section 10d8tais interpreted

as a keycode, and events from this key are reported as if they came from
datds keycode. Otherwise, press and release events are processed nor-
mally.

Xkb also provides the maskKkbKB_Per manent to specify whether the key behavior

type should be simulated by Xkb or whether the key behavior describes an unalterable
physical, electrical, or software aspect of the keyboard. [Kith&B_ Per manent bit is

not set in theypefield, Xkb simulates the behavior in software. Otherwise, Xkb relies
upon the keyboard to implement the behavior.

16.2.3 Obtaining Key Behaviors for Keys from the Server

To obtain the behaviors (thehaviorsarray) for a subset of the keys in a keyboard
description from the server, us&bGetKeyBehaviors

StatusXkbGetKeyBehaviors(dpy; first, num xkb)

Display *

unsigned int
unsigned int
XkbDescPtr

dpy, [* connection to server */

first; /* keycode of first key to get */

numn /* number of keys for which behaviors are desired */
xkby /* Xkb description to contain the result */

XkbGetKeyBehaviorsends a request to the server to obtain the behaviorarfdteys on
the keyboard starting with the key whose keycodiess It waits for a reply and returns
the behaviors in theerver>behaviorsfield of xkh. If successfulXkbGetKeyBehaviors

returnsSuccess.

If the servermap in thexkb parameter has not been allocateklhyGetKeyBehaviorallo-
cates and initializes it before obtaining the actions.

If the server does not have a compatible version of Xkb, or the Xkb extension has not been
properly initialized XkbGetKeyBehavioneturnsBadAccess. If numis less than 1 or
greater thanxkbMaxKeyCount , XkbGetKeyBehavioneturnsBadVal ue. If any alloca-
tion errors occurXkbGetKeyBehavioneturnsBadAl | oc.

November 10, 1997

Library Version 1.0/Document Revision 1.1 162

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

16.3 Explicit Components—Avoiding Automatic Remapping by the Server

Whenever a client remaps the keyboard using core protocol requests, Xkb examines the
map to determine likely default values for the components that cannot be specified using
the core protocol (see section 17.1.2 for more information on how Xkb chooses the default

values).

This automatic remapping might replace definitions explicitly requested by an application,
so the Xkb keyboard description defines an explicit components mask for each key. Any
aspects of the automatic remapping listed in the explicit components mask for a key are

not changed by the automatic keyboard mapping.

The explicit components masks are held ineklicit field of the server map, which is an

array indexed by keycode. Each entry in this array is a mask that is a bitwise inclusive OR

of the values shown in Table 16.21.
Table 16.21 Explicit Component Masks

Bit in Explicit Mask ~ Value Protects Against

ExplicitKeyTypel (1<<0) Automatic determination of the key type associated with
QG oupl.

ExplicitKeyType2 (1<<1) Automatic determination of the key type associated with
QG oup2.

ExplicitKeyType3 (1<<2) Automatic determination of the key type associated with
G oup3.

ExplicitKeyTyped4 (1<<3) Automatic determination of the key type associated with
G oup4.

Explicitinterpret (1<<4) Application of any of the fields of a symbol interpretation
to the key in question.

Expl i ci t Aut oRepeat (1<<5) Automatic determination of auto-repeat status for the key,
as specified in a symbol interpretation.

ExplicitBehavior (1<<6) Automatic assignment of thékbKB_Lock behavior to the
key, if theXkbSl _Locki ngKey flag is set in a symbol
interpretation.

Expl i ci t VModNMap (1<<7) Automatic determination of the virtual modifier map for

the key based on the actions assigned to the key and the
symbol interpretations that match the key.

16.3.1 Obtaining Explicit Components for Keys from the Server

To obtain the explicit components (teplicitarray) for a subset of the keys in a keyboard
description, usXkbGetKeyExplicitComponents

StatusXkbGetKeyExplicitComponents(dpy; first, num xkb

Display * dpy; [* connection to server */

unsigned int first; [* keycode of first key to fetch */

unsigned int numn I* number of keys for which to get explicit info */
XkbDescPtr xkby /* Xkb description in which to put results */

XkbGetKeyExplicitComponergends a request to the server to obtain the explicit compo-

nents fomumkeys on the keyboard starting with Kagt. It waits for a reply and returns
the explicit components in tleerver>explicit array ofxkh If successfulXkbGetKeyEx-
plicitComponentseturnsSuccess. Thexkb parameter must be a pointer to a valid Xkb
keyboard description.

November 10, 1997 Library Version 1.0/Document Revision 1.1 163

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

16.4

If the servermap in thexkb parameter has not been allocabeklh GetKeyExplicitCompo-
nentsallocates and initializes it before obtaining the actions.

If the server does not have a compatible version of Xkb, or the Xkb extension has not been
properly initialized XkbGetKeyExplicitComponemntsturnsBadMat ch. If numis less than

1 or greater thakkbMaxKeyCount , XkbGetKeyExplicitComponemntsturnsBadVal ue.

If any allocation errors occuxkbGetKeyExplicitComponentsturnsBadAl | oc.

Virtual Modifier Mapping

Thevmodsmember of the server map is a fixed-length array contakbduni r -

t ual Mods entries. Each entry corresponds to a virtual modifier and provides the binding
of the virtual modifier to the real modifier bits. Each entry invimodsarray is a bitwise
inclusive OR of the legal modifier masks:

Shi f t Mask
LockMask
Cont r ol Mask
Mod1Mask
Mod2Mask
Mod3Mask
Mod4Mask
Mod5Mask

Thevmodmapmember of the server map is similar to thedmaparray of the client map

(see section 15.4), but is used to define the virtual modifier mapping for each key. Like the
modmapmember, it is indexed by keycode, and each entry is a mask representing the vir-
tual modifiers bound to the corresponding key:

» Each of the bits in @modmapentry represents an index into theodsmember. That
is, bit 0 of avmodmapentry refers to index O of thenodsarray, bit 1 refers to index 1,
and so on.

« Ifabitis setin themodmapentry for a key, that key is bound to the corresponding vir-
tual modifier in thevmodsarray.

Thevmodmapandvmodsmembers of the server map are the “master” virtual modifier
definitions. Xkb automatically propagates any changes to these fields to all other fields
that use virtual modifier mappings.

November 10, 1997 Library Version 1.0/Document Revision 1.1 164

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

The overall relationship of fields dealing with virtual modifiers in an Xkb keyboard
description are shown in Figure 16.2.

KeyCode
I
:
— :
vmods[0] | ,
Define real dsf1 g J:u
vmods !
modifiers bound :’ 1] > !
to virtual | vmods([2] . |
modifier | unsigned short |
I (one per key) !
| Defines virtual modifiefs
! vmods[15] for each key. !
| vmodmap | |
server — |
! XkbServerMapRec |
I I
names oo mmmmmm TR '»
| vmods[0]
XkbDescRec = vmods[1]
vmods[2]
vmods[15]
XkbNamesRec

Figure 16.2 Virtual Modifier Relationships

16.4.1 Obtaining Virtual Modifier Bindings from the Server

To obtain a subset of the virtual modifier bindings (im®dsarray) in a keyboard descrip-
tion, useXkbGetVirtualMods

StatusXkbGetVirtualMods (dpy, which xkb

Display * dpy, [* connection to server */
unsigned int which /* mask indicating virtual modifier bindings to get */
XkbDescPtr xkby /* Xkb description where results will be placed */

XkbGetVirtualModsends a request to the server to obtaiwthedsentries for the virtual
modifiers specified in the maskhich and waits for a reply. See section 7.1 for a descrip-
tion of how to determine the virtual modifier mask. For each bit sghioh, XkbGetVir-
tualModsupdates the corresponding virtual modifier definition ingberer->vmods

array ofxkb. Thexkb parameter must be a pointer to a valid Xkb keyboard description. If
successfulXkbGetVirtualModseturnsSuccess.

If the servermap has not been allocated in k& parameterXkbGetVirtualModsllo-
cates and initializes it before obtaining the virtual modifier bindings.

November 10, 1997 Library Version 1.0/Document Revision 1.1 165

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

If the server does not have a compatible version of Xkb, or the Xkb extension has not been
properly initialized XkbGetVirtualModseturnsBadMat ch. Any errors in allocation
causexXkbGetVirtualModgo returnBadAl | oc.

16.4.2 Obtaining Per-Key Virtual Modifier Mappings from the Server

To obtain the virtual modifier map (thenodmaparray) for a subset of the keys in a key-
board description, usekbGetKeyVirtualModMap

StatusXkbGetKeyVirtualModMap (dpy; first, num xkb

Display * dpy, [* connection to server */

unsigned int first; [* keycode of first key to fetch */

unsigned int num [* # keys for which virtual mod maps are desired */
XkbDescPtr xkby /* Xkb description where results will be placed */

XkbGetKeyVirutalModmagpends a request to the server to obtain the virtual modifier
mappings fonumkeys on the keyboard starting with Kagt. It waits for a reply and
returns the virtual modifier mappings in therver>vmodmaparray ofxkb. If successful,
XkbGetKeyVirtualModMapeturnsSuccess. Thexkb parameter must be a pointer to a
valid Xkb keyboard description

If the servermap in thexkb parameter has not been allocabéklhGetKeyVirtualModMap
allocates and initializes it before obtaining the virtual modifier mappings.

If the server does not have a compatible version of Xkb, or the Xkb extension has not been
properly initialized XkbGetKeyVirtualModMapeturnsBadMat ch. If numis less than 1

or greater thadkbMaxKeyCGount , XkbGetKeyVirtualModMapeturnsBadVal ue. If any
allocation errors occukkbGetKeyVirtualModMapeturnsBadAl | oc.

November 10, 1997 Library Version 1.0/Document Revision 1.1 166

The X Keyboard Extension 17 The Xkb Compatibility Map

17 The Xkb Compatibility Map

As shown in Figure 17.1, the X server is normally dealing with more than one client, each
of which may be receiving events from the keyboard, and each of which may issue
requests to modify the keyboard in some manner. Each client may be either Xkb-unaware,
Xkb-capable, or Xkb-aware. The server itself may be either Xkb-aware or Xkb-unaware.

If the server is Xkb-unaware, Xkb state and keyboard mappings are not involved in any
manner, and Xkb-aware clients may not issue Xkb requests to the server. If the server is
Xkb-aware, the server must be able to deliver events and accept requests in which the key-
board state and mapping are compatible with the mode in which the client is operating.
Consequently, for some situations, conversions must be made between Xkb state / key-
board mappings and core protocol state / keyboard mappings, and vice versa.

Xkb-aware
Server
Maintains Xkb State and Mapping,
core kb mapping, but not core kb stat

Keycode

| Keyboara |

\1%

‘ Core protocol

A Xkb| Xkb protocol
g\ config
mapping
config kb Xkb
mapping Xkb
kb
mapping
Xkb .
config ‘\c:flg
state state¢
Y
Xkb-unaware Xkb-capable Xkb-aware
Client Client Client
Core kb Xlib Xkb-aware Xlib Xkb-aware Xlib

Xkb-unaware App

Xkb-unaware App

Xkb-aware App

Figure 17.1 Server Interaction with Types of Clients

In addition to these situations involving a single server, there are cases where a client that
deals with multiple servers may need to configure keyboards on different servers to be
similar and the different servers may not all be Xkb-aware. Finally, a client may be deal-
ing with descriptions of keyboards (files, and so on) that are based on core protocol and
therefore may need to be able to map these descriptions to Xkb descriptions.

An Xkb-aware server maintains keyboard state and mapping as an Xkb keyboard state and
an Xkb keyboard mapping plus a compatibility map used to convert from Xkb compo-
nents to core components and vice versa. In addition, the server also maintains a core key-
board mapping that approximates the Xkb keyboard mapping. The core keyboard

mapping may be updated piecemeal, on a per-key basis. When the server receives a core
protocolChangeKeyboar dMappi ng or Set Modi f i er Mappi ng request, it updates its

core keyboard mapping, then uses the compatibility map to update its Xkb keyboard map-

November 10, 1997 Library Version 1.0/Document Revision 1.1 167

The X Keyboard Extension 17 The Xkb Compatibility Map

ping. When the server receivesXkbSet Map request, it updates those portions of its

Xkb keyboard mapping specified by the request, then uses its compatibility map to update
the corresponding parts of its core keyboard map. Consequently, the server’'s Xkb key-
board map and also its core keyboard map may contain components that were set directly
and others that were computed. Figure 17.2 illustrates these relationships.

Note The core keyboard map is contained only in the server, not in any client-side data
structures.

Xkb State

Base Modifiers and Group— Effective o
Locked Modifiers and Group—+—® Modifiers _—|> L Compatibility State

Latched Modifiers and Group- and Group — Cgmpati?_igi.tly_([L%oklgps?t?te
i ompatibili ra ate

Core Pointer Button State LookupState- J—> p \
ServerinternalModifiers = — Grab State |
IgnoreLocksModifiers
IgnoreGroupLock —

Compatibility Map
Explicit Override Controls

(=)

Xkb Keyboard Map - Core Keyboard Ma|

Figure 17.2 Server Derivation of State and Keyboard Mapping Components

There are three kinds of compatibility transformations made by the server:

1. Xkb State to Core State

Keyboard state information reported to a client in the state field of various core events
may be translated from the Xkb keyboard state maintained by the server, which
includes a group number, to core protocol state, which does not.

In addition, whenever the Xkb state is retrieved cimpat_state
compat_grab_mod&ndcompat_lookup_modgelds of theXkbSt at eRec returned
indicate the result of applying the compatibility map to the current Xkb state in the
server.

2. Core Keyboard Mapping to Xkb Keyboard Mapping

After core protocol requests received by the server to change the keyboard mapping
(ChangeKeyboar dvappi ng andSet Modi f i er Mappi ng) have been applied to the
server’s core keyboard map, the results must be transformed to achieve an equivalent
change of the Xkb keyboard mapping maintained by the server.

3. Xkb Keyboard Mapping to Core Keyboard Mapping

After Xkb protocol requests received by the server to change the keyboard mapping
(XkbSet Map) have been applied to the server's Xkb keyboard map, the results are

November 10, 1997 Library Version 1.0/Document Revision 1.1 168

The X Keyboard Extension 17 The Xkb Compatibility Map

17.1

transformed to achieve an approximately equivalent change to the core keyboard map-
ping maintained by the server.

This chapter discusses how a client may modify the compatibility map so that subsequent
transformations have a particular result.

The XkbCompatMap Structure

All configurable aspects of mapping Xkb state and configuration to and from core proto-
col state and configuration are defined by a compatibility map, containedXkb&m

pat Map structure; plus a set of explicit override controls used to prevent particular
components of type 2 (core-to-Xkb keyboard mapping) transformations from automati-
cally occurring. These explicit override controls are maintained in a separate data structure
discussed in section 16.3.

Thecompatmember of an Xkb keyboard descriptioklDescRec) points to the
XkbConpat Map structure:

typedef struct _XkbCompatMapRec {

XkbSyminterpretPtr ~ sym_interpret; [* symbol based key semantics*/
XkbModsRec groups[XkbNumKbdGroups]; [* group => modifier map */
unsigned short num_si; [* # structures usedyim_interpret/
unsigned short size_si; [* # structures allocateslyim_interpret/

} XkbCompatMapRec, *XkbCompatMapPtr;

compat ﬁ

sym_interpret *
groups|O] Group
groups[1] compatibility 0
maps
XkbDescRec groups[2]
groups|3]
num_si num_si-1
size_si
XkbCompatMapRec size_si- 1

XkbSyminterpretRec(s)

Figure 17.3 Xkb Compatibility Data Structures

The subsections that follow discuss how the compatibility map and explicit override con-
trols are used in each of the three cases where compatibility transformations are made.

17.1.1 Xkb State to Core Protocol State Transformation

As shown in Figure 17.3, there are fgwoup compatibility mapécontained irgroups
[0..3]) in theXkbConpat MapRec structure, one per possible Xkb group. Each group com-
patibility map is a modifier definition (see section 7.2 for a description of modifier defini-

November 10, 1997 Library Version 1.0/Document Revision 1.1 169

The X Keyboard Extension 17 The Xkb Compatibility Map

tions). Themaskcomponent of the definition specifies which real modifiers should be set
in the core protocol state field when the corresponding group is active. Because only one
group is active at any one time, only one of the four possible transformations is ever
applied at any one point in time. If the device described bykbBescRec does not sup-

port four groups, the extra groups fields are present, but undefined.

Normally, the Xkb-aware server reports keyboard state istdtemember of events such
as aKeyPr ess event andut t onPr ess event, encoded as follows:

bits meaning

15 0

13-14 Group index
8-12 Pointer Buttons
0-7 Modifiers

For Xkb-unaware clients, only core protocol keyboard information may be reported.
Because core protocol does not define the group index, the group index is mapped to mod-
ifier bits as specified by thgroupggroup index] field of the compatibility map (the bits

set in the compatibility map are ORed into bits 0-7 of the state), and bits 13-14 are
reported in the event as zero.

17.1.2 Core Keyboard Mapping to Xkb Keyboard Mapping Transformation

When a core protocol keyboard mapping request is received by the server, the server’'s
core keyboard map is updated, and then the Xkb map maintained by the server is updated.
Because a client may have explicitly configured some of the Xkb keyboard mapping in the
server, this automatic regeneration of the Xkb keyboard mapping from the core protocol
keyboard mapping should not modify any components of the Xkb keyboard mapping that
were explicitly set by a client. The client must set explicit override controls to prevent this
from happening (see section 16.3). The core-to-Xkb mapping is done as follows:

1. Map the symbols from the keys in the core keyboard map to groups and symbols on
keys in the Xkb keyboard map. The core keyboard mapping is of fixed width, so each
key in the core mapping has the same number of symbols associated with it. The Xkb
mapping allows a different number of symbols to be associated with each key; those
symbols may be divided into a different number of groups (1-4) for each key. For each
key, this process therefore involves partitioning the fixed number of symbols from the
core mapping into a set of variable-length groups with a variable number of symbols
in each group. For example, if the core protocol map is of width five, the partition for
one key might result in one group with two symbols and another with three symbols.
A different key might result in two groups with two symbols plus a third group with
one symbol. The core protocol map requires at least two symbols in each of the first
two groups.

la.For each changed key, determine the number of groups represented in the new core
keyboard map. This results in a tentative group count for each key in the Xkb map.

1b. For each changed key, determine the number of symbols in each of the groups
found in step 1la. There is one explicit override control associated with each of the
four possible groups for each Xkb k&xpl i ci t KeyTypel through
Expl i ci t KeyTyped4. If no explicit override control is set for a group, the number
of symbols used for that group from the core map is two. If the explicit override
control is set for a group on the key, the number of symbols used for that Xkb

November 10, 1997 Library Version 1.0/Document Revision 1.1 170

The X Keyboard Extension 17 The Xkb Compatibility Map

1c.

1d.

le.

group from the core map is the width of the Xkb group with one exception:
because of the core protocol requirement for at least two symbols in each of groups
one and two, the number of symbols used for groups one and two is the maximum
of 2 or the width of the Xkb group.

For each changed key, assign the symbols in the core map to the appropriate group
on the key. If the total number of symbols required by the Xkb map for a particular
key needs more symbols than the core protocol map contains, the additional sym-
bols are taken to RdSynbol keysyms appended to the end of the core set. If the
core map contains more symbols than are needed by the Xkb map, trailing sym-
bols in the core map are discarded. In the absence of an explicit override for group
one or two, symbols are assigned in order by group; the first symbols in the core
map are assigned to group one, in order, followed by group two, and so on. For
example, if the core map contained eight symbols per key, and a particular Xkb
map contained 2 symbols for G1 and G2 and three for G3, the symbols would be
assigned as (G is group, L is shift level):

G1L1 G1L2 G2L1 G2L2 G3L1 G3L2 G3L3

If an explicit override control is set for group one or two, the symbols are taken
from the core set in a somewhat different order. The first four symbols from the
core set are assigned to G1L1, G1L2, G2L1, G2L2, respectively. If group one
requires more symbols, they are taken next, and then any additional symbols
needed by group two. Group three and four symbols are taken in complete
sequence after group two. For example, a key with four groups and three symbols
in each group would take symbols from the core set in the following order:

G1L1 G1L2 G2L1 G2L2 G1L3 G2L3 G3L1 G3L2 G3L3 G4L1 G4L2 GA4L3

As previously noted, the core protocol map requires at lease two symbols in
groups one and two. Because of this, if an explicit override control for an Xkb key
is set and group one and / or group two is of width one, it is not possible to gener-
ate the symbols taken from the core protocol set and assigned to position G1L2
and / or G2L2.

For each group on each changed key, assign a key type appropriate for the symbols
in the group.

For each changed key, remove any empty or redundant groups.

At this point, the groups and their associated symbols have been assigned to the corre-
sponding key definitions in the Xkb map.

2. Apply symbol interpretations to modify key operation. This phase is completely
skipped if theExpl i ci t | nt er pr et override control bit is set in the explicit controls
mask for the Xkb key (see section 16.3).

2a.For each symbol on each changed key, attempt to match the symbol and modifiers

from the Xkb map to a symbol interpretation describing how to generate the sym-
bol.

2b. When a match is found in step 2a, apply the symbol interpretation to change the

semantics associated with the symbol in the Xkb key map. If no match is found,
apply a default interpretation.

November 10,

1997 Library Version 1.0/Document Revision 1.1 171

The X Keyboard Extension 17 The Xkb Compatibility Map

The symbol interpretations used in step 2 are configurable and may be specified using
XkbSymi nt er pr et Rec structures referenced by thgm_interprefield of anXkbCom
pat MapRec (see Figure 17.3).

Symbol Interpretations — the XkbSyminterpretRec Structure

Symbol interpretations are used to guide the X server when it modifies the Xkb keymap in
step 2. An initial set of symbol interpretations is loaded by the server when it starts. A cli-
ent may add new ones usiKgbSetCompatMafsee section 17.4).

Symbol interpretations result in key semantics being set. When a symbol interpretation is
applied, the following components of server key event processing may be modified for the
particular key involved:

Virtual modifier map

Auto repeat

Key behavior (may be set ¥xbKB Lock)
Key action (see section 16.1)

TheXkbSymni nt er pr et Rec structure specifies a symbol interpretation:

typedef struct {
KeySym sym; /* keysym of interest &ULL */
unsigned char flags; MXkbSI _Aut oRepeat, XkbSI Locki ngKey */
unsigned char match; * specifies how mods is interpreted */
unsigned char mods; I* modifier bits, correspond to eight real modifiers */
unsigned char virtual_mod; /* 1 modifier to add to key virtual mod map */
XkbAnyAction act; [* action to bind to symbol position on key */

} XkbSyminterpretRec,*XkbSymiInterpretPtr;

If symis notNULL, it limits the symbol interpretation to keys on which that particular key-
sym is selected by the modifiers matching the criteria specifiesbldgandmatch If sym

is NULL, the interpretation may be applied to any symbol selected on a key when the mod-
ifiers match the criteria specified liyodsandmatch

matchmust be one of the values shown in Table 17.1 and specifies how the real modifiers
specified inrmodsare to be interpreted.

Table 17.1 Symbol Interpretation Match Criteria

Match Criteria Value Effect

XkbSlI _NoneCf (0) None of the bits that are onnmdscan be set, but
other bits can be.

XkbSI _AnyCf O None (1) Zero or more of the bits that are omindscan be set,
as well as others

XkbSl _AnyF (2) One or more of the bits that are onmndscan be set, as
well as any others.

XkbSI Al O (3) All of the bits that are on imodsmust be set, but oth-
ers may be set as well

XkbSl _Exactly 4) All of the bits that are on imodsmust be set, and no

other bits may be set

In addition to the above bitsyatchmay contain thkbSl _Level Chenl y bit, in which
case the modifier match criteria specifiedniiydsandmatchapplies only ifsymis in level

November 10, 1997 Library Version 1.0/Document Revision 1.1 172

The X Keyboard Extension 17 The Xkb Compatibility Map

one of its group; otherwisenodsandmatchare ignored and the symbol matches a condi-
tion where no modifiers are set.

#define XkbSI_LevelOneOnly (0x80) /* use mods + match only if sym is level 1 */
If no matching symbol interpretation is found, the server uses a default interpretation

where:
sym= 0
flags= XkbSl _Aut oRepeat
match= XkbSl _AnyCr O None
mods= 0
virtual_ mod= XkbNohbdi fi er
act= SA NoAction

When a matching symbol interpretation is found in step 2a, the interpretation is applied to
modify the Xkb map as follows.

Theactfield specifies a single action to be bound to the symbol position; any key event
that selects the symbol causes the action to be taken. Valid actions are defined in section
16.1.

If the Xkb keyboard map for the key does not havexd i ci t VMbdMap control set, the
XkbSl _Level OneOnl y bit and symbol position are examined. If the

XkbSl _Level OneOnl y bit is not set ifmatchor the symbol is in position G1L1, the
virtual_modfield is examined. I¥irtual_modis notXkbNoMbdi fi er, virtual_modspecifies
a single virtual modifier to be added to the virtual modifier map for thevityal_modis
specified as an index in the range [0..15].

If the matching symbol is in position G1L1 of the key, two bits in the flags field poten-
tially specify additional behavior modifications:

#define XkbSIl_AutoRepeat (1<<0) /* key repeats if sym is in position G1L1 */
#define XkbSI_LockingKey (1<<1) /* s&B Lock behavior if symis in psn G1L1 */

If the Xkb keyboard map for the key does not havéid i ci t Aut oRepeat control

set, its auto repeat behavior is set based on the value XXk Aut oRepeat bit. If
theXkbSl _Aut oRepeat bit is set, the auto-repeat behavior of the key is turned on; other-
wise, it is turned off.

If the Xkb keyboard map for the key does not havéiid i ci t Behavi or control set,
its locking behavior is set based on the value o)Xi{i¥Sl _Locki ngKey bit. If

XkbSl _Locki ngKey is set, the key behavior is sek®_Lock; otherwise, it is turned off
(see section 16.3).

17.1.3 Xkb Keyboard Mapping to Core Keyboard Mapping Transformations

Whenever the server processes Xkb requests to change the keyboard mapping, it discards
the affected portion of its core keyboard mapping and regenerates it based on the new Xkb

mapping.

When the Xkb mapping for a key is transformed to a core protocol mapping, the symbols
for the core map are taken in the following order from the Xkb map:

G1L1 G1L2 G2L1 G2L2 G1L3-n G2L3-n G3L1-n G4L1-n

November 10, 1997 Library Version 1.0/Document Revision 1.1 173

The X Keyboard Extension 17 The Xkb Compatibility Map

17.2

If group one is of width one in the Xkb map, G1L2 is taken to be NoSymbol; similarly, if
group two is of width one in the Xkb map, G2L2 is taken to be NoSymbol.

If the Xkb key map for a particular key has fewer groups than the core keyboard, the sym-
bols for group one are repeated to fill in the missing core components. For example, an
Xkb key with a single width-three group would be mapped to a core mapping counting
three groups as:

G1L1 G1L2 G1L1 G1L2 G1L3 G1L3 G1L1 G1L2 G1L3

When a core keyboard map entry is generated from an Xkb keyboard map entry, a modi-
fier mapping is generated as well. The modifier mapping contains all of the modifiers
affected by any of the actions associated with the key combined with all of the real modi-
fiers associated with any of the virtual modifiers bound to the key. In addition, if any of
the actions associated with the key affect any component of the keyboard group, all of the
modifiers in themaskfield of all of the group compatibility maps are added to the modi-

fier mapping as well. While axkbSA | SCLock action can theoretically affect any mod-
ifier, if the Xkb mapping for a key specifies #kbSA | SCLock action, only the

modifiers or group that are set by default are added to the modifier mapping.

Getting Compatibility Map Components From the Server

UseXkbGetCompatMafo fetch any combination of the current compatibility map com-
ponents from the server. When another client modifies the compatibility map, you are
notified if you have selected fokbConpat MapNot i fy events (see section 17.Xkb-
GetCompatMaps particularly useful when you receive an event of this type, as it allows
you to update your program’s version of the compatibility map to match the modified ver-
sion now in the server. If your program is dealing with multiple servers and needs to con-
figure them all in a similar manner, the updated compatibility map may be used to
reconfigure other servers.

Note To make a complete matching configuration you must also update the explicit override
components of the server state.

StatusXkbGetCompatMap(display, which, xKpb

Display * display, [* connection to server */
unsigned int which /* mask of compatibility map components to fetch */
XkbDescRec * xkby /* keyboard description where results placed */

XkbGetCompatMafetches the components of the compatibility map specifiadioh

from the server specified isplayand places them in ttoempatstructure of the key-
board descriptiomkhb. Valid values fowhichare an inclusive OR of the values shown in
Table 17.2.

Table 17.2 Compatibility Map Component Masks

Mask Value Affecting

XkbSym nt er pMask (1<<0) Symbol interpretations

XkbG oupConpat Mask (1<<1) Group maps

XkbAl | Conpat Mask (0x3) All compatibility map components

If no compatibility map structure is allocatedxikb upon entry XkbGetCompatMagllo-
cates one. If one already exists, its contents are overwritten with the returned results.

November 10, 1997 Library Version 1.0/Document Revision 1.1 174

The X Keyboard Extension 17 The Xkb Compatibility Map

XkbGetCompatMafetches compatibility map information for the device specified by the
device_speftield of xkh. Unless you have specifically modified this field, it is the default
keyboard deviceXxkbGetCompatMapeturnsSuccess if successfulBadAl | oc if it is

unable to obtain necessary storage for either the return values or workBsyide ch if
thedpyfield of thexkbargument is nomNULL and does not match thiésplayargument,
andBadLengt h under certain conditions caused by server or Xkb implementation errors.

17.3 Using the Compatibility Map

Xkb provides several functions that make it easier to apply the compatibility map to con-
figure a client-side Xkb keyboard mapping, given a core protocol representation of part or
all of a keyboard mapping. Obtain a core protocol representation of a keyboard mapping
from an actual server (by usiXgsetKeyboardMappindgor example), a data file, or some
other source.

To update a local Xkb keyboard map to reflect the mapping expressed by a core format
mapping by calling the functiokbUpdateMapFromCore

Bool XkbUpdateMapFromCore(xkh, first_keynum_keysmap_widthcore_keysymshangep

XkbDescPtr xkby /* keyboard description to update */

KeyCode first_key /* keycode of first key description to update */
int num_keys /* number of key descriptions to update */

int map_width /* width of core protocol keymap */

KeySym * core_keysyms /* symbols in core protocol keymap */
XkbChangesPtr changes [* backfilled with changes made to Xkb */

XkbUpdateMapFromCormterprets input argument information representing a keyboard
map in core format to update the Xkb keyboard description pasgkd @nly a portion

of the Xkb map is updated — the portion corresponding to keys with keycodes in the
rangefirst_keythroughfirst_key+ num_keys 1. If XkbUpdateMapFromCoris being called

in response to Bappi ngNot i fy event first_keyandnum_keysre reported in thigap-

pi ngNot i fy event.core_keysymesontains the keysyms corresponding to the keycode
range being updated, in core keyboard description arthgy. widthis the number of key-
syms per key irore_keysymsThus, the firstnap_widthentries incore_keysymare for

the key with keycodérst_key the neximap_widthentries are for kefyrst_key+ 1, and so

on.

In addition to modifying the Xkb keyboard mappingkb, XkbUpdateMapFromCore
backfills the changes structure whose address is passkdrigedo indicate the modifi-
cations that were made. You may then els@ngesn subsequent calls suchXdebSet-
Map, to propagate the local modifications to a server.

November 10, 1997 Library Version 1.0/Document Revision 1.1 175

The X Keyboard Extension 17 The Xkb Compatibility Map

When dealing with core keyboard mappings or descriptions, it is sometimes necessary to
determine the Xkb key types appropriate for the symbols bound to a key in a core key-
board mapping. Us¥kbKeyTypesForCoreSymbdts this purpose:

int XkbKeyTypesForCoreSymbolgmap_width core_symsprotected, types_inout,
xkb_syms_rtrp

XkbDescPtr xkb; /* keyboard description in which to place symbols*/

int map_width /* width of core protocol keymap ixkb_syms_ rtrri/

KeySym * core_syms /* core protocol format array of KeySyms */

unsigned int protected * explicit key types */

int * types_inout; /* backfilled with the canonical types bound to groups one and
two for the key */

KeySym * xkb_syms_rtrn/* backfilled with symbols bound to the key in the Xkb
mapping */

XkbKeyTypesForCoreSymbeispands the symbols aore_symsnd types itypes_inout
according to the rules specified in section 12 of the core protocol, then chooses canonical
key types (canonical key types are defined in section 15.2.1) for groups 1 and 2 using the
rules specified by the Xkb protocol and places therkim syms_rtrnwhich will be

non-NULL.

A core keymap is a two-dimensional array of keysyms. Infegs widthcolumns and

max_key codeows.XkbKeyTypesForCoreSymbaékes a single row from a core key-

map, determines the number of groups associated with it, the type of each group, and the
symbols bound to each group. The return value is the number of giypgss,inoubas

the types for each group, axkb_syms_rtrinas the symbols in Xkb order (that is, groups

are contiguous, regardless of size).

protectedcontains the explicitly protected key types. There is one explicit override con-
trol associated with each of the four possible groups for each Xkb key,

Expl i ci t KeyTypel throughExpl i ci t KeyType4; protectedis an inclusive OR of

these controlanap_widthis the width of the core keymap and is not dependent on any
Xkb definitions.types_inouts an array of four type indices. On inpiyfyes_inouton-

tains the indices of any types already assigned to the key, in case they are explicitly pro-
tected from change.

Upon returntypes_inoutontains any automatically selected (that is, canonical) types
plus any protected types. Canonical types are assigned to all four groups if there are
enough symbols to do so. The four entrietypes_inoutorrespond to the four groups for
the key in question.

If the groups mapping does not change, but the symbols assigned to an Xkb keyboard
compatibility map do change, the semantics of the key may be modified. To apply the new
compatibility mapping to an individual key to get its semantics updatedkigoply-

CompatMapToKey
Bool XkbApplyCompatMapToKey (xkb, key change}p
XkbDescPtr xKkb; /* keyboard description to be updated */
KeyCode key, [* key to be updated */
XkbChangesPtr changes /* notes changes to the Xkb keyboard description */

XkbApplyCompatMapToKessentially performs the operation described in section 17.1.2
to a specific key. This updates the behavior, actions, repeat status, and virtual modifier
bindings of the key.

November 10, 1997 Library Version 1.0/Document Revision 1.1 176

The X Keyboard Extension 17 The Xkb Compatibility Map

17.4 Changing the Server's Compatibility Map

To modify the server’'s compatibility map, first modify a local copy of the Xkb compati-
bility map, then calXkbSetCompatMagy ou may allocate a new compatibility map for
this purpose usin¥kbAllocCompatMajjsee section 17.6). You may also use a compati-
bility map from another server, although you need to adjustdétiee_spebeld in the
XkbDescRec accordingly. Note that symbol interpretations in a compatibility map
(sym_interpretthe vector oXkbSym nt er pr et Rec structures) are also allocated using
this same function.

Bool XkbSetCompatMap(display, which, xkb, update_actigns

Display * display, [* connection to server */

unsigned int which /* mask of compat map components to set */
XkbDescPtr xkby [* source for compat map components */
Bool update_actiong* Tr ue => apply to server’s keyboard map */

XkbSetCompatMagpopies compatibility map information from the keyboard description
in xkbto the server specified displays compatibility map for the device specified by the
device_spetield of xkh. Unless you have specifically modified this field, it is the default
keyboard devicewhichspecifies the compatibility map components to be set, and is an
inclusive OR of the bits shown in Table 17.2.

After updating its compatibility map for the specified devicejpdlate actionss Tr ue,

the server applies the new compatibility map to its entire keyboard for the device to gener-
ate a new set of key semantics, compatibility state, and a new core keyboard map. If
update_actionss Fal se, the new compatibility map is not used to generate any modifica-
tions to the current device semantics, state, or core keyboard map. One reason for not
applying the compatibility map immediately would be if one server was being configured
to match another on a piecemeal basis; the map should not be applied until everything is
updated. To force an update at a later time XkfxSetCompatMagpecifyingwhichas

zero andupdate_actionssTr ue.

XkbSetCompatMageturnsTr ue if successful an#fal se if unsuccessful. The server may
report problems it encounters when processing the request subsequently via protocol
errors.

To add a symbol interpretation to the list of symbol interpretations kla@onpat Rec,
useXkbAddSyminterpret

XkbSyminterpretPtKkbAddSyminterpret (xkb, si, updateMap, changes

XkbDescPtr xkby /* keyboard description to be updated */
XkbSyminterpretPtr si; I* symbol interpretation to be added */

Bool updateMap /* Tr ue=>apply compatibility map to keys */
XkbChangesPtr changes [* changes are put here */

XkbAddSyminterpretddssi to the list of symbol interpretationsxihb. If updateMaps

Tr ue, it (re)applies the compatibility map to all of the keys on the keyboartdaifgess
nonNULL, it reports the parts of the keyboard that were affected (unpelsgeMaps

Tr ue, not much changesXkbAddSyminterpreeturns a pointer to the actual new symbol
interpretation in the list dlULL if it failed.

November 10, 1997 Library Version 1.0/Document Revision 1.1 177

The X Keyboard Extension 17 The Xkb Compatibility Map

17.5 Tracking Changes to the Compatibility Map

The server automatically generabgppi ngNot i f y events when the keyboard mapping
changes. If you wish to be notified of changes to the compatibility map, you should select
for XkbConpat MapNot i fy events. If you select fofkbMapNot i fy events, you no

longer receive the automatically generavdg@pi ngNot i fy events. If you subsequently
deselecXkbMapNot i f yEvent delivery, you again receivdappi ngNot i fy events.

To receivexkbConpat MapNot i fy events under all possible conditions, X&b&Select-
Events(see section 4.3) and pagdConpat MapNot i f yMask in bothbits_to_change
andvalues_for_bits

To receivexkbConpat MapNot i fy events only under certain conditions, X&bSelect-
EventDetailausingXkbConpat MapNot i fy as theevent_typand specifying the desired
map changes ihits_to_changandvalues_for_bitsising mask bits from Table 17.2.

Note that you are notified of changes you make yourself, as well as changes made by other
clients.

The structure for thi#gkbConpat MapNot i f yEvent is:

typedef struct {
int type; /* Xkb extension base event code */
unsigned long serial; [* X server serial number for event */
Bool send_event; /AT ue => synthetically generated */
Display * display; [* server connection where event generated */
Time time; /* server time when event generated */
int xkb_type; /*XkbConpat MapNot i fy */
int device; /* Xkb device ID, will not bXkbUseCor eKbd */
unsigned int changed_groups;/* number of group maps changed */
int first_si; /* index to 1st changed symbol interpretation */
int num_si; /* number of changed symbol interpretations */
int num_total_si; /* total number of valid symbol interpretations */

} XkbCompatMapNotifyEvent ;

changed_groups the number of group compatibility maps that have changed. If you are
maintaining a corresponding copy of the compatibility map, or get a fresh copy from the
server usingKkbGetCompatMaphanged_groupeeferences

groupg0..changed_group4] in theXkbConpat MapRec structure.

first_siis the index of the first changed symbol interpretatim_siis the number of
changed symbol interpretations, andn_total sis the total number of valid symbol
interpretations. If you are maintaining a corresponding copy of the compatibility map, or
get a fresh copy from the server uskKipGetCompatMagirst_si, num_sj and
num_total_siare appropriate for use with thempat.sym_interpratector in this struc-

ture.

November 10, 1997 Library Version 1.0/Document Revision 1.1 178

The X Keyboard Extension 17 The Xkb Compatibility Map

17.6 Allocating and Freeing the Compatibility Map

If you are modifying the compatibility map, you need to allocate a new compatibility map
if you do not already have one available. To do soXkbAllocCompatMap

StatusXkbAllocCompatMap (xkb, which, num_¥i

XkbDescPtr xkb; /* keyboard description in which to allocate compat map */
unsigned int which /* mask of compatibility map components to allocate */
unsigned int num_sj /* number of symbol interpretations to allocate */

xkb specifies the keyboard description for which compatibility maps are to be allocated.
The compatibility map is theompatfield in this structure.

which specifies the compatibility map components to be allocatedX{degetCompat-
Map, in section 17.2)whichis an inclusive OR of the bits shown in Table 17.2.

num_sispecifies the total number of entries to allocate in the symbol interpretation vector
(xkb.compat.sym_interpiet

Note that symbol interpretations in a compatibility map g§yra_interpretrector ofxXkb-

Symi nt er pr et Rec structures) are also allocated using this same function. To ensure that
there is sufficient space in the symbol interpretation vector for entries to be added, use
XkbAllocCompatMayspecifyingwhichasXkbSym nt er pr et Mask and the number of

free symbol interpretations needechiinm_si

XkbAllocCompatMapeturnsSuccess if successfulBadMat ch if xkbis NULL, or Bad-
Al | oc if errors are encountered when attempting to allocate storage.

To free an entire compatibility map or selected portions of onexklsereeCompatMap

void XkbFreeCompatMap(xkb, which, free_map

XkbDescPtr xkb; /* Xkb description in which to free compatibility map */
unsigned int which /* mask of compatibility map components to free */
Bool free_map /* Tr ue => freexkbConpat Map structure itself */

whichspecifies the compatibility map components to be freed{se€&etCompatMapn
section 17.2)whichis an inclusive OR of the bits shown in Table 17.2

free_mapndicates whether thékbConpat Map structure itself should be freed. If
free_maps Tr ue, whichis ignored, all noNULL compatibility map components are
freed, and theompatfield in thexXkbDescRec referenced bykbis set toNULL.

November 10, 1997 Library Version 1.0/Document Revision 1.1 179

The X Keyboard Extension 18 Symbolic Names

18

18.1

Symbolic Names

The core protocol does not provide any information to clients other than that actually used
to interpret events. This makes it difficult to write an application that presents the key-
board to a user in an easy-to-understand way. Such applications have to examine the ven-
dor string and keycodes to determine the type of keyboard connected to the server and
then examine keysyms and modifier mappings to determine the effects of most modifiers
(theShi ft, Lock andCont r ol modifiers are defined by the core protocol but no seman-
tics are implied for any other modifiers).

To make it easier for applications to present a keyboard to the user, Xkb supports sym-
bolic names for most components of the keyboard extension. Most of these symbolic
names are grouped into thamescomponent of the keyboard description.

The XkbNamesRec Structure
The names component of the keyboard description is defined as follows:

#define XkbKeyNamelLength 4

#define XkbKeyNumVirtualMods 16

#define XkbKeyNumindicators 32

#define XkbKeyNumKbdGroups 4

#define XkbMaxRadioGroups 32

typedef struct {
char name[XkbKeyNamelLength]; /* symbolic key names */

} XkbKeyNameReg*XkbKeyNamePtr;

typedef struct {
char real[XkbKeyNameLength]; /* this key name must be in the keys array */
char alias[XkbKeyNameLength]; /* symbolic key name as alias for the key */

} XkbKeyAliasRec,*XkbKeyAliasPtr;
typedef struct _XkbNamesRec {

Atom keycodes; /* identifies range and meaning of keycodes */

Atom geometry; [* identifies physical location, size, and shape of keys */
Atom symbols; /*identifies the symbols logically bound to the kekys
Atom types; /*identifies the set of key types */

Atom compat; I*identifies actions for keys using core protocol */
Atom vmods[XkbNumVirtualMods]; //symbolic namesor virtual modifiers */
Atom indicators[XkbNumIndicators]; /symbolic namesor indicators */

Atom groups[XkbNumKbdGroups]¥ symbolic names for keyboard groups */
XkbKeyNamePtr keys; I'symbolic key name array

XkbKeyAliasPtr key aliases; /* real/alias symbolic name pairs array */

Atom * radio_groups; /* radio group name array */

Atom phys_symbols; /tfdentifies the symbols engraved on the keybdard
unsigned char num_keys; /* number of keys inkbgsarray */

unsigned char num_key_aliases;/* number of keys itkéye aliasesrray */

unsigned short num_rg; /* number of radio groups */

} XkbNamesReg*XkbNamesPtr;/*

Thekeycodesame identifies the range and meaning of the keycodes returned by the key-
board in question. Thgeometryname, on the other hand, identifies the physical location,

November 10, 1997 Library Version 1.0/Document Revision 1.1 180

The X Keyboard Extension 18 Symbolic Names

size and shape of the various keys on the keyboard. As an example to distinguish between
these two names, consider function keys on PC-compatible keyboards. Function keys are
sometimes above the main keyboard and sometimes to the left of the main keyboard, but
the same keycode is used for the key that is logically F1 regardless of physical position.
Thus, all PC-compatible keyboards share a similar keycodes name but may have different
geometry hames.

Note The keycodes name is intended to be a very general description of the keycodes
returned by a keyboard; a single keycodes name might cover keyboards with differing
numbers of keys provided all keys have the same semantics when present. For exam-
ple, 101 and 102 key PC keyboards might use the same name. In these cases, applica-
tions can use the keyboagdometryname to determine which subset of the named
keycodes is in use.

Thesymbolsname identifies the symbols logically bound to the keys. The symbols name
is a human or application-readable description of the intended locale or usage of the key-
board with these symbols. Thhys_symbolaame, on the other hand, identifies the sym-
bols actually engraved on the keyboard. Given thissyhg&olsname anghhys_symbols
names might be different. For example, the description for a keyboard that has English US
engravings, but that is using Swiss German symbols might haiwesasymbolaame of
“en_US” and asymbolshame of “de_CH.”

Thetypesname provides some information about the set of key types (see section 15.2)
that can be associated with the keyboard. In addition, each key type can have a name, and
each shift level of a type can have a name. Although these names are stored in the map
description with each of the types, they are accessed using the same methods as the other
symbolic names.

Thecompatname provides some information about the rules used to bind actions to keys
that are changed using core protocol requests.

Xkb provides symbolic names for each of the 4 keyboard groups, 16 virtual modifiers, 32
keyboard indicators, and 4 keyboard groups. These names are heldrirott@ndica-
tors, andgroupsfixed-length arrays.

Each key has a four-byte symbolic name. All of the symbolic key names are held in the
keysarray, anchum_keyseports the number of entries that are in the keys array. For each
key, the key name links keys with similar functions or in similar positions on keyboards
that report different keycodes. For example,Rhdey may emit keycode 23 on one key-
board and keycode 86 on another. By naming this key “FK01” on both keyboards, the
keyboard layout designer can reuse parts of keyboard descriptions for different keyboards.

Key aliases allow the keyboard layout designer to assign multiple key names to a single
key. This allows the keyboard layout designer to refer to keys using either their position or
their “function.” For example, a keyboard layout designer may wish to refer to the left
arrow key on a PC keyboard using the ISO9995-5 positional specification of A31 or using
the functional specification of LEFT. They_aliasesield holds a variable-length array

of real and alias key name pairs, and the total number of entrieskieyvthaiasesrray is

held innum_key_aliases$-or each real and alias key name pairyéla¢field refers to the

a name in the keys array, and #iias field refers to the alias for that key. Using the pre-
vious example, the keyboard designer may use the name A3l in the keys array, but also
define the name LEFT as an alias for A31 inkbg aliasesrray.

November 10, 1997 Library Version 1.0/Document Revision 1.1 181

The X Keyboard Extension 18 Symbolic Names

Note Key aliases defined in the geometry component of a keyboard mapping (see Chapter
13) override those defined in the keycodes component of the server database, which
are stored in thXkbNanesRec (xkb->name} Therefore, consider the key aliases
defined by the geometry before considering key aliases supplied KghiNarres-

Rec.

A radio group is a set of keys whose behavior simulates a set of radio buttons. Once a key
in a radio group is pressed, it stays logically depressed until another key in the group is
pressed, at which point the previously depressed key is logically released. Consequently,
at most one key in a radio group can be logically depressed at one time.

Each radio group in the keyboard description can have a name. These names are held in
the variable-length arrayadio_groups andnum_rgtells how many elements are in the
radio_groupsarray.

18.2 Symbolic Names Masks

Xkb provides several functions that work with symbolic names. Each of these functions
uses a mask to specify individual fields of the structures described above. These masks
and their relationships to the fields in a keyboard description are shown in Table 18.1.

Table 18.1 Symbolic Names Masks

Mask Bit Value Keyboard Field
Component

XkbKeycodesNameMask (1<<0) Xkb->names keycodes
XkbGeometryNameMask (1<<1) Xkb->names geometry
XkbSymbolsNameMask (1<<2) Xkb->names symbols
XkbPhysSymbolsNameMask (1<<3) Xkb->names phys_symbols
XkbTypesNameMask (1<<4) Xkb->names type
XkbCompatNameMask (1<<5b) Xkb->names compat
XkbKeyTypeNamesMask (1<<6) Xkb->map type[*].name
XkbKTLevelNamesMask (1<<7) Xkb->map type[*].Ivl_namesJ[*]
XkbindicatorNamesMask (1<<8) Xkb->names indicators[*]
XkbKeyNamesMask (1<<9) Xkb->names keys[*], num_keys
XkbKeyAliasesMask (1<<10) Xkb->names key_ aliases[*], num_key aliases
XkbVirtualModNamesMask (1<<11) Xkb->names vmods[*]
XkbGroupNamesMask (1<<12) Xkb->names groups[*]
XkbRGNamesMask (1<<13) Xkb->names radio_groups[*], num_rg
XkbComponentNamesMask (0x3f) Xkb->namekeycodes,

geometry,

symbols,

physical symbols,

types, and

compatibility map
XkbAl | NanmesMask (0x3fffy Xkb->names all name components

November 10, 1997 Library Version 1.0/Document Revision 1.1 182

The X Keyboard Extension 18 Symbolic Names

18.3 Getting Symbolic Names From the Server
To obtain symbolic names from the server, XkbGetNames

StatusXxkbGetNamegdpy, which, Xkp
Display * dpy; [* connection to the X server */
unsigned int whict /* mask of names or map components to be updated */
XkbDescPtr xkb /* keyboard description to be updated */

XkbGetNameeetrieves symbolic names for the components of the keyboard extension
from the X server. Theshich parameter specifies the name components to be updated in
thexkb parameter, and is the bitwise inclusive OR of the valid names mask bits defined in
Table 18.1.

If the namedield of the keyboard descriptiotkbis NULL, XkbGetNameallocates and
initializes thenamescomponent of the keyboard description before obtaining the values
specified bywhich If thenamedield of xkbis notNULL, XkbGetNamesbtains the values
specified bywhichand copies them into the keyboard descripX&h

If the mapcomponent of thekb parameter iNULL, XkbGetNamedoes not retrieve type
or shift level names, evenxkbKeyTypeNanesMask or XkbKTLevel NanesMask are
set inwhich

XkbGetNamesan returrSuccess, or BadAl | oc, BadLengt h, BadMat ch, andBadl m
pl erment at i on errors.

To free symbolic names, uX&bFreeNamegsee section 18.6)

18.4 Changing Symbolic Names on the Server

To change the symbolic names in the server, first modify a local copy of the keyboard
description and then use eithétbSetNamesyr, to save network traffic, usexabNa-
nmeChangesRecstructure and cakkbChangeNameés download the changes to the
server XkbSetNameandXkbChangeNamesan generatBadAl | oc, BadAt om

BadLengt h, BadMat ch, andBadl npl enent at i on errors.

Bool XkbSetNamegdpy, which, first_type, num_types, Xkb
Display * dpy, [* connection to the X server */
unsigned int which /* mask of names or map components to be changed */
unsigned int first_type; /*first type whose name is to be changed */
unsigned int num_types /* number of types for which names are to be changed */
XkbDescPtr xkby /* keyboard description from which names are to be taken */

UseXkbSetName® change many names at the same time. For each bitvdathn Xkb-
SetNamesakes the corresponding value (or values in the case of arrays) from the key-
board descriptiomkb and sends it to the server.

Thefirst_typeandnum_typesrguments are used onlyXbKeyTypeNanesMask or

XkbKTLevel NamesMask is set inwhichand specify a subset of the types for which the
corresponding names are to be changed. If either or both of these mask bits are set but the
specified types are illegaktkbSetNameeturnsFal se and does not update any of the

names specified iwhich The specified types are illegalitb does not include a map
component or ifirst_typeandnum_typespecify types that are not defined in the key-

board description.

November 10, 1997 Library Version 1.0/Document Revision 1.1 183

The X Keyboard Extension 18 Symbolic Names

The XkbNameChangesRec Structure

The XkbNanmeChangesRec allows applications to identify small modifications to the
symbolic names and effectively reduces the amount of traffic sent to the server:

typedef struct _XkbNameChanges {

unsigned int changed; fAame components that have changed

unsigned char first_type; [* first key type with a new name */

unsigned char num_types; /* number of types with new names */

unsigned char first_Ivl; [* first key type with new level names */

unsigned char num_lIvls; /* number of key types with new level names */

unsigned char num_aliases; /* if key aliases changed, total number of key aliases */
unsigned char num_rg; [* if radio groups changed, total number of radio groups */
unsigned char first_key; [* first key with a new name */

unsigned char num_keys; /* number of keys with new names */

unsigned shortchanged _vmotisnask of virtual modifiers for which names have changed */
unsigned long changed_indicators;/* mask of indicators for which names were changed */
unsigned char changed_groups;/* mask of groups for which names were changed */

} XkbNameChangesRec*XkbNameChangesPtr

Thechangedield specifies the name components that have changed and is the bitwise
inclusive OR of the valid names mask bits defined in Table 18.1. The rest of the fields in
the structure specify the ranges that have changed for the various kinds of symbolic
names, as shown in Table 18.2.

Table 18.2 XkbNameChanges Fields

Mask Fields Component Field
XkbKeyTypeNamesMask first_type, Xkb->map type[*].name
num_types
XkbKTLevelNamesMask first_lvl, Xkb->map type[*].Ivl_names[*]
num_Ivls
XkbKeyAliasesMask num_aliases Xkb->names key aliases[*]
XkbRGNamesMask num_rg Xkb->names radio_groups[*]
XkbKeyNamesMask first_key, Xkb->names keys[*]
num_keys

XkbVirtualModNamesMask changed_vmods Xkb->names vmods[*]
XkbIndicatorNamesMask changed_indicators Xkb->names indicators[*]
XkbGroupNamesMask changed_groups Xkb->names groups[*]

XkbChangeNamgwovides a more flexible method for changing symbolic names than
XkbSetNameand requires the use of ZkbNameChangesRec structure.

Bool XkbChangeNamesgdpy, xkb, changes
Display * dpy; [* connection to the X server */
XkbDescPtr xkby /* keyboard description from which names are to be taken */
XkbNameChangesPtchanges /* hames map components to be updated on the server */

XkbChangeNamesopies any names specified dhyangedrom the keyboard description,
xkh to the X server specified ldpy. XkbChangeNameaborts and returrizal se if any
illegal type names or type shift level names are specifiathgges

November 10, 1997 Library Version 1.0/Document Revision 1.1 184

The X Keyboard Extension 18 Symbolic Names

18.5 Tracking Name Changes

Whenever a symbolic name changes in the server’s keyboard description, the server sends
aXkbNanesNot i fy event to all interested clients. To receive hame notify events, use
XkbSelectEvenisee section 4.3) witkkbNanmesNot i f yMask in both the
bits_to_changandvalues_for_bitparameters.

To receive events for only specific names, XikbSelectEventDetailSet theevent_type
parameter tdkbNamesNot i f y, and set both thieits_to _changandvalues_for_bits
detail parameter to a mask composed of a bitwise OR of masks in Table 18.1.

The structure for th&kbNamesNot i f y event is defined as follows:

typedef struct {
int type; /* Xkb extension base event code */
unsigned long serial; /* X server serial number for event */
Bool send_event; /AT ue => synthetically generated */
Display * display; [* server connection where event generated */
Time time; [* server time when event generated */
int xkb_type; *XkbNarmesNot i fy */
int device; * Xkb device ID, will not beXkbUseCor eKbd */
unsigned int changed; /* mask o&éme components that have changed
int first_type; [* first key type with a new name */
int num_types; /* number of types with new names */
int first_Ivl; [* first key type with new level names */
int num_|Ivls; /* number of key types with new level names */
int num_aliases; [* if key aliases changed, total number of key aliases */
int num_radio_groups;/* if radio groups changed, total number of radio groups */

unsigned int changed_vmod&; mask of virtual modifiers for which names have changed */
unsigned int changed_groups; /* mask of groups for which names were changed */
unsigned int changed_indicators;/* mask of indicators for which names were changed */
int first_key; [* first key with a new name */
int num_keys; /* number of keys with new names */

} XkbNamesNotifyEvent,

Thechangedield specifies the name components that have changed and is the bitwise
inclusive OR of the valid names mask bits defined in Table 18.1. The other fields in this
event are interpreted as the like-named fields iKkdoNameChangesRec, as previously
defined.

When your application receives &bNamesNot i f y event, you can note the changed
names in a changes structure usfkpNoteNameChanges

void XkbNoteNameChangeéold, new wanted

XkbNameChangesPtrold; /* XkbNarmeChanges structure to be updated */
XkbNamesNotifyEvent fiew * event from which changes are to be copied */
unsigned int wanted /* types of names for which changes are to be noted */

Thewantedparameter is the bitwise inclusive OR of the valid names mask bits shown in
Table 18.1XkbNoteNameChangespies any changes that are reportatesand speci-
fied in wantedinto the changes record specifieddig.

November 10, 1997 Library Version 1.0/Document Revision 1.1 185

The X Keyboard Extension 18 Symbolic Names

18.6

To update the local copy of the keyboard description with the actual values, gabs to
GetNameChangédke results of one or more callsXbNoteNameChanges

StatusXxkbGetNameChange¢dpy, xkly changey
Display * dpy; [* connection to the X server */
XkbDescPtr xkby * keyboard description to which names are copied */
XkbNameChangesPtr changes /* names components to be obtained from the server */

XkbGetNameChangexamines thehangegarameter, retrieves the necessary informa-
tion from the server, and places the results intxkibdkeyboard description.

XkbGetNamesChangean generatBadAl | oc, Badl npl enent ati on, andBadMat ch
errors.

Allocating and Freeing Symbolic Names

Most applications do not need to directly allocate symbolic names structures. Do not allo-
cate a names structure directly usiglloc or Xmallocif your application changes the
number of key aliases or radio groups or constructs a symbolic names structure without
loading the necessary components from the X server. Insteaklid#ocNames

StatusXkbAllocNames(xkb, which, num_rg, num_key aliases)
XkbDescPtr xkb; /* keyboard description for which names are to be allocated */
unsigned int which; /* mask of names to be allocated */
int num_rg; /* total number of radio group names needed */
int num_key aliasel;total number of key aliases needed */

XkbAllocNamesgan returrBadAl | oc, BadMat ch, andBadVal ue errors. Thevhich
parameter is the bitwise inclusive OR of the valid names mask bits defined in Table 18.1.

Do not free symbolic names structures directly usiegor XFree UseXkbFreeNames
instead.

void XkbFreeNamegxkb, which, free_map)

XkbDescPtr xkb; * keyboard description for which names are to be freed */
unsigned int which /* mask of names components to be freed */
Bool free_map /* Tr ue => XkbNamesRec structure itself should be freed */

Thewhichparameter is the bitwise inclusive OR of the valid names mask bits defined in
Table 18.1.

November 10, 1997 Library Version 1.0/Document Revision 1.1 186

The X Keyboard Extension 19 Replacing a Keyboard “On the Fly”

19

Replacing a Keyboard “On the Fly”

Some operating system and X server implementations allow “hot plugging” of input
devices. When using these implementations, input devices can be unplugged and new
ones plugged in without restarting the software that is using those devices. There is no
provision in the standard X server for notification of client programs if input devices are
unplugged and/or new ones plugged in. In the case of the X keyboard, this could result in
the X server having a keymap that does not match the new keyboard.

If the X server implementation supports the X input device extension, a client program
may also change the X keyboard programmatically. XGeangeKeyboardDeviaceput
extension request allows a client to designate an input extension keyboard device as the X
keyboard, in which case the old X keyboard device becomes inaccessible except via the
input device extension. In this case, core protadébpi ngNot i fy and input extension
XChangeDevi ceNot i fy events are generated to notify all clients that a new keyboard

with a new keymap has been designated.

When a client opens a connection to the X server, the server reports the minimum and
maximum keycodes. The server keeps track of the minimum and maximum keycodes last
reported to each client. When delivering events to a particular client, the server filters out
any events that fall outside of the valid range for the client.

Xkb provides arkkbNewKeyboar dN\ot i f y event that reports a change in keyboard
geometry and/or the range of supported keycodes. The server can generate an
XkbNewKeyboar dNot i fy event when it detects a new keyboard or in response to an
XkbGetKeyboardByNanrequest that loads a new keyboard description. Selecting for
XkbNewKeyboar dNot i fy events allows Xkb-aware clients to be notified whenever a
keyboard change occurs that may affect the keymap.

When a client reques¥kbNewKeyboar dNot i f y events, the server compares the range

of keycodes for the current keyboard to the range of keycodes that are valid for the client.
If they are not the same, the server immediately sends the cligkbllewKeyboar dNo-

tify event. Even if the “new” keyboard is not new to the server, it is new to this particu-
lar client.

When the server sends dkbNewKeyboar dN\ot i f y event to a client to inform it of a

new keycode range, it resets the stored range of legal keycodes for the client to the key-
code range reported in the event; it does not reset this range for the client if it does not sent
an XkbNewKeyboar dNot i fy event to a client. Because Xkb-unaware clients and
Xkb-aware clients that do not requekbNewKeyboar dNot i f y events are never sent

these events, the server’s notion of the legal keycode range never changes, and these cli-
ents never receive events from keys that fall outside of their notion of the legal keycode
range.

Clients that have not selected to recefkbNewKeyboar dN\ot i f y events do, however,
receive thexkbNewKeyboar dNot i f y event when a keyboard change occurs. Clients that
have not selected to receive this event also receive numerous other events detailing the
individual changes that occur when a keyboard change occurs.

Clients wishing to track changesnmn_key codandmax_key_ codmust watch for both
XkbNewKeyboar dNot i fy andXkbMapNot i fy events, because a simple mapping
change causes albMapNot i f y event and may change the range of valid keycodes, but
does not cause afkbNewKeyboar dNot i f y event. If a client does not select for

November 10, 1997 Library Version 1.0/Document Revision 1.1 187

The X Keyboard Extension 19 Replacing a Keyboard “On the Fly”

XkbNewKeyboar dNot i fy events, the server restricts the range of keycodes reported to
the client.

In addition to filtering out-of-range key events, Xkb:

 Adjusts core protocdVappi ngNot i fy events to refer only to keys that match the
stored legal range.

» Reports keyboard mappings for keys that match the stored legal range to clients that
issue a core protoc@et Keyboar dvappi ng request.

» Reports modifier mappings only for keys that match the stored legal range to clients
that issue a core protoo@et Modi f i er Mappi ng request.

 Restricts the core protocGhangeKeyboar dMappi ng andSet Modi f i er Map-
pi Ng requests to keys that fall inside the stored legal range.

In short, Xkb does everything possible to hide from Xkb-unaware clients the fact that the
range of legal keycodes has changed, because such clients cannot be expected to deal with
them. Xkb events and requests are not modified in this manner; all Xkb events report the
full range of legal keycodes. No requested Xkb events are discarded, and no Xkb requests
have their keycode range clamped.

The structure for th&kbNewKeyboar dNot i f y event is defined as follows:
typedef struct _XkbNewKeyboardNotify {

int type; /* Xkb extension base event code */
unsigned long serial; /* X server serial number for event*/

Bool send_event; /AT ue => synthetically generated */
Display * display; [* server connection where event generated */
Time time; [* server time when event generated */

int xkb_type; *XkbNewKeyboar dNot i fy */

int device; /* device ID of new keyboard */

int old_device; * device ID of old keyboard */

int min_key_ code; /* min keycode of new keyboard */

int max_key_code; I* max keycode of new keyboard */

int old_min_key code; /* min keycode of old keyboard */

int old_max_key code; /* max keycode of old keyboard */
unsigned int changed; /* changed aspects - see masks below */
char req_major; /* major request that caused change */
char reg_minor; /* minor request that caused change */

} XkbNewKeyboardNotifyEvent;

To receive name notify events, uskbSelectEvenisee section 4.3) witkkbNewKey-

boar dN\ot i f yMask in both thebits_to_changandvalues_for_bitparameters. To

receive events for only specific names, ¥&bSelectEventDetailSet theevent_type
parameter tdkbNewKeyboar dNot i fy, and set both thieits_to_changand
values_for_bitgletail parameter to a mask composed of a bitwise OR of masks in Table
19.1.

Table 19.1 XkbNewKeyboardNotifyEvent Details

XkbNewKeyboardNotify
Event Details
XkbNKN_KeycodesMask (1L<<0) Notification of keycode range changes wanted
XKbNKN_CGeonet r yMask (1L<<1) Notification of geometry changes wanted
XkbNKN_Devi cel Dvask (1L<<2) Natification of device ID changes wanted

Value Circumstances

November 10, 1997 Library Version 1.0/Document Revision 1.1 188

The X Keyboard Extension 19 Replacing a Keyboard “On the Fly”

Table 19.1 XkbNewKeyboardNotifyEvent Details

XkbNewKeyboardNony Value
Event Details
XkbNKN_Al | ChangesMask (0x7) Includes all of the above masks

Circumstances

Thereq_majorandreq_minorfields indicate what type of keyboard change has occurred.

If req_majorandreq_minorare zero, the device change was not caused by a software
request to the server — a spontaneous change has occurred, such as hot-plugging a new
device. In this caseleviceis the device identifier for the new, current X keyboard device,

but no implementation-independent guarantee can be madeocidhalgtviceold device

may be identical tdevice(an implementor is permitted to reuse the device specifier when
the device changes); or it may be different. Noteragt majorandreq_minorbeing zero

do not necessarily mean that the physical keyboard device has changed; rather, they only
imply a spontaneous change outside of software control (some systems have keyboards
that can change personality at the press of a key).

If the keyboard change is the result of an X Input ExtenGnamgeKeyboar dDevi ce
requestreq_majorcontains the input extension major opcode,rand minorcontains the
input extension request number ¥1ChangeKeyboar dDevi ce. In this casedeviceand
old_deviceare different, withdevicebeing the identifier for the new, current X keyboard
device, anald_devicebeing the identifier for the former device.

If the keyboard change is the result oDddGetKeyboardByNanfanction call, which
generates al_kbGet KbdByName requestreq_majorcontains thékb extension base

event codgsee section 2.4), amdg_minorcontains the event code for the Xkb extension
requesiX_kbGet KbdByNane. devicecontains the device identifier for the new device, but
nothing definitive can be said fold_deviceit may be identical tdevice or it may be
different, depending on the implementation.

November 10, 1997 Library Version 1.0/Document Revision 1.1 189

The X Keyboard Extension 20 Server Database of Keyboard Components

20

Server Database of Keyboard Components

The X server maintains a database of keyboard components, identified by component
type. The database contains all the information necessary to build a complete keyboard
description for a particular device, as well as to assemble partial descriptions. Table 20.1
identifies the component types and the type of information they contain.

Table 20.1 Server Database Keyboard Components

_(I:,;F:zponent Component Primary Contents May also contain
Keymap Complete keyboard description

Normally assembled using a complete
component from each of the other types

Keycodes Symbolic name for each key Aliases for some keys
Minimum and maximum legal keycodeSymbolic names for indicators

Description of indicators physically
present

Types Key types Real modifier bindings and symbolic
names for some virtual modifiers

Compatibility Rules used to assign actions to keysyms Maps for some indicators
Real modifier bindings and symbolic
names for some virtual modifiers

Symbols Symbol mapping for keyboard keys Explicit actions and behaviors for some
Modifier mapping keys
Symbolic names for groups Real modifier bindings and symbolic
names for some virtual modifiers
Geometry Layout of the keyboard Aliases for some keys; overrides key-

codes component aliases

Symbolic names for some indicators
Description of indicators physically
present

While a keymap is a database entry for a complete keyboard description, and therefore
logically different from the individual component database entries, the rules for process-
ing keymap entries are identical to those for the individual components. In the discussion
that follows, the term component is used to refer to either individual components or a key-
map.

There may be multiple entries for each of the component types. An entry may be either
completeor partial. Partial entries describe only a piece of the corresponding keyboard
component and are designed to be combined with other entries of the same type to form a
complete entry.

For example, a partial symbols map might describe the differences between a common
ASCII keyboard and some national layout. Such a partial map is not useful on its own
because it does not include those symbols that are the same on both the ASCII and
national layouts (such as function keys). On the other hand, this partial map can be used to
configureany ASCII keyboard to use a national layout.

When a keyboard description is built, the components are processed in the order in which
they appear in Table 20.1; later definitions override earlier ones.

November 10, 1997 Library Version 1.0/Document Revision 1.1 190

The X Keyboard Extension 20 Server Database of Keyboard Components

20.1

20.2

Component Names

Component names have the forata'ss(membet)whereclassdescribes a subset of the
available components for a particular type and the optioeatbetidentifies a specific
component from that subset. For example, the name “atlantis(acme)” for a symbols com-
ponent might specify the symbols used for the atlantis national keyboard layout by the
vendor “acme.” Each class has an optiatethultmember — references that specify a

class but not a member refer to the default member of the class, if one exists. Xkb places
no constraints on the interpretation of the class and member names used in component
names.

Theclassandmembemames are both specified using characters from the Latin-1 charac-
ter set. Xkb implementations must accept all alphanumeric characters, minus (*-') and
underscore (‘*_’) in class or member names, and must not accept parentheses, plus, vertical
bar, percent sign, asterisk, question mark, or white space. The use of other characters is
implementation-dependent.

Listing the Known Keyboard Components

You may ask the server for a list of components for one or more component types. The
request takes the form of a set of patterns, one pattern for each of the component types,
including a pattern for the complete keyboard description. To obtain this listkbkest-
Components

XkbComponentListPtKkbListComponents(dpy, device spegtrns max_inou}

Display * dpy; [* connection to X server */

unsigned int device_spec /* device ID, orXkbUseCor eKbd */
XkbComponentNamesPtr ptrns /* namelist for components of interest */
int * max_inout /* max # returned names, # left over */

XkbListComponentgueries the server for a list of component names matching the pat-
terns specified iptrns. It waits for a reply and returns the matching component names in
anXkbConponent Li st Rec structure. When you are done using the structure, you should
free it usingKkbFreeComponentLislevice _spemdicates a particular device in which

the caller is interested. A server is allowed (but not required) to restrict its reply to por-
tions of the database that are relevant for that particular device.

ptrnsis a pointer to aXkbConponent NamesRec, described below. Each of the fields in
ptrnscontains a pattern naming the components of interest. Each of the patterns is com-
posed of characters from the 1&@t i n1 encoding, but can contain only parentheses, the
wildcard characters?* and *’, and characters permitted in a component class or member
name (see section 20.1). A pattern mayNUel, in which case no components for that

type is returned. Pattern matches with component names are case sensitivewiltie *

card matches any single character, except a left or right parenthestswiidcard

matches any number of characters, except a left or right parenthesis. If an implementation
allows additional characters in a component class or member name other than those
required by the Xkb extension (see section 20.1), the result of comparing one of the addi-
tional characters to either of the wildcard characters is implementation-dependent.

If a pattern contains illegal characters, the illegal characters are ignored. The matching
process is carried out as if the illegal characters were omitted from the pattern.

max_inouis used to throttle the amount of data passed to and from the server. On input, it
specifies the maximum number of names to be returned (the total number of names in all

November 10, 1997 Library Version 1.0/Document Revision 1.1 191

The X Keyboard Extension 20 Server Database of Keyboard Components

component categories). Upon return frgibListComponentsnax_inoutcontains the
number of names that matched the request but were not returned because of the limit.

The component name patterns used to describe the request are pX&bedstCompo-
nentsusing arnXkbGonponent NanmesRec structure. This structure has no special alloca-
tion constraints or interrelationships with other structures; allocate and free this structure
using standardhalloc andfree calls or their equivalent:

typedef struct _XkbComponentNames {

char * keymap; /* keymap names */

char * keycodes; /* keycode names */

char * types; /* type names */

char * compat; /* compatibility map names */
char * symbols; /* symbol names */

char * geometry; [* geometry names */

} XkbComponentNamesRec*XkbComponentNamesPtr;
XkbListComponenteturns a pointer to axkbConponent Li st Rec:
typedef struct _XkbComponentList {

int num_keymaps; /* number of entries in keymap */
int num_keycodes; /* number of entries in keycodes */
int num_types; /* number of entries in types */

int num_compat; /* number of entries in compat */
int num_symbols; /* number of entries in symbols */
int num_geometry; /* number of entries in geometry;
XkbComponentNamePtr keymap; [* keymap names */
XkbComponentNamePtr keycodes; [* keycode names */
XkbComponentNamePtr types; [* type names */
XkbComponentNamePtr compat; /* compatibility map names */
XkbComponentNamePtr symbols; /* symbol names */
XkbComponentNamePtr geometry; /* geometry names */

} XkbComponentListRec, *XkbComponentListPtr;

typedef struct _XkbComponentName {
unsigned short flags; /* hints regarding component name */
char * name; /* name of component */

} XkbComponentNameRe¢ *XkbComponentNamePtr;

Note that the structure used to specify patterns on input{klE@@onponent NanesRec,
and that used to hold the individual component names upon returdk®@onponent -
NarreRec (no trailing ‘s’ in Name).

When you are done using the structure returnedkiniistComponentdree it using
XkbFreeComponentList

void XkbFreeComponentList(list)
XkbComponentListPtr list; [* pointer tskbCornponent Li st Rec to free */
20.3 Component Hints

A set of flags is associated with each component; these flags provide additional hints
about the component’s use. These hints are designated by bit masks in the flags field of
the XkbConponent NameRec structures contained in tbé&bConponent Li st Rec

November 10, 1997 Library Version 1.0/Document Revision 1.1 192

The X Keyboard Extension 20 Server Database of Keyboard Components

returned fromXkbLi st Conponent s. The least significant byte of the flags field has the
same meaning for all types of keyboard components; the interpretation of the most signif-
icant byte is dependent on the type of component. The flags bits are defined in Table 20.2.
The symbols hints in Table 20.2 apply only to partial symbols components (those with
XkbLC Parti al also set); full symbols components are assumed to specify all of the
pieces.

The alphanumeric, modifier, keypad or function keys symbols hints should describe the
primary intent of the component designer and should not be simply an exhaustive list of
the kinds of keys that are affected. For example, national keyboard layouts affect prima-
rily alphanumeric keys, but many affect a few modifier keys as well; such mappings
should set only th#&kbLC Al phanuneri cKeys hint. In general, symbols components
should set only one of the four flag&pLC Al t er nat eG oup may be combined with

any of the other flags).

Table 20.2 XkbComponentNameRec Flags Bits
Component Component Hints

Type (flags) Meaning Value

All ComponentsXxkbLC H dden Do not present to user (1L<<0)
XkbLC Def aul t Default member of class (1L<<1)
XkbLC Parti al Partial component (1L<<2)

Keymap none

Keycodes none

Types none

Compatibility none

Symbols XkbLC Al phanurrer i cKeys Bindings primarily for alphanumeric (1L<<8)

keyboard section
XkbLC Modi fi er Keys Bindings primarily for modifier keys (1L<<9)
XkbLC_KeypadKeys Eindings primarily for numeric keypa(lL<<10)
eys

XkbLC _Funct i onKeys Bindings primarily for function keys (1L<<11)
XkbLC Al ternateGoup Bindings for an alternate group (1L<<12)

Geometry none

20.4 Building a Keyboard Description Using the Server Database

A client may request that the server fetch one or more components from its database and
use those components to build a new server keyboard description. The new keyboard
description may be built from scratch, or it may be built starting with the current keyboard
description for a particular device. Once the keyboard description is built, all or part of it
may be returned to the client. The parts returned to the client need not include all of the
parts used to build the description. At the time it requests the server to build a new key-
board description, a client may also request that the server use the new description inter-
nally to replace the current keyboard description for a specific device, in which case the
behavior of the device changes accordingly.

November 10, 1997 Library Version 1.0/Document Revision 1.1 193

The X Keyboard Extension 20 Server Database of Keyboard Components

To build a new keyboard description from a set of named components, and to optionally
have the server use the resulting description to replace an active oXkbGstKey-

boardByName

XkbDescPtixkbGetKeyboardByName(dpy, device_spemameswant need load)
Display * dpy, [* connection to X server */
unsigned int device_spec /* device ID, orXkbUseCor eKbd */
XkbComponentNamesPtrnames /* names of components to fetch */
unsigned int want [* desired structures in returned record */
unsigned int need /* mandatory structures in returned record */
Bool load, [* Tr ue => load intodevice_spet/

namescontains a set of expressions describing the keyboard components the server should
use to build the new keyboard descriptantandneedare bit fields describing the parts
of the resulting keyboard description that should be present in the reXkiniees cRec.

The individual fields imamesarecomponent expressiosemposed of keyboard compo-
nent names (no wildcarding as may be usexkinListComponen)sthe special compo-
nent name symbol ‘%’, and the special operator charaeteasnd ‘| . A component
expression is parsed left to right, as follows:

« The special component nameditput ed” may be used ilkeycodes component
expressions and refers to a component consisting of a set of keycodes computed auto-
matically by the server as needed.

« The special component nameahoni cal " may be used it ypes component
expressions and refers to a partial component defining the four standard key types:
ALPHABETI C ONE_LEVEL, TWD LEVEL, andKEYPAD.

» The special component nant tefers to the keyboard description for the device spec-
ified in device_speor the keymap names component. If a keymap names component
is specified that does not begin with ‘+" or ‘|’ and does not contéjiien Y refers
to the description generated by the keymap names component. Otherwise, it refers to
the keyboard description falevice_spec

« The ‘+ operator specifies that the following component showierridethe currently
assembled description; any definitions that are present in both components are taken
from the second.

e The | ' operator specifies that the next specified component shaigthenthe cur-
rently assembled description; any definitions that are present in both components are
taken from the first.

 If the component expression begins with an operator, a leddirgimplied.

» If any unknown or illegal characters appear anywhere in the expression, the entire
expression is invalid and is ignored.

For example, ihames->symbolsontained the expression “+de”, it specifies that the
default member of the “de” class of symbols should be applied to the current keyboard
mapping, overriding any existing definitions (it could also be written “+de(default)”).

Here is a slightly more involved example: the expression
“acme(ascii)+de(basic)|is09995-3" constructs a German (de) mapping for the ASCII key-
board supplied by the “acme” vendor. The new definition begins with the symbols for the
ASCII keyboard for Acmeacme(ascii), overrides them with definitions for the basic
German keyboarddg(basic), and then applies the definitions from the default is09995-3
keyboard 609995-3 to any undefined keys or groups of keys (part three of the is09995
standard defines a common set of bindings for the secondary group, but allows national
layouts to override those definitions where necessary).

November 10, 1997 Library Version 1.0/Document Revision 1.1 194

The X Keyboard Extension 20 Server Database of Keyboard Components

Note The interpretation of the above expression components (acme, ascii, de, basic,
i509995-3) is not defined by Xkb; only the operations and their ordering are.

Note that the presence of a keynmgmnescomponent that does not contai (either

explicit or implied by virtue of an expression starting with an operator) indicates a
description that is independent of the keyboard description for the device specified in
device_specThe same is true of requests in which the keymap names component is empty
and all five other names components contain expressions void of refererfdes to *
Requests of this form allow you to deal with keyboard definitions independent of any
actual device.

The server parses all ndLL fields innamesand uses them to build a keyboard descrip-
tion. However, before parsing the expressionsimesthe server ORs the bitswant
andneedtogether and examines the result in relationship to the expressita®as

Table 20.3 identifies the components that are required for each of the possiblevaits in
or need If a required component has not been specified indhgesstructure (the corre-
sponding field iSNULL), the server substitutes the expressidh fesulting in the compo-
nent values being taken fraskevice_spedn addition, ifloadis Tr ue, the server modifies
namesf necessary (again using #“entry) to ensure all of the following fields are
nonNULL: types keycodessymbols andcompat

Table 20.3 Want and Need Mask Bits and Required Names Components

want or need mask bit Required names Components value
XkbGBN_ TypesMask Types (1L<<0)
XkbGBN_CompatMapMask Compat (1L<<1)
XkbGBN_ ClientSymbolsMask Types + Symbols + Keycodes (1L<<2)
XkbGBN_ServerSymbolsMask Types + Symbols + Keycodes (1L<<3)
XkbGBN_SymbolsMask Symbols (1L<<1)
XkbGBN _IndicatorMapMask Compat (1L<<4)
XkbGBN_KeyNamesMask Keycodes (1L<<5b)
XkbGBN_GeometryMask Geometry (1L<<6)
XkbGBN_OtherNamesMask Types + Symbols + Keycodes H1L<<7)
Compat + Geometry
XkbGBN_AllIComponentsMask (Oxff)

needspecifies a set of keyboard components that the server must be able to resolve in
order forXkbGetKeyboardByNante succeed; if any of the components specifiateed
cannot be successfully resolvetkbGetKeyboardByNantails.

wantspecifies a set of keyboard components that the server should attempt to resolve, but
that are not mandatory. If the server is unable to resolve any of these compokia@et-
KeyboardByNamestill succeeds. Bits specifiedwantthat are also specified mreedhave

no effect in the context afant

If loadis Tr ue, the server updates its keyboard descriptionlémice speto match the
result of the keyboard description just built. If loadrad se, the server’s description for
devicedevice_spets not updated. In all cases, the parts specifiagdyandneedfrom
the just-built keyboard description are returned.

Thenamesstructure in axkbDescRec keyboard description record (see Chapter 18)
contains one field for each of the five component types used to build a keyboard descrip-

November 10, 1997 Library Version 1.0/Document Revision 1.1 195

The X Keyboard Extension

20 Server Database of Keyboard Components

tion. When a keyboard description is built from a set of database components, the corre-
sponding fields in thimamesstructure are set to match the expressions used to build the

component.

The entire process of building a new keyboard description from the server database of

components and returning all or part of it is diagrammed in Figure 20.1:

Initial Request

dewce_specé

names -«
want \

need | \

load \ \

Augment names to
supply component
names required by
want and need but ng
supplied in request

—

@ False

*True

Augment names to
supply required com-
ponent names not sup-

plied in request

S a——

/ New Keyboard

—— | Description

Build keyboard

description from

expressions in
names

False @

* True

Replace device_spec
active keyboard
description with newly
built description

Build keyboard
description for client
by extracting struc-

tures specified in want

and need

Keyboard
Component
Database

(Temporary)

Keyboard Descriptio
for device_spec

— » | Keyboard

Description
returned to
Client

Figure 20.1 Building a New Keyboard Description from the Server Database

The information returned to the client in tdebDescRec is essentially the result of a
series of calls to extract information from a fictitious device whose description matches

November 10, 1997

Library Version 1.0/Document Revision 1.1

The X Keyboard Extension 20 Server Database of Keyboard Components

the one just built. The calls corresponding to each of the mask bits are summarized in
Table 20.4, together with thiékbDescRec components that are filled in.

Table 20.4 XkbDescRec Components Returned for Values of Want & Needs

Request (want+need) Fills in Xkb components Equivalent Function Call
XkbGBN_ TypesMask map.types XkbGetUpdatedMap(dpy, XkbTypesMask, Xkb)
XkbGBN_ServerSymbolsMask server XkbGetUpdatedMap(dpy, XkbAllClientinfoMask, Xkb)
XkbGBN_ClientSymbolsMask map, including map.types XkbGetUpdatedMap(dpy, XkbAllServerinfoMask, Xkb)
XkbGBN _ IndicatorMaps indicators XkbGetindicatorMap(dpy, XkbAllindicators, Xkb)
XkbGBN_CompatMapMask compat XkbGetCompatMap(dpy, XkbAllCompatMask, Xkb)
XkbGBN_GeometryMask geom XkbGetGeometry(dpy, Xkb)
XkbGBN_KeyNamesMask names.keys XkbGetNames(dpyKkbKeyNamesMask |
names.key_aliases XkbKeyAliasesMaskXkb)
XkbGBN_OtherNamesMask names.keycodes XkbGetNames(dpy, XkbAlINamesMask &
names.geometry ~(XkbKeyNamesMask | XkbKeyAliasesMgsk
names.symbols Xkb)

names.types
map.types[*].lvl_names[*]
names.compat
names.vmods
names.indicators
names.groups
names.radio_groups
names.phys_symbols

There is no way to determine which components specifiagir (but not inneed were
actually fetched, other than breaking the call into successive cXlkbteetKeyboard-
ByNameand specifying individual components.

XkbGetKeyboardByNanaways setsnin_key codandmax_key codm the returned
XkbDescRec structure.

XkbGetKeyboardByName synchronous; it sends the request to the server to build a new
keyboard description and waits for the reply. If successful, the return value MJobn-
XkbGetKeyboardByNangenerates BadMVat ch protocol error if errors are encountered
when building the keyboard description.

If you simply want to obtain information about the current keyboard device, rather than
generating a new keyboard description from elements in the server databadéyGse
Keyboard(see section 6.2).

XkbDescPtiXkbGetKeyboard(dpy, which device_spéc

Display * dpy; /* connection to X server */
unsigned int which /* mask of components okbDescRec of interest */
unsigned int device_spec /* device ID */

XkbGetKeyboards used to read the current description for one or more components of a
keyboard device. It callEkbGetKeyboardByNanaes follows:

XkbGetKeyboardByNar(upy, device_sped\ULL, which, which, Fal se).

November 10, 1997 Library Version 1.0/Document Revision 1.1 197

The X Keyboard Extension 21 Attaching Xkb Actions to X Input Extension

21

Attaching Xkb Actions to X Input Extension Devices

The X input extension allows an X server to support multiple keyboards, as well as other
input devices, in addition to the core X keyboard and pointer. The input extension catego-
rizes devices by grouping them into classes. Keyboards and other input devices with keys
are classified akeyd ass devices by the input extension. Other types of devices sup-
ported by the input extension include, but are not limited to: mice, tablets, touchscreens,
barcode readers, button boxes, trackballs, identifier devices, data gloves, and eye trackers.
Xkb provides additional control over all X input extension devices, whether th&gware

d ass devices or not, as well as the core keyboard and pointer.

If an X server implements support for both the input extension and Xkb, the server imple-
mentor determines whether interaction between Xkb and the input extension is allowed.
Implementors are free to restrict the effects of Xkb to only the core X keyboard device or
allow interaction between Xkb and the input extension.

Several types of interaction between Xkb and the input extension are defined by Xkb.
Some or all may be allowed by the X server implementation.

Regardless of whether the server allows interaction between Xkb and the input extension,
the following access is provided:

» Xkb functionality for the core X keyboard device and its mapping is accessed via the
functions described in the other chapters of this specification.

» Xkb functionality for the core X pointer device is accessed vixXKiEsetDevicelnfo
andXkbSetDevicelnféunctions described in this chapter.

If all types of interaction are allowed between Xkb and the input extension, the following
additional access is provided:

 If allowed, Xkb functionality for additionafeyd ass devices supported by the input
extension is accessed via those same functions.

 If allowed, Xkb functionality for norikeyd ass devices supported by the input exten-
sion is also accessed via tkbGetDevicelnfand XkbSetDevicelnffunctions
described in this chapter.

Each device has an X Input Extension device ID. Each device may have several classes of
feedback. For example, there are two types of feedbacks that can generate bells: bell feed-
back and keyboard feedbade(| Feedbackd ass andkKbdFeedbackd ass). A

device can have more than one feedback of each type; the feedback ID identifies the par-
ticular feedback within its class.

A keyboard feedback has:

» Auto-repeat status (global and per key)
» 32LEDs
* Abell

An indicator feedback has:

* Upto 32 LEDs

If the input extension is present and the server allows interaction between the input exten-
sion and Xkb, then the core keyboard, the core keyboard indicators, and the core keyboard
bells may each be addressed using an appropriate device spec, class, and ID. The constant
XkbXl Df | t 1 Dmay be used as the device ID to specify the core keyboard indicators for

the core indicator feedback. The particular device ID corresponding to the core keyboard

November 10, 1997 Library Version 1.0/Document Revision 1.1 198

The X Keyboard Extension 21 Attaching Xkb Actions to X Input Extension

feedback and the core indicator feedback may be obtained by ¢cétlr@etDevicelnfo
and specifyingkkbUseCor eKbd as thedevice_spedhe values will be returned in
dfit_kbd_idanddflt_led_id

If the server does not allow Xkb access to input extert&gidl ass devices, attempts to
use Xkb requests with those devices fail witbaa Keyboar d error. Attempts to access
nonKeyd ass input extension devices vikbGetDevicelnfandXkbSetDevicelnftail
silently if Xkb access to those devices is not supported by the X server.

21.1 XkbDevicelnfoRec

Information about X Input Extension devices is transferred between a client program and
the Xkb extension in akkbDevi cel nf oRec structure:

typedef struct {
char * name; [* name for device */
Atom type; /* name for class of devices */
unsigned short device_spec; /* device of interest */
Bool has_own_state;/fr ue=>this device has its own state */
unsigned short supported; /* bits indicating supported capabilities */
unsigned short unsupported; /* bits indicating unsupported capabilities */
unsigned short num_btns; /* number of entriebtim acts*/
XkbAction * btn_acts; /* button actions */
unsigned short sz_leds; [* total number of entries in LEDs vector */
unsigned short num_leds; /* number of valid entries in LEDs vector */
unsigned short dflt_kbd_fb; /* input extension ID of default (core kbd) indicator */
unsigned short dflt_led_fb; /* input extension ID of default indicator feedback */
XkbDevicelLedInfoPtr leds; /* LED descriptions */

} XkbDevicelnfoReg *XkbDevicelnfoPtr;

typedef struct {
unsigned short led_class; [* class for this LED device*/
unsigned short led_id; /* ID for this LED device */
unsigned int phys_indicators; /* bits for which LEDs physically present */
unsigned int maps_present; /* bits for which LEDs have mapsjs*/
unsigned int names_present; /* bits for which LEDs amaimes"/
unsigned int state; /* 1 bit => corresponding LED is on */
Atom names[XkbNumlndicators]; /* names for LEDs */
XkbIndicatorMapRec maps; /* indicator maps for each LED */

} XkbDeviceLedInfoRec *XkbDevicelLedInfoPtr;

Thetypefield is a registered symbolic name for a class of devices (for example, “TABLET"). If a
device is a keyboard (that is, is a membef@yd ass), it has its own state, arths_own_state

is True. If has_own_states Fal se, the state of the core keyboard is usEae supportedand
unsupportedields are masks where each bit indicates a capability. The meaning of the
mask bits is listed in Table 21.1, together with the fields irkkieevi cel nf oRec

structure that are associated with the capability represented by each bit. The same bits are
used to indicate the specific information desired in many of the functions described subse-
guently in this section.

November 10, 1997 Library Version 1.0/Document Revision 1.1 199

The X Keyboard Extension

21 Attaching Xkb Actions to X Input Extension

Table 21.1 XkbDevicelnfoRec Mask Bits

XkaeviceInfoReQ/alue

Name Fields Effected

Capability If Set

XkbXI_KeyboardsMask

(1L << 0) Clients can use all Xkb requests and

events withKeyd ass devices sup-
ported by the input device exten-
sion.

XkbXI_ButtonActionsMask num_btns (1L <<1) Clients can assign key actions to
btn_acts buttons on norikeyd ass input
extension devices.
XkbXI_IndicatorNamesMask leds->names (1L <<2) Clients can assign names to indica-
tors on norkeyd ass input exten-
sion devices.
XkbXI_IndicatorMapsMask leds->maps (1L <<3)Clients can assign indicator maps to
indicators on norikeyd ass input
extension devices.
XkbXI_IndicatorStateMask leds->state (1L <<4) Clients can request the status of
indicators on norikeyd ass input
extension devices.
XkbXI_IndicatorsMask sz_leds (0x1c) XkbXI_IndicatorNamesMask |
num_leds XkbXI_IndicatorMapsMask |
leds->* XkbXI_IndicatorStateMask
XkbXI_UnsupportedFeaturesMask unsupported (1L <<15)

XkbXI_AllDeviceFeaturesMask Those selected byOx1e)

Value column masks
Those selected by(0x1f)
Value column masks

Those selected by (0x801f)
Value column masks

XkbXI_AllFeaturesMask

XkbXI_AllDetailsMask

XkbXI_IndicatorsMask |
XkbSI_ButtonActionsMask

XkbSI_AllDeviceFeaturesMask |
XkbSI_KeyboardsMask

XkbXI_AllFeaturesMask |
XkbXI_UnsupportedFeaturesMask

Thename type has_own_statesupported andunsupportedields are always filled in when a
valid reply is returned from the server involvingXboDevi cel nf oRec. All of the other
fields are modified only if the particular function asks for them.

21.2

Querying Xkb Features for Non-KeyClass Input Extension Devices

To determine whether the X server allows Xkb access to particular capabilities of input
devices other than the core X keyboard, or to determine the status of indicator maps, indi-
cator names or button actions on a Key-d ass extension device, usékbGetDevice-

Info.

XkbDevicelnfoPtrXkbGetDevicelnfo(dpy which, device_spec, ind_class, ind id

Display * dpy, [* connection to X server */

unsigned int which /* mask indicating information to return */
unsigned int device_spec /* device ID, orXkbUseCor eKbd */
unsigned int ind_class [* feedback class for indicator requests */
unsigned int ind_id; /* feedback ID for indicator requests */

XkbGetDevicelnfoeturns information about the input device specifiediéyice _spec
Unlike thedevice_speparameter of most Xkb functiordgvice_spedoes not need to be

November 10, 1997

Library Version 1.0/Document Revision 1.1

200

The X Keyboard Extension 21 Attaching Xkb Actions to X Input Extension

a keyboard device. It must, however, indicate either the core keyboard or a valid X Input
Extension device.

Thewhichparameter is a mask specifying optional information to be returned. It is an
inclusive OR of one or more of the values from Table 21.1 and causes the returned
XkbDevi cel nf oRec to contain values for the corresponding fields specified in the table.

TheXkbDevi cel nf oRec returned byXkbGetDevicelnfalways has values foilame
(may be a null string, “")type supportedunsupporteghas _own_statalflt _kbd fd and
dflt_kbd_fb Other fields are filled in as specified Wwhich

Upon return, thesupportedield will be set to the inclusive OR of zero or more bits from
Table 21.1; each bit set indicates an optional Xkb extension device feature supported by
the server implementation, and a client may modify the associated behavior.

If the XkbBut t onAct i onsMask bit is set inwhich, theXkbDevi cel nf oRec returned
will have the button actiond®in_actsfield) filled in for all buttons.

If whichincludes one of the bits KkbXI | ndi cat or sMask, the feedback class of
the indicators must be specifiedimd_class and the feedback ID of the indicators must
be specified innd_id. If the request does not include any of the bits in

XkbXI I ndi cat or sMask, theind_classandind_id parameters are ignored. The class
and ID can be obtained via the input device extenslastinputDevicesequest.

If any of theXkbXl _I ndi cat or sMask bits are set imvhich, theXkbDevi cel nf oRec
returned will have filled in the portions of theglsstructure corresponding to the indicator
feedback identified bind_classandind_id. Theledsvector of thexkbDevi cel nf oRec

is allocated if necessary asd ledsandnum_leddilled in. Theled_classled_idand
phys_indicatordields of theledsentry corresponding tad_classandind_id are always
filled in. If whichcontainsXkbXl _I ndi cat or NanesMask, thenames_preserand
namedields of theledsstructure corresponding ted_classandind_id are returned. If
whichcontainsXkbXl _| ndi cat or St at eMask, the correspondingtatefield is updated.

If which containsxkbXl _| ndi cat or MapsMask, themaps_preserdndmapsfields are
updated.

Xkb provides convenience functions to request subsets of the information available via
XkbGetDevicelnfoThese convenience functions mirror some of the mask bits. The func-
tions all take aiXkbDevi cel nf oPt r as an input argument and operate on the X Input
Extension device specified by tHevice_speéeld of the structure. Only the parts of the
structure indicated in the function description are updatedXkbBevi cel nf oRec
structure used in the function call can be obtained by caflihgsetDevicelnf@r can be
allocated by callingKkbAllocDevicelnfdsee section 21.3).

These convenience functions are described as follows.

To query the button actions associated with an X Input Extension devicékhGetDe-
viceButtonActions.

StatusXkbGetDeviceButtonActiongdpy, device_info, all_buttons, first_button, num_bujtons

Display * dpy; /* connection to X server */

XkbDevicelnfoPtr device_info /* structure to update with results */

Bool all_buttons /* Tr ue => get information for all buttons */
unsigned int first_button /* number of first button for which info is desired */
unsigned int num_buttons /* number of buttons for which info is desired */

November 10, 1997 Library Version 1.0/Document Revision 1.1 201

The X Keyboard Extension 21 Attaching Xkb Actions to X Input Extension

XkbGetDeviceButtonActiompieries the server for the desired button information for the
device indicated by th@evice speéeld of device_infoand waits for a reply. If success-
ful, XkbGetDeviceButtonActiormckfills the button actiondin_actsfield of

device_infy for only the requested buttons, updateswime type supportedandunsup-
portedfields, and returnSuccess.

all_buttons first_buttonandnum_buttonspecify the device buttons for which actions
should be returned. Settilad) buttonsto Tr ue requests actions for all device buttons; if
all_buttonsis Fal se, first_buttonandnum_buttonspecify a range of buttons for which
actions are requested.

If a compatible version of Xkb is not available in the server or the Xkb extension has not
been properly initialized{kbGetDeviceButtonActiomsturnsBadAccess. If allocation

errors occur, 8adAl | oc status is returned. If the specified device
(device_infe>device_spéds invalid, aBadKeyboar d status is returned. If the device

has no buttons, BadMat ch status is returned. first_buttonandnum_buttonspecify

illegal buttons, @adVal ue status is returned.

To query the indicator names, maps, and state associated with an LED feedback of an
input extension device, ug&bGetDevicelLedInfo.

StatusXkbGetDevicelLedInfo(dpy, device_info, led_class, led_id, which

Display * dpy; /* connection to X server */

XkbDevicelnfoPtr device_info /* structure to update with results */

unsigned int led_class /* LED feedback class assigned by input extension */
unsigned int led_id /* LED feedback ID assigned by input extension */
unsigned int which /* mask indicating desired information */

XkbGetDevicelLedInfqueries the server for the desired LED information for the feedback
specified byled_classandled_idfor the X input extension device indicated by
device_specdevice_infaand waits for a reply. If successfkbGetDevicelLedInfback-

fills the relevant fields oflevice_infoas determined byhichwith the results and returns
Success. Valid values fomwhichare the inclusive OR of any of

XkbXl I ndi cat or NamesMask, XkbXI _I ndi cat or Mapsiask, and

XkbXI I ndi cat or St at eMask.

The fields ofdevice_infahat are filled in when this request succeedsiame, type, sup-
ported andunsupportedand portions of thiedsstructure corresponding led_classand
led_idas indicated by the bits setwinich Thedevice_info->ledwector is allocated if
necessary ansz_ledsandnum_leddilled in. Theled_classled_idandphys_indicators
fields of thedevice_infe>ledsentry corresponding ted_classandled_idare always
filled in.

If whichcontainsXxkbXl _| ndi cat or NamesMask, thenames_preser@ndnamedields
of thedevice_infe>ledsstructure corresponding ked_classandled_idare updated, if
whichcontainsXkbXl | ndi cat or St at eMask, the correspondingtatefield is updated,
and ifwhichcontainsXkbXl _| ndi cat or MapsMask, themaps_preserandmapsfields
are updated.

If a compatible version of Xkb is not available in the server or the Xkb extension has not
been properly initialized{kbGetDevicelLedInfoeturnsBadAccess. If allocation errors
occur, a BadAlloc status is returned. If the device has no indicatBasiMat ch error is
returned. IfledClassor ledID have illegal values, BadVal ue error is returned. If they

November 10, 1997 Library Version 1.0/Document Revision 1.1 202

The X Keyboard Extension 21 Attaching Xkb Actions to X Input Extension

have legal values but do not specify a feedback that contains LEDs and is associated with
the specified device,BadMat ch error is returned.

21.3 Allocating, Initializing, and Freeing the XkbDevicelnfoRec Structure
To obtain arXkbDevi cel nf oRec structure, usXkbGetDevicelnf@r XkbAllocDevice-

Info.

XkbDevicelnfoPtrXkbAllocDevicelnfo(device _spec, n_buttons, sz_leds
unsigned int device_spec /* device ID with which structure will be used */
unsigned int n_buttons /* number of button actions to allocate space for*/
unsigned int sz_leds /* number of LED feedbacks to allocate space for */

XkbAllocDevicelnfallocates space for afikbDevi cel nf oRec structure and initializes
that structure’slevice_spefield with the device ID specified ldevice spedf

n_buttongs nonzeron_buttonsxkbAct i ons are linked into thekbDevi cel nf oRec
structure and initialized to zero.df_ledds nonzerosz_ledsxkbDevi celLedl nf oRec
structures are also allocated and linked intoxdkigDevi cel nf oRec structure. If you
requesiXkbDevi celLedl nf oRec structures be allocated using this request, you must ini-
tialize them explicitly.

To obtain arXkbDevi celLedl nf oRec structure, us&XkbAllocDevicelLedInfo

StatusXkbAllocDevicelLedInfo(devi, num_needégd
XkbDevicelnfoPtr device infop /* structure in which to allocate LED space */
int num_needed /* number of indicators to allocate space for */

XkbAllocDeviceLedInfallocates space for afkbDevi ceLedl nf oRec and places it in
device_infolf num_needed nonzeronum_neededkbl ndi cat or MapRec structures
are also allocated and linked into tebDevi ceLedl nf oRec structure. If you request
Xkbl ndi cat or MapRec structures be allocated using this request, you must initialize
them explicitly. All other fields are initialized to zero.

To initialize anXkbDevi ceLedl nf oRec structure, us&XkbAddDeviceLedInfo

XkbDeviceLedInfoPtiXkbAddDeviceLedInfo(device_info, led_class, led)id
XkbDevicelnfoPtr device_infop /* structure in which to add LED info */
unsigned int led class /* input extension class for LED device of interest */
unsigned int led_id * input extension ID for LED device of interest */

XkbAddDeviceLedInfbrst checks to see whether an entry matclaag classandled_id
already exists in thdevice_info->ledsrray. If it finds a matching entry, it returns a
pointer to that entry. Otherwise, it checks to be sure there is at least one empty entry in
device_infe>ledsand extends it if there is not enough room. It then increments
device_infe>num_ledsand fills in the next available entry device_infe>ledswith
led_classandled_id

If successfulXkbAddDevicelLedInfeeturns a pointer to thébDevi ceLedl nf oRec
structure that was initialized. If unable to allocate sufficient storagedevite_info
points to an invalickkbDevi cel nf oRec structure, or ifed_classorled_idare inappro-
priate,XkbAddDevicelLedInfoeturnsNULL.

November 10, 1997 Library Version 1.0/Document Revision 1.1 203

The X Keyboard Extension 21 Attaching Xkb Actions to X Input Extension

21.4

To allocate additional space for button actions iiXidoDevi cel nf oRec structure, use
XkbResizeDeviceButtonActions

StatusXkbResizeDeviceButtonActiongdevice_info, new_total
XkbDevicelnfoPtr device_info /* structure in which to allocate button actions */
unsigned int new_totaj /* new total number of button actions needed */

XkbResizeDeviceButtaaallocates space, if necessary, to make sure there is room for a
total ofnew_totalbutton actions in thdevice_infostructure. Any new entries allocated

are zeroed. If successfidkbResizeDeviceButtaaturnsSuccess. If new_totalis zero,

all button actions are deletagkvice infe>num_btngs set to zero, and
device_infe>btn_actsis set toNULL. If device_infds invalid ornew_totalis greater than
255,BadVal ue is returned. If a memory allocation failure occurBadAl | oc is

returned.

To free anXkbDevi cel nf oRec structure, usXkbFreeDevicelnfo

void XkbFreeDevicelnfo(device_info, which, free_all
XkbDevicelnfoPtr device_info /* pointer toXkbDevi cel nf oRec in which to free items */
unsigned int whichy [* mask of components afevice_infao free */
Bool free_alt [* Tr ue => free everything, including device_info */

If free_allis Tr ue, theXkbFreeDevicelnfdrees all components dkvice_infaand the
XkbDevi cel nf oRec structure pointed to bgevice_infatself. If free_allis Fal se, the

value ofwhichdetermines which subcomponents are freddchis an inclusive OR of

one or more of the values from Table 21.wlhifich contains

XkbXI _Butt onAct i onsMask, all button actions associated witbvice infcare
freed,device_infe>btn_actsis set toNULL, anddevice_infe>num_Dbtngs set to zero. If

which contains all bits itrKkb Xl _I ndi cat or sMask, all XkbDevi ceLedl nf oRec
structures associated witlevice infoare freeddevice_infe>ledsis set toNULL, and
device_infe>sz_ledsanddevice_infe>num_ledsare set to zero. ihich contains

XkbXI _I ndi cat or MapsMask, all indicator maps associated widbvice_infoare

cleared, but the number of LEDs and the leds structures themselves are preserved. If
whichcontainsXkbXl | ndi cat or NamesMask, all indicator names associated with
device_info are cleared, but the number of LEDs and the leds structures themselves are
preserved. lvhichcontainsxkbXl _I ndi cat or St at eMask, the indicator state asso-
ciated with thedevice infdeds are set to zeros but the number of LEDs and the leds struc-
tures themselves are preserved.

Setting Xkb Features for Non-KeyClass Input Extension Devices

The Xkb extension allows clients to assign any key action to either core pointer or input
extension device buttons. This makes it possible to control the keyboard or generate key-
board key events from extension devices or from the core pointer.

Key actions assigned to core X pointer buttons or input extension device buttons cause
key events to be generated as if they had originated from the core X keyboard.

Xkb implementations are required to support key actions for the buttons of the core
pointer device, but support for actions on extension devices is optional. Implementations
that do not support button actions for extension devices must not set the

XkbXl _But t onAct i onsMask bit in thesupportedield of anXkbDevi cel nf oRec

structure.

November 10, 1997 Library Version 1.0/Document Revision 1.1 204

The X Keyboard Extension 21 Attaching Xkb Actions to X Input Extension

If a client attempts to modify valid characteristics of a device using an implementation
that does not support modification of those characteristics, no protocol error is generated.
Instead, the server reports a failure for the request; it also seXkb&rt ensi onDevi -

ceNoti fy event to the client that issued the request if the client has selected to receive
these events.

To change characteristics of an X Input Extension device in the server, first modify a local
copy of the device structure and then use etk&SetDevicelnfar, to save network

traffic, use arkkbDevi ceChangesRec structure (see section 21.6) and call
XkbChangeDevicelnfto download the changes to the server.

To modify some or all of the characteristics of an X Input Extension devicXkbSet-

Devicelnfo
Bool XkbSetDevicelnfo(dpy, which, device_infp
Display * dpy, [* connection to X server */
unsigned int which /* mask indicating characteristics to modify */

XkbDevicelnfoPtr device_infp /* structure defining the device and modifications */

XkbSetDevicelnfesends a request to the server to modify the characteristics of the device
specified in thelevice_infostructure. The particular characteristics modified are identified
by the bits set invhichand take their values from the relevant fielddemice_info(see

Table 21.1)XkbSetDevicelnfeeturnsTr ue if the request was successfully sent to the
server. If the X server implementation does not allow interaction between the X input
extension and the Xkb Extension, the function does nothing and réalres.

Thewhichparameter specifies which aspects of the device should be changed and is a bit-
mask composed of an inclusive OR or one or more of the following bits:

XkbXI ButtonActi onsMask, XkbXl | ndi cat or NarmesMask,

XkbXl | ndi cat or MapsMask. If the features requested to be manipulateghith are

valid for the device, but the server does not support assignment of one or more of them,
that particular portion of the request is ignored.

If the device specified idevice_infe>device_spedoes not contain buttons and a request
affecting buttons is made, or the device does not contain indicators and a request affecting
indicators is made, BadMat ch protocol error results.

If the XkbXl _But t onAct i onsMask bit is set in thesupportednask returned b}kbGet-
Devicelnfq the Xkb extension allows applications to assign key actions to buttons on
input extension devices other than the core keyboard device. If the

XkbXl _But t onAct i onsMask is set inwhich, the actions for all buttons specified in
device_infaare set to th&kbAct i ons specified irdevice_infe>btn_acts If the number
of buttons requested to be updated is not valid for the dexkbSetDevicelnfeeturns

Fal se and aBadVal ue protocol error results.

If the XkbXI _I ndi cat or Maps and / orXkbXl _| ndi cat or NanesMask bit is set in the
supportednask returned b¥kbGetDevicelnfathe Xkb extension allows applications to
assign maps and / or names to the indicators of nonkeyboard extension devices. If sup-
ported, maps and / or names can be assigned to all extension device indicators, whether
they are part of a keyboard feedback or part of an indicator feedback.

If the XkbXl _I ndi cat or MapsMask and / orXkbXl _I ndi cat or NanmesMask flag is set
in which, the indicator maps and / or names fodaNice_infe>num_ledsndicator
devices specified idevice_infe>ledsare set to the maps and / or names specified in

November 10, 1997 Library Version 1.0/Document Revision 1.1 205

The X Keyboard Extension 21 Attaching Xkb Actions to X Input Extension

device_infe>leds device_infe>leds>led_classandled_id specify the input extension

class and device ID for each indicator device to modify; if they have invalid values, a
BadVal ue protocol error results arxkbSetDevicelnfeeturnsFal se. If they have legal
values but do not specify a keyboard or indicator class feedback for the device in question,
aBadMat ch error results. If any of the valuesdavice_infe>leds->namesre not a valid

Atom orNone, aBadAt omprotocol error results.

Xkb provides convenience functions to modify subsets of the information accessible via
XkbSetDevicelnfdOnly the parts of the structure indicated in the function description are
modified. These convenience functions are described as follows.

To change only the button actions for an input extension devic&kb&etDeviceBut-

tonActions

Bool XkbSetDeviceButtonActiongdpy, device, first_button, num_buttons, actipns
Display * dpy, [* connection to X server */
XkbDevicelnfoPtr device_infop /* structure defining the device and modifications */
unsigned int first_button /* number of first button to update, O relative */
unsigned int num_buttons /* number of buttons to update */

XkbSetDeviceButtonActioassigns actions to the buttons of the device specified in
device_infe>device_spedActions are assigned tmm_buttonduttons beginning with
first_buttonand are taken from the actions specifiedemice_infe>btn_acts

If the server does not support assignment of Xkb actions to extension device Xkinns,
SetDeviceButtonActiorigas no effect and returfkal se. If the device has no buttons or if
first_buttonor num_buttonspecify buttons outside of the valid range as determined by
device_infe>num_btnsthe function has no effect and retuFag se. Otherwise XkbSet-
DeviceButtonActionsends a request to the server to change the actions for the specified
buttons and returnk ue.

If the actual request sent to the server involved illegal button numiigadyal ue proto-
col error is generated. If an invalid device identifier is specified in
device_infe>device_spemBadKeyboar d protocol error results. If the actual device
specified indevice_infe>device_spedoes not contain buttons and a request affecting
buttons is made, BadMat ch protocol error is generated.

21.5 XkbExtensionDeviceNotify Event

The Xkb extension generat&bExt ensi onDevi ceNot i fy events when the status of
an input extension device changes or when an attempt is made to use an Xkb feature that is
not supported by a particular device.

Note Events indicating an attempt to use an unsupported feature are delivered only to the
client requesting the event.

To track changes to the status of input extension devices or attempts to use unsupported
features of a device, select to recefkdExt ensi onDevi ceNot i fy events by calling
eitherXkbSelectEventsr XkbSelectEventDetai[see section 4.3).

To receiveXkbExt ensi onDevi ceNot i fy events under all possible conditions, call
XkbSelectEvenasnd pasXkbExt ensi onDevi ceNot i f yMask in bothbits_to_change
andvalues_for_bits

November 10, 1997 Library Version 1.0/Document Revision 1.1 206

The X Keyboard Extension

21 Attaching Xkb Actions to X Input Extension

21.6

The XkbExt ensi onDevi ceNot i fy event has no event details. However, you can call
XkbSelectEventDetailssingXkbExt ensi onDevi ceNot i fy as theevent_typend spec-
ifying XkbAl | Ext ensi onDevi ceMask in bits_to_changandvalues_for_bitsThis has
the same effect as a callX&bSelectEvents

The structure fokkbExt ensi onDevi ceNot i fy events is:

typedef struct {
int type; /* Xkb extension base event code */
unsigned long serial; [* X server serial number for event */
Bool send_event; /AT ue => synthetically generated*/
Display * display; [* server connection where event generated */
Time time; /* server time when event generated */
int xkb_type; [*XkbExt ensi onDevi ceNot i f yEvent */
int device; /* Xkb device ID, will not beXkbUseCor eKbd */
unsigned int reason; [* reason for the event */
unsigned int supported; /* mask of supported features */
unsigned int unsupported; /* unsupported features this client attempted to use */
int first_btn; [* first button that changed */
int num_btns; /* number of buttons that changed */
unsigned int leds_defined; [* indicators with names or maps */
unsigned int led_state; /* current state of the indicators */
int led_class; /* feedback class for LED changes */
int led_id; /* feedback ID for LED changes */

} XkbExtensionDeviceNotifyEvent

The XkbExt ensi onDevi ceNot i fy event has fields enabling it to report changes in the
state (on/off) of all of the buttons for a device, but only for one LED feedback associated
with a device. You will get multiple events when more than one LED feedback changes
state or configuration.

Tracking Changes to Extension Devices

Changes to an Xkb extension device may be tracked by listenkdpEevi ceExt en-

si onNot i fy events and accumulating the changes iKkdobevi ceChangesRec struc-

ture. The changes noted in the structure may then be used in subsequent operations to
update either a server configuration or a local copy of an Xkb extension device configura-
tion. The changes structure is defined as follows:

typedef struct _XkbDeviceChanges {

unsigned int changed; /* bits indicating what has changed */
unsigned short first_btn; /* number of first button which changed, if any */
unsigned short num_btns; /* number of buttons that have changed */

XkbDeviceLedChangesRec leds;
} XkbDeviceChangesRe¢XkbDeviceChangesPtr;

typedef struct _XkbDeviceLedChanges {

unsigned short led_class; /* class of this indicator feedback bundle */
unsigned short led_id; /* ID of this indicator feedback bundle */
unsigned int names; [* bits indicating which names have changed */
unsigned int maps; /* bits indicating which maps have changed */

struct _XkbDeviceLedChanges *next; /* link to indicator change record for next set */
} XkbDeviceLedChangesReg¢XkbDeviceLedChangesPtr;

November 10, 1997

Library Version 1.0/Document Revision 1.1 207

The X Keyboard Extension 21 Attaching Xkb Actions to X Input Extension

A local description of the configuration and state of a device may be kepkXkbBavi -

cel nf oRec structure. The actual state or configuration of the device may change because
of XkbSetDevicelnfandXkbSetButtonActiongquests made by clients or by user interac-
tion with the device. The X server sendsxiExt ensi onDevi ceNot i fy eventto

all interested clients when the state of any buttons or indicators or the configuration of the
buttons or indicators on the core keyboard or any input extension device changes. The
event reports the state of indicators for a single indicator feedback, and the state of up to
128 buttons. If more than 128 buttons or more than one indicator feedback are changed,
the additional buttons and indicator feedbacks are reported in subsequent events. Xkb pro-
vides functions with which you can track changes to input extension devices by noting the
changes that were made and then requesting the changed information from the server.

To note device changes reported inbExt ensi onDevi ceNot i fy event, use

XkbNoteDeviceChanges

void XkbNoteDeviceChangegold, new, wanted
XkbDeviceChangesPtr old; [* structure tracking state changes */
XkbExtensionDeviceNotifyEvent * new /* event indicating state changes */
unsigned int wanted /* mask indicating changes to note

*/

Thewantedfield specifies the changes that should be notettirand is composed of the
bitwise inclusive OR of one or more of the masks from Table Zhdreasonfield of the
event innewindicates the types of changes the event is repoXikigNoteDeviceChanges
updates th&kbDevi ceChangesRec specified byold with the changes that are both
specified inwantedand contained inew>reason

To update a local copy of the state and configuration of an X input extension device with
the changes previously noted inXkbDevi ceChangesRec structure, usXkbGetDevi-
celnfoChanges

To query the changes that have occurred in the button actions or indicator names and indi-
cator maps associated with an input extension deviceskiggetDevicelnfoChanges.

StatusXkbGetDevicelnfoChangegdpy, device_info, changgs

Display * dpy; [* connection to X server */
XkbDevicelnfoPtr device_info /* structure to update with results */
XkbDeviceChangesPtchanges /* contains notes of changes that have occurred */

Thechanges->changefield indicates which attributes of the device specified in
changes>devicehave changed. The parameters describing the changes are contained in
the other fields ofhangesXkbGetDevicelnfoChangeses that information to caflkb-
GetDevicelnfdo obtain the current status of those attributes that have changed. It then
updates the local description of the devicdenice_infowith the new information.

To update the server’s description of a device with the changes notedkbBavi ce-
ChangesRec, useXkbChangeDevicelnfo

Bool XkbChangeDevicelnfo(dpy, device_info, changes

Display * dpy, [* connection to X server */
XkbDevicelnfoPtr device_infop /* local copy of device state and configuration */
XkbDeviceChangesPtchanges [* note specifying changes device_infa*/

November 10, 1997 Library Version 1.0/Document Revision 1.1 208

The X Keyboard Extension 21 Attaching Xkb Actions to X Input Extension

XkbChangeDevicelnfopdates the server’s description of the device specified in
device_infe>device_spewith the changes specified thangesand contained in
device_info The update is made by XikbSetDevicelnfeequest.

November 10, 1997 Library Version 1.0/Document Revision 1.1 209

The X Keyboard Extension 22 Debugging Aids

22

Debugging Aids

The debugging aids are intended for use primarily by Xkb implementors and are optional
in any implementation.

There are two bitmasks that may be used to control debugging. One bitmask controls the
output of debugging information, and the other controls behavior. Both bitmasks are ini-
tially all zeros.

To change the values of any of the debug controlsXkis&etDebuggingFlags
Bool XkbSetDebuggingFlaggdisplay, mask, flags, msg, ctrls_mask, ctrls, ret_flags, ret) ctrls

Display * display, [* connection to X server */

unsigned int mask /* mask selecting debug output flags to change */
unsigned int flags /* values for debug output flags selectedgsk*/
char * msg /* message to print right now */

unsigned int ctrls_mask /* mask selecting debug controls to change */
unsigned int ctrls; /* values for debug controls selecteddigls _maskt/
unsigned int * ret flags [* resulting state of all debug output flags */
unsigned int * ret_ctrls [* resulting state of all debug controls */

XkbSetDebuggingFlagaodifies the debug output flags as specifiedrtagkandflags
modifies the debug controls flags as specifiedtolg_maskandctrls, prints the message
msg and backfillget_flagsandret_ctrlswith the resulting debug output and debug con-
trols flags.

When bits are set in the debug output mastkeskandflags Xkb prints debug informa-

tion corresponding to each bit at appropriate points during its processing. The device to
which the output is written is implementation-dependent, but is normally the same device
to which X server error messages are directed; thus the bits that can heastand

flagsis implementation-specific. To turn on a debug output selection, set the bit for the
output in themaskparameter and set the corresponding bit irfldgsparameter. To turn

off event selection for an event, set the bit for the output imtdmekparameter and do not

set the corresponding bit in tHagsparameter.

When bits are set in the debug controls mastkis, maskandctrls, Xkb modifies its
behavior according to each controls bitls_maskandctrls are related in the same way
thatmaskandflagsare. The valid controls bits are defined in Table 22.1.

Table 22.1 Debug Control Masks

Debug Control Mask Value Meaning
XkbDF_DisableLocks (1<<0) Disable actions that lock modifiers

XkbSetDebuggingFlageturnsTr ue if successful anéfal se otherwise. The only proto-
col error it may generate BadAl | oc, if for some reason it is unable to allocate storage.

XkbSetDebuggingFlags intended for developer use and may be disabled in production X
servers. If it is disablekbSetDebuggingFladsas no effect and does not generate any
protocol errors.

The message imsgis written immediately. The device to which it is written is implemen-
tation dependent but is normally the same device where X server error messages are
directed.

November 10, 1997 Library Version 1.0/Document Revision 1.1 210

The X Keyboard Extension Glossary

Glossary

Allocator
Xkb provides functions, known as allocators, to create and initialize Xkb data structures.

Audible Bell

An audible bell is the sound generated by whatever bell is associated with the keyboard or
input extension device, as opposed to any other audible sound generated elsewhere in the
system.

Autoreset Controls

The autoreset controls configure the boolean controls to automatically be enabled or
disabled at the time a program exits.

Base Group

The group in effect as a result of all actions other than a previous lock or latch request; the
base group is transient. For example, the user pressing and holding a group shift key that
shifts to Group2 would result in the base group being group 2 at that point in time.
Initially, base group is always Groupl.

Base Modifiers

Modifiers that are turned on as a result of some actions other than previous lock or latch
requests; base modifiers are transient. For example, the user pressing and holding a key
bound to the Shift modifier would result in Shift being a base modifier at that point in
time.

Base Event Code

A number assigned by the X server at run time that is assigned to the extension to identify
events from that extension.

Base State

The base group and base modifiers represent keys that are physically or logically down;
these constitute the base state.

Boolean Controls

Global keyboard controls that may be selectively enabled and disabled under program
control and that may be automatically set to an on or off condition upon client program
exit.

Canonical Key Types

The canonical key types are predefined key types that describe the types of keys available
on most keyboards. The definitions for the canonical key types are held in the first
XkbNunRequi r edTypes entries of theypesfield of the client map and are indexed using

the following constants:

XkbOneLevel | ndex
XkbTwoLevel | ndex
XkbAl phabet i cl ndex
XkbKeypadl ndex

Client Map
The key mapping information needed to convert arbitrary keycodes to symbols.

November 10, 1997 Library Version 1.0/Document Revision 1.1 211

The X Keyboard Extension Glossary

Compat Name

Thecompatname is a string that provides some information about the rules used to bind
actions to keys that are changed using core protocol requests.

Compatibility State
When an Xkb-extended X server connects to an Xkb-unaware client, the compatibility
state remaps the keyboard group into a core modifier whenever possible.

Compatibility Grab State
The grab state that results from applying the compatibility map to the Xkb grab state.

Compatibility Map
The definition of how to map core protocol keyboard state to Xkb keyboard state.

Component Expression

An expression used to describe server keyboard database components to be loaded. It
describes the order in which the components should be loaded and the rules by which
duplicate attributes should be resolved.

Compose Processing
The process of mapping a series of keysyms to a string is known as compose processing.

Consumed Modifier

Xkb normally consumes modifiers in determining the appropriate symbol for an event,
that is, the modifiers are not considered during any of the later stages of event processing.
For those rare occasions when a mod#tesuld be considered despite having been used
to look up a symbol, key types include an optigrakervefield.

Core Event
An event created from the core X server.

Detectable Auto-Repeat

Detectable auto-repeat allows a client to detect an auto-repeating key. If a client requests
and the server supports detectable auto-repeat, Xkb gertergfes ease events only
when the key is physically released. Thus the client receives a nunkKesiRofess
events for that key without intervenikgyRel ease events until the key is finally
released, whenlkeyRel ease event is received.

Effective Group

The effective group is the arithmetic sum of the locked, latched, and base groups. The
effective keyboard group is always brought back into range depending on the value of the
@ oupsW ap control for the keyboard. If an event occurs with an effective group that is
legal for the keyboard as a whole, but not for the key in question, the forabat event
only is normalized using the algorithm specified bydheup_infomember of the key
symbol map XkbSyniMapRec).

Effective Mask

An Xkb modifier definition consists of a set of bit masks corresponding to the eight real
modifiers; a similar set of bitmasks corresponding to the 16 named virtual modifiers; and
an effective mask. The effective mask represents the set of all real modifiers that can
logically be set either by setting any of the real modifiers or by setting any of the virtual
modifiers in the definition.

November 10, 1997 Library Version 1.0/Document Revision 1.1 212

The X Keyboard Extension Glossary

Effective Modifier
The effective modifiers are the bitwise union of the base, latched and locked modifiers.

Extension Device
Any keyboard or other input device recognized by the X input extension.

Global Keyboard Controls

Controls that affect the way Xkb generates key events. The controls affect all keys, as
opposed to per-key controls that are for a single key. Global controls include

RepeatKeys Control
DetectableAuto-repeat
SlowKeys
BounceKeys
StickyKeys
MouseKeys
MouseKeysAccel
AccessXKeys
AccessXTimeout
AccessXFeedback
Overlayl

Overlay2
EnabledControls

Grab State

The grab state is the state used when matching events to passive grabs. It consists of the
grab group and the grab modifiers.

Group
See Keysym Group

Group Index

A number used as the internal representation for a group number. Groupl through Group
4 have indices of 0 through 3.

Groups Wrap Control

If a group index exceeds the maximum number of groups permitted for the specified
keyboard, it is wrapped or truncated back into range as specified by the global
QG oupsW ap control.G oupsW ap can have the following values:

W apl nt oRange

Cl anpl nt oRange

Redi r ect | nt oRange

Key Type
An attribute of a key that identifies which modifiers affect the shift level of a key and the
number of groups on the key.

Key Width
The maximum number of shift levels in any group for the key type associated with a key.

November 10, 1997 Library Version 1.0/Document Revision 1.1 213

The X Keyboard Extension Glossary

Keysym Group

A keysym group is a logical state of the keyboard providing access to a collection of
characters. A group usually contains a set of characters that logically belong together and
that may be arranged on several shift levels within that group. For example, Groupl could
be the English alphabet, and Group2 could be Greek. Xkb supports up to four different
groups for an input device or keyboard. Groups are in the range 1-4 (Groupl - Group4),
and are often referred to as G1 - G4 and indexed as O - 3.

Indicator

An indicator is a feedback mechanism such as an LED on an input device. Using Xkb, a
client application can determine the names of the various indicators, determine and control
the way that the individual indicators should be updated to reflect keyboard changes, and
determine which of the 32 keyboard indicators reported by the protocol are actually
present on the keyboard.

Indicator Feedback

An indicator feedback describes the state of a bank of up to 32 lights. It has a mask where
each bit corresponds to a light and an associated value mask that specifies which lights are
on or off.

Indicator Map

An indicator has its own set of attributes that specify whether clients can explicitly set its
state and whether it tracks the keyboard state. The indicator map is the collection of these
attributes for each indicator and is held inth&psarray, which is an array of

Xkbl ndi cat or Rec structures.

Input Extension

An extension to the core X protocol that allows an X server to support multiple keyboards,
as well as other input devices, in addition to the core X keyboard and pointer. Other types
of devices supported by the input extension include, but are not limited to: mice, tablets,
touchscreens, barcode readers, button boxes, trackballs, identifier devices, data gloves,
and eye trackers.

Key Action

A key action consists of an operator and some optional data. Once the server has applied
the global controls and per-key behavior and has decided to process a key event, it applies
key actions to determine the effects of the key on the internal state of the server. Xkb
supports actions that do the following:

» Change base, latched, or locked modifiers or group

Move the core pointer or simulate core pointer button events
Change most aspects of keyboard behavior

Terminate or suspend the server

Send a message to interested clients

Simulate events on other keys

Key Alias

A key alias is a symbolic name for a specific physical key. Key aliases allow the keyboard
layout designer to assign multiple key names to a single key. This allows the keyboard
layout designer to refer to keys using either their position or their “function.” Key aliases
can be specified both in the symbolic names component and in the keyboard geometry.

November 10, 1997 Library Version 1.0/Document Revision 1.1 214

The X Keyboard Extension Glossary

Both sets of aliases are always valid, but key alias definitions in the keyboard geometry
have priority; if both symbolic names and geometry include aliases, you should consider
the definitions from the geometry before considering the definitions from the symbolic
names section.

Key Behavior
Thebehaviorsfield of the server map is an arrayXdbBehavi or, indexed by keycode,
and contains the behavior for each key. The X server uses key behavior to determine
whether to process or filter out any given key event; key behavior is independent of
keyboard modifier or group state. Each key has exactly one behavior.

Key behaviors include:

XkbKB_ Default
XkbKB_Lock
XkbKB_RadioGroup
XkbKB_Overlayl
XkbKB_Overlay2

Key Symbol Map
A key symbol map describes the symbols bound to a key and the rules to be used to
interpret those symbols. It is an array&bSyniapRec structures indexed by keycode.

Key Type
Key types are used to determine the shift level of a key given the current state of the
keyboard. There is one key type for each group for a key. Key types are defined using the
XkbKeyTypeRec andXkbKTMapEnt r yRec structures. Xkb allows up to
XkbvaxKeyTypes (255) key types to be defined, but requires at least
XkbNunRequi r edTypes (4) predefined types to be in a key map.

Keyboard Bells

The sound the default bell makes when rung is the system bell or the default keyboard
bell. Some input devices may have more than one bell, identifiedlbylassand
bell_id.

Keyboard Components
There are five types of components stored in the X server database of keyboard

components. They correspond to fiyenbols, geometry, keycodes, comgpaditypes
symbolic names associated with a keyboard.

Keyboard Feedback
A keyboard feedback includes the following:

Keyclick volume
Bell volume
Bell pitch
Bell duration
Global auto-repeat
Per key auto-repeat
32 LEDs

Key Width, Key Type Width
The maximum number of shift levels for a type is referred to as the width of a key type.

November 10, 1997 Library Version 1.0/Document Revision 1.1 215

The X Keyboard Extension Glossary

Keyboard Geometry
Keyboard geometry describes the physical appearance of the keyboard, including the
shape, location, and color of all keyboard keys or other visible keyboard components such
as indicators and is stored ixXlelbGeonet r yRec structure. The information contained in
a keyboard geometry is sufficient to allow a client program to draw an accurate
two-dimensional image of the keyboard.

Keyboard Geometry Name

The keyboard geometry name describes the physical location, size, and shape of the
various keys on the keyboard and is part ofXkieNamesRec structure.

Keyboard State

Keyboard state encompasses all of the transitory information necessary to map a physical
key press or release to an appropriate event.

Keycode
A numeric value returned to the X server when a key on a keyboard is pressed or released,
indicating which key is being modulated. Keycode numbers are in the range 1 <= keycode
<= max, where max is the number of physical keys on the device.

Keycode Name

The keycode name describes the range and meaning of the keycodes returned by the
keyboard and is part of tidkbNarmesRec structure.

Latched Group
A latched group is a group index that is combined with the base and locked group to form
the effective group. It applies only to the next key event that does not change the keyboard
state. The latched group can be changed by keyboard activity or via Xkb extension library
functions.

Latched Modifier
Latched modifiers are the set of modifiers that are combined with the base modifiers and
the locked modifiers to form the effective modifiers. It applies only to the next key event
that does not change the keyboard state.

LED

A light emitting diode. However, for the purposes of the X keyboard extension
specification, a LED is any form of visual two-state indicator that is either on or off.

Locked Group
A locked group is a group index that is combined with the base and latched group to form
the effective group. When a group is locked, it supersedes any previous locked group and
remains the locked group for all future key events, until a new group is locked. The locked
group can be changed by keyboard activity or via Xkb extension library functions.

Locked Modifiers
Locked modifiers are the set of modifiers that are combined with the base modifiers and
the latched modifiers to form the effective modifiers. A locked modifier applies to all
future key events until it is explicitly unlocked.

November 10, 1997 Library Version 1.0/Document Revision 1.1 216

The X Keyboard Extension Glossary

Lookup State

The lookup state is composed of the lookup group and the lookup modifiers, and it is the
state an Xkb-capable or Xkb-aware client should use to map a keycode to a keysym.

Modifier

A modifier is a logical condition that is either set or unset. The modifiers control the Shift
Level selected when a key event occurs. Xkb supports the core protocol eight modifiers
(Shi ft, Lock, Control , andvbdl throughMbd5), called theeal modifiers. In addition,

Xkb extends modifier flexibility by providing a set of sixteen named virtual modifiers,
each of which can be bound to any set of the eight real modifiers.

Modifier Key

A modifier key is a key whose operation has no immediate effect, but that, for as long as it
is held down, modifies the effect of other keys. A modifier key may be, for example, a
shift key or a control key.

Modifier Definition

An Xkb modifier definition, held in aXkbMbdsRec, consists of a set of real modifiers, a

set of virtual modifiers, and an effective mask. The mask is the union of the real modifiers
and the set of real modifiers to which the virtual modifiers map; the mask cannot be
explicitly changed.

Nonkeyboard Extension Device

An input extension device that is not a keyboard. Other types of devices supported by the
input extension include, but are not limited to: mice, tablets, touchscreens, barcode
readers, button boxes, trackballs, identifier devices, data gloves, and eye trackers.

Outlines

An outline is a list of one or more points that describes a single closed polygon, used in the
geometry specification for a keyboard.

Physical Indicator Mask

The physical indicator mask is a field in tdebl ndi cat or Rec that indicates which

indicators are bound to physical LEDs on the keyboard; if a bit is pais) indicators

then the associated indicator has a physical LED associated with it. This field is necessary
because some indicators may not have corresponding physical LEDs on the keyboard.

Physical Symbol Keyboard Name

Thesymbolskeyboard name identifies the symbols logically bound to the keys. The
symbols name is a human or application-readable description of the intended locale or
usage of the keyboard with these symbols.dhes symbolkeyboard name, on the other
hand, identifies the symbols actually engraved on the keyboard.

Preserved Modifier

Xkb normally consumes modifiers in determining the appropriate symbol for an event,
that is, the modifiers are not considered during any of the later stages of event processing.
For those rare occasions when a modgheuld be considered despite having been used

to look up a symbol, key types include an optigakervefield. If a modifier is present

in thepreservdist, it is a preserved modifier.

November 10, 1997 Library Version 1.0/Document Revision 1.1 217

The X Keyboard Extension Glossary

Radio Group

A radio group is a set of keys whose behavior simulates a set of radio buttons. Once a key
in a radio group is pressed, it stays logically depressed until another key in the group is
pressed, at which point the previously depressed key is logically released. Consequently,
at most one key in a radio group can be logically depressed at one time.

Real Modifier

Xkb supports the eight core protocol modifieshi(f t , Lock, Cont r ol , andMbd1
throughMbd5); these are called thieal modifiers, as opposed to the set of sixteen named
virtual modifiers that can be bound to any set of the eight real modifiers.

Server Internal Modifiers

Modifiers that the server uses to determine the appropriate symbol for an event; internal
modifiers are normally consumed by the server.

Shift Level

One of several states (normally 2 or 3) governing which graphic character is produced when a key
is actuated.

Symbol Keyboard Name
Thesymbolskeyboard name identifies the symbols logically bound to the keys. The
symbols name is a human or application-readable description of the intended locale or
usage of the keyboard with these symbols.dhes_symbolkeyboard name, on the other
hand, identifies the symbols actually engraved on the keyboard.

Symbolic Name
Xkb supports symbolic names for most components of the keyboard extension. Most of
these symbolic names are grouped intonimescomponent of the keyboard description.

State Field

The portion of a client-side core protocol event that holds the modifier, group, and button
state information pertaining to the event.

Types Name

Thetypesname provides some information about the set of key types that can be
associated with the keyboard. In addition, each key type can have a name, and each shift
level of a type can have a name.

Valuator
A valuator reports a range of values for some entity, like a mouse axis, a slider, or a dial.

Virtual Modifier

Xkb provides a set of sixteen named virtual modifiers that can be bound to any set of the
eight real modifiers. Each virtual modifier can be bound to any set of the real modifiers
(Shift, Lock, Control, andMbd1-Mod5).

Virtual Modifier Mapping
Xkb maintains a virtual modifier mapping, which lists the virtual modifiers associated
with each key.

November 10, 1997 Library Version 1.0/Document Revision 1.1 218

The X Keyboard Extension Glossary

Xkbh-aware Client

A client application that initializes Xkb extension and is consequently bound to an Xlib
that includes the Xkb extension.

Xkb-capable Client

A client application that makes no Xkb extension Xlib calls but is bound to an Xlib that
includes the Xkb extension.

Xkb-unaware Client

A client application that makes no Xkb extension Xlib calls and is bound to an Xlib that
does not include the Xkb extension.

November 10, 1997 Library Version 1.0/Document Revision 1.1 219

The X Keyboard Extension

Index

A
AccessX enable/disable bits, table 75
AccessXFeedback 5%3, 72
AccessXKeys 5372
AccessXNotify 64 66
AccessXTimeout 5362, 72
Action modifiers 144
Actions 141
changing number of actions bound to key 160
controls action types, table 154
detecting key action messages 155
device button action types 158
for changing active screen 153

BadDevice 9

Badld 9

Badlmplementation 9
BadKeyboard 49

BadMatch 9

BadValue 9

Base error code 7

Base event code, 14

Base Event Code, glossary entry 211
Base group 20211

Base Group, glossary entry 211
Base modifiers 20211

Base Modifiers, glossary entry 211

for changing button number simulated by mouse keys 149 Base State, glossary entry 211

for changing current group state 145

for changing state of boolean controls 154
for changing the state of modifiers 143

for generating a different keycode for key 156

BeepOnComposeFail 84
Behavior
key behaviors, table 161
keys 161

for generating DeviceButtonPress and DeviceButtonRelease obtaining key behaviors from the server 162

158
for generating messages 155
for locking modifiers and group 150
for moving the pointer 147
for simulating events from device valuators 159
for simulating pointer button press and release 148
group action flags, table 146
group action types, table 146
ISO action flags, table 151
message action flags, table 155
modifier action flags, table 145
modifier action types, table 144
obtaining actions for keys from server 160
pointer action types, table 147
ponter button action flags, table 149
ponter button action types, table 149
switch screen action flags, table 153
Allocator, glossary entry 211
AlwaysConsumeShiftAndLock 83
Audible Bell, glossary entry 211
AudibleBell 48 53, 56, 72
AutoReset 5355, 72, 81
Autoreset Controls, glossary entry 211
AX_BounceKeyReject 48
AX_FeatureChange 48
AX_FeatureOff 48
AX_FeatureOn 48
AX_IndicatorChange 48
AX_IndicatorOff 48
AX_IndicatorOn 48
ax_options 75
ax_options values 63
AX_SlowKeyAccept 48
AX_SlowKeyPress 48
AX_SlowKeyReject 48
AX_SlowKeyRelease 48
AX_SlowKeysWarning 48
AX_StickyLatch 48
AX_StickyLock 48
AX_StickyUnlock 48

B
BadAccess 9
BadAlloc 9
BadAtom 9
BadClass 9

BellFeedbackClass 48
Bells 47
audible 48
BeepOnComposeFail 84
bell_class and bell_id 48
detecting 51
fixed pitch bell only 64
forcing a server-generated bell 51
generating bell events 49
generating named bell events 50
high and low pitched beeps, rising and falling tones 63
names 47
predefined 48
sounding 49
Boolean controls 53
actions for changing the state of 154
Boolean Controls, glossary entry 211
BounceKeys 5366, 72
debounce_delay 75
delay 66
Bounds
computing bounding box of a row 106
computing bounding box of a section 106
computing bounding box of a shape 105
keyboard geometry 93
sections 95
shapes 94
Buttons, pointer 20

C
Canonical key types 129
initializing 131
used in compatiblity map 176
Canonical Key Types, glossary entry 211
Changes data structures 12
ClamplintoRange 6974, 134
Client map 2 116, 126
allocating and freeing 123
key symbol map 133
Client Map, glossary entry 211
Client types
Xkb-aware 3 21, 167
Xkb-capable 321, 167
Xkb-unaware 321, 167
Colors
keyboard, key label 93

November 10, 1997

Library Version 1.0/Document Revision 1.1

Index-220

The X Keyboard Extension

Index

listed in geometry description 93
Compat Name, glossary entry 212
Compatibility 3

allocating and freeing maps 179

changing the server's map 177

core keyboard mapping to Xkb keyboard mapping transfor-

mation 170
data structure 169
data structures, diagram 169
determining library 6
diagram 168
getting map components from server 174
group maps 169
map 167
setting explicit component controls 17071, 176
states 22
symbol interpretation match criteria, table 172
symbol interpretations 172
tracking changes to the map 178
types of transformations 168
using the compatibility map 175
with the core protocol 4

Xkb keyboard mapping to core keyboard mapping transfor-

mations 173

Xkb state to core protocol state transformation 169
Compatibility Grab State, glossary entry 212
Compatibility Map, glossary entry 212
Compatibility State, glossary entry 212
Component Expression, glossary entry 212
Components, explicit 163
Compose processing controls 83
Compose Processing, glossary entry 212
ComposeLED 84
Composing

BeepOnComposeFail 84

ComposeLED 84

ConsumeKeysOnComposeFail 83
Consumed Modifier, glossary entry 212
ConsumeKeysOnComposeFail 83
ConsumelLookupMods 82
Controls 2

AccessXFeedback 63

AccessXTimeout 62

actions for changing the state of 154

affecting compose processing 83

affecting keycode to string translation 82

allocating and freeing data structure 80

AlwaysConsumesShiftAndLock 83

AudibleBell 56

AutoReset 5581

BeepOnComposeFail 84

bell behavior 56

boolean 53 82

BounceKeys 66

changing 77

changing the state of library controls 85

cleaning up on exit 5581

ComposeLED 84

ConsumeKeysOnComposeFail 83

ConsumelLookupMods 82

controls action types, table 154

data structure 71

DetectableAutorepeat 57

determining the state of libarary controls 85

determining which library controls are implemented 85

effecting event delivery 84
EnabledControls 54
enabling and diabling other controls 54
for general keyboard mapping 68
ForceLatin1Lookup 82
GroupsWrap 69
IgnoreGroupLock 70
IgnoreLockMods 69
IgnoreNewKeyboards 84
InternalMods 70
keyboard 53
keyboard use for physically-impaired persons 61
library controls masks 85
MouseKeys 59
MouseKeysAccel 59
overlays 58
PerKeyRepeat 56
querying 77
repeat key behavior 56
RepeatKeys 56
SlowKeys 65
StickyKeys 67
table listing all 72
tracking changes to keyboard controls 79
using the mouse from the keyboard 59
X library 82
Core Event, glossary entry 212

D
Data structures 11

editing 11

enlarging 11

freeing 13
debounce_delay 75
Debugging 210
Detectable Auto-repeat, glossary entry 212
DetectableAutorepeat 5%7, 72
Device feedback, types 198
Device identifier 10

Device specifications, matching with display specifications 9

Devices

actions for generating DeviceButtonPress and DeviceBut-

tonRelease 158
actions simulating events from device valuators 159
allocating, initializing and freeing data structures 203
attaching Xkb actions to 198
querying features for non-KeyClass devices 200
querying for button actions 201
querying indicator information 202
setting features for non-KeyClass devices 204
tracking changes to 207
Display, actions for changing active screen 153
Doodads 9396
in sections 95
indicator 96
logo 96
outline 96
priority 96
solid 96
text 96
types 96
Drawing a keyboard representation 97
DumbBells 64

November 10, 1997

Library Version 1.0/Document Revision 1.1

Index-221

The X Keyboard Extension

Index

E
Effective group 20
Effective Group, glossary entry 212
Effective mask 31
Effective Mask, glossary entry 212
Effective modifier mask 31
Effective Modifier, glossary entry 213
Effective modifiers 20
enabled_ctrls 74
EnabledControls 5354, 72
Errors, protocol 9
Events

AccessXNotify 64

base event code 14

data structures 15

interpreting key events 87

MouseKeys 65

overview 14

RepeatKeys 65

selecting for 15

StickyKeys 65

types 14

types, table 14
Explicit component masks, table 163
Explicit components 163
ExplicitAutoRepeat 163
ExplicitBehavior 163
Explicitinterpret 163
ExplicitkeyTypel 163
ExplicitkeyType2 163
ExplicitkeyType3 163
ExplicitkeyType4 163
ExplicitVYModMap 163
Extension Device, glossary entry 213

F

Feedback, types 198
Fonts, key label 93
ForceLatin1Lookup 82

G
Geometry 392
adding elements to 106
allocating and freeing components 110
bounds, keyboard 93
bounds, sections 95
bounds, shapes 94
computing the bounding box of a row 106
computing the bounding box of a section 106
computing the bounding box of a shape 105
data structures 98
data structures, diagram 98
doodad types 96
doodads 9396
doodads in sections 95
drawing a keyboard representation 97
finding the overlay for a key 106
functions for using 105
getting from server 104
key aliases 93
key drawing order 95
key label color 93
key label font 93
keyboard color 93
keyboard with four sections, diagram 94

keys 95

list of colors 93

outlines 94

outlines, diagram 105

overlay keys 96

overlay rows 96

overlays 95

priority 92, 95

priority, doodads 96

properties 93106

rotated keyboard sections 92

rotated keyboard sections, diagram 92

rows 95

rows in a section, diagram 95

sections 9395

shapes 9394

top-level geometry description 92
Global Keyboard Controls, glossary entry 213
Grab group 21
Grab modifiers 21
Grab state 21
Grab State, glossary entry 213
Grabs

passive, ignoring group locks 70
Group Index, glossary entry 213
Group, glossary entry 213
Groups 20Q 116, 117

bindings for alternate group hints 193

changing 23

changing current state via key actions 145

compatibility maps 169

group action flags, table 146

group action types, table 146

group index constants 137

handling illegal groups 69

locking via actions 150

normalizing groups into range 2034

per-key group information 134

symbolic group names 23

treatment of out-of-range groups 134
Groups Wrap Control, glossary entry 213
GroupsWrap 5368, 69, 72, 74

H
Header files 6

I
IgnoreGroupLock 5468, 70, 72
IgnoreLockMods 5468, 69, 72, 74
IgnoreNewKeyboards 84
Implicit support 87
Indicator feedback 198
Indicator Feedback, glossary entry 214
Indicator map 35
Indicator Map, glossary entry 214
Indicator, glossary entry 214
Indicators 3 34
allocating and freeing maps 45
changing maps 42
changing maps and state 41
ComposeLED 84
data structures 34
effects of explicit changes on 41
geometry, colors when lit and dark 96
getting information about from server 39

November 10, 1997

Library Version 1.0/Document Revision 1.1 Index-222

The X Keyboard Extension

Index

getting information by index 40
getting information by name 40
getting the state of 40
how controls affect 39
how groups affect 36
how modifiers affect 37
indicator drives keyboard 35
keyboard drives indicator 35
maps 35
names 34
guerying names, maps and state 202
tracking changes to state or map 44
Initializing Xkb 7
Input extension
attaching Xkb actions to devices 198
Input Extension, glossary entry 214
InternalMods 5468, 70, 72
1ISO9995 standard 116

K
KbdFeedbackClass 48
Key Action, glossary entry 214
Key actions 141
independence of modifier state 117
Key Alias, glossary entry 214
Key aliases
geometry 93
names array 181
Key Behavior, glossary entry 215
Key events
interpreting 87
Xkb filtering out-of-range keycodes 188
Key symbol map 133
Key Symbol Map, glossary entry 215
Key Type, glossary entry 21215
Key types
ALPHABETIC 130
and shift levels 117
canonical 129
canonical key types, initializing 131
canonical, used in compatibility map 176
changing the number of levels in 132
copying key type data structures 132
getting from the server 131
KEYPAD 130
names 128
offset in symbol map 135
ONE_LEVEL 129
per-key key types indices 133
TWO_LEVEL 129
width (number of shift levels) 135
Key types, example 128
Key Width, glossary entry 213
Key Width, Key Type Width, glossary entry 215
Keyboard
components, server database 190
feedback 198
geometry 92
geometry sections 93
IgnoreNewKeyboards 84
names 180
replacing on the fly 187
symbolic name 93
unresponsiveness because of SlowKeys 62
Keyboard Bells, glossary entry 215

Keyboard Components, glossary entry 215
Keyboard controls 53
for physically-impaired persons 61
tracking changes 79
Keyboard description,27
allocating and freeing 28
building from server database 193
changing 12
getting from server 28
updating library description 90
Keyboard Feedback, glossary entry 215
Keyboard Geometry Name, glossary entry 216
Keyboard Geometry, glossary entry 216
Keyboard mapping 116
client map 116
server map 116
shift levels and groups, diagram 117
Keyboard state 19
base group 20211
base modifiers 20211
compatibility states 22
description 19
determining 23
effective group 20
effective modifiers 20
grab state 21
keysym groups 20
lookup state 21
modifiers 20
tracking 24
Keyboard State, glossary entry 216
KeyClass 10157, 198
Keycode Name, glossary entry 216
Keycode to string translation 82
Keycode, glossary entry 216
Keycodes
actions for generating a different keycode for key 156
finding keysym bound to 89
keys which report more than one keycode 58
translating keycode to symbol and modifiers 91
Xkb filtering out-of-range key events 188
Keymap
allocating and freeing 12324
changing map components 120
client map 126
functions 89
getting map components from the server 118

getting partial map components from the server, table 118

tracking changes to 122

Keys
actions 141
aliases 93181
behavior 118161
behaviors, table 161
bindings hints 193
changing number of actions bound to key 160
changing number of groups and types for 137
changing the number of symbols bound to 138
finding keysym bound to 89
finding symbol for key with a particular state 89
for generating a different keycode for key 156
geometry 95
geometry, drawing order 95
getting per-key modifier map from server 139
getting the symbol map from the server 136

November 10, 1997

Library Version 1.0/Document Revision 1.1

Index-223

The X Keyboard Extension

Index

label font and color 93
obtaining key actions for keys from server 160
obtaining key behaviors from the server 162
offset in symbol map 135
overlay geometry 96
per-key group information 134
per-key modifier map 138
symbolic names 181
types 127
width (number of shift levels) 135
Keysym group 20116
Keysym Group, glossary entry 214
Keysyms
finding modifier set bound to keysym 89
finding symbol for key with a particular state 89
to string translation control 83
translating keycode to symbol and modifiers 91

L
Latched Group, glossary entry 216
Latched Modifier, glossary entry 216
LatchToLock 68
Latinl character set lookup 82
LED, glossary entry 216
Levels 116 117
and key types 117
changing the number in a key type 132
key types 127
names 128
Linking with the Xkb extension 6
Locked Group, glossary entry 216
Locked Modifiers, glossary entry 216
Lookup group 21
Lookup modifiers 21
Lookup state 21
Lookup State, glossary entry 217

M
Major opcode 7
map 3
MappingNotify 84 87, 88, 175, 178, 188
Messages
actions for generating 155
detecting key action messages 155
Modifier Definition, glossary entry 217
Modifier Key, glossary entry 217
Modifier, glossary entry 217
Modifiers 20
action flags 145
action types, table 144
actions for changing the state of 143
bindings for modifier keys hints 193
changing the state via key actions 144
consume lookup modifiers control 82
effective mask 31
finding modifier set bound to keysym 89
forcing shift and lock to be consumed 83
getting per-key map from server 139
in actions to generate different keycode for key 157
inactive virtual modifiers 32
key action independent of 117
key types containing 127
locking via actions 150
masks 22
modifier definition 30

names and masks 30
per-key modifier map 138
preserve field 128
preventing from being consumed 128
real 30
specifying which should be consumed by server 70
translating keycode to symbol and modifiers 91
virtual 30
virtual modifier server mapping 164
MotionNotify 147
Mouse
using from the keyboard 59
MouseKeys 5359, 72
acceleration, diagram 61
changing button number simulated by mouse keys 149
MouseKeysAccel 5359, 73
absolute pointer motion 60
fields, table 59
relative pointer motion 60

N
Names 3
allocating and freeing symbolic names 186
changing symbolic names on server 183
getting keyboard description by component expression
names 194
getting symbolic names from server 183
shift level 128
symbolic 180
symbolic keyboard 93
symbolic names masks, table 182
tracking changes 185
types 128
NewKeyboardNotify 84
Non-keyboard Extension Device, glossary entry 217
Normalizing groups 20

(0]
Outlines 94
approximation 94
primary 94
Outlines, glossary entry 217
Overlays
controls 58
geometry keys 96
geometry rows 96
geometry, finding the overlay for a key 106
in geometry sections 95
Overlayl and Overlay2 controls 533

P
PerKeyRepeat 53%6, 73, 76
Physical Indicator Mask, glossary entry 217
Physical Symbol Keyboard Name, glossary entry 217
Pointer
buttons 20
changing button number simulated by mouse keys 149
motion, absolute 60
motion, relative 60
moving via actions 147
pointer action types, table 147
pointer button action flags, table 149
pointer button action types, table 149
simulating pointer buttons via key actions 148
Preserved Modifier, glossary entry 217

November 10, 1997

Library Version 1.0/Document Revision 1.1

Index-224

The X Keyboard Extension

Index

Preserving modifiers from being consumed 128
Priority
doodads 96
geometry 92
sections 95
Properties
geometry 106
Protocol errors 9
added by Xkb 4

R
Radio Group, glossary entry 218
Radio groups 3161

names 182
Real Modifier, glossary entry 218
Real modifiers 30
RedirectintoRange §974, 134
Remapping

avoiding automatic by server 163
repeat_delay 75
repeat_interval 75
Repeating keys

controls 56

detecting 57
RepeatKeys 5356, 73
Rows 95

geometry 95

overlay 96

S
Sections 9395
doodads in 95
overlays 95
priority 95
Server
avoiding automatic remapping by 163
Server database 190
changing map components 120
class(member) form 191
complete and partial entries 190
component hints 192
component names 191
getting key types 131
getting map components from 118
getting partial map components from, table 118
listing keyboard components 191
obtaining virtual modifier bindings from 165
virtual modifier definitions 164
Server interaction with clients, diagram 167
Server Internal Modifiers, glossary entry 218
Server map 2
allocating and freeing 124
keyboard mapping 116140
Shapes 9394
Shift Level, glossary entry 218
Shift levels 116 117
and key types 117
changing the number of in a key type 132
key types 127
names 128
SlowKeys 53 65, 73
acceptance delay 655
Standard, 1S09995 116
State Field, glossary entry 218
StickyKeys 53 67, 73

automatically turning off 68

locking a modifier 68
Symbol Keyboard Name, glossary entry 218
Symbolic Name, glossary entry 218
Symbolic names 180

T
Translating
series of keysyms to string 82
single keycode to string 82
TwoKeys 68

Y,
Valuator 159
Valuator action 159
Valuator, glossary entry 218
Version, determining 6
Virtual Modifier Mapping, glossary entry 218
Virtual Modifier, glossary entry 218
Virtual modifiers 30
conventions for names 32
data structure relationships, diagram 165
effective mask 31
example 32
inactive 32
key mapping 31
master modifier definitions 31
modifier definition 30
names and masks 30
obtaining bindings from server 165
server mapping 164
Visual bells, generating 452

w
Want and need components, table 1967
WrapIntoRange 6974, 134

X
X library controls 82
X library functions affected by Xkb 88
X server version required 1
XChangeDeviceNotify 187
XEvent 18
Xkb
attaching actions to input extension devices 198
changes data structures 12
compatibility map 167
extension components 1
extension library functions 4
groups and shift levels 117
implicit support 87
keyboard extension support for keyboards 1
keyboard mapping 116
overall structure, diagram 2
overview 1
state, diagram 19
X library functions affected 88
Xkb client map, diagram 126
Xkb events
base event code 14
data structures 15
overview 14
selecting for 15
types 14
types, table 14

November 10, 1997

Library Version 1.0/Document Revision 1.1

Index-225

The X Keyboard Extension

Index

Xkb extension

disabling 8

name 6
Xkb server map, diagram 140
XKB.h 6
Xkb_RGAllowNone 162
XkbAccessXNotify 15 64
XkbAccessXNotifyEvent 1864
XkbAction data structure 143
XkbActionCtrls macro 155
XkbActionMessage 15155
XkbActionMessageEvent 1856
XkbAddDeviceLedInfo() 203
XkbAddGeomColor() 107
XkbAddGeomDoodad() 109
XkbAddGeomKey() 108
XkbAddGeomKeyAlias() 107
XkbAddGeomOutline() 107
XkbAddGeomOverlay() 109
XkbAddGeomOverlayKey() 109
XkbAddGeomOverlayRow() 109
XkbAddGeomProperty() 107
XkbAddGeomRow() 108
XkbAddGeomSection() 108
XkbAddGeomShape() 108
XkbAddSyminterpret() 177
XkbAllocClientMap() 123
XkbAllocCompatMap() 179
XkbAllocControls() 80
XkbAllocDevicelnfo() 203
XkbAllocDeviceLedInfo() 203
XkbAllocGeomColors() 111
XkbAllocGeomDoodads() 114
XkbAllocGeometry() 115
XkbAllocGeomKeyAliases() 111
XkbAllocGeomKeys() 110
XkbAllocGeomOutlines() 110
XkbAllocGeomOverlayKeys() 114
XkbAllocGeomOverlayRows() 114
XkbAllocGeomOverlays() 113
XkbAllocGeomPoints() 112
XkbAllocGeomProps() 110
XkbAllocGeomRows() 113
XkbAllocGeomSectionDoodads() 114
XkbAllocGeomSections() 112
XkbAllocGeomShapes() 112
XkbAllocIndicatorMaps() 45
XkbAllocKeyboard() 28
XkbAllocNames() 186
XkbAllocServerMap() 124
XkbAlphabeticlndex canonical key type 129
XkbAnyAction data structure 143
XkbAnyEvent 15 18
XkbApplyCompatMapToKey() 176
Xkb-aware client 321
Xkb-aware Client, glossary entry 219
XkbAX_AnyFeedback macro 76
XkbAX_DumbBellFBMask 64
XkbAX_NeedFeedback macro 76
XkbAX_NeedOption macro 76
XKbAXN_AXKWarning 65
XkbAXN_BKAccept 65
XkbAXN_BKReject 65
XkbAXN_SKAccept 64
XkbAXN_SKPress 64

XkbAXN_SKReject 64
XkbAXN_SKRelease 64
XkbBehavior data structure 161
XkbBell(') 49
XkbBellEvent() 50
XkbBellNotify 14, 47, 64
XkbBellNotifyEvent 18 52
XkbBoundsRec 101
Xkb-capable client 321
Xkb-capable Client, glossary entry 219
XkbChangeControls() 78
XkbChangeDevicelnfo() 208
XkbChangeEnabledControls() 54
XkbChangelndicators() 44
XkbChangeMap() 121
XkbChangeNames() 184
XkbChangeTypesOfKey() 137
XkbClampintoRange 6974, 134
XkbClientMapRec 127
XkbColorRec 101
XkbCompatMapNotify 14174, 178
XkbCompatMapNotifyEvent 18178
XkbCompatMapRec 169
XkbComponentListRec 192
XkbComponentNameRec 192
XkbComponentNamesRec 192
XkbComputeRowBounds() 106
XkbComputeSectionBounds() 106
XkbComputeShapeBounds() 105
XkbComputeShapeTop() 105
XkbControlsChangesRec 78
XkbControlsNotify 14 62
XkbControlsNotifyEvent 1879
XkbControlsRec 72

allocating and freeing 80
XkbCopyKeyType() 132
XkbCopyKeyTypes() 133
XkbCtrlsAction data structure 154
XkbDescRec 27

component references 27
XkbDeviceBell() 49
XkbDeviceBellEvent() 50
XkbDeviceBtnAction data structure 158
XkbDeviceChangesRec 207
XkbDevicelnfoRec 199
XkbDeviceLedChangesRec 207
XkbDeviceLedInfoRec 199
XkbDeviceValuatorAction data structure 159
XkbDoodadRec 103
XkbEvent unified event type 18
XkbExtensionDeviceNotify 15205, 206, 208
XkbExtensionDeviceNotifyEvent 1807
XkbFindOverlayForKey() 106
XkbForceBell(') 51
XkbForceDeviceBell() 51
XkbFreeClientMap() 124
XkbFreeCompatMap() 179
XkbFreeComponentList() 192
XkbFreeControls() 81
XkbFreeDevicelnfo() 204
XkbFreeGeomColors() 112
XkbFreeGeomDoodads() 115
XkbFreeGeometry() 115
XkbFreeGeomKeyAliases() 111
XkbFreeGeomKeys() 110

November 10, 1997

Library Version 1.0/Document Revision 1.1 Index-226

The X Keyboard Extension

Index

XkbFreeGeomOutlines() 110
XkbFreeGeomOverlayKeys() 114
XkbFreeGeomOverlayRows() 114
XkbFreeGeomOverlays() 113
XkbFreeGeomPoints() 112
XkbFreeGeomProperties() 111
XkbFreeGeomRows() 113
XkbFreeGeomSections() 113
XkbFreeGeomShapes() 112
XkbFreelndicatorMaps() 46
XkbFreeKeyboard() 29
XkbFreeNames() 186
XkbFreeServerMap() 125
XKBgeom.h 6

XkbGeometryRec 101
XkbGetAccessXTimeout() 62
XkbGetAutoRepeatRate() 57
XkbGetAutoResetControls() 55
XkbGetBounceKeysDelay() 66
XkbGetCompatMap() 174
XkbGetControls() 77
XkbGetControlsChanges() 80
XkbGetDetectableAutorepeat() 58
XkbGetDeviceButtonActions() 201
XkbGetDevicelnfo() 200
XkbGetDevicelnfoChanges() 208
XkbGetDevicelLedInfo() 202
XkbGetGeometry() 104
XkbGetlIndicatorChanges() 45
XkbGetlndicatorMap() 40
XkbGetlIndicatorState() 40
XkbGetKeyActions() 160
XkbGetKeyBehaviors() 162
XkbGetKeyboard() 28197
XkbGetKeyboardByName() 194
XkbGetKeyExplicitComponents() 163
XkbGetKeyModifierMap() 139
XkbGetKeySyms() 136
XkbGetKeyTypes() 131
XkbGetKeyVirtualModMap() 166
XkbGetMap() 118
XkbGetNameChanges() 186
XkbGetNamedGeometry(') 105
XkbGetNamedIindicator() 41
XkbGetNames() 183
XkbGetPerClientControls() 81
XkbGetSlowKeysDelay() 66
XkbGetState() 24
XkbGetStickyKeysOptions() 68
XkbGetUpdatedMap() 119
XkbGetVirtualMods() 165
XkbGetXlibControls() 85
XkbGroupAction data structure 146
XkblgnoreExtension() 8
XkbIM_LEDDriveskB 35, 41
XkbIM_NoAutomatic 35 42
XkbIM_NoExplicit 35, 41
XkbIM_UseBase 3738
XkbIM_UseCompat 38
XkbIM_UseEffective 37 38
XkbIM_UseLatched 3738
XkbIM_UselLocked 37 38
XkbIM_UseNone 37 38
XkbIndicatorChangesRec 43
XkbIndicatorDoodadRec 104

XkblIndicatorMapNotify 14 44
XkbIndicatorMapRec 35
XkblndicatorNotifyEvent 18 44
XkbIndicatorRec 34
XkbIndicatorStateNotify 1444
XkblnitCanonicalKeyTypes() 131
XkbISOAction data structure 151
XkbKB_Default 161
XkbKB_Lock 162
XkbKB_Overlayl 162
XkbKB_Overlay2 162
XkbKB_Permanent 162
XkbKB_RadioGroup 162
XkbKeyAction macro 142
XkbKeyActionEntry macro 142
XkbKeyActionsPtr macro 142
XkbKeyAliasRec 101 180
XkbKeycodeToKeysym() 89
XkbKeyGrouplnfo macro 135
XkbKeyGroupsWidth macro 135
XkbKeyGroupWidth macro 136
XkbKeyHasActions macro 141
XkbKeyNameRec 180
XkbKeyNumActions macro 141
XkbKeyNumGroups macro 135
XkbKeyNumSyms macro 136
XkbKeypadlndex canonical key type 129
XkbKeyRec 102
XkbKeySymEntry macro 136
XkbKeySymsOffset macro 136
XkbKeySymsPtr macro 136
XkbKeysymToModifiers() 89
XkbKeyType macro 134
XkbKeyTypelndex macro 134
XkbKeyTypeRec 127
XkbKeyTypesForCoreSymbols() 176
XkbKTMapEntryRec 127
XkbLatchGroup(') 23
XkbLatchModifiers() 22
XkbLC_AlIControls 85
XkbLC_AlphanumericKeys 193
XkbLC_AlternateGroup 193
XkbLC_AlwaysConsumeShiftAndLock 85
XkbLC_BeepOnComposeFail 85
XkbLC_ComposeLED 85
XkbLC_ConsumeKeysOnComposeFail 85
XkbLC_ConsumeLookupMods 85
XkbLC_Default 193
XkbLC_ForceLatinlLookup 85
XkbLC_FunctionKeys 193
XkbLC_Hidden 193
XkbLC_IgnoreNewKeyboards 85
XkbLC_KeypadKeys 193
XkbLC_Modifierkeys 193
XkbLC_Partial 193

XKBlib.h 6

XkbLibraryVersion() 6
XkbListComponents() 191
XkbLockGroup() 23
XkbLockModifiers(') 22
XkbLogoDoodadRec 104
XkbLookupKeyBinding() 90
XkbLookupKeySym(') 89
XkbMapChangesRec 121
XkbMapNotify 14, 87, 88, 122, 178

November 10, 1997

Library Version 1.0/Document Revision 1.1 Index-227

The X Keyboard Extension Index
XkbMapNotifyEvent 18§ 122 XkbSA_MessageOnPress 155
XkbMessageAction data structure 155 XkbSA MessageOnRelease 155
XkbModAction data structure 144 XkbSA_MoveAbsoluteX 147
XkbModActionVMods macro 145 XkbSA_MoveAbsoluteY 148
XkbNameChangesRec 184 XkbSA MovePtr 143 147
XkbNamesNotify 14 185 XkbSA_NoAcceleration 147
XkbNamesNotifyEvent 18185 XkbSA_NoAction 143
XkbNamesRec 180 XKbSA_PtrBtn 143
XkbNewKeyboardNotify 1487, 187 XkbSA_PtrBtn 149
XkbNewKeyboardNotifyEvent 18188 XkbSA_Redirectkey 143156
XkbNoteControlsChanges() 80 XkbSA_SetControls 143154
XkbNoteDeviceChanges() 208 XkbSA_SetGroup 143146
XkbNotelndicatorChanges() 45 XkbSA_SetMods 143144
XkbNoteNameChanges() 185 XkbSA_SetPtrDflt 143149
XkbOneLevellndex canonical key type 129 XkbSA_SetValAbsolute 159
XkbOpenDisplay() 8 XkbSA_SetValCenter 159
XkbOutlineRec 101 XkbSA_SetValMax 159
XkbOutOfRangeGrouplnfo macro 135 XkbSA_SetValMin 159
XkbOutOfRangeGroupNumber macro 135 XkbSA_SetValRelative 159
XkbOverlayKeyRec 102 XkbSA_SwitchAbsolute 153
XkbOverlayRec 102 XkbSA_SwitchApplication 153
XkbOverlayRowRec 102 XkbSA_SwitchScreen 143153
XkbPointRec 101 XkbSA UseDfltButton 149
XkbPropertyRec 101 XkbSA_UseModMapMods 145152
XkbPtrAction data structure 147 XkbSAActionSetCtrls macro 155
XkbPtrActionX macro 148 XkbSAGroup macro 147
XkbPtrActionY macro 148 XkbSAPtrDfltValue macro 150
XkbPtrBtnAction data structure 148 XkbSARedirectSetVMods macro 157
XkbPtrDfltAction data structure 150 XkbSARedirectSetVModsMask macro 157
XkbQueryExtension() 7 XkbSARedirectVYMods macro 157
XkbRedirectintoRange 94, 134 XkbSARedirectVModsMask macro 157
XkbRedirectKeyAction data structure 156 XkbSAScreen macro 153
XkbRefreshKeyboardMapping() 90 XkbSASetGroup macro 147
XkbResizeDeviceButtonActions() 204 XkbSASetPtrDfltValue macro 150
XkbResizeKeyActions() 160 XkbSASetScreen macro 154
XkbResizeKeySyms() 138 XkbSectionRec 103
XkbResizeKeyType() 132 XkbSelectEventDetails() 17
XkbRowRec 102 XkbSelectEvents mask constants 17
XkbSA_ActionMessage 143155 XkbSelectEvents() 16
XkbSA_AffectDfltBtn 149 XkbServerMapRec 141

XkbSA ClearLocks 145146 XkbSetAccessXTimeout() 63
XkbSA_ DeviceBtn 143158 XkbSetAutoRepeatRate() 57
XKkbSA_DeviceValuator 143159 XkbSetAutoResetControls() 55
XkbSA_DfltBtnAbsolute 150 XkbSetBounceKeysDelay() 67
XkbSA_GroupAbsolute 146151 XkbSetCompatMap() 177
XkbSA_IgnoreVal 159 XkbSetControls() 77
XkbSA_ISODfltIsGroup 151152 XkbSetDebuggingFlags() 210
XkbSA _ISODNoAffectMods 152 XkbSetDetectableAutorepeat() 58
XkbSA_1SOLock 143 151 XkbSetDeviceButtonActions() 206
XkbSA ISONoAffectCtrls 151152, 153 XkbSetDevicelnfo() 205
XkbSA_ISONoAffectGroup 151152, 153 XkbSetlgnoreLockMods() 70
XkbSA_ISONoAffectMods 151152 XkbSetIndicatorMap() 42

XkbSA ISONoAffectPtr 151152, 153 XkbSetMap() 120
XkbSA_LatchGroup 143146 XkbSetModActionVMods macro 145
XkbSA_LatchMods 143144 XkbSetNamedIndicator() 43
XkbSA LatchToLock 145146 XkbSetNames() 183
XkbSA_LockControls 143154 XkbSetPerClientControls() 81
XKbSA_LockDeviceBtn 143 XkbSetPtrActionX macro 148
XkbSA LockDeviceBtn 158 XkbSetPtrActionY macro 148
XkbSA_LockGroup 143146 XkbSetServerinternalMods() 71
XkbSA _LockMods 143 144 XkbSetSlowKeysDelay() 66
XkbSA LockNoLock 145 149, 152, 154, 158 XkbSetStickyKeysOptions(') 68
XkbSA_LockNoUnlock 145149, 152, 154, 159 XkbSetXlibControls() 85
XKkbSA_LockPtrBtn 143149 XkbShapeDoodadRec 103

XkbSA MessageGenKeyEvent 155 XkbShapeRec 101

November 10, 1997 Library Version 1.0/Document Revision 1.1

Index-228

The X Keyboard Extension

Index

XkbSI_AIIOf 172

XkbSI_AnyOf 172

XkbSI_AnyOfOrNone 172

XkbSI_Exactly 172

XkbSI_NoneOf 172

XkbStateNotify 14 24, 65

XkbStateNotify event detail masks 24
XkbStateNotifyEvent 1825

XkbStateRec 24

Xkbstr.h 6

XkbSwitchScreenAction data structure 153
XkbSyminterpretRec 172
XkbSymMapRec 133

XkbTextDoodadRec 104
XkbTranslateKeyCode() 91
XkbTranslateKeySym() 90
XkbTwoLevellndex canonical key type 129
Xkb-unaware client 421

Xkb-unaware Client, glossary entry 219
XkbUpdateMapFromCore() 175
XkbUseCoreKbd 1015
XkbVirtualModsToReal() 32
XkbWrapintoRange 6974, 134
XkbXIDfltID 198
XkbXlibControlsimplemented() 85
XKeycodeToKeysym(), Xkb modifications 88
XKeysymToKeycode(), Xkb modifications 88
Xlib version required 1

XLookupKeysym(), Xkb modifications 88
XLookupString() 82

function which is equivalent, XkbLookupKeyBinding() 90

Xkb modifications 88
XMappingNotify 187
XRebindKeysym(), Xkb modifications 89
XRefreshKeyboardMapping()

function which is equivalent, XkbRefreshKeyboardMap-

ping() 90
Xkb modifications 88

November 10, 1997 Library Version 1.0/Document Revision 1.1

Index-229

