
The X Keyboard Extension:
Protocol Specification

Protocol Version 1.0 / Document Revision 1.0

X Consortium Standard

X Version 11, Release 6.4

Erik Fortune
Silicon Graphics, Inc.

Copyright © 1995, 1996 X Consortium Inc.
Copyright © 1995, 1996 Silicon Graphics Inc.
Copyright © 1995, 1996 Hewlett-Packard Company
Copyright © 1995, 1996 Digital Equipment Corporation

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGE-
MENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the names of the X Consortium, Silicon Graphics Inc.,
Hewlett-Packard Company, and Digital Equipment Corporation shall not be used in advertising or
otherwise to promote the sale, use or other dealings in this Software without prior written authori-
zation.

Acknowledgments

I am grateful for all of the comments and suggestions I have received over the years. I could not
possibly list everyone who has helped, but a few people have gone well above and beyond the call
of duty and simply must be listed here.

My managers here at SGI, Tom Paquin (now at Netscape) and Gianni Mariani were wonderful.
Rather than insisting on some relatively quick, specialized proprietary solution to the keyboard
problems we were having, both Tom and Gianni understood the importance of solving them in a
general way and for the community as a whole. That was a difficult position to take and it was
even harder to maintain when the scope of the project expanded beyond anything we imagined
was possible. Gianni and Tom were unflagging in their support and their desire to “do the right
thing” despite the schedule and budget pressure that intervened from time to time.

Will Walker, at Digital Equipment Corporation, has been a longtime supporter of XKB. His help
and input was essential to ensure that the extension as a whole fits and works together well. His
focus was AccessX but the entire extension has benefited from his input and hard work. Without
his unflagging good cheer and willingness to lend a hand, XKB would not be where it is today.

Matt Landau, at the X Consortium, stood behind XKB during some tough spots in the release and
standardization process. Without Matt’s support, XKB would likely not be a standard for a long
time to come. When it became clear that we had too much to do for the amount of time we had
remaining, Matt did a fantastic job of finding people to help finish the work needed for standard-
ization.

One of those people was George Sachs, at Hewlett-Packard, who jumped in to help out. His help
was essential in getting the extension into this release. Another was Donna Converse, who helped
figure out how to explain all of this stuff to someone who hadn’t had their head buried in it for
years.

Amber Benson and Gary Aitken were simply phenomenal. They jumped into a huge and compli-
cated project with good cheer and unbelievable energy. They were “up to speed” and contributing
within days. I stand in awe of the amount that they managed to achieve in such a short time.
Thanks to Gary and Amber, the XKB library specification is a work of art and a thousand times
easier to use and more useful than it would otherwise be.

I truly cannot express my gratitude to all of you, without whom this would not have been possible.

Erik Fortune
Silicon Graphics, Inc.
5 February 1996

11/6/97 Protocol Version 1.0/Document Revision 1.0 TOC-1

The X Keyboard Extension Protocol Specification

1.0 Overview..1
1.1 Conventions and Assumptions .. 1

2.0 Keyboard State...2
2.1 Locking and Latching Modifiers and Groups ... 2

2.2 Fundamental Components of XKB Keyboard State ... 2
2.2.1 Computing Effective Modifier and Group .. 3
2.2.2 Computing A State Field from an XKB State .. 3

2.3 Derived Components of XKB Keyboard State.. 3
2.3.1 Server Internal Modifiers and Ignore Locks Behavior.. 4

2.4 Compatibility Components of Keyboard State.. 4

3.0 Virtual Modifiers..5
3.1 Modifier Definitions .. 6

3.1.1 Inactive Modifier Definitions .. 7

3.2 Virtual Modifier Mapping ... 7

4.0 Global Keyboard Controls ...7
4.1 The RepeatKeys Control ... 7

4.1.1 The PerKeyRepeat Control ... 8
4.1.2 Detectable Autorepeat... 8

4.2 The SlowKeys Control .. 8

4.3 The BounceKeys Control .. 8

4.4 The StickyKeys Control .. 9

4.5 The MouseKeys Control.. 9

4.6 The MouseKeysAccel Control .. 10
4.6.1 Relative Pointer Motion .. 10
4.6.2 Absolute Pointer Motion... 10

4.7 The AccessXKeys Control .. 10

4.8 The AccessXTimeout Control... 11

4.9 The AccessXFeedback Control ... 11

4.10 The Overlay1 and Overlay2 Controls ... 12

4.11 “Boolean” Controls and The EnabledControls Control .. 12

4.12 Automatic Reset of Boolean Controls... 12

5.0 Key Event Processing Overview..13

6.0 Key Event Processing in the Server ...14
6.1 Applying Global Controls ... 14

6.2 Key Behavior... 14

6.3 Key Actions... 15

6.4 Delivering a Key or Button Event to a Client.. 22
6.4.1 XKB Interactions With Core Protocol Grabs ... 22

7.0 Key Event Processing in the Client..23
7.1 Notation and Terminology... 23

7.2 Determining the KeySym Associated with a Key Event... 24
7.2.1 Key Types.. 24
7.2.2 Key Symbol Map .. 25

7.3 Transforming the KeySym Associated with a Key Event ... 26

7.4 Client Map Example.. 27

11/6/97 Protocol Version 1.0/Document Revision 1.0 TOC-2

The X Keyboard Extension Protocol Specification

8.0 Symbolic Names ..28

9.0 Keyboard Indicators...29
9.1 Global Information About Indicators.. 29

9.2 Per-Indicator Information.. 30
9.2.1 Indicator Maps .. 30

10.0 Keyboard Bells...33
10.1 Client Notification of Bells ... 33

10.2 Disabling Server Generated Bells ... 33

10.3 Generating Named Bells ... 33

10.4 Generating Optional Named Bells .. 33

10.5 Forcing a Server Generated Bell ... 34

11.0 Keyboard Geometry...34
11.1 Shapes and Outlines .. 35

11.2 Sections ... 35

11.3 Doodads... 36

11.4 Keyboard Geometry Example ... 37

12.0 Interactions Between XKB and the Core Protocol ..38
12.1 Group Compatibility Map ... 38

12.1.1 Setting a Passive Grab for an XKB State.. 39

12.2 Changing the Keyboard Mapping Using the Core Protocol.. 39
12.2.1 Explicit Keyboard Mapping Components... 39
12.2.2 Assigning Symbols To Groups ... 40
12.2.3 Assigning Types To Groups of Symbols for a Key... 41
12.2.4 Assigning Actions To Keys... 42
12.2.5 Updating Everything Else ... 43

12.3 Effects of XKB on Core Protocol Events.. 43

12.4 Effect of XKB on Core Protocol Requests.. 44

12.5 Sending Events to Clients.. 45

13.0 The Server Database of Keyboard Components ..45
13.1 Component Names .. 45

13.2 Partial Components and Combining Multiple Components.. 46

13.3 Component Hints... 47

13.4 Keyboard Components .. 47
13.4.1 The Keycodes Component .. 47
13.4.2 The Types Component .. 47
13.4.3 The Compatibility Map Component ... 48
13.4.4 The Symbols Component.. 48
13.4.5 The Geometry Component.. 48

13.5 Complete Keymaps ... 49

14.0 Replacing the Keyboard “On-the-Fly” ..49

15.0 Interactions Between XKB and the X Input Extension ...49
15.1 Using XKB Functions with Input Extension Keyboards .. 50

15.2 Pointer and Device Button Actions ... 50

15.3 Indicator Maps for Extension Devices .. 51

15.4 Indicator Names for Extension Devices.. 51

11/6/97 Protocol Version 1.0/Document Revision 1.0 TOC-3

The X Keyboard Extension Protocol Specification

16.0 XKB Protocol Requests ...51
16.1 Errors... 51

16.1.1 Keyboard Errors.. 52
16.1.2 Side-Effects of Errors.. 52

16.2 Common Types.. 52

16.3 Requests .. 56
16.3.1 Initializing the X Keyboard Extension.. 56
16.3.2 Selecting Events.. 57
16.3.3 Generating Named Keyboard Bells .. 58
16.3.4 Querying and Changing Keyboard State .. 59
16.3.5 Querying and Changing Keyboard Controls... 61
16.3.6 Querying and Changing the Keyboard Mapping .. 66
16.3.7 Querying and Changing the Compatibility Map... 72
16.3.8 Querying and Changing Indicators ... 74
16.3.9 Querying and Changing Symbolic Names.. 78
16.3.10 Querying and Changing Keyboard Geometry .. 82
16.3.11 Querying and Changing Per-Client Flags ... 84
16.3.12 Using the Server’s Database of Keyboard Components 85
16.3.13 Querying and Changing Input Extension Devices.. 89
16.3.14 Debugging the X Keyboard Extension ... 92

16.4 Events .. 93
16.4.1 Tracking Keyboard Replacement.. 93
16.4.2 Tracking Keyboard Mapping Changes ... 95
16.4.3 Tracking Keyboard State Changes.. 96
16.4.4 Tracking Keyboard Control Changes.. 97
16.4.5 Tracking Keyboard Indicator State Changes .. 98
16.4.6 Tracking Keyboard Indicator Map Changes ... 98
16.4.7 Tracking Keyboard Name Changes .. 99
16.4.8 Tracking Compatibility Map Changes.. 100
16.4.9 Tracking Application Bell Requests ... 101
16.4.10 Tracking Messages Generated by Key Actions .. 102
16.4.11 Tracking Changes to AccessX State and Keys ... 102
16.4.12 Tracking Changes To Extension Devices.. 103

Appendix A. Default Symbol Transformations A-1

1.0 Interpreting the Control Modifier.. A-1

2.0 Interpreting the Lock Modifier.. A-1
2.1 Locale-Sensitive Capitalization...A-1

2.2 Locale-Insensitive Capitalization ..A-1
2.2.1 Capitalization Rules for Latin-1 Keysyms..A-2
2.2.2 Capitalization Rules for Latin-2 Keysyms..A-2
2.2.3 Capitalization Rules for Latin-3 Keysyms..A-2
2.2.4 Capitalization Rules for Latin-4 Keysyms..A-2
2.2.5 Capitalization Rules for Cyrillic Keysyms ...A-3
2.2.6 Capitalization Rules for Greek Keysyms..A-3
2.2.7 Capitalization Rules for Other Keysyms ..A-4

Appendix B. Canonical Key Types B-1

1.0 Canonical Key Types ...B-1
1.1 The ONE_LEVEL Key Type .. B-1

11/6/97 Protocol Version 1.0/Document Revision 1.0 TOC-4

The X Keyboard Extension Protocol Specification

1.2 The TWO_LEVEL Key Type.. B-1

1.3 The ALPHABETIC Key Type .. B-1

1.4 The KEYPAD Key Type ... B-1

Appendix C. New KeySyms C-1

1.0 New KeySyms..C-1
1.1 KeySyms Used by the ISO9995 Standard... C-1

1.2 KeySyms Used to Control The Core Pointer .. C-2

1.3 KeySyms Used to Change Keyboard Controls.. C-2

1.4 KeySyms Used To Control The Server ... C-3

1.5 KeySyms for Non-Spacing Diacritical Keys... C-3

Appendix D. Protocol Encoding D-1

1.0 Syntactic Conventions... D-1

2.0 Common Types ... D-2

3.0 Errors... D-7

4.0 Key Actions... D-8

5.0 Key Behaviors... D-12

6.0 Requests .. D-13

7.0 Events.. D-32

11/6/97 Protocol Version 1.0/Document Revision 1.0 1

The X Keyboard Extension Protocol Specification

1.0 Overview

This extension provides a number of new capabilities and controls for text keyboards.

The core X protocol specifies the ways that theShift , Control andLock modifi-
ers and the modifiers bound to theMode_switch or Num_Lock keysyms interact to
generate keysyms and characters. The core protocol also allows users to specify that a
key affects one or more modifiers. This behavior is simple and fairly flexible, but it
has a number of limitations that make it difficult or impossible to properly support
many common varieties of keyboard behavior. The limitations of core protocol sup-
port for keyboards include:

• Use of a single, uniform, four-symbol mapping for all keyboard keys makes it difficult
to properly support keyboard overlays, PC-style break keys or keyboards that comply
with ISO9995 or a host of other national and international standards.

• Use of a modifier to specify a second keyboard group has side-effects that wreak havoc
with client grabs and X toolkit translations and limit us to two keyboard groups.

• Poorly specified locking key behavior requires X servers to look for a few “magic” key-
syms to determine which keys should lock when pressed. This leads to incompatibili-
ties between X servers with no way for clients to detect implementation differences.

• Poorly specified capitalization and control behavior requires modifications to X library
source code to support new character sets or locales and can lead to incompatibilities
between system-wide and X library capitalization behavior.

• Limited interactions between modifiers specified by the core protocol make many com-
mon keyboard behaviors difficult or impossible to implement. For example, there is no
reliable way to indicate whether or not using shift should “cancel” the lock modifier.

• The lack of any explicit descriptions for indicators, most modifiers and other aspects of
the keyboard appearance requires clients that wish to clearly describe the keyboard to a
user to resort to a mishmash of prior knowledge and heuristics.

This extension makes it possible to clearly and explicitly specify most aspects of key-
board behavior on a per-key basis. It adds the notion of a numeric keyboard group to
the global keyboard state and provides mechanisms to more closely track the logical
and physical state of the keyboard. For keyboard control clients, this extension pro-
vides descriptions and symbolic names for many aspects of keyboard appearance and
behavior. It also includes a number of keyboard controls designed to make keyboards
more accessible to people with movement impairments.

The X Keyboard Extension essentially replaces the core protocol definition of a key-
board. The following sections describe the new capabilities of the extension and the
effect of the extension on core protocol requests, events and errors.

1.1 Conventions and Assumptions
This document uses the syntactic conventions, common types, and errors defined in
sections two through four of the specification of the X Window System Protocol. This
document assumes familiarity with the fundamental concepts of X, especially those
related to the way that X handles keyboards. Readers who are not familiar with the
meaning or use of keycodes, keysyms or modifiers should consult (at least) the first
five chapters of the protocol specification of the X Window System before continuing.

11/6/97 Protocol Version 1.0/Document Revision 1.0 2

The X Keyboard Extension Protocol Specification

2.0 Keyboard State

The core protocol description of keyboard state consists of eightmodifiers (Shift ,
Lock , Control , andMod1-Mod5). A modifier reports the state of one or modifier
keys, which are similar to qualifier keys as defined by the ISO9995 standard:

Qualifier key A key whose operation has no immediate effect, but which, for as long as it is
held down, modifies the effect of other keys. A qualifier key may be, for
example, a shift key or a control key.

Whenever a modifier key is physically or logically depressed, the modifier it controls
is set in the keyboard state. The protocol implies that certain modifier keys lock (i.e.
affect modifier state after they have been physically released) but does not explicitly
discuss locking keys or their behavior. The current modifier state is reported to clients
in a number of core protocol events and can be determined using theQuery-
Pointer request.

The XKB extension retains the eight “real” modifiers defined by the core protocol but
extends the core protocol notion ofkeyboard state to include up to fourkeysym groups,
as defined by the ISO9995 standard:

Group: A logical state of a keyboard providing access to a collection of characters. A
group usually contains a set of characters which logically belong together and
which may be arranged on several shift levels within that group.

For example, keyboard group can be used to select between multiple alphabets on a
single keyboard, or to access less-commonly used symbols within a character set.

2.1 Locking and Latching Modifiers and Groups
With the core protocol, there is no way to tell whether a modifier is set due to a lock or
because the user is actually holding down a key; this can make for a clumsy user-inter-
face as locked modifiers or group state interfere with accelerators and translations.

XKB adds explicit support for locking and latching modifiers and groups. Locked
modifiers or groups apply to all future key events until they are explicitly changed.
Latched modifiers or groups apply only to the next key event that does not change
keyboard state.

2.2 Fundamental Components of XKB Keyboard State
The fundamental components of XKB keyboard state include:

• The locked modifiers and group
• The latched modifiers and group
• The base modifiers and group (for which keys are physically or logically down)
• The effective modifiers and group (the cumulative effect of the base, locked and latched

modifier and group states).
• State of the core pointer buttons.

The latched and locked state of modifiers and groups can be changed in response to
keyboard activity or under application control using theXkbLatchLockState
request. The base modifier, base group and pointer button states always reflect the log-
ical state of the keyboard and pointer and changeonly in response to keyboard or
pointer activity.

11/6/97 Protocol Version 1.0/Document Revision 1.0 3

The X Keyboard Extension Protocol Specification

2.2.1 Computing Effective Modifier and Group
The effective modifiers and group report the cumulative effects of the base, latched
and locked modifiers and group respectively, and cannot be directly changed. Note
that the effective modifiers and effective group are computed differently.

The effective modifiers are simply the bitwise union of the base, latched and locked
modifiers.

The effective group is the arithmetic sum of the base, latched and locked groups. The
locked and effective keyboard group must fall in the rangeGroup1 -Group4 , so they
are adjusted into range as specified by the globalGroupsWrap control as follows:

• If the RedirectIntoRange flag is set, the four least significant bits of the groups
wrap control specify the index of a group to which all illegal groups correspond. If the
specified group is also out of range, all illegal groups map toGroup1 .

• If the ClampIntoRange flag is set, out-of-range groups correspond to the nearest
legal group. Effective groups larger than the highest supported group are mapped to the
highest supported group; effective groups less thanGroup1 are mapped toGroup1 .
For example, a key with two groups of symbols usesGroup2 type and symbols if the
global effective group is eitherGroup3 or Group4 .

• If neither flag is set, group is wrapped into range using integer modulus. For example, a
key with two groups of symbols for which groups wrap usesGroup1 symbols if the
global effective group isGroup3 or Group2 symbols if the global effective group is
Group4 .

The base and latched keyboard groups are unrestricted eight-bit integer values and are
not affected by theGroupsWrap control.

2.2.2 Computing A State Field from an XKB State
Many events report the keyboard state in a singlestate field. Using XKB, a state field
combines modifiers, group and the pointer button state into a single sixteen bit value
as follows:

• Bits 0 through 7 (the least significant eight bits) of the effective state comprise a mask
of type KEYMASK which reports the state modifiers.

• Bits 8 through 12 comprise a mask of type BUTMASK which reports pointer button
state.

• Bits 13 and 14 are interpreted as a two-bit unsigned numeric value and report the state
keyboard group.

• Bit 15 (the most significant bit) is reserved and must be zero.

It is possible to assemble a state field from any of the components of the XKB key-
board state. For example, the effective keyboard state would be assembled as
described above using the effective keyboard group, the effective keyboard modifiers
and the pointer button state.

2.3 Derived Components of XKB Keyboard State
In addition to the fundamental state components, XKB keeps track of and reports a
number of state components which are derived from the fundamental components but
stored and reported separately to make it easier to track changes in the keyboard state.
These derived components are updated automatically whenever any of the fundamen-
tal components change but cannot be changed directly.

11/6/97 Protocol Version 1.0/Document Revision 1.0 4

The X Keyboard Extension Protocol Specification

The first pair of derived state components control the way that passive grabs are acti-
vated and the way that modifiers are reported in core protocol events that report state.
The server uses theServerInternalModifiers , IgnoreLocksModifiers
andIgnoreGroupLock controls, described in section 2.3.1, to derive these two
states as follows:

• The lookup state is the state used to determine the symbols associated with a key event
and consists of the effective state minus any server internal modifiers.

• The grab state is the state used to decide whether a particular event triggers a passive
grab and consists of the lookup state minus any members of the ignore locks modifiers
that are not either latched or logically depressed. If the ignore group locks control is
set, the grab state does not include the effects of any locked groups.

2.3.1 Server Internal Modifiers and Ignore Locks Behavior
The core protocol does not provide any way to exclude certain modifiers from client
events, so there is no way to set up a modifier which affects only the server.

The modifiers specified in the mask of theInternalMods control are not reported
in any core protocol events, are not used to determine grabs and are not used to calcu-
late compatibility state for XKB-unaware clients. Server internal modifiers affect only
the action applied when a key is pressed.

The core protocol does not provide any way to exclude certain modifiers from grab
calculations, so locking modifiers often have unanticipated and unfortunate side-
effects. XKB provides another mask which can help avoid some of these problems.

The locked state of the modifiers specified in mask of theIgnoreLockMods control
is not reported in most core protocol events and is not used to activate grabs. The only
core events which include the locked state of the modifiers in the ignore locks mask
are key press and release events that do not activate a passive grab and which do not
occur while a grab is active. If theIgnoreGroupLock control is set, the locked
state of the keyboard group is not considered when activating passive grabs.

Without XKB, the passive grab set by a translation (e.g.Alt<KeyPress>space)
does not trigger if any modifiers other than those specified by the translation are set,
with the result that many user interface components do not react when either Num
Lock or when the secondary keyboard group are active. The ignore locks mask and the
ignore group locks control make it possible to avoid this behavior without exhaus-
tively grabbing every possible modifier combination.

2.4 Compatibility Components of Keyboard State
The core protocol interpretation of keyboard modifiers does not include direct support
for multiple groups, so XKB reports the effective keyboard group to XKB-aware cli-
ents using some of the reserved bits in the state field of some core protocol events, as
described in section 2.2.2.

This modified state field would not be interpreted correctly by XKB-unaware clients,
so XKB provides agroup compatibility mapping (see section 12.1) which remaps the
keyboard group into a core modifier mask that has similar effects, when possible.
XKB maintains three compatibility state components that are used to make non-XKB
clients work as well as possible:

• Thecompatibility state corresponds to the effective modifier and effective group state.

11/6/97 Protocol Version 1.0/Document Revision 1.0 5

The X Keyboard Extension Protocol Specification

• Thecompatibility lookup state is the core-protocol equivalent of the lookup state.
• Thecompatibility grab state is the nearest core-protocol equivalent of the grab state.

Compatibility states are essentially the corresponding XKB state, but with keyboard
group possibly encoded as one or more modifiers; section 12.1 describes the group
compatibility map, which specifies the modifier(s) that correspond to each keyboard
group.

The compatibility state reported to XKB-unaware clients for any given core protocol
event is computed from the modifier state that XKB-capable clients would see for that
same event. For example, if the ignore group locks control is set and group 2 is locked,
the modifier bound toMode_switch is not reported in any event except (Device)Key-
Press and (Device)KeyRelease events that do not trigger a passive grab.

Note Referring to clients as “XKB-capable” is somewhat misleading in this context. The
sample implementation of XKB invisibly extends the X library to use the keyboard
extension if it is present. This means that most clients can take advantage of all of
XKB without modification, but it also means that the XKB state can be reported to cli-
ents that have not explicitly requested the keyboard extension. Clients thatdirectly
interpret the state field of core protocol events or that interpret the keymap directly
may be affected by some of the XKB differences; clients that use library or toolkit
routines to interpret keyboard events automatically use all of the XKB features.

XKB-aware clients can query the keyboard state at any time or request immediate
notification of a change to any of the fundamental or derived components of the key-
board state.

3.0 Virtual Modifiers

The core protocol specifies that certain keysyms, when bound to modifiers, affect the
rules of keycode to keysym interpretation for all keys; for example, whenNum_Lock
is bound to some modifier, that modifier is used to choose shifted or unshifted state for
the numeric keypad keys. The core protocol does not provide a convenient way to
determine the mapping of modifier bits, in particularMod1 throughMod5, to keysyms
such asNum_Lock andMode_switch. Clients must retrieve and search the modifier
map to determine the keycodes bound to each modifier, and then retrieve and search
the keyboard mapping to determine the keysyms bound to the keycodes. They must
repeat this process for all modifiers whenever any part of the modifier mapping is
changed.

XKB provides a set of sixteen named virtual modifiers, each of which can be bound to
any set of the eight “real” modifiers (Shift , Lock , Control andMod1-Mod5 as
reported in the keyboard state). This makes it easier for applications and keyboard lay-
out designers to specify to the function a modifier key or data structure should fulfill
without having to worry about which modifier is bound to a particular keysym.

The use of a single, server-driven mechanism for reporting changes to all data struc-
tures makes it easier for clients to stay synchronized. For example, the core protocol
specifies a special interpretation for the modifier bound to theNum_Lock key. When-
ever any keys or modifiers are rebound, every application has to check the keyboard
mapping to make sure that the binding forNum_Lock has not changed. IfNum_Lock is
remapped when XKB is in use, the keyboard description is automatically updated to

11/6/97 Protocol Version 1.0/Document Revision 1.0 6

The X Keyboard Extension Protocol Specification

reflect the new binding, and clients are notified immediately and explicitly if there is a
change they need to consider.

The separation of function from physical modifier bindings also makes it easier to
specify more clearly the intent of a binding. X servers do not all assign modifiers the
same way — for example,Num_Lock might be bound toMod2 for one vendor and to
Mod4 for another. This makes it cumbersome to automatically remap the keyboard to
a desired configuration without some kind of prior knowledge about the keyboard lay-
out and bindings. With XKB, applications simply use virtual modifiers to specify the
behavior they want, without regard for the actual physical bindings in effect.

XKB puts most aspects of the keyboard under user or program control, so it is even
more important to clearly and uniformly refer to modifiers by function.

3.1 Modifier Definitions
Use anXKB modifier definition to specify the modifiers affected by any XKB control
or data structure. An XKB modifier definition consists of a set of real modifiers, a set
of virtual modifiers, and an effective mask. The mask is derived from the real and vir-
tual modifiers and cannot be explicitly changed — it contains all of the real modifiers
specified in the definitionplus any real modifiers that are bound to the virtual modifi-
ers specified in the definition. For example, this modifier definition specifies the
numeric lock modifier if theNum_Lock keysym is not bound to any real modifier:

{ real_mods= None, virtual_mods= NumLock, mask= None }

If we assignMod2 to theNum_Lock key, the definition changes to:

{ real_mods= None, virtual_mods= NumLock, mask= Mod2 }

Using this kind of modifier definition makes it easy to specify the desired behavior in
such a way that XKB can automatically update all of the data structures that make up a
keymap to reflect user or application specified changes in any one aspect of the key-
map.

The use of modifier definitions also makes it possible to unambiguously specify the
reason that a modifier is of interest. On a system for which theAlt andMeta keysyms
are bound to the same modifier, the following definitions behave identically:

{ real_mods= None, virtual_mods= Alt, mask= Mod1 }
{ real_mods= None, virtual_mods= Meta, mask= Mod1 }

If we rebind one of the modifiers, the modifier definitions automatically reflect the
change:

{ real_mods= None, virtual_mods= Alt, mask= Mod1 }
{ real_mods= None, virtual_mods= Meta, mask= Mod4 }

Without the level of indirection provided by virtual modifier maps and modifier defi-
nitions, we would have no way to tell which of the two definitions is concerned with
Alt and which is concerned withMeta.

11/6/97 Protocol Version 1.0/Document Revision 1.0 7

The X Keyboard Extension Protocol Specification

3.1.1 Inactive Modifier Definitions
Some XKB structures ignore modifier definitions in which the virtual modifiers are
unbound. Consider this example:

if (state matches { Shift }) Do OneThing;
if (state matches { Shift+NumLock }) Do Another;

If the NumLock virtual modifier is not bound to any real modifiers, these effective
masks for these two cases are identical (i.e. they contain onlyShift). When it is
essential to distinguish between OneThing and Another, XKB considers only those
modifier definitions for which all virtual modifiers are bound.

3.2 Virtual Modifier Mapping
XKB maintains avirtual modifier mapping, which lists the virtual modifiers associ-
ated with each key. The real modifiers bound to a virtual modifier always include all
of the modifiers bound to any of the keys that specify that virtual modifier in their vir-
tual modifier mapping.

For example, ifMod3 is bound to theNum_Lock key by the core protocol modifier
mapping, and theNumLock virtual modifier is bound to theyNum_Lock key by the
virtual modifier mapping,Mod3 is added to the set of modifiers associated with the
NumLock virtual modifier.

The virtual modifier mapping is normally updated automatically whenever actions are
assigned to keys (see section 12.2 for details) and few applications should need to
change the virtual modifier mapping explicitly.

4.0 Global Keyboard Controls

The X Keyboard Extension supports a number ofglobal key controls, which affect the
way that XKB handles the keyboard as a whole. Many of these controls make the key-
board more accessible to the physically impaired and are based on the AccessDOS
package1.

4.1 The RepeatKeys Control
The core protocol only allows control over whether or not the entire keyboard or indi-
vidual keys should autorepeat when held down. TheRepeatKeys control extends this
capability by adding control over the delay until a key begins to repeat and the rate at
which it repeats.RepeatKeys is also coupled with the core autorepeat control;
changes to one are always reflected in the other.

TheRepeatKeys control has two parameters. Theautorepeat delay specifies the
delay between the initial press of an autorepeating key and the first generated repeat
event in milliseconds. Theautorepeat interval specifies the delay between all subse-
quent generated repeat events in milliseconds.

1. AccessDOS provides access to the DOS operating system for people with physical impairments and was devel-
oped by the Trace R&D Center at the University of Wisconsin. For more information on AccessDOS, contact the
Trace R&D Center, Waisman Center and Department of Industrial Engineering, University of Wisconsin-Madison
WI 53705-2280. Phone: 608-262-6966. e-mail: info@trace.wisc.edu.

11/6/97 Protocol Version 1.0/Document Revision 1.0 8

The X Keyboard Extension Protocol Specification

4.1.1 The PerKeyRepeat Control
WhenRepeatKeys are active, thePerKeyRepeat control specifies whether or
not individual keys should autorepeat when held down. XKB provides thePerKey-
Repeat for convenience only, and it always parallels theauto-repeats field of the
core protocolGetKeyboardControl request — changes to one are always
reflected in the other.

4.1.2 Detectable Autorepeat
The X server usually generates both press and release events whenever an autorepeat-
ing key is held down. If an XKB-aware client enables theDetectableAutore-
peat per-client option for a keyboard, the server sends that client a key release event
only when the key isphysically released. For example, holding down a key to generate
three characters without detectable autorepeat yields:

Press→ Release→ Press→ Release→ Press→ Release

If detectable autorepeat is enabled, the client instead receives:

Press→ Press→ Press→ Release

Note that only clients that request detectable autorepeat are affected; other clients con-
tinue to receive both press and release events for autorepeating keys. Also note that
support for detectable autorepeat is optional; servers are not required to support detect-
able autorepeat, but they must correctly report whether or not it is supported.

Section 16.3.11 describes theXkbPerClientFlags request, which reports or
changes values for all of the per-client flags, and which lists the per-client flags that
are supported.

4.2 The SlowKeys Control
Some users often bump keys accidentally while moving their hand or typing stick
toward the key they want. Usually, the keys that are bumped accidentally are hit only
for a very short period of time. TheSlowKeys control helps filter these accidental
bumps by telling the server to wait a specified period, called theSlowKeys acceptance
delay, before delivering key events. If the key is released before this period elapses, no
key events are generated. The user can then bump any number of keys on their way to
the one they want without generating unwanted characters. Once they have reached
the key they want, they can then hold it long enough forSlowKeys to accept it.

TheSlowKeys control has one parameter; theslow keys delay specifies the length of
time, in milliseconds, that a key must be held down before it is accepted.

WhenSlowKeys are active, the X Keyboard Extension reports the initial press,
acceptance, rejection or release of any key to interested clients usingAccessXNo-
tify events. TheAccessXNotify event is described in more detail in section
16.4.

4.3 The BounceKeys Control
Some people with physical impairments accidentally “bounce” on a key when they
press it. That is, they press it once, then accidentally press it again immediately. The
BounceKeys control temporarily disables a key after it has been pressed, effectively
“debouncing” the keyboard.

11/6/97 Protocol Version 1.0/Document Revision 1.0 9

The X Keyboard Extension Protocol Specification

TheBounceKeys has a single parameter. TheBounceKeys delay specifies the period
of time, in milliseconds, that the key is disabled after it is pressed.

WhenBounceKeys are active, the server reports the acceptance or rejection of any
key to interested clients by sending anAccessXNotify event. TheAccessXNo-
tify event is described in more detail in section 16.4.

4.4 The StickyKeys Control
Some people find it difficult or impossible to press two keys at once. TheStick-
yKeys control makes it easier for them to type by changing the behavior of the modi-
fier keys. WhenStickyKeys are enabled, a modifier is latched when the user
presses it just once, so the user can first press a modifier, release it, then press another
key. For example, to get an exclamation point (!) on a PC-style keyboard, the user can
press theShift key, release it, then press the1 key.

By default,StickyKeys also allows users to lock modifier keys without requiring
special locking keys. The user can press a modifier twice in a row to lock it, and then
unlock it by pressing it one more time.

Modifiers are automatically unlatched when the user presses a non-modifier key. For
instance, to enter the sequenceShift +Ctrl +Z the user could press and release the
Shift key to latch theShift modifier, then press and release theCtrl key to latch the
Control modifier — theCtrl key is a modifier key, so pressing it does not unlatch
theShift modifier, but leaves both theShift andControl modifiers latched,
instead. When the user presses theZ key, it will be as though the user pressed
Shift +Ctrl +Z simultaneously. TheZ key is not a modifier key, so theShift and
Control modifiers are unlatched after the event is generated.

A locked a modifier remains in effect until the user unlocks it. For example, to enter
the sequence (“XKB”) on a PC-style keyboard with a typical US/ASCII layout, the
user could press and release theShift key twice to lock theShift modifier. Then,
when the user presses the9, ‘, x, k, b, ‘, and0 keys in sequence, it will generate
(“XKB”). To unlock theShift modifier, the user can press and release theShift key.

Two option flags modify the behavior of theStickyKeys control:
• If the XkbAX_TwoKeys flag is set, XKB automatically turnsStickyKeys off if the

user presses two or more keys at once. This serves to automatically disable StickyKeys
when a user who does not require sticky keys is using the keyboard.

• TheXkbAX_LatchToLock controls the locking behavior ofStickyKeys ; the
StickyKeys control only locks modifiers as described above if the
XkbAX_LatchToLock flag is set.

4.5 The MouseKeys Control
TheMouseKeys control lets a user control all the mouse functions from the key-
board. WhenMouseKeys are enabled, all keys withMouseKeys actions bound to
them generate core pointer events instead of normal key press and release events.

TheMouseKeys control has a single parameter, themouse keys default button, which
specifies the core pointer button to be used by mouse keys actions that do not explic-
itly specify a button.

11/6/97 Protocol Version 1.0/Document Revision 1.0 10

The X Keyboard Extension Protocol Specification

4.6 The MouseKeysAccel Control
If the MouseKeysAccel control is enabled, the effect of a pointer motion action
changes as a key is held down. Themouse keys delay specifies the amount of time
between the initial key press and the first repeated motion event. Themouse keys inter-
val specifies the amount of time between repeated mouse keys events. Thesteps to
maximum acceleration field specifies the total number of events before the key is trav-
elling at maximum speed. Themaximum acceleration field specifies the maximum
acceleration. Thecurve parameter controls the ramp used to reach maximum accelera-
tion.

WhenMouseKeys are active and aSA_MovePtr key action (see section 6.3) is
activated, a pointer motion event is generated immediately. IfMouseKeysAccel is
enabled and if acceleration is enabled for the key in question, a second event is gener-
ated aftermouse keys delaymilliseconds, and additional events are generated every
mouse keys interval milliseconds for as long as the key is held down.

4.6.1 Relative Pointer Motion
If the SA_MovePtr action specifies relative motion, events are generated as follows:
The initial event always moves the cursor the distance specified in the action; after
steps to maximum acceleration events have been generated, all subsequent events
move the pointer the distance specified in the action times themaximum acceleration.
Events after the first but before maximum acceleration has been achieved are acceler-
ated according to the formula:

Whereaction_delta is the offset specified by the mouse keys action,max_acceland
steps_to_max are parameters to theMouseKeysAccel ctrl, and the curveFactor is
computed using theMouseKeysAccel curve parameter as follows:

With the result that acurve of 0 causes the distance moved to increase linearly from
action_delta to , and the minimum legalcurve of -1000 causes
all events after the first move atmax_accel. A negativecurve causes an initial sharp
increase in acceleration which tapers off, while a positive curve yields a slower initial
increase in acceleration followed by a sharp increase as the number of pointer events
generated by the action approachessteps_to_max.

4.6.2 Absolute Pointer Motion
If an SA_MovePtr action specifies an absolute position for one of the coordinates
but still allows acceleration, all repeated events contain any absolute coordinates spec-
ified in the action.

4.7 The AccessXKeys Control
If AccessXKeys is enabled many controls can also be turned on or off from the key-
board by entering the following standard key sequences:

• Holding down a shift key by itself for eight seconds toggles theSlowKeys control.

d step() action_delta
max_accel

steps_to_maxcurveFactor
-- 

  stepcurveFactor××=

curveFactor(curve) 1 curve
1000
-------------+=

max_accel action_delta×()

11/6/97 Protocol Version 1.0/Document Revision 1.0 11

The X Keyboard Extension Protocol Specification

• Pressing and releasing a shift key five times in a row without any intervening key
events and with less than 30 seconds delay between consecutive presses toggles the
state of theStickyKeys control.

• Simultaneously operating two or more modifier keys deactivates theStickyKeys
control.

Some of these key sequences optionally generate audible feedback of the change in
state, as described in section 4.9, or causeXkbAccessXNotify events as described
in section 16.4.

4.8 The AccessXTimeout Control
In environments where computers are shared, features such asSlowKeys present a
problem: ifSlowKeys is on, the keyboard can appear to be unresponsive because
keys have no effect unless they are held for a certain period of time. To help address
this problem, XKB provides anAccessXTimeout control to automatically change
the value of any global controls or AccessX options if the keyboard is idle for a speci-
fied period of time.

The AccessXTimeout control has a number of parameters which affect the duration of
the timeout and the features changed when the timeout expires.

TheAccessX Timeout field specifies the number of seconds the keyboard must be idle
before the global controls and AccessX options are modified. TheAccessX Options
Mask field specifies which values in theAccessX Options field are to be changed, and
theAccessX Options Values field specifies the new values for those options. The
AccessX Controls Mask field specifies which controls are to be changed in the global
set ofenabled controls, and theAccessX Controls Values field specifies the new val-
ues for those controls.

4.9 The AccessXFeedback Control
If AccessXFeedback is enabled, special beep-codes indicate changes in keyboard
controls (or some key events whenSlowKeys or StickyKeys are active). Many
beep codes sound as multiple tones, but XKB reports a singleXkbBellNotify
event for the entire sequence of tones.

All feedback tones are governed by theAudibleBell control. Individual feedback
tones can be explicitly enabled or disabled using theaccessX options mask or set to
deactivate after an idle period using theaccessX timeout options mask. XKB defines
the following feedback tones:

Feedback Name Bell Name Default Sound Indicates
FeatureFB AX_FeatureOn rising tone Keyboard control enabled

AX_FeatureOff falling tone Keyboard control disabled
AX_FeatureChange two tones Several controls changed state

IndicatorFB AX_IndicatorOn high tone Indicator Lit
AX_IndicatorOff low tone Indicator Extinguished

AX_IndicatorChange two high tones Several indicators changed state
SlowWarnFB AX_SlowKeysWarning three high tones Shift key held for four seconds
SKPressFB AX_SlowKeyPress single tone Key press whileSlowKeys are on

SKReleaseFB AX_SlowKeyRelease single tone Key release whileSlowKeys are on
SKAcceptFB AX_SlowKeyAccept single tone Key event accepted bySlowKeys
SKRejectFB AX_SlowKeyReject low tone Key event rejected bySlowKeys

11/6/97 Protocol Version 1.0/Document Revision 1.0 12

The X Keyboard Extension Protocol Specification

Implementations that cannot generate continuous tones may generate multiple beeps
instead of falling and rising tones; for example, they can generate a high-pitched beep
followed by a low-pitched beep instead of a continuous falling tone.

If the physical keyboard bell is not very capable, attempts to simulate a continuous
tone with multiple bells can sound horrible. Set theDumbBellFB AccessX option to
inform the server that the keyboard bell is not very capable and that XKB should use
only simple bell combinations. Keyboard capabilities vary wildly, so the sounds gen-
erated for the individual bells when theDumbBellFB option is set are implementa-
tion specific.

4.10 The Overlay1 and Overlay2 Controls
A keyboard overlay allows some subset of the keyboard to report alternate keycodes
when the overlay is enabled. For example a keyboard overlay can be used to simulate
a numeric or editing keypad on keyboard that does not actually have one by generating
alternate of keycodes for some keys when the overlay is enabled. This technique is
very common on portable computers and embedded systems with small keyboards.

XKB includes direct support for two keyboard overlays, using theOverlay1 and
Overlay2 controls. WhenOverlay1 is enabled, all of the keys that are members
of the first keyboard overlay generate an alternate keycode. WhenOverlay2 is
enabled, all of the keys that are members of the second keyboard overlay generate an
alternate keycode.

To specify the overlay to which a key belongs and the alternate keycode it should gen-
erate when that overlay is enabled, assign it either theKB_Overlay1 or
KB_Overlay2 key behaviors, as described in section 6.2.

4.11 “Boolean” Controls and The EnabledControls Control
All of the controls described above, along with theAudibleBell control (described
in section 10.2) and theIgnoreGroupLock control (described in section 2.3.1)
comprise theboolean controls. In addition to any parameters listed in the descriptions
of the individual controls, the boolean controls can be individually enabled or disabled
by changing the value of theEnabledControls control.

The followingnon-boolean controls are always active and cannot be changed using
theEnabledControls control or specified in any context that accepts only bool-
ean controls:GroupsWrap (section 2.2.1),EnabledControls , InternalMods
(section 2.3.1), andIgnoreLockMods (section 2.3.1) andPerKeyRepeat (sec-
tion 4.1)

4.12 Automatic Reset of Boolean Controls
Theauto-reset controls are a per-client value which consist of two masks that can con-
tain any of the boolean controls (see section 4.11). Whenever the client exits for any
reason, any boolean controls specified in theauto-reset mask are set to the correspond-

StickyKeysFB AX_StickyLatch low tone then
high tone

Modifier latched byStickyKeys

AX_StickyLock high tone Modifier locked byStickyKeys
AX_StickyUnlock low tone Modifier unlocked byStickyKeys

BKRejectFB AX_BounceKeysReject low tone Key event rejected byBounceKeys

Feedback Name Bell Name Default Sound Indicates

11/6/97 Protocol Version 1.0/Document Revision 1.0 13

The X Keyboard Extension Protocol Specification

ing value from theauto-reset values mask. This makes it possible for clients to “clean
up after themselves” automatically, even if abnormally terminated.

For example, a client that replace the keyboard bell with some other audible cue might
want to turn off theAudibleBell control (section 10.2) to prevent the server from
also generating a sound and thus avoid cacophony. If the client were to exit without
resetting theAudibleBell control, the user would be left without any feedback at
all. SettingAudibleBell in both the auto-reset mask and auto-reset values guaran-
tees that the audible bell will be turned back on when the client exits.

5.0 Key Event Processing Overview

There are three steps to processing each key event in the X server, and at least three in
the client. This section describes each of these steps briefly; the following sections
describe each step in more detail.

1. First, the server applies global keyboard controls to determine whether the key event
should be processed immediately, deferred, or ignored. For example, theSlowKeys
control can cause a key event to be deferred until the slow keys delay has elapsed while
theRepeatKeys control can cause multiple X events from a single physical key press
if the key is held down for an extended period. The global keyboard controls affect all
of the keys on the keyboard and are described in section 4.0.

2. Next, the server applies per-key behavior. Per key-behavior can be used to simulate or indi-
cate some special kinds of key behavior. For example, keyboard overlays, in which a key
generates an alternate keycode under certain circumstances, can be implemented using per-
key behavior. Every key has a single behavior, so the effect of key behavior does not
depend on keyboard modifier or group state, though it might depend on global keyboard
controls. Per-key behaviors are described in detail in section 6.2.

3. Finally, the server applies key actions. Logically, every keysym on the keyboard has some
action associated with it. The key action tells the server what to do when an event which
yields the corresponding keysym is generated. Key actions might change or suppress the
event, generate some other event, or change some aspect of the server. Key actions are
described in section 6.3.

If the global controls, per-key behavior and key action combine to cause a key event,
the client which receives the event processes it in several steps.

1. First the client extracts the effective keyboard group and a set of modifiers from the
state field of the event. See section 2.2.2 for details.

2. Using the modifiers and effective keyboard group, the client selects a symbol from the list
of keysyms bound to the key. Section 7.2 discusses symbol selection.

3. If necessary, the client transforms the symbol and resulting string using any modifiers that
are “left over” from the process of looking up a symbol. For example, if theLock modifier
is left over, the resulting keysym is capitalized according to the capitalization rules speci-
fied by the system. See section 7.3 for a more detailed discussion of the transformations
defined by XKB.

4. Finally, the client uses the keysym and remaining modifiers in an application-specific way.
For example, applications based on the X toolkit might apply translations based on the
symbol and modifiers reported by the first three steps.

11/6/97 Protocol Version 1.0/Document Revision 1.0 14

The X Keyboard Extension Protocol Specification

6.0 Key Event Processing in the Server

This section describes the steps involved in processing a key event within the server
when XKB is present. Key events can be generated due to keyboard activity and
passed to XKB by the DDX layer, or they can be synthesized by another extension,
such as XTEST.

6.1 Applying Global Controls
When the X Keyboard Extension receives a key event, it first checks the global key
controls to decide whether to process the event immediately or at all. The global key
controls which might affect the event, in descending order of priority, are:

• If a key is pressed while theBounceKeys control is enabled, the extension generates
the event only if the key is active. When a key is released, the server deactivates the key
and starts abounce keys timer with an interval specified by the debounce delay.

If the bounce keys timer expires or if some other key is pressed before the timer
expires, the server reactivates the corresponding key and deactivates the timer. Neither
expiration nor deactivation of a bounce keys timer causes an event.

• If the SlowKeys control is enabled, the extension sets aslow keys timer with an inter-
val specified by the slow keys delay, but does not process the key event immediately.
The corresponding key release deactivates this timer.

If the slow keys timer expires, the server generates a key press for the corresponding
key, sends anXkbAccessXNotify and deactivates the timer.

• The extension processes key press events normally whether or not theRepeatKeys
control is active, but ifRepeatKeys are enabled and per-key autorepeat is enabled
for the event key, the extension processes key press events normally, but it also initiates
anautorepeat timer with an interval specified by the autorepeat delay. The correspond-
ing key release deactivates the timer.

If the autorepeat timer expires, the server generates a key release and a key press for the
corresponding key and reschedules the timer according to the autorepeat interval.

Key events are processed by each global control in turn: if theBounceKeys control
accepts a key event,SlowKeys considers it. OnceSlowKeys allows or synthesizes
an event, theRepeatKeys control acts on it.

6.2 Key Behavior
Once an event is accepted by all of the controls or generated by a timer, the server
checks the per-key behavior of the corresponding key. This extension currently
defines the following key behaviors:

Behavior Effect
KB_Default Press and release events are processed normally.
KB_Lock If a key is logically up (i.e. the corresponding bit of the core key map

is cleared) when it is pressed, the key press is processed normally
and the corresponding release is ignored. If the key is logically down
when pressed, the key press is ignored but the corresponding release
is processed normally.

11/6/97 Protocol Version 1.0/Document Revision 1.0 15

The X Keyboard Extension Protocol Specification

The X server uses key behavior to determine whether to process or filter out any given
key event; key behavior is independent of keyboard modifier or group state (each key
has exactly one behavior.

Key behaviors can be used to simulate any of these types of keys or to indicate an
unmodifiable physical, electrical or software driver characteristic of a key. An
optionalpermanent flag can modify any of the supported behaviors and indicates that
behavior describes an unalterable physical, electrical or software aspect of the key-
board. Permanent behaviors cannot be changed or set by theXkbSetMap request.
Thepermanent flag indicates a characteristic of the underlying system that XKB can-
not affect, so XKB treats all permanent behaviors as if they wereKB_Default and
does not filter key events described in the table above.

6.3 Key Actions
Once the server has applied the global controls and per-key behavior and has decided
to process a key event, it applieskey actions to determine the effects of the key on the
internal state of the server. A key action consists of an operator and some optional
data. XKB supports actions which:

• change base, latched or locked modifiers or group
• move the core pointer or simulate core pointer button events
• change most aspects of keyboard behavior
• terminate or suspend the server
• send a message to interested clients
• simulate events on other keys

Each key has an optional list of actions. If present, this list parallels the list of symbols
associated with the key (i.e. it has one action per symbol associated with the key). For
key press events, the server looks up the action to be applied from this list using the
key symbol mapping associated with the event key, just as a client looks up symbols
as described in section 7.2; if the event key does not have any actions, the server uses
theSA_NoAction event for that key regardless of modifier or group state.

Key actions have essentially two halves; the effects on the server when the key is
pressed and the effects when the key is released. The action applied for a key press

KB_RadioGroup
flags: CARD8
index: CARD8

If another member of the radio group specified byindex is logically
down when a key is pressed, the server synthesizes a key release for
the member that is logically down and then processes the new key
press event normally.
If the key itself is logically down when pressed, the key press event
is ignored, but the processing of the corresponding key release
depends on the value of theRGAllowNone bit in flags. If it is set,
the key release is processed normally; otherwise the key release is
also ignored.
All other key release events are ignored.

KB_Overlay1
key: KEYCODE

If the Overlay1 control is enabled, events from this key are
reported as if they came from the key specified inkey. Otherwise,
press and release events are processed normally.

KB_Overlay2
key: KEYCODE

If the Overlay2 control is enabled, events from this key are
reported as if they came from the key specified inkey. Otherwise,
press and release events are processed normally.

Behavior Effect

11/6/97 Protocol Version 1.0/Document Revision 1.0 16

The X Keyboard Extension Protocol Specification

event determines the further actions, if any, that are applied to the corresponding
release event or to events that occur while the key is held down. Clients can change the
actions associated with a key while the key is down without changing the action
applied next time the key is released; subsequent press-release pairs will use the newly
bound key action.

Most actions directly change the state of the keyboard or server; some actions also
modify other actions that occur simultaneously with them. Two actions occur simulta-
neously if the keys which invoke the actions are both logically down at the same time,
regardless of the order in which they are pressed or delay between the activation of
one and the other.

Most actions which affect keyboard modifier state accept a modifier definition (see
section 3.0) namedmods and a boolean flag nameuseModMap among their argu-
ments. These two fields combine to specify the modifiers affected by the action as fol-
lows: If useModMap is True , the action sets any modifiers bound by the modifier
mapping to the key that initiated the action; otherwise, the action sets the modifiers
specified bymods. For brevity in the text of the following definitions, we refer to this
combination ofuseModMap andmods as the “action modifiers.”

The X Keyboard Extension supports the following actions:

Action Effect
SA_NoAction • No direct effect, thoughSA_NoAction events may change

the effect of other server actions (see below).
SA_SetMods

mods: MOD_DEF
useModMap: BOOL
clearLocks: BOOL

• Key press adds any action modifiers to the keyboard’s base
modifiers.

• Key release clears any action modifiers in the keyboard’s base
modifiers, provided that no other key which affects the same
modifiers is logically down.

• If no keys were operated simultaneously with this key and
clearLocks is set, release unlocks any action modifiers.

SA_LatchMods
mods: MOD_DEF
useModMap: BOOL
clearLocks: BOOL
latchToLock: BOOL

• Key press and release events have the same effect as for
SA_SetMods ; if no keys were operated simultaneously with
the latching modifier key, key release events have the following
additional effects:

• Modifiers that were unlocked due toclearLocks have no further
effect.

• If latchToLock is set, key release locks and then unlatches any
remaining action modifiers that are already latched.

• Finally, key release latches any action modifiers that were not
used by theclearLocks or latchToLock flags.

SA_LockMods
mods: MOD_DEF
useModMap: BOOL
noLock: BOOL
noUnlock: BOOL

• Key press sets the base and possibly the locked state of any
action modifiers. IfnoLock is True , only the base state is
changed.

• For key release events, clears any action modifiers in the key-
board’s base modifiers, provided that no other key which
affects the same modifiers is down. IfnoUnlock is False and
any of the action modifiers were locked before the correspond-
ing key press occurred, key release unlocks them.

11/6/97 Protocol Version 1.0/Document Revision 1.0 17

The X Keyboard Extension Protocol Specification

SA_SetGroup
group: INT8
groupAbsolute: BOOL
clearLocks: BOOL

• If groupAbsolute is set, key press events change the base key-
board group togroup; otherwise, they addgroup to the base
keyboard group. In either case, the resulting effective keyboard
group is brought back into range depending on the value of the
GroupsWrap control for the keyboard.

• If an SA_ISOLock key is pressed while this key is held down,
key release has no effect, otherwise it cancels the effects of the
press.

• If no keys were operated simultaneously with this key and
clearLocks is set, key release also sets the locked keyboard
group toGroup1 .

SA_LatchGroup
group: INT8
groupAbsolute: BOOL
clearLocks: BOOL
latchToLock: BOOL

• Key press and release events have the same effect as an
SA_SetGroup action; if no keys were operated simulta-
neously with the latching group key and theclearLocks flag
was not set or had no effect, key release has the following addi-
tional effects:

• If latchToLock is set and the latched keyboard group is
non-zero, the key release adds the delta applied by the corre-
sponding key press to the locked keyboard group and subtracts
it from the latched keyboard group. The locked and effective
keyboard group are brought back into range according to the
value of the globalGroupsWrap control for the keyboard.

• Otherwise, key release adds the key press delta to the latched
keyboard group.

SA_LockGroup
group: INT8
groupAbsolute: BOOL

• If groupAbsolute is set, key press sets the locked keyboard
group togroup. Otherwise, key press addsgroup to the locked
keyboard group. In either case, the resulting locked and effec-
tive group is brought back into range depending on the value of
theGroupsWrap control for the keyboard.

• Key release has no effect.
SA_MovePtr

x, y: INT16
noAccel: BOOL
absoluteX: BOOL
absoluteY: BOOL

• If MouseKeys are not enabled, this action behaves like
SA_NoAction , otherwise this action cancels any pending
repeat key timers for this key and has the following additional
effects.

• Key press generates a core pointerMotionNotify event
instead of the usualKeyPress . If absoluteX is True , x speci-
fies the new pointer X coordinate, otherwisex is added to the
current pointer X coordinate;absoluteY andy specify the new
Y coordinate in the same way.

• If noAccel is False , and theMouseKeysAccel keyboard
control is enabled, key press also initiates the mouse keys timer
for this key; every time this timer expires, the cursor moves
again. The distance the cursor moves in these subsequent
events is determined by the mouse keys acceleration as
described in section 4.6.

• Key release disables the mouse keys timer (if it was initiated by
the corresponding key press) but has no other effect and is
ignored (does not generate an event of any type).

Action Effect

11/6/97 Protocol Version 1.0/Document Revision 1.0 18

The X Keyboard Extension Protocol Specification

SA_PtrBtn
button: CARD8
count: CARD8
useDfltBtn: BOOL

• If MouseKeys are not enabled, this action behaves like
SA_NoAction .

• If useDfltBtn is set, the event is generated for the current
default core button. Otherwise, the event is generated for the
button specified bybutton.

• If the mouse button specified for this action is logically down,
the key press and corresponding release are ignored and have
no effect.

• Otherwise, key press causes one or more core pointer button
events instead of the usual key press. Ifcount is 0, key press
generates a singleButtonPress event; ifcount is greater
than0, key press generatescount pairs ofButtonPress and
ButtonRelease events.

• If count is 0, key release generates a core pointerButtonRe-
lease which matches the event generated by the correspond-
ing key press; if count is non-zero, key release does not cause a
ButtonRelease event. Key release never causes a key
release event.

SA_LockPtrBtn
button: BUTTON
noLock: BOOL
noUnlock: BOOL
useDfltBtn: BOOL

• If MouseKeys are not enabled, this action behaves like
SA_NoAction .

• Otherwise, if the button specified byuseDfltBtn andbutton is
not locked, key press causes aButtonPress instead of a key
press and locks the button. If the button is already locked or if
noLock is True , key press is ignored and has no effect.

• If the corresponding key press was ignored, and ifnoUnlock is
False , key release generates aButtonRelease event
instead of a key release event and unlocks the specified button.
If the corresponding key press locked a button, key release is
ignored and has no effect.

SA_SetPtrDflt
affect: CARD8
value: CARD8
dfltBtnAbs: BOOL

• If MouseKeys are not enabled, this action behaves like
SA_NoAction .

• Otherwise, both key press and key release are ignored, but key
press changes the pointer value specified byaffectto value, as
follows:

• If which is SA_AffectDfltBtn , value anddfltBtnAbs spec-
ify the default pointer button used by the various pointer
actions as follow: IfdfltBtnAbsis True, value specifies the but-
ton to be used, otherwise,value specifies the amount to be
added to the current default button. In either case, illegal button
choices are wrapped back into range.

Action Effect

11/6/97 Protocol Version 1.0/Document Revision 1.0 19

The X Keyboard Extension Protocol Specification

SA_ISOLock
dfltIsGroup: False
mods: MOD_DEF
useModMap: BOOL
noLock: BOOL
noUnlock: BOOL
noAffectMods: BOOL
noAffectGrp: BOOL
noAffectPtr: BOOL
noAffectCtrls: BOOL

or
dfltIsGroup: True
group: INT8
groupAbsolute: BOOL
noAffectMods: BOOL
noAffectGrp: BOOL
noAffectPtr: BOOL
noAffectCtrls: BOOL

• If dfltIsGroup is True , key press sets the base group specified
by groupAbsolute andgroup. Otherwise, key press sets the
action modifiers in the keyboard’s base modifiers.

• Key release clears the base modifiers or group that were set by
the key press; it may have additional effects if no other appro-
priate actions occur simultaneously with theSA_ISOLock
operation.

• If noAffectMods is False , anySA_SetMods or
SA_LatchMods actions that occur simultaneously with the
ISOLock action are treated asSA_LockMods instead.

• If noAffectGrp is False , anySA_SetGroup or
SA_LatchGroup actions that occur simultaneously with this
action are treated asSA_LockGroup actions instead.

• If noAffectPtr is False , SA_PtrBtn actions that occur
simultaneously with theSA_ISOLock action are treated as
SA_LockPtrBtn actions instead.

• If noAffectCtrls is False , anySA_SetControls actions
that occur simultaneously with theSA_ISOLock action are
treated asSA_LockControls actions instead.

• If no other actions were transformed by theSA_ISOLock
action, key release locks the group or modifiers specified by the
action arguments.

SA_TerminateServer • Key press terminates the server. Key release is ignored.
• This action is optional; servers are free to ignore it. If ignored,

it behaves likeSA_NoAction .
SA_SwitchScreen

num: INT8
switchApp: BOOL
screenAbs: BOOL

• If the server supports this action and multiple screens or dis-
plays (either virtual or real), this action changes to the active
screen indicated bynum andscreenAbs. If screenAbs is True ,
num specifies the index of the new screen; otherwise, num
specifies an offset from the current screen to the new screen.

• If switchApp is False , it should switch to another screen on
the same server. Otherwise it should switch to another X server
or application which shares the same physical display.

• This action is optional; servers are free to ignore the action or
any of its flags if they do not support the requested behavior. If
the action is ignored, it behaves likeSA_NoAction , other-
wise neither key press nor release generate an event.

SA_SetControls

controls:
KB_BOOLCTRLMASK

• Key press enables any boolean controls that are specified in
controls and not already enabled at the time of the key press.
Key release disables any controls that were enabled by the cor-
responding key press. This action can causeXkbControls-
Notify events.

SA_LockControls

controls:
KB_BOOLCTRLMASK

noLock: BOOL
noUnlock: BOOL

• If noLock is False , key press locks and enables any controls
that are specified incontrols and not already locked at the time
of the key press.

• If noUnlock is False , key release unlocks and disables any
controls that are specified incontrols and were not enabled at
the time of the corresponding key press.

Action Effect

11/6/97 Protocol Version 1.0/Document Revision 1.0 20

The X Keyboard Extension Protocol Specification

SA_ActionMessage :
pressMsg: BOOL
releaseMsg: BOOL
genEvent: BOOL
message: STRING

• if pressMsg is True , key press generates anXkbAction-
Message event which reports the keycode, event type and the
contents ofmessage.

• If releaseMsg is True , key release generates anXkbAction-
Message event which reports the keycode, event type and
contents ofmessage.

• If genEvent is True , both press and release generate key press
and key release events, regardless of whether they also cause an
XkbActionMessage .

SA_RedirectKey
newKey: KEYCODE
modsMask: KEYMASK
mods: KEYMASK
vmodsMask: CARD16
vmods: CARD16

• Key press causes a key press event for the key specified by
newKey instead of for the actual key. The state reported in this
event reports of the current effective modifiers changed as fol-
low: Any real modifiers specified inmodsMask are set to corre-
sponding values frommods. Any real modifiers bound to the
virtual modifiers specified invmodsMask are either set or
cleared, depending on the corresponding value invmods. If the
real and virtual modifier definitions specify conflicting values
for a single modifier, the real modifier definition has priority.

• Key release causes a key release event for the key specified by
newKey; the state field for this event consists of the effective
keyboard modifiers at the time of the release, changed as
described above.

• TheSA_RedirectKey action normally redirects to another
key on the same device as the key or button which caused the
event, unless that device does not belong to the input extension
KEYCLASS, in which case this action causes an event on the
core keyboard device.

SA_DeviceBtn
count: CARD8
button: BUTTON
device: CARD8

• Thedevice field specifies the ID of an extension device; the
button field specifies the index of a button on that device. If the
button specified by this action is logically down, the key press
and corresponding release are ignored and have no effect. If the
device or button specified by this action are illegal, this action
behaves likeSA_NoAction .

• Otherwise, key press causes one or more input extension device
button events instead of the usual key press event. Ifcount is 0,
key press generates a singleDeviceButtonPress event; if
count is greater than0, key press generatescount pairs of
DeviceButtonPress andDeviceButtonRelease
events.

• If count is 0, key release generates an input extensionDevi-
ceButtonRelease which matches the event generated by
the corresponding key press; if count is non-zero, key release
does not cause aDeviceButtonRelease event. Key
release never causes a key release event.

Action Effect

11/6/97 Protocol Version 1.0/Document Revision 1.0 21

The X Keyboard Extension Protocol Specification

If StickyKeys are enabled, allSA_SetMods andSA_SetGroup actions act like
SA_LatchMods andSA_LatchGroup respectively. If theLatchToLock
AccessX option is set, either action behaves as if both theSA_ClearLocks and
SA_LatchToLock flags are set.

Actions which cause an event from another key or from a button on another device
immediately generate the specified event. These actions do not consider the behavior
or actions (if any) that are bound to the key or button to which the event is redirected.

Core events generated by server actions contain the keyboard state that was in effect at
the time the key event occurred; the reported state does not reflect any changes in state
that occur as a result of the actions bound to the key event that caused them.

Events sent to clients that have not issued anXkbUseExtension request contain a
compatibility state in place of the actual XKB keyboard state. See section 12.3 for a
description of this compatibility mapping.

SA_LockDeviceBtn
button: BUTTON
device: CARD8
noLock: BOOL
noUnlock: BOOL

• Thedevice field specifies the ID of an extension device; the
button field specifies the index of a button on that device. If the
device or button specified by this action are illegal, it behaves
like SA_NoAction .

• Otherwise, if the specified button is not locked and ifnoLock is
False , key press causes an input extensionDeviceBut-
tonPress event instead of a key press event and locks the
button. If the button is already locked or ifnoLock is True ,
key press is ignored and has no effect.

• If the corresponding key press was ignored, and ifnoUnlock is
False , key release generates an input extensionDevice-
ButtonRelease event instead of a core protocol or input
extension key release event and unlocks the specified button. If
the corresponding key press locked a button, key release is
ignored and has no effect.

SA_DeviceValuator
device: CARD8
val1What: SA_DVOP
val1: CARD8
val1Value: INT8
val1Scale: 0…7
val2What: BOOL
val2: CARD8
val2Value: INT8
val2Scale: 0…7

• Thedevice field specifies the ID of an extension device;val1
andval2 specify valuators on that device. Ifdevice is illegal or
if neitherval1 norval2 specifies a legal valuator, this action
behaves likeSA_NoAction .

• If valn specifies a legal valuator andvalnWhat is not
SA_IgnoreVal , the specified value is adjusted as specified
by valnWhat:

• If valnWhat is SA_SetValMin , valn is set to its minimum
legal value.

• If valnWhat is SA_SetValCenter , valn is centered (to
(max-min)/2).

• If valnWhat is SA_SetValMax , valn is set to its maximum
legal value.

• if valnWhat is SA_SetValRelative , is
added tovaln.

• if valnWhat is SA_SetValAbsolute , valn is set to
.

• Illegal values forSA_SetValRelative or
SA_SetValAbsolute are clamped into range.

Action Effect

valnValue 2valnScale×

valnValue 2valnScale×

11/6/97 Protocol Version 1.0/Document Revision 1.0 22

The X Keyboard Extension Protocol Specification

6.4 Delivering a Key or Button Event to a Client
The window and client that receive core protocol and input extension key or button
events are determined using the focus policy, window hierarchy and passive grabs as
specified by the core protocol and the input extension, with the following changes:

• A passive grab triggers if the modifier state specified in the grab matches the grab com-
patibility state (described in section 2.4). Clients can choose to use the XKB grab state
instead by setting theGrabsUseXKBState per-client flag. This flag affects all pas-
sive grabs that are requested by the client which sets it but does not affect passive grabs
that are set by any other client.

• The state field of events which trigger a passive grab reports the XKB or compatibility
grab state in effect at the time the grab is triggered; the state field of the corresponding
release event reports the corresponding grab state in effect when the key or button is
released.

• If the LookupStateWhenGrabbed per-client flag is set, all key or button events
that occur while a keyboard or pointer grab is active contain the XKB or compatibility
lookup state, depending on the value of theGrabsUseXKBState per-client flag. If
LookupStateWhenGrabbed is not set, they include the XKB or compatibility grab
state, instead.

• Otherwise, the state field of events that do not trigger a passive grab report is derived
from the XKB effective modifiers and group, as described in section 2.2.2.

• If a key release event is the result of an autorepeating key that is being held down, and
the client to which the event is reported has requested detectable autorepeat (see sec-
tion 4.1.2), the event is not delivered to the client.

The following section explains the intent of the XKB interactions with core protocol
grabs and the reason that the per-client flags are needed.

6.4.1 XKB Interactions With Core Protocol Grabs
XKB provides the separate lookup and grab states to help work around some difficul-
ties with the way the core protocol specifies passive grabs. Unfortunately, many cli-
ents work around those problems differently, and the way that XKB handles grabs and
reports keyboard state can sometimes interact with those client workarounds in unex-
pected and unpleasant ways.

To provide more reasonable behavior for clients that are aware of XKB without caus-
ing problems for clients that are unaware of XKB, this extension provides two per-cli-
ent flags that specify the way that XKB and the core protocol should interact.

• The largest problems arise from the fact that an XKB state field encodes an explicit
keyboard group in bits 13-14 (as described in section 2.2.2), while pre-XKB clients use
one of the eight keyboard modifiers to select an alternate keyboard group. To make
existing clients behave reasonably, XKB normally uses the compatibility grab state
instead of the XKB grab state to determine whether or not a passive grab is triggered.
XKB-aware clients can set theGrabsUseXKBState per-client flag to indicate that
they are specifying passive grabs using an XKB state.

• Some toolkits start an active grab when a passive grab is triggered, in order to have
more control over the conditions under which the grab is terminated. Unfortunately, the
fact that XKB reports a different state in events that trigger or terminate grabs means
that this grab simulation can fail to terminate the grab under some conditions. To work
around this problem, XKB normally reports the grab state in all events whenever a grab

11/6/97 Protocol Version 1.0/Document Revision 1.0 23

The X Keyboard Extension Protocol Specification

is active. Clients which do not use active grabs like this can set theLookupState-
WhenGrabbed per-client flag in order to receive the same state component whether or
not a grab is active.

TheGrabsUseXKBState per-client flag also applies to the state of events sent while
a grab is active. If it is set, events during a grab contain the XKB lookup or grab state;
by default, events during a grab contain the compatibility lookup or grab state.

The state used to trigger a passive grab is controlled by the setting of theGrabsUs-
eXKBState per-client flag at the time the grab is registered. Changing this flag does
not affect existing passive grabs.

7.0 Key Event Processing in the Client

The XKB client map for a keyboard is the collection of information a client needs to
interpret key events that come from that keyboard. It contains a global list ofkey types,
described in section 7.2.1, and an array ofkey symbol maps, each of which describes
the symbols bound to one particular key and the rules to be used to interpret those
symbols.

7.1 Notation and Terminology
XKB associates a two-dimensional array of symbols with each key. Symbols are
addressed by keyboard group (see section 2.0) and shift level, where level is defined as
in the ISO9995 standard:

Level: One of several states (normally 2 or 3) which govern which graphic character
is produced when a graphic key is actuated. In certain cases the level may also
affect function keys.

Note that shift level is derived from the modifier state, but not necessarily in the same
way for all keys. For example, theShift modifier selects shift level 2 on most keys,
but for keypad keys the modifier bound toNum_Lock (i.e. theNumLock virtual mod-
ifier) also selects shift level 2.gray symbols on a key

We use the notation GnLn to specify the position of a symbol on a key or in memory:

The gray characters indicate symbols that are implied or expected but are not actually
engraved on the key.

Note Unfortunately, the “natural” orientation of symbols on a key and the natural orienta-
tion in memory are reversed from one another, so keyboard group refers to a column
on the key and a row in memory. There’s no real help for it, but we try to minimize
confusion by using “group” and “level” (or “shift level”) to refer to symbols regard-
less of context.

A

æa

Æ

@q
Group →

S
hi

ft
Le

ve
l→

G1L1 = a
G1L2 = A
G2L1 = æ
G2L2 = Æ

a

æ

A

Æ

L1 L2

G1

G2
a æA Æ

L1 L2

G1 G2

L1 L2

Physical Key Symbols XKB Symbols Core Symbols

11/6/97 Protocol Version 1.0/Document Revision 1.0 24

The X Keyboard Extension Protocol Specification

7.2 Determining the KeySym Associated with a Key Event
To look up the symbol associated with an XKB key event, we need to know the group
and shift level that correspond to the event.

Group is reported in bits 13-14 of the state field of the key event, as described in sec-
tion 2.2.2. The keyboard group reported in the event might be out-of-range for any
particular key because the number of groups can vary from key to key. The XKB
description of each key contains agroup info field which is interpreted identically to
the global groups wrap control (see section 2.2.1) and which specifies the interpreta-
tion of groups that are out-of-range for that key.

Once we have determined the group to be used for the event, we have to determine the
shift level. The description of a key includes akey type for each group of symbols
bound to the key. Given the modifiers from the key event, this key type yields a shift
level and a set of “leftover” modifiers, as described in section 7.2.1 below.

Finally, we can use the effective group and the shift level returned by the type of that
group to look up a symbol in a two-dimensional array of symbols associated with the
key.

7.2.1 Key Types
Each entry of a key type’smap field specifies the shift level that corresponds to some
XKB modifier definition; any combination of modifiers that is not explicitly listed
somewhere in the map yields shift level one. Map entries which specify unbound vir-
tual modifiers (see section 3.1.1) are not considered; each entry contains an automati-
cally-updatedactive field which indicates whether or not it should be used.

Each key type includes a few fields that are derived from the contents of the map and
which report some commonly used values so they don’t have to be constantly recalcu-
lated. ThenumLevels field contains the highest shift level reported by any of its map
entries; XKB usesnumLevels to insure that the array of symbols bound to a key is
large enough (the number of levels reported by a key type is also referred to as its
width). Themodifiers field reports all real modifiers considered by any of the map
entries for the type. BothmodifiersandnumLevels are updated automatically by XKB
and neither can be changed explicitly.

Any modifiers specified inmodifiers are normallyconsumed (see section 7.3), which
means that they are not considered during any of the later stages of event processing.
For those rare occasions that a modifiershould be considered despite having been used
to look up a symbol, key types include an optionalpreserve field. If apreserve list is
present, each entry corresponds to one of the key type’s map entries and lists the mod-
ifiers that shouldnot be consumed if the matching map entry is used to determine shift
level.

For example, the following key type implements caps lock as defined by the core pro-
tocol (using the second symbol bound to the key):

type “ALPHABETIC” {
modifiers = Shift+Lock;
map[Shift]= Level2;
map[Lock]= Level2;
map[Shift+Lock]= Level2;

};

11/6/97 Protocol Version 1.0/Document Revision 1.0 25

The X Keyboard Extension Protocol Specification

The problem with this kind of definition is that we could assign completely unrelated
symbols to the two shift levels, and “Caps Lock” would choose the second symbol.
Another definition for alphabetic keys uses system routines to capitalize the keysym:

type “ALPHABETIC” {
modifiers= Shift;
map[Shift]= Level2;

};

When caps lock is applied using this definition, we take the symbol from shift level
one and capitalize it using system-specific capitalization rules. If shift and caps lock
are both set, we take the symbol from shift level two and try to capitalize it, which usu-
ally has no effect.

The following key type implements shift-cancels-caps lock behavior for alphabetic
keys:

type “ALPHABETIC” {
modifiers = Shift+Lock;
map[Shift] = Level2;
preserve[Lock]= Lock;

};

Consider the four possible states that can affect alphabetic keys: no modifiers, shift
alone, caps lock alone or shift and caps lock together. The map contains no explicit
entry forNone (no modifiers), so if no modifiers are set, any group with this type
returns the first keysym. The map entry forShift reportsLevel2 , so any group
with this type returns the second symbol whenShift is set. There is no map entry for
Lock alone, but the type specifies that theLock modifier should be preserved in this
case, soLock alone returns the first symbol in the group but first applies the capitali-
zation transformation, yielding the capital form of the symbol. In the final case, there
is no map entry forShift+Lock , so it returns the first symbol in the group; there is
no preserve entry, so theLock modifier is consumed and the symbol is not capital-
ized.

7.2.2 Key Symbol Map
Thekey symbol map for a key contains all of the information that a client needs to pro-
cess events generated by that key. Each key symbol mapping reports:

• The number of groups of symbols bound to the key (numGroups).
• The treatment of out-of-range groups (groupInfo).
• The index of the key type to for eachpossible group (kt_index[MaxKbdGroups]).
• The width of the widest type associated with the key (groupsWidth).
• The two-dimensional (numGroups× groupsWidth) array of symbols bound to the key.

It is legal for a key to have zero groups, in which case it also has zero symbols and all
events from that key yieldNoSymbol. The array of key types is of fixed width and is
large enough to hold key types for the maximum legal number of groups (MaxKbd-
Groups , currently four); if a key has fewer thanMaxKbdGroups groups, the extra
key types are reported but ignored. ThegroupsWidth field cannot be explicitly
changed; it is updated automatically whenever the symbols or set of types bound to a
key are changed.

11/6/97 Protocol Version 1.0/Document Revision 1.0 26

The X Keyboard Extension Protocol Specification

If, when looking up a symbol, the effective keyboard group is out-of-range for the key,
thegroupInfo field of the key symbol map specifies the rules for determining the cor-
responding legal group as follows:

• If the RedirectIntoRange flag is set, the two least significant bits ofgroupInfo
specify the index of a group to which all illegal groups correspond. If the specified
group is also out of range, all illegal groups map toGroup1 .

• If ClampIntoRange flag is set, out-of-range groups correspond to the nearest legal
group. Effective groups larger than the highest supported group are mapped to the high-
est supported group; effective groups less thanGroup1 are mapped toGroup1 . For
example, a key with two groups of symbols usesGroup2 type and symbols if the glo-
bal effective group is eitherGroup3 or Group4 .

• If neither flag is set, group is wrapped into range using integer modulus. For example, a
key with two groups of symbols for which groups wrap usesGroup1 symbols if the
global effective group isGroup3 or Group2 symbols if the global effective group is
Group4 .

The client map contains an array of key symbol mappings, with one entry for each key
between the minimum and maximum legal keycodes, inclusive. All keycodes which
fall in that range have key symbol mappings, whether or not any key actually yields
that code.

7.3 Transforming the KeySym Associated with a Key Event
Any modifiers that were not used to look up the keysym, or which were explicitly pre-
served, might indicate further transformations to be performed on the keysym or the
character string that is derived from it. For example, If theLock modifier is set, the
symbol and corresponding string should be capitalized according to the locale-sensi-
tive capitalization rules specified by the system. If theControl modifier is set, the
keysym is not affected, but the corresponding character should be converted to a con-
trol character as described in Appendix A.

This extension specifies the transformations to be applied when theControl or
Lock modifiers are active but were not used to determine the keysym to be used:

Interpretation of other modifiers is application dependent.

Note This definition of capitalization is fundamentally different from the core protocol’s,
which uses the lock modifier to select from the symbols bound to the key. Consider
key 9 in the example keyboard on page 27; the core protocol provides no way to gen-
erate the capital form of either symbol bound to this key. XKB specifies that we first
look up the symbol and then capitalize, so XKB yields the capital form of the two
symbols when caps lock is active.

Modifier Transformation
Control Report the control character associated with the symbol. This exten-

sion defines the control characters associated with the ASCII alpha-
betic characters (both upper and lower case) and for a small set of
punctuation characters (see Appendix A). Applications are free to
associate control characters with any symbols that are not specified
by this extension.

Lock Capitalize the symbol either according to capitalization rules appro-
priate to the application locale or using the capitalization rules
defined by this extension (see Appendix A).

11/6/97 Protocol Version 1.0/Document Revision 1.0 27

The X Keyboard Extension Protocol Specification

XKB specifies the behavior ofLock andControl , but interpretation of other modi-
fiers is left to the application.

7.4 Client Map Example
Consider a simple, if unlikely, keyboard with the following keys (gray characters indi-
cate symbols that are implied or expected but are not actually engraved on the key):

The core protocol represents this keyboard as a simple array with one row per key and
four columns (the widest key, key 10, determines the width of the entire array).

The row to be used for a given key event is determined by keycode; the column to be
used is determined by the symbols bound to the key, the state of theShift andLock
Modifiers and the state of the modifiers bound to theNum_Lock andMode_switch
keys as specified by the core protocol.

The XKB description of this keyboard consists of six key symbol maps, each of which
specifies the types and symbols associated with each keyboard group for one key:

The keycode reported in a key event determines the row to be used for that event; the
effective keyboard group determines the list of symbols and key type to be used. The
key type determines which symbol is chosen from the list.

Key G1L1 G1L2 G2L1 G2L2
8 Q NoSymbol at NoSymbol
9 odiaeresis egrave NoSymbol NoSymbol
10 A NoSymbol Æ NoSymbol
11 ssharp question backslash questiondown
12 KP_End KP_1 NoSymbol NoSymbol
13 Num_Lock NoSymbol NoSymbol NoSymbol
14 NoSymbol NoSymbol NoSymbol NoSymbol
15 Return NoSymbol NoSymbol NoSymbol

Key Group: Type L1 L2
8 G1:ALPHABETIC q Q

G2:ONE_LEVEL @ NoSymbol

9 G1:TWO_LEVEL odiaeresis egrave

10 G1:ALPHABETIC a A

G2:ALPHABETIC ae AE

11 G1:TWO_LEVEL ssharp question

G2:ONE_LEVEL backslash questiondown

12 G1:KEYPAD KP_End KP_1

13 G1:ONE_LEVEL Num_Lock

14 No Groups
15 G1:ONE_LEVEL Return

Q

@q

@

@q

1

End

?

\ß

¿

@q

è

@ö

@

@q

A

æa

Æ

@q

8 9 10 11 12Keycode:

Key:

15

Enter
Num

13

Lock

11/6/97 Protocol Version 1.0/Document Revision 1.0 28

The X Keyboard Extension Protocol Specification

Section 7.2 details the procedure to map from a key event to a symbol and/or a string.

8.0 Symbolic Names

The core protocol does not provide any information to clients other than that actually
used to interpret events. This makes it difficult to write a client which presents the
keyboard to a user in an easy-to-understand way. Such applications have to examine
the vendor string and keycodes to determine the type of keyboard connected to the
server and have to examine keysyms and modifier mappings to determine the effects
of most modifiers (theShift , Lock andControl modifiers are defined by the core
protocol but no semantics are implied for any other modifiers).

This extension provides such applications with symbolic names for most components
of the keyboard extension and a description of the physical layout of the keyboard.

Thekeycodes name describes the range and meaning of the keycodes returned by the
keyboard in question; thekeyboard geometryname describes the physical location,
size and shape of the various keys on the keyboard. As an example to distinguish
between these two names, consider function keys on PC-compatible keyboards. Func-
tion keys are sometimes above the main keyboard and sometimes to the left of the
main keyboard, but the same keycode is used for the key that is logicallyF1 regardless
of physical position. Thus, all PC-compatible keyboards might share a keycodes name
but different geometry names.

Note The keycodes name is intended to be a very general description of the keycodes
returned by a keyboard; A single keycodes name might cover keyboards with differing
numbers of keys provided that the keys that all keys have the same semantics when
present. For example, 101 and 102 key PC keyboards might use the same name.
Applications can use the keyboard geometry to determine which subset of the named
keyboard type is in use.

Thesymbols name identifies the symbols bound to the keys. The symbols name is a
human or application-readable description of the intended locale or usage of the key-
board with these symbols. Thephysical symbols name describes the symbols actually
engraved on the keyboard, which might be different than the symbols currently being
used.

Thetypes name provides some information about the set of key types that can be asso-
ciated with the keyboard keys. Thecompat name provides some information about the
rules used to bind actions to keys changed using core protocol requests.

Thecompat, types, keycodes, symbols andgeometry names typically correspond to the
keyboard components from which the current keyboard description was assembled.
These components are stored individually in the server’s database of keyboard compo-
nents, described in section 13.0, and can be combined to assemble a complete key-
board description.

Each key has a four-byte symbolic name. The key name links keys with similar func-
tions or in similar positions on keyboards that report different scan codes.Key aliases
allow the keyboard layout designer to assign multiple names to a single key, to make it
easier to refer to keys using either their positionor their “function.”

For example, consider the common keyboard customizations:

11/6/97 Protocol Version 1.0/Document Revision 1.0 29

The X Keyboard Extension Protocol Specification

• Set the “key to the left of the letter a” to be a control key.
• Change the “caps lock” key, wherever it might be, to a control key.

If we specify key names by position, the first customization is simple but the second is
impossible; if we specify key names by function, the second customization is simple
but the first is impossible. Using key aliases, we can specify both function and position
for “troublesome” keys, and both customizations are straightforward.

Key aliases can be specified both in the symbolic names component and in the key-
board geometry (see section 11.0). Both sets of aliases are always valid, but key alias
definitions in the keyboard geometry have priority; if both symbolic names and geom-
etry include aliases, applications should consider the definitions from the geometry
before considering the definitions from the symbolic names section.

XKB provides symbolic names for each of the four keyboard groups, sixteen virtual
modifiers, thirty-two keyboard indicators, and up toMaxRadioGroups (32) radio
groups.

XKB allows keyboard layout designers or editors to assign names to each key type and
to each of the levels in a key type. For example, the second position on an alphabetic
key might be called the “Caps” level while the second position on a numeric keypad
key might be called the “Num Lock” level.

9.0 Keyboard Indicators

Although the core X protocol supports thirty-two LEDs on a keyboard, it does not pro-
vide any way to link the state of the LEDs and the logical state of the keyboard. For
example, most keyboards have a “Caps Lock” LED, but X does not provide any stan-
dard way to make the LED automatically follow the logical state of the modifier
bound to theCaps Lock key.

The core protocol also gives no way to determine which bits in theled_mask field of
the keyboard state map to the particular LEDs on the keyboard. For example, X does
not provide a method for a client to determine which bit to set in theled_mask to turn
on the “Scroll Lock” LED, or even if the keyboard has a “Scroll Lock” LED.

Most X servers implement some kind of automatic behavior for one or more of the
keyboard LEDs, but the details of that automatic behavior are implementation-specific
and can be difficult or impossible to control.

XKB provides indicator names and programmable indicators to help solve these prob-
lems. Using XKB, clients can determine the names of the various indicators, deter-
mine and control the way that the individual indicators should be updated to reflect
keyboard changes, and determine which of the 32 keyboard indicators reported by the
protocol are actually present on the keyboard. Clients may also request immediate
notification of changes to the state of any subset of the keyboard indicators, which
makes it straightforward to provide an on-screen “virtual” LED panel.

9.1 Global Information About Indicators
XKB provides only two pieces of information about the indicators as a group.

Thephysical indicators mask reports which of the 32 logical keyboard indicators sup-
ported by the core protocol and XKB corresponds to some actual indicator on the key-

11/6/97 Protocol Version 1.0/Document Revision 1.0 30

The X Keyboard Extension Protocol Specification

board itself. Because the physical indicators mask describes a physical characteristic
of the keyboard, it cannot be directly changed under program control. It is possible,
however, for the set of physical indicators to be change if a new keyboard is attached
or if a completely new keyboard description is loaded by theXkbGetKeyboard-
ByName request (see section 16.3.12).

The indicator state mask reports the current state of the 32 logical keyboard indica-
tors. This field and the core protocol indicator state (as reported by theled-mask field
of the core protocolGetKeyboardControl request) are always identical.

9.2 Per-Indicator Information
Each of the thirty-two keyboard indicators has a symbolic name, of type ATOM. The
XkbGetNames request reports the symbolic names for all keyboard components,
including the indicators. Use theXkbSetNames request to change symbolic names.
Both requests are described in section 16.3.9.

9.2.1 Indicator Maps
XKB also provides anindicator map for each of the thirty-two keyboard indicators; an
indicator map specifies:

• The conditions under which the keyboard modifier state affects the indicator.
• The conditions under which the keyboard group state affects the indicator.
• The conditions under which the state of the boolean controls affects the indicator.
• The effect (if any) of attempts to explicitly change the state of the indicator using the

core protocolSetKeyboardControl request.

If IM_NoAutomatic is set in theflags field of an indicator map, that indicator never
changes in response to changes in keyboard state or controls, regardless of the values
for the other fields of the indicator map. IfIM_NoAutomatic is not set inflags, the
other fields of the indicator map specify the automatic changes to the indicator in
response to changes in the keyboard state or controls.

Thewhich_groups and thegroups fields of an indicator map determine how the key-
board group state affects the corresponding indicator. Thewhich_groups field controls
the interpretation ofgroups and may contain any one of the following values:

Thewhich_mods andmods fields of an indicator map determine how the state of the
keyboard modifiers affect the corresponding indicator. Themods field is an XKB

Value Interpretation of the Groups Field
IM_UseNone Thegroups field and the current keyboard group state are ignored.
IM_UseBase If groups is non-zero, the indicator is lit whenever the base keyboard

group is non-zero. Ifgroups is zero, the indicator is lit whenever the
base keyboard group is zero.

IM_UseLatched If groups is non-zero, the indicator is lit whenever the latched key-
board group is non-zero. Ifgroups is zero, the indicator is lit when-
ever the latched keyboard group is zero.

IM_UseLocked Thegroups field is interpreted as a mask. The indicator is lit when
the current locked keyboard group matches one of the bits that are
set ingroups.

IM_UseEffective Thegroups field is interpreted as a mask. The indicator is lit when
the current effective keyboard group matches one of the bits that are
set ingroups.

11/6/97 Protocol Version 1.0/Document Revision 1.0 31

The X Keyboard Extension Protocol Specification

modifier definition, as described in section 3.1, which can specify both real and virtual
modifiers. The mods field takes effect even if some or all of the virtual indicators
specified inmods are unbound.

Thewhich_mods field can specify one or more components of the XKB keyboard
state. The corresponding indicator is lit whenever any of the real modifiers specified in
themask field of themods modifier definition are also set in any of the current key-
board state components specified by thewhich_mods. Thewhich_mods field may have
any combination of the following values:

Thecontrols field specifies a subset of the boolean keyboard controls (see section
4.11). The indicator is lit whenever any of the boolean controls specified incontrols
are enabled.

An indicator is lit whenever any of the conditions specified by its indicator map are
met, unless overridden by theIM_NoAutomatic flag (described above) or an
explicit indicator change (described below).

Effects of Explicit Changes on Indicators
If the IM_NoExplicit flag is set in an indicator map, attempts to change the state
of the indicator are ignored.

If both IM_NoExplicit andIM_NoAutomatic are both absent from an indicator
map, requests to change the state of the indicator are honored but might be immedi-
ately superseded by automatic changes to the indicator state which reflect changes to
keyboard state or controls.

If the IM_LEDDrivesKB flag is set and theIM_NoExplicit flag is not, the key-
board state and controls are changed to reflect the other fields of the indicator map, as
described in the remainder of this section. Attempts to explicitly change the value of
an indicator for whichIM_LEDDrivesKB is absent or for whichIM_NoExplicit
is present do not affect keyboard state or controls.

The effect on group state of changing an explicit indicator which drives the keyboard
is determined by the value ofwhich_groups andgroups, as follows:

Value Keyboard State Component To Be Considered
IM_UseBase Base modifier state
IM_UseLatched Latched modifier state
IM_UseLocked Locked modifier state
IM_UseEffective Effective modifier state
IM_UseCompat Modifier compatibility state

 which_groups New State Effect on Keyboard Group State
IM_UseNone , or
IM_UseBase

On or Off No Effect

IM_UseLatched On Thegroups field is treated as a group mask. The key-
board group latch is changed to the lowest numbered
group specified ingroups; if groups is empty, the key-
board group latch is changed to zero.

11/6/97 Protocol Version 1.0/Document Revision 1.0 32

The X Keyboard Extension Protocol Specification

The effect on the keyboard modifiers of changing an explicit indicator which drives
the keyboard is determined by the values that are set in ofwhich_mods andmods, as
follows:

Lighting an explicit indicator which drives the keyboard also enables all of the bool-
ean controls specified in thecontrols field of its indicator map. Explicitly extinguish-
ing such an indicator disables all of the boolean controls specified incontrols.

The effects of changing an indicator which drives the keyboard are cumulative; it is
possible for a single change to affect keyboard group, modifiers and controls simulta-
neously.

If an indicator for which both theIM_LEDDrivesKB andIM_NoAutomatic flags
are specified is changed, the keyboard changes specified above are applied and the
indicator is changed to reflect the state that was explicitly requested. The indicator will
remain in the new state until it is explicitly changed again.

If the IM_NoAutomatic flag is not set for an indicator which drives the keyboard,
the changes specified above are applied and the state of the indicator is set to the val-
ues specified by the indicator map. Note that it is possible in this case for the indicator
to end up in a different state than the one that was explicitly requested. For example,
an indicator withwhich_mods of IM_UseBase andmods of Shift is not extin-
guished if one of theShift keys is physically depressed when the request to extinguish
the indicator is processed.

IM_UseLatched Off Thegroups field is treated as a group mask. If the indi-
cator is explicitly extinguished, keyboard group latch is
changed to the lowest numbered group not specified in
groups; if groups is zero, the keyboard group latch is set
to the index of the highest legal keyboard group.

IM_UseLocked , or
IM_UseEffective

On If thegroups mask is empty, group is not changed, oth-
erwise the locked keyboard group is changed to the low-
est numbered group specified ingroups.

IM_UseLocked , or
IM_UseEffective

Off Locked keyboard group is changed to the lowest num-
bered group that is not specified in thegroups mask, or
to Group1 if thegroups mask contains all keyboard
groups.

Set in which_mods New State Effect on Keyboard Modifiers
IM_UseBase On or Off No Effect
IM_UseLatched On Any modifiers specified in themask field ofmods are

added to the latched modifiers.
IM_UseLatched Off Any modifiers specified in themask field ofmods are

removed from the latched modifiers.
IM_UseLocked ,
IM_UseCompat , or
IM_UseEffective

On Any modifiers specified in themask field ofmods are
added to the locked modifiers.

IM_UseLocked Off Any modifiers specified in themask field ofmods are
removed from the locked modifiers.

IM_UseCompat , or
IM_UseEffective

Off Any modifiers specified in themask field ofmods are
removed from both the locked and latched modifiers.

 which_groups New State Effect on Keyboard Group State

11/6/97 Protocol Version 1.0/Document Revision 1.0 33

The X Keyboard Extension Protocol Specification

10.0 Keyboard Bells

The core protocol provides requests to control the pitch, volume and duration of the
keyboard bell and a request to explicitly sound the bell.

The X Keyboard Extension allows clients to disable the audible bell, attach a symbolic
name to a bell request or receive an event when the keyboard bell is rung.

10.1 Client Notification of Bells
Clients can ask to receiveXkbBellNotify event when a bell is requested by a cli-
ent or generated by the server. Bells can be sounded due to core protocolBell
requests, X Input ExtensionDeviceBell requests, X Keyboard ExtensionXkb-
Bell requests or for reasons internal to the server such as the XKBAccessXFeed-
back control.

Bell events caused by theXkbBell request or by theAccessXFeedback control
include an optional window and symbolic name for the bell. If present, the window
makes it possible to provide some kind of visual indication of which window caused
the sound. The symbolic name can report some information about the reason the bell
was generated and makes it possible to generate a distinct sound for each type of bell.

10.2 Disabling Server Generated Bells
The globalAudibleBell boolean control for a keyboard indicates whether bells
sent to that device should normally cause the server to generate a sound. Applications
which provide “sound effects” for the various named bells will typically disable the
server generation of bells to avoid burying the user in sounds.

When theAudibleBell control is active, all bells caused by core protocolBell
and X Input ExtensionDeviceBell requests cause the server to generate a sound, as
do all bells generated by the XKBAccessXFeedback control. Bells requested via
the XkbBell request normally cause a server-generated sound, but clients can ask
the server not to sound the default keyboard bell.

When theAudibleBell control is disabled, the server generates a sound only for
bells that are generated using theXkbBell request and which specify forced delivery
of the bell.

10.3 Generating Named Bells
TheXkbBell request allows clients to specify a symbolic name which is reported in
the bell events they cause. Bells generated by theAccessXFeedback control of this
extension also include a symbolic name, but all kinds of feedback cause a single event
even if they sound multiple tones.

The X server is permitted to use symbolic bell names (when present) to generate
sounds other than simple tones, but it is not required to do so.

Aside from those used by the XKBAccessXFeedback control (see section 4.9),
this extension does not specify bell names or their interpretation.

10.4 Generating Optional Named Bells
Under some circumstances, some kind of quiet audio feedback is useful, but a normal
keyboard bell is not. For example, a quiet “launch effect” can be helpful to let the user
know that an application has been started, but a loud bell would simply be annoying.

11/6/97 Protocol Version 1.0/Document Revision 1.0 34

The X Keyboard Extension Protocol Specification

To simplify generation of these kinds of effects, theXkbBell request allows clients
to specify “event only” bells. The X server never generates a normal keyboard bell for
“event only” bells, regardless of the setting of the globalAudibleBell control.

If the X server generates different sounds depending bell name, it is permitted to gen-
erate a sound even for “event only” bells. This field is intended simply to weed out
“normal” keyboard bells.

10.5 Forcing a Server Generated Bell
Occasionally, it is useful to force the server to generate a sound. For example, a client
could “filter” server bells, generating sound effects for some but sounding the normal
server bell for others. Such a client needs a way to tell the server that the requested bell
should be generated regardless of the setting of theAudibleBell control.

To simplify this process, clients which call theXkbBell request can specify that a
bell is forced. A forced bell always causes a server generated sound and never causes a
XkbBellNotify event. Because forced bells do not cause bell notify events, they
have no associated symbolic name or event window.

11.0 Keyboard Geometry

The XKB description of a keyboard includes an optional keyboard geometry which
describes the physical appearance of the keyboard. Keyboard geometry describes the
shape, location and color of all keyboard keys or other visible keyboard components
such as indicators. The information contained in a keyboard geometry is sufficient to
allow a client program to draw an accurate two-dimensional image of the keyboard.

The components of the keyboard geometry include the following:
• A symbolic name to help users identify the keyboard.
• Thewidth andheight of the keyboard, in . For non-rectangular keyboards, the

width and height describe the smallest bounding-box that encloses the outline of the
keyboard.

• A list of up toMaxColors (32) color names. A color name is a string whose interpre-
tation is not specified by XKB. Other geometry components refer to colors using their
indices in this list.

• The base color of the keyboard is the predominant color on the keyboard and is used as
the default color for any components whose color is not explicitly specified.

• The label color is the color used to draw the labels on most of the keyboard keys.
• The label font is a string which describes the font used to draw labels on most keys;

XKB does not specify a format or name space for font names.
• A list of geometry properties. A geometry property associates an arbitrary string with

an equally arbitrary name. Geometry properties can be used to provide hints to pro-
grams that display images of keyboards, but they are not interpreted by XKB. No other
geometry structures refer to geometry properties.

• A list of key aliases, as described in section 8.0.
• A list of shapes; other keyboard components refer to shapes by their index in this list. A

shape consists of a name and one or more closed-polygons calledoutlines. Shapes and
outlines are described in detail in section 11.1.

Unless otherwise specified, geometry measurements are in units. The origin (0,0)
is in the top left corner of the keyboard image. Some geometry components can be
drawn rotated; all such objects rotate about their origin in increments.

mm
10

mm
10

1
10
------°

11/6/97 Protocol Version 1.0/Document Revision 1.0 35

The X Keyboard Extension Protocol Specification

All geometry components include apriority, which indicates the order in which over-
lapping objects should be drawn. Objects are drawn in order from highest priority (0)
to lowest (255).

The description of the actual appearance of the keyboard is subdivided into named
sections of related keys anddoodads. A adoodad describes some visible aspect of the
keyboard that is not a key. A section is a collection of keys and doodads that are phys-
ically close together and logically related.

11.1 Shapes and Outlines
An outline is a list of one or more points which describes a single closed-polygon, as
follows:

• A list with a single point describes a rectangle with one corner at the origin of the shape
(0,0) and the opposite corner at the specified point.

• A list of two points describes a rectangle with one corner at the position specified by
the first point and the opposite corner at the position specified by the second point.

• A list of three or more points describes an arbitrary polygon. If necessary, the polygon
is automatically closed by connecting the last point in the list with the first.

• A non-zero value for thecornerRadius field specifies that the corners of the polygon
should be drawn as circles with the specified radius.

All points in an outline are specified relative to the origin of the enclosing shape.
Points in an outline may have negative values for the X and Y coordinate.

One outline (usually the first) is the primary outline; a keyboard display application
can generate a simpler but still accurate keyboard image by displaying only the pri-
mary outlines for each shape. Non-rectangular keys must include a rectangular
approximation as one of the outlines associated with the shape; the approximation is
not normally displayed but can be used by very simple keyboard display applications
to generate a recognizable but degraded image of the keyboard.

11.2 Sections
Each section has its own coordinate system — if a section is rotated, the coordinates of
any components within the section are interpreted relative to the edges that were on
the top and left before rotation. The components that make up a section include:

• A list of rows. A row is a list of horizontally or vertically adjacent keys. Horizontal
rows parallel the (pre-rotation) top of the section and vertical rows parallel the (pre-
rotation) left of the section. All keys in a horizontal row share a common top coordi-
nate; all keys in a vertical row share a left coordinate.

A key description consists of a keyname, ashape, a keycolor, and agap. The key
name should correspond to one of the keys named in the keyboard names description,
theshape specifies the appearance of the key, and the keycolor specifies the color of
the key (not the label on the key). Keys are normally drawn immediately adjacent to
one another from left-to-right (or top-to-bottom) within a row. Thegap field specifies
the distance between a key and its predecessor.

• An optional list of doodads; any type of doodad can be enclosed within a section. Posi-
tion and angle of rotation are relative to the origin and angle of rotation of the sections
that contain them. Priority is relative to the other components of the section, not to the
keyboard as a whole.

11/6/97 Protocol Version 1.0/Document Revision 1.0 36

The X Keyboard Extension Protocol Specification

• An optional list ofoverlay keys. Each overlay key definition indicates a key that can
yield multiple scan codes and consists of a field namedunder, which specifies the pri-
mary name of the key and a field namedover, which specifies the name for the key
when the overlay keycode is selected. The key specified inunder must be a member of
the section that contains the overlay key definition, while the key specified in over must
not.

11.3 Doodads
Doodads can be global to the keyboard or part of a section. Doodads have symbolic
names of arbitrary length. The only doodad name whose interpretation is specified by
XKB is “Edges”, which describes the outline of the entire keyboard, if present.

All doodads report their origin in fields namedleft andtop. XKB supports five kinds
of doodads:

• An indicator doodad describes one of the physical keyboard indicators. Indicator doo-
dads specify the shape of the indicator, the indicator color when it is lit (on_color) and
the indicator color when it is dark (off_color).

• An outline doodad describes some aspect of the keyboard to be drawn as one or more
hollow, closed polygons. Outline doodads specify the shape, color, and angle of rota-
tion about the doodad origin at which they should be drawn.

• A solid doodad describes some aspect of the keyboard to be drawn as one or more
filled polygons. Solid doodads specify the shape, color and angle of rotation about the
doodad origin at which they should be drawn.

• A text doodad describes a text label somewhere on the keyboard. Text doodads specify
the label string, the font and color to use when drawing the label, and the angle of rota-
tion of the doodad about its origin.

• A logo doodad is a catch-all, which describes some other visible element of the key-
board. A logo doodad is essentially an outline doodad with an additional symbolic
name that describes the element to be drawn.

If a keyboard display program recognizes the symbolic name, it can draw something
appropriate within the bounding region of the shape specified in the doodad. If the
symbolic name does not describe a recognizable image, it should draw an outline using
the specified shape, outline, and angle of rotation.

The XKB extension does not specify the interpretation of logo names.

11/6/97 Protocol Version 1.0/Document Revision 1.0 37

The X Keyboard Extension Protocol Specification

11.4 Keyboard Geometry Example
Consider the following example keyboard:

This keyboard has six sections: The left and right function sections (at the very top)
each have one horizontal row with eight keys. The left and right alphanumeric sections
(the large sections in the middle) each have six vertical rows, with four or five keys in
each row. The left and right editing sections each have three vertical rows with one to
three keys per row; the left editing section is rotated 20˚ clockwise about its origin
while the right editing section is rotated 20˚ counterclockwise.

This keyboard has four global doodads: Three small, round indicators and a rectangu-
lar logo. The program which generated this image did not recognize the logo, so it dis-
plays an outline with an appropriate shape in its place.

This keyboard has seven shapes: All of the keys in the two function sections use the
“FKEY” shape. Most of the keys in the alphanumeric sections, as well as four of the
keys in each of the editing sections use the “NORM” shape. The keys in the first col-
umn of the left alphanumeric section and the last column of the right alphanumeric
section all use the “WIDE” shape. Two keys in each of the editing sections use the
“TALL” shape. The “LED” shape describes the three small, round indicators between
the function and alphabetic sections. The “LOGO” shape describes the keyboard logo,
and the “EDGE” shape describes the outline of the keyboard as a whole.

The keyboard itself is white, as are all of the keys except for the eight keys that make
up the home row, which use the “grey20” color. It isn’t really visible in this picture,
but the three indicators have an “on” color of “green” and are “green30” when they are
turned off. The keys in the alphanumeric and editing sections all have a (vertical) gap
of 0.5mm; the keys in the two function sections have a (horizontal) gap of 3mm.

Many of the keys in the right alphanumeric section, and the rightmost key in the right
editing section are drawn with two names in this image. Those are overlay keys; the
bottom key name is the normal name while the overlay name is printed at the top. For
example, the right editing section has a single overlay key entry, which specifies an
under name of<SPCE> and anover name of<KP0>, which indicates that the key in
question is usually the shift key, but can behave like the0 key on the numeric keypad
when an overlay is active.

<ESC> <FK01><FK02><FK03><FK04><FK05><FK06><FK07><FK08> <FK09><FK10><FK11><FK12><PRSC><SCLK><PAUS><FK16><FK17>

<AE12>

<TAB>

<CAPS>

<LFSH>

<AE01>

<AD01>

<AC01>

<AB01>

<TLDE>

<AE02>

<AD02>

<AC02>

<AB02>

<INS>

<AE03>

<AD03>

<AC03>

<AB03>

<LEFT>

<AE04>

<AD04>

<AC04>

<AB04>

<RGHT>

<AE05>

<AD05>

<AC05>

<AB05>

<AE06>

<AD06>

<AC06>

<AB06>

<AE07>

<NMLK>

<AD07>

<KP7>

<AC07>

<KP4>

<AB07>

<KP1>

<UP>

<AE08>

<KPEQ>

<AD08>

<KP8>

<AC08>

<KP5>

<AB08>

<KP2>

<DOWN>

<AE09>

<KPSL>

<AD09>

<KP9>

<AC09>

<KP6>

<AB09>

<KP3>

<AD11>

<AE10>

<KPMU>

<AD10>

<KPSU>

<AC10>

<KPAD>

<AB10>

<KPEN>

<AD12>

<AE11>

<KPEN>

<BKSL>

<AC11>

<RTSH>

<BKSP>

<LCTL>

<DELE>

<LALT>

<HOME>

<END>

<RALT>

<PGUP>

<PGDN>

<RCTL>

<RTRN>

<SPCE>

<KP0>

11/6/97 Protocol Version 1.0/Document Revision 1.0 38

The X Keyboard Extension Protocol Specification

12.0 Interactions Between XKB and the Core Protocol

In addition to providing a number of new requests, XKB replaces or extends existing
core protocol requests and events. Some aspects of the this extension, such as the abil-
ity to lock any key or modifier, are visible even to clients that are unaware of the XKB
extension. Other capabilities, such as control of keysym selection on a per-key basis,
are available only to XKB-aware clients.

Though they do not have access to some advanced extension capabilities, the XKB
extension includes compatibility mechanisms to ensure that non-XKB clients behave
as expected and operate at least as well with an XKB-capable server as they do today.

There are a few significant areas in which XKB state and mapping differences might
be visible to XKB-unaware clients:

• The core protocol uses a modifier to choose between two keyboard groups, while this
extension provides explicit support for multiple groups.

• The order of the symbols associated with any given key by XKB might not match the
ordering demanded by the core protocol.

To minimize problems that might result from these differences, XKB includes ways to
specify the correspondence between core protocol and XKB modifiers and symbols.

This section describes the differences between the core X protocol’s notion of a key-
board mapping and XKB and explains the ways they can interact.

12.1 Group Compatibility Map
As described in section 2.0, the current keyboard group is reported to XKB-aware cli-
ents in bits 13-14 of the state field of many core protocol events. XKB-unaware clients
cannot interpret those bits, but they might use a keyboard modifier to implement sup-
port for a single keyboard group. To ensure that pre-XKB clients continue to work
when XKB is present, XKB makes it possible to map an XKB state field, which
includes both keyboard group and modifier state into a pre-XKB state field which con-
tains only modifiers.

A keyboard description includes onegroup compatibility map per keyboard group
(four in all). Each such map is a modifier definition (i.e. specifies both real and virtual
modifiers) which specifies the modifiers to be set in the compatibility states when the
corresponding keyboard group is active. Here are a few examples to illustrate the
application of the group compatibility map:

Note that non-XKB clients (i.e. clients that are linked with a version of the X library
that does not support XKB) cannot detect the fact thatGroup4 is active in this exam-
ple because the group compatibility map forGroup4 does not specify any modifiers.

Group
Group

Compat Map
Effective
Modifiers

 State for XKB
Clients

Compatibility
Modifiers

State for non-
XKB Clients

1 Group1=None Shift x00xxxxx00000001 Shift xxxxxxxx00000001
2 Group2=Mod3 None x01xxxxx00000000 Mod3 xxxxxxxx00100000
3 Group3=Mod2 Shift x10xxxxx00000001 Shift+Mod2 xxxxxxxx00010001
4 Group4=None Control x11xxxxx00000100 Control xxxxxxxx00000100

11/6/97 Protocol Version 1.0/Document Revision 1.0 39

The X Keyboard Extension Protocol Specification

12.1.1 Setting a Passive Grab for an XKB State
The fact that thestate field of an event might look different when XKB is present can
cause problems with passive grabs. Existing clients specify the modifiers they wish to
grab using the rules defined by the core protocol, which use a normal modifier to indi-
cate keyboard group. If we used an XKB state field, the high bits of the state field
would be non-zero whenever the keyboard was in any group other thanGroup1 , and
none of the passive grabs set by clients could ever be triggered.

To avoid this behavior, the X server normally uses the compatibility grab state to
decide whether or not to activate a passive grab, even for XKB-aware clients. The
group compatibility map attempts to encode the keyboard group in one or more modi-
fiers of the compatibility state, so existing clients continue to work exactly the way
they do today. By default, there is no way to directly specify a keyboard group in a
Grabbed or GrabButton request, but groups can be specified indirectly by cor-
rectly adjusting the group compatibility map.

Clients that wish to specify an XKB keyboard state, including a separate keyboard
group, can set theGrabsUseXKBState per-client flag which indicates that all sub-
sequent key and button grabs from the requesting clients are specified using an XKB
state.

Whether the XKB or core state should be used to trigger a grab is determined by the
setting of theGrabsUseXKBState flag for the requesting client at the time the key
or button is grabbed. There is no way to change the state to be used for a grab that is
already registered or for grabs that are set by some other client.

12.2 Changing the Keyboard Mapping Using the Core Protocol
An XKB keyboard description includes a lot of information that is not present in the
core protocol description of a keyboard. Whenever a client remaps the keyboard using
core protocol requests, XKB examines the map to determine likely default values for
the components that cannot be specified using the core protocol.

Some aspects of this automatic mapping are configurable, and make it fairly easy to
take advantage of many XKB features using existing tools likexmodmap, but much of
the process of mapping a core keyboard description into an XKB description is
designed to preserve compatible behavior for pre-XKB clients and cannot be redefined
by the user. Clients or users that want behavior that cannot be described using this
mapping should use XKB functions directly.

12.2.1 Explicit Keyboard Mapping Components
This automatic remapping might accidentally replace definitions that were explicitly
requested by an application, so the XKB keyboard description defines a set ofexplicit
components for each key; any components that are listed in the explicit components
for a key are not changed by the automatic keyboard mapping. The explicit compo-
nents field for a key can contain any combination of the following values:

Bit in Explicit Mask Protects Against
ExplicitKeyType1 Automatic determination of the key type associated with

Group1 (see section 12.2.3)
ExplicitKeyType2 Automatic determination of the key type associated with

Group2 (see section 12.2.3)

11/6/97 Protocol Version 1.0/Document Revision 1.0 40

The X Keyboard Extension Protocol Specification

12.2.2 Assigning Symbols To Groups
The first step in applying the changes specified by a core protocolChangeKey-
boardMapping request to the XKB description of a keyboard is to determine the
number of groups that are defined for the key and the width of each group. The XKB
extension does not change key types in response to core protocolSetModifier-
Mapping requests, but it does choose key actions as described in section 12.2.4.

Determining the number of symbols required for each group is straightforward. If the
key type for some group is not protected by the correspondingExplicitKeyType
component, that group has two symbols. If any of the explicit components for the key
includeExplicitKeyType3 or ExplicitKeyType4 , the width of the key type
currently assigned to that group determines the number of symbols required for the
group in the core protocol keyboard description. The explicit type components for
Group1 andGroup2 behave similarly, but for compatibility reasons the first two
groups must have at least two symbols in the core protocol symbol mapping. Even if
an explicit type assigned to either of the first two keyboard groups has fewer than two
symbols, XKB requires two symbols for it in the core keyboard description.

If the core protocol request contains fewer symbols than XKB needs, XKB adds trail-
ing NoSymbol keysyms to the request to pad it to the required length. If the core proto-
col request includes more symbols than it needs, XKB truncates the list of keysyms to
the appropriate length.

Finally, XKB divides the symbols from the (possibly padded or truncated) list of sym-
bols specified by the core protocol request among the four keyboard groups. In most
cases, the symbols for each group are taken from the core protocol definition in
sequence (i.e. the first pair of symbols is assigned toGroup1 , the second pair of sym-
bols is assigned toGroup2 , and so forth). If eitherGroup1 or Group2 has an
explicitly defined key type with a width other than two, it gets a little more compli-
cated.

Assigning Symbols to Groups One and Two with Explicitly Defined Key Types
The server assigns the first four symbols from the expanded or truncated map to the
symbol positionsG1L1, G1L2, G2L1 andG2L2, respectively. If the key type

ExplicitKeyType3 Automatic determination of the key type associated with
Group3 (see section 12.2.3).

ExplicitKeyType4 Automatic determination of the key type associated with
Group4 (see section 12.2.3).

ExplicitInterpret Application of any of the fields of a symbol interpretation to
the key in question (see section 12.2.4).

ExplicitAutoRepeat Automatic determination of autorepeat status for the key, as
specified in a symbol interpretation (see section 12.2.4).

ExplicitBehavior Automatic assignment of theKB_Lock behavior to the key,
if the LockingKey flag is set in a symbol interpretation
(see section 12.2.4).

ExplicitVModMap Automatic determination of the virtual modifier map for the
key based on the actions assigned to the key and the symbol
interpretations which match the key (see section 12.2.4).

Bit in Explicit Mask Protects Against

11/6/97 Protocol Version 1.0/Document Revision 1.0 41

The X Keyboard Extension Protocol Specification

assigned toGroup1 reports more than two shift levels, the fifth and following sym-
bols contain the extra keysyms forGroup2 . If the key type assigned toGroup2
reports more than two shift levels, the extra symbols follow the symbols (if any) for
Group1 in the core protocol list of symbols. Symbols forGroup3 andGroup4 are
contiguous and follow the extra symbols, if any, forGroup1 andGroup2 .

For example, consider a key with a key type that returns three shift levels bound to
each group. The symbols bound to the core protocol are assigned in sequence to the
symbol positions:

G1L1, G1L2, G2L1, G2L2, G1L3, G2L3, G3L1, G3L2, G3L3, G4L1,
G4L2, andG4L3

For a key with a width one key type on group one, a width two key type on group two
and a width three key type on group three, the symbols bound to the key by the core
protocol are assigned to the following key positions:

G1L1, (G1L2), G2L1, G2L2, G3L1, G3L2, G3L3

Note that the second and fourth symbols (positionsG1L2 and G2L2) can never be
generated if the key type associated with the group yields only one symbol. XKB
accepts and ignores them in order to maintain compatibility with the core protocol.

12.2.3 Assigning Types To Groups of Symbols for a Key
Once the symbols specified byChangeKeyboardMapping have been assigned to
the four keyboard groups for a key, the X server assigns a key type to each group on
the key from a canonical list of key types. The first four key types in any keyboard
map are reserved for these standard key types:

Users or applications may change these key types to get different default behavior (to
make shift cancel caps lock, for example) but they must always have the specified
number of symbols per group.

Before assigning key types to groups, the X server expands any alphanumeric symbol
definitions as follows:

Key Type Name Standard Definition
ONE_LEVEL Describes keys that have exactly one symbol per group. Most special

or function keys (such asReturn) areONE_LEVEL keys. Any
combination of modifiers yields level0. Index0 in any key symbol
map specifies key typeONE_LEVEL.

TWO_LEVEL Describes non-keypad and non-alphabetic keys that have exactly
two symbols per group. By default, theTWO_LEVEL type yields col-
umn1 if the Shift modifier is set, column0 otherwise. Index1 in
any key symbol map specifies key typeTWO_LEVEL.

ALPHABETIC Describes alphabetic keys that have exactly two symbols per group.
The default definition of theALPHABETIC type provides shift-can-
cels-caps behavior as described in section 7.2.1. Index2 in any key
symbol map specifies key typeALPHABETIC.

KEYPAD Describes numeric keypad keys with two symbols per group. Yields
column1 if either of theShift modifier or the real modifier bound
to the virtual modifier namedNumLock are set. Yields column0 if
neither or both modifiers are set. Index3 in any key symbol map
specifies key typeKEYPAD.

11/6/97 Protocol Version 1.0/Document Revision 1.0 42

The X Keyboard Extension Protocol Specification

If the second symbol of either group isNoSymbol and the first symbol of that group is
an alphabetic keysym for which both lowercase and uppercase forms are defined, the
X server treats the key as if the first element of the group were the lowercase form of
the symbol and the second element were the uppercase form of the symbol. For the
purposes of this expansion, XKB ignores the locale and uses the capitalization rules
defined in Appendix A.

For each keyboard group that does not have an explicit type definition, XKB chooses a
key type from the canonical key types. If the second symbol assigned to a group is
NoSymbol (after alphabetic expansion), the server assigns key typeONE_LEVEL. If
the group contains the lowercase and uppercase forms of a single glyph (after alphanu-
meric expansion), the server assigns key typeALPHABETIC. If either of the symbols
in a group is a numeric keypad keysym (KP_*), the server assigns key typeKEYPAD.
Otherwise, it assigns key typeTWO_LEVEL.

Finally, XKB determines the number of groups of symbols that are actually defined
for the key. Trailing empty groups (i.e. groups that haveNoSymbol in all symbol posi-
tions) are ignored.

There are two last special cases for compatibility with the core protocol: If, after trail-
ing empty groups are excluded, all of the groups of symbols bound to the key have
identical type and symbol bindings, XKB assigns only one group to the key. If
Group2 is empty and either ofGroup3 or Group4 are not, and if neitherGroup1
norGroup2 have explicit key types, XKB copies the symbols and key type from
Group1 into Group2 .

12.2.4 Assigning Actions To Keys
Once symbols have been divided into groups and key types chosen for the keys
affected by aChangeKeyboardMapping request, XKB examines the symbols and
modifier mapping for each changed key and assigns server actions where appropriate.
XKB also automatically assigns server actions to changed keys if the client issues a
core protocolSetModifierMapping request, and does so optionally in response
to XkbSetMap andXkbSetCompatMap requests.

The compatibility map includes a list ofsymbol interpretations, which XKB compares
to each symbol associated with any changed keys in turn, unless theExplicitInt-
erp component is set for a key. Setting theExplicitInterp component prevents
the application of symbol interpretations to that key.

If the modifiers and keysym specified in a symbol interpretation match the modifier
mapping and a symbol bound to a changed key that is not protected byExplic-
itInterp , the server applies the symbol interpretation to the symbol position. The
server considers all symbol interpretations which specify an explicit keysym before
considering any that do not. The server uses the first interpretation which matches the
given combination of keysym and modifier mapping; other matching interpretations
are ignored.

XKB uses four of the fields of a symbol interpretation to decide if it matches one of
the symbols bound to some changed key:

• Thesymbol field is a keysym which matches if it has the valueNoSymbol or is iden-
tical to the symbol in question.

11/6/97 Protocol Version 1.0/Document Revision 1.0 43

The X Keyboard Extension Protocol Specification

• The modifiers specified in themods field are compared to the modifiers affected by the
key in question as indicated bymatch.

• Thematch field can specify any of the comparisons:NoneOf , AnyOfOrNone ,
AnyOf , AllOf or Exactly .

• The levelOneOnly setting, indicates that the interpretation in question should only use
the modifiers bound to this key by the modifier mapping if the symbol that matches in
level one of its group. Otherwise, if the symbol being considered is not in shift level
one of its group, the server behaves as if the modifier map for the key were empty. Note
that it is still possible for such an interpretation to apply to a symbol in a shift level
other than one if it matches a key without modifiers; thelevelOneOnly flag only con-
trols the way that matches are determined and that the key modifiers are applied when
an interpretation does match.

Applying a symbol interpretation can affect several aspects of the XKB definition of
the key symbol mapping to which it is applied:

• Theaction specified in the symbol interpretation is bound to the symbol position; any
key event which yields that symbol will also activate the new action.

• If the matching symbol is in position G1L1, the autorepeat behavior of the key is set
from theautorepeat field of the symbol interpretation. TheExplicitAutoRepeat
component protects the autorepeat status of a key from symbol interpretation initiated
changes.

• If the symbol interpretation specifies an associated virtual modifier, that virtual modi-
fier is added to the virtual modifier map for the key. TheExplicitVModMap compo-
nent guards the virtual modifier map for a key from automatic changes. If the
levelOneOnly flag is set for the interpretation, and the symbol in question is not in posi-
tion G1L1, the virtual modifier map is not updated.

• If the matching symbol is in position G1L1, and thelocking key field is set in the sym-
bol interpretation, the behavior of the key is changed toKB_Lock (see section 6.2).
TheExplicitBehavior component prevents this change.

If no interpretations match a given symbol or key, the server uses:SA_NoAction ,
autorepeat enabled, non-locking key. with no virtual modifiers.

If all of the actions computed for a key areSA_NoAction , the server assigns an
length zero list of actions to the key.

If the core protocol modifier mapping is changed, the server regenerates actions for the
affected keys. TheXkbSetMap andXkbSetCompatMap requests can also cause
actions for some or all keyboard keys to be recomputed.

12.2.5 Updating Everything Else
Changes to the symbols or modifier mapping can affect the bindings of virtual modifi-
ers. If any virtual modifiers change, XKB updates all of its data structures to reflect the
change. Applying virtual modifier changes to the keyboard mapping night result in
changes to types, the group compatibility map, indicator maps, internal modifiers or
ignore locks modifiers.

12.3 Effects of XKB on Core Protocol Events
After applying server actions which modify the base, latched or locked modifier or
group state of the keyboard, the X server recomputes the effective group and state.
Several components of the keyboard state are reported to XKB-aware clients depend-
ing on context (see section 2.0 for a detailed description of each of the keyboard state
components):

11/6/97 Protocol Version 1.0/Document Revision 1.0 44

The X Keyboard Extension Protocol Specification

• The effective modifier state is reported inXkbStateNotify events and in response
to XkbGetState requests.

• The symbol lookup state is reported to XKB-aware clients in the state field of core pro-
tocol and input extension key press and release events that do not activate passive
grabs. Unless theLookupStateWhenGrabbed per-client flag is set, the lookup
state is only reported in these events when no grabs are active.

• The grab state is reported to XKB-aware clients in the state field of all core protocol
events that report keyboard state, exceptKeyPress andKeyRelease events that do
not activate passive grabs.

• The effective group is the sum of the base, latched and locked keyboard groups. An out
of range effective group is wrapped or truncated into range according to the setting of
thegroupsWrap flag for the keyboard.

The server reports compatibility states to any clients that have not issued a successful
XkbUseExtension request. The server computes the compatibility symbol lookup
state and the compatibility effective grab state by applying the compatibility modifier
map to the corresponding computed XKB states.

The compatibility symbol lookup state is reported to non-XKB clients whenever an
XKB-aware client would receive the XKB lookup state. The compatibility grab state is
reported to XKB-unaware clients whenever an XKB client would receive the XKB
grab state.

If the GrabsUseXKBState per-client option is not set, even XKB-aware clients
receive the compatibility grab state in events that trigger or terminate passive grabs. If
this flag is not set, XKB clients also receive the compatibility grab or lookup state
whenever any keyboard grab is active.

If the LookupStateWhenGrabbed per-client option is set, clients receive either
the XKB or compatibility lookup state when the keyboard is grabbed, otherwise they
receive either the XKB or compatibility grab state. All non-XKB clients receive the
compatibility form of the appropriate state component; the form that is sent to an
XKB-aware client depends on the setting of theGrabsUseXKBState option for
that client.

12.4 Effect of XKB on Core Protocol Requests
Whenever a client updates the keyboard mapping using a core protocol request, the
server saves the requested core protocol keyboard mapping and reports it to any clients
that issueGetKeyboardMapping or GetModifierMapping requests. When-
ever a client updates the keyboard mapping using XKB requests, the server discards
the affected portion of the stored core keyboard description and regenerates it based on
the XKB description of the keyboard.

The symbols associated with the XKB keyboard description appear in the order:

G1L1 G1L2 G2L1 G2L2 G1L3-n G2L3-n G3L* G4L*

If the type associated withGroup1 is width one, the second symbol isNoSymbol; if
the type associated withGroup2 is width one, the fourth symbol isNoSymbol.

If a key has only one group but the keyboard has several, the symbols forGroup1 are
repeated for each group. For example, given a keyboard with three groups and a key
with one group that contains the symbols {a A }, the core protocol description would
contain the six symbols: {a A a A a A }. As a slightly more complicated example, an

11/6/97 Protocol Version 1.0/Document Revision 1.0 45

The X Keyboard Extension Protocol Specification

XKB key which had a single width three group with the symbols {a b c } would show
up in the generated core protocol keyboard description with the symbols {a b a b c c
a b c } for a keyboard with three groups.

The generated modifier mapping for a key contains all of the modifiers affected by all
of the actions associated with the key plus all of the modifiers associated with any vir-
tual modifiers bound to the key by the virtual modifier mapping. If any of the actions
associated with a key affect any component of the keyboard group, any modifiers
specified in any entry of the group compatibility map (see section 12.1) are reported in
the modifier mask. TheSA_ISOLock action can theoretically affect any modifier,
but the modifier map of anSA_ISOLock key contains only the modifiers or group
state that it sets by default.

The server notifies interested clients of keyboard map changes in one of two ways. It
sendsXkbMapNotify to clients that have explicitly selected them and core protocol
MappingNotify events to clients that have not. Once a client requestsXkbMap-
Notify events, the server stops sending itMappingNotify events to inform it of
keyboard changes.

12.5 Sending Events to Clients
XKB normally assumes that events sent to clients using the core protocolSendE-
vent request contain a core protocol state, if applicable. If the client which will
receive the event is not XKB-capable, XKB attempts to convert the core state to an
XKB state as follows: if any of the modifiers bound toGroup2 in the group compati-
bility map are set in the event state, XKB clears them in the resulting event but sets the
effective group in the event state toGroup2 .

If the PCF_SendEventUsesXKBState per-client flag is set at the time of the
SendEvent request, XKB instead assumes that the event reported in the event is an
XKB state. If the receiving client is not XKB-aware, the extension converts the XKB
state (which contains the effective state in bits 13-14) to a core state by applying the
group compatibility map just as it would for actual key events.

13.0 The Server Database of Keyboard Components

The X server maintains a database of keyboard components and common keyboard
mappings. This database contains five kinds of components; when combined, these
five components provide a complete description of a keyboard and its behavior.

The X Keyboard Extension provides requests to list the contents of this database, to
assemble and complete keyboard descriptions by merging the current keyboard
description with the contents of this database, or to replace the current keyboard
description with a complete keyboard description assembled as described below.

13.1 Component Names
Component and keymap names have the form “class(member)” whereclass describes
a subset of the available components for a particular type and the optionalmember
identifies a specific component from that subset. For example, the name “atlan-
tis(acme)” might specify the symbols used for the atlantis national keyboard layout by
the vendor “acme.” Each class has an optionaldefault member — references which
specify a class but not a member refer to the default member of the class, if one exists.

11/6/97 Protocol Version 1.0/Document Revision 1.0 46

The X Keyboard Extension Protocol Specification

Theclass andmember names are both specified using characters from the Latin-1
character set. XKB implementations must accept all alphanumeric characters, minus
(‘-’) and underscore (‘_’) in class or member names, and must not accept parentheses,
plus, vertical bar, percent sign, asterisk, question mark or white space. The use of
other characters is implementation-dependent.

13.2 Partial Components and Combining Multiple Components
Some of the elements in the server database contain describe only a piece of the corre-
sponding keyboard component. Thesepartial components should be combined with
other components of the same type to be useful.

For example, a partial symbols map might describe the differences between a common
ASCII keyboard and some national layout. Such a partial map is not useful on its own
because it does not include those symbols that are the same on both the ASCII and
national layouts (such as function keys). On the other hand, this partial map can con-
figureany ASCII keyboard to use a national layout.

Two components can be combined in two ways:
• If the second componentoverrides the first, any definitions that are present in both

components are taken from the second.
• If the second componentaugments the first, any definitions that are present in both

components are taken from the first.

Applications can use acomponent expression to combine multiple components of
some time into a complete description of some aspect of the keyboard. A component
expression is a string which lists the components to be combined separated by opera-
tors which specify the rules for combining them. A complete description is assembled
from the listed components, left to right, as follows:
• If the new elements are being merged with an existing map, the special component

name ‘%’ refers to the unmodified value of the map.
• The ‘+’ operator specifies that the next specified component should override the current

assembled definition.
• The ‘|’ operator specifies that the next specified component should augment the cur-

rently assembled definition.
• If the new elements are being merged with an existing map and the component expres-

sion begins with an operator, a leading ‘%’ is implied.
• If any unknown or illegal characters appear anywhere in the string, the entire expres-

sion is invalid and is ignored.

For example, the component expression “+de” specifies that the default element of the
“de” map should be applied to the current keyboard mapping, overriding any existing
definitions.

A slightly more involved example: the expression “acme(ascii)+de(basic)|iso9995-3”
constructs a German (de) mapping for the ASCII keyboard supplied by the “acme”
vendor. The new definition begins with the symbols for the default ASCII keyboard
for Acme, overrides them with any keys that are defined for the default German key-
board layout and then applies the definitions from the iso9995-3 to any undefined keys
or groups of keys (part three of the iso9995 standard defines a common set of bindings
for the secondary group, but allows national layouts to override those definitions
where necessary).

11/6/97 Protocol Version 1.0/Document Revision 1.0 47

The X Keyboard Extension Protocol Specification

13.3 Component Hints
Each component has a set of flags that provide some additional hints about that com-
ponent. XKB provides these hints for clients that present the keyboard database to
users and specifies their interpretation only loosely. Clients can use these hints to con-
strain the list of components or to control the way that components are presented to the
user.

Hints for a component are reported with its name. The least significant byte of the
hints field has the same meaning for all five types of keyboard components, and can
contain any combination of the following values:

The interpretation of the most significant byte of the hints field is dependent on the
type of component. The hints defined for each kind of component are listed in the sec-
tion below that describes that kind of component.

13.4 Keyboard Components
The five types of components stored in the server database of keyboard components
correspond to thesymbols, geometry, keycodes, compat andtypes symbolic names
associated with a keyboard.

13.4.1 The Keycodes Component
Thekeycodes component of a keyboard mapping specifies the range and interpretation
of the raw keycodes reported by the device. It sets thekeycodes symbolic name, the
minimum and maximum legal keycodes for the keyboard, and the symbolic name for
each key. The keycodes component might also contain aliases for some keys, sym-
bolic names for some indicators, and a description of which indicators are physically
present.

The special keycodes component named “computed” indicates that XKB should
assign unused keycodes to any unknown keys referenced by name by any of the other
components. The computed keycodes component is useful primarily when browsing
keymaps because it makes it possible to use the symbols and geometry components
without having to find a set of keycodes that includes keycode definitions for all of the
keys listed in the two components.

XKB defines no hints that are specific to the keycodes component.

13.4.2 The Types Component
Thetypes component of a keyboard mapping specifies the key types that can be asso-
ciated with the various keyboard keys. It affects thetypes symbolic name and the list
of types associated with the keyboard (see section 7.2.1). The types component of a
keyboard mapping can also optionally contain real modifier bindings and symbolic
names for one or more virtual modifiers.

The special types component named “canonical” always contains the types and defini-
tions listed in Appendix B of this document.

Flag Meaning
LC_Hidden Indicates a component that should not normally be presented to the

user.
LC_Default Indicates a component that is the default member of its class.
LC_Partial Indicates a partial component.

11/6/97 Protocol Version 1.0/Document Revision 1.0 48

The X Keyboard Extension Protocol Specification

XKB defines no hints that are specific to the types component.

13.4.3 The Compatibility Map Component
Thecompatibility map component of a keyboard mapping primarily specifies the rules
used to assign actions to keysyms. It affects thecompat symbolic name, the symbol
compatibility map and the group compatibility map. The compat component might
also specify maps for some indicators and the real modifier bindings and symbolic
names of some virtual modifiers.

XKB defines no hints that are specific to the compatibility map component.

13.4.4 The Symbols Component
Thesymbols component of a keyboard mapping specifies primarily the symbols bound
to each keyboard key. It affects thesymbols symbolic name, a key symbol mapping for
each key, they keyboard modifier mapping, and the symbolic names for the keyboard
symbol groups. Optionally, thesymbols component can contain explicit actions and
behaviors for some keys, or the real modifier bindings and symbolic names for some
virtual modifiers.

XKB defines the following additional hints for the symbols component:

These hints only apply to partial symbols components; full symbols components are
assumed to specify all of the pieces listed above.

Note The alphanumeric, modifier, keypad or function keys hints should describe the pri-
mary intent of the component designer and should not simply an exhaustive list of the
kinds of keys that are affected. For example, national keyboard layouts affect prima-
rily alphanumeric keys, but many affect a few modifier keys too; such mappings
should set onlyLC_AlphanumericKeys hint. In general, symbol components
should set only one of those four flags (thoughLC_AlternateGroup may be com-
bined with any of the other flags).

13.4.5 The Geometry Component
Thegeometry component of a keyboard mapping specifies primarily the geometry of
the keyboard. It contains the geometry symbolic name and the keyboard geometry
description. The geometry component might also contain aliases for some keys or
symbolic names for some indicators and might affect the set of indicators that are
physically present. Key aliases defined in the geometry component of a keyboard
mapping override those defined in the keycodes component.

XKB defines no hints that are specific to the geometry component.

Flag Meaning
LC_AlphanumericKeys Indicates a symbol component that contains bindings prima-

rily for an alphanumeric section of the keyboard.
LC_ModifierKeys Indicates a symbol component that contains bindings prima-

rily for modifier keys.
LC_KeypadKeys Indicates a symbol component that contains bindings prima-

rily for numeric keypad keys.
LC_FunctionKeys Indicates a symbol component that contains bindings prima-

rily for function keys.
LC_AlternateGroup Indicates a symbol component that contains bindings for an

alternate keyboard group.

11/6/97 Protocol Version 1.0/Document Revision 1.0 49

The X Keyboard Extension Protocol Specification

13.5 Complete Keymaps
The X server also reports a set of fully specified keymaps. The keymaps specified in
this list are usually assembled from the components stored in the rest of the database
and typically represent the most commonly used keymaps for a particular system.

XKB defines no hints that are specific to complete keymaps.

14.0 Replacing the Keyboard “On-the-Fly”

XKB supports theXkbNewKeyboardNotify event, which reports a change in key-
board geometry or the range of supported keycodes. The server can generate an
XkbNewKeyboardNotify event when it detects a new keyboard, or in response to
anXkbGetKeyboardByName request (see section 16.3.12) which loads a new key-
board description.

When a client opens a connection to the X server, the server reports the minimum and
maximum keycodes. If the range of supported keycodes is changed, XKB keeps track
of the minimum and maximum keycodes that were reported to each client and filters
out any events that fall outside of that range. Note that these events are simply
ignored; they are not delivered to some other client.

When the server sends anXkbNewKeyboardNotify event to a client to inform it
of the new keycode range, XKB resets the stored range of legal keycodes to the key-
code range reported in the event. Non-XKB clients and XKB-aware clients that do not
requestXkbNewKeyboardNotify events never receive events from keys that fall
outside of the legal range that XKB maintains for that client.

When a client requestsXkbNewKeyboardNotify events, the server compares the
range of keycodes for the current keyboard to the range of keycodes that are valid for
the client. If they are not the same, the server immediately sends that client an
XkbNewKeyboardNotify event. Even if the “new” keyboard is not new to the
server, it is new to this particular client.

In addition to filtering out-of-range key events, XKB:
• Adjusts core protocolMappingNotify events to refer only to keys that match the

stored legal range.
• Reports keyboard mappings for keys that match the stored legal range to clients that

issue a core protocolGetKeyboardMapping request.
• Reports modifier mappings only for keys that match the stored legal range to clients

that issue a core protocolGetModifierMapping request.
• Restricts the core protocolChangeKeyboardMapping andSetModifierMap-

ping requests to keys that fall inside the stored legal range.

In short, XKB does everything possible to hide the fact that the range of legal key-
codes has changed from clients non-XKB clients, which cannot be expected to deal
with it. The corresponding XKB events and requests donot pay attention to the legal
keycode range in the same way because XKB makes it possible for clients to track
changes to the keycode range for a device and respond to them.

15.0 Interactions Between XKB and the X Input Extension

All XKB interactions with the input extension are optional; implementors are free to
restrict the effects of the X Keyboard Extension to the core keyboard device. The

11/6/97 Protocol Version 1.0/Document Revision 1.0 50

The X Keyboard Extension Protocol Specification

XkbGetExtensionDeviceInfo request reports whether or not an XKB imple-
mentation supports a particular capability for input extension devices.

XKB recognizes the following interactions with the X Input Extension:

Attempts to use an XKB feature with an extension device fail with aKeyboard error
if the server does not support theXkbXI_Keyboards optional feature. If a capabil-
ity particular capability other thanXkbXI_Keyboards is not supported, attempts to
use it fail silently. The replies for most requests that can use one of the other optional
features include a field to report whether or not the request was successful, but such
requests do not cause an error condition.

Clients can also request anXkbExtensionDeviceNotify event. This event noti-
fies interested clients of changes to any of the supported XKB features for extension
devices, or if a request from the client that is receiving the event attempted to use an
unsupported feature.

15.1 Using XKB Functions with Input Extension Keyboards
All XKB requests and events include a device identifier which can refer to an input
extensionKeyClass device, if the implementation allows XKB to control extension
devices. If the implementation does not support XKB manipulation of extension
devices, the device identifier is ignored but it must be either0 or UseCoreKbd .

Implementations which do not support the use of XKB functions with extension key-
boards must not set theXkbXI_Keyboards flag. Attempts to use XKB features on
an extension keyboard with an implementation that does not support this feature yield
aKeyboard error.

15.2 Pointer and Device Button Actions
The XKB extension optionally allows clients to assign any key action (see section 6.3)
to core pointer or input extension device buttons. This makes it possible to control the
keyboard or generate keyboard key events from extension devices or from the core
pointer.

XKB implementations are required to support actions for the buttons of the core
pointer device, but support for actions on extension devices is optional. Implementa-
tions which do not support button actions for extension devices must not set the
XkbXI_ButtonActions flag.

Name Capability
XI_Keyboards If set, applications can use all XKB requests and events with

extension keyboards.
XI_ButtonActions If set, clients can assign key actions to buttons, even on

input extension devices that are not keyboards.
XI_IndicatorNames If set, clients can assign names to indicators on non-key-

board extension devices.
XI_IndicatorMaps If set, clients can assign indicator maps to indicators on non-

keyboard extension devices.
XI_IndicatorState If set, clients can change the state of device indicators using

theXkbSetExtensionDeviceInfo request.

11/6/97 Protocol Version 1.0/Document Revision 1.0 51

The X Keyboard Extension Protocol Specification

Attempts to query or assign button actions with an implementation that does not sup-
port this feature report failure in the request reply and might cause the server to send
anXkbExtensionDeviceNotify event to the client which issued the request
that failed. Such requests never cause an error condition.

15.3 Indicator Maps for Extension Devices
The XKB extension allows applications to assign indicator maps to the indicators of
non-keyboard extension devices. If supported, maps can be assigned to all extension
device indicators, whether they are part of a keyboard feedback or part of an indicator
feedback.

Implementations which do not support indicator maps for extension devices must not
set theXkbXI_IndicatorMaps flag.

Attempts to query or assign indicator maps with an implementation that does not sup-
port this feature report failure in the request reply and might cause the server to send
anXkbExtensionDeviceNotify event to the client which issued the request
that failed. Such requests never cause an error condition.

If this feature is supported, the maps for the default indicators on the core keyboard
device are visible both as extension indicators and as the core indicators. Changes
made withXkbSetDeviceInfo are visible viaXkbGetIndicatorMap and
changes made withXkbSetIndicatorMap are visible viaXkbGetDeviceInfo .

15.4 Indicator Names for Extension Devices
The XKB extension allows applications to assign symbolic names to the indicators of
non-keyboard extension devices. If supported, symbolic names can be assigned to all
extension device indicators, whether they are part of a keyboard feedback or part of an
indicator feedback.

Implementations which do not support indicator maps for extension devices must not
set theXkbXI_IndicatorMaps flag.

Attempts to query or assign indicator names with an implementation that does not sup-
port this feature report failure in the request reply and might cause the server to send
anXkbExtensionDeviceNotify event to the client which issued the request
that failed. Such requests never cause an error condition.

If this feature is supported, the names for the default indicators on the core keyboard
device are visible both as extension indicators and as the core indicators. Changes
made withXkbSetDeviceInfo are visible viaXkbGetNames and changes made
with XkbSetNames are visible viaXkbGetDeviceInfo .

16.0 XKB Protocol Requests

This document uses the syntactic conventions and common types defined by the spec-
ification of the core X protocol with a number of additions, which are detailed below.

16.1 Errors
If a client attempts to use any other XKB request exceptXkbUseExtension before
the extension is properly initialized, XKB reports anAccess error and ignores the

11/6/97 Protocol Version 1.0/Document Revision 1.0 52

The X Keyboard Extension Protocol Specification

request. XKB is properly initialized onceXkbUseExtension reports that the client
has asked for a supported or compatible version of the extension.

16.1.1 Keyboard Errors
In addition to all of the errors defined by the core protocol, the X Keyboard Extension
defines a single error,Keyboard , which indicates that some request specified an ille-
gal device identifier or an extension device that is not a member of an appropriate.
Unless otherwise noted, any request with an argument of type KB_DEVICESPEC can
causeKeyboard errors if an illegal or inappropriate device is specified.

When the extension reports a Keyboard error, the most significant byte of the
resource_id is a further refinement of the error cause, as defined in the table below.
The least significant byte contains the device, class, or feedback id as indicated:

16.1.2 Side-Effects of Errors

With the exception ofAlloc or Implementation errors, which might result in an
inconsistent internal state, no XKB request that reports an error condition has any
effect. Unless otherwise stated, requests which update some aspect of the keyboard
description will not apply only part of a request — if part of a request fails, the whole
thing is ignored.

16.2 Common Types
The following types are used in the request and event definitions in subsequent sec-
tions:

high-order byte value meaning low-order byte
XkbErr_BadDevice 0xff device not found device id
XkbErr_BadClass 0xfe device found, but is the wrong class class id
XkbErr_BadId 0xfd device found, class ok, but device does not

have a feedback with the indicated id
feedback id

Name Value
LISTofITEMs The type LISTofITEMs is special. It is similar to the

LISTofVALUE defined by the core protocol, but the
elements of a LISTofITEMs are not necessarily all the
same size. The use of a BITMASK to indicate which
members are present is optional for a LISTofITEMs — it is
possible for the set of elements to be derived from one or
more fields of the request.

KB_DEVICESPEC 8 bit unsigned integer,UseCoreKbd, or UseCorePtr

KB_LEDCLASSSPEC {KbdFeedbackClass , LedFeedbackClass ,
DfltXIClass , AllXIClasses , XINone }

KB_BELLCLASSSPEC {KbdFeedbackClass , BellFeedbackClass ,
DfltXIClass , AllXIClasses }

KB_IDSPEC 8 bit unsigned integer orDfltXIId

KB_VMODMASK CARD16, each bit corresponds to a virtual modifier
KB_GROUPMASK { Group1 , Group2 , Group3 , Group4 }
KB_GROUPSWRAP {WrapIntoRange , ClampIntoRange ,

RedirectIntoRange }

11/6/97 Protocol Version 1.0/Document Revision 1.0 53

The X Keyboard Extension Protocol Specification

KB_GROUPINFO { groupsWrap: KB_GROUPSWRAP
redirectGroup: 1…4,
numGroups: 1…4 }

KB_NKNDETAILSMASK { NKN_Keycodes , NKN_Geometry,NKN_DeviceID }
KB_STATEMASK KEYBUTMASK or KB_GROUPMASK
KB_STATEPARTMASK { ModifierState , ModifierBase ,

ModifierLatch , ModifierLock , GroupState ,
GroupBase , GroupLatch , GroupLock ,
CompatState , GrabMods , CompatGrabMods ,
LookupMods , CompatLookupMods ,
PointerButtons }

KB_BOOLCTRLMASK { RepeatKeys , SlowKeys , BounceKeys ,
StickyKeys , MouseKeys , MouseKeysAccel ,
AccessXKeys , AccessXTimeout ,
AccessXFeedback , AudibleBell , Overlay1 ,
Overlay2 , IgnoreGroupLock }

KB_CONTROLSMASK { GroupsWrap, InternalMods , IgnoreLockMods ,
PerKeyRepeat , ControlsEnabled } or
KB_BOOLCTRLMASK

KB_MAPPARTMASK { KeyTypes , KeySyms, ModifierMap ,
ExplicitComponents , KeyActions ,
KeyBehaviors , VirtualMods , VirtualModMap }

KB_CMDETAILMASK { SymInterp , GroupCompat }
KB_NAMEDETAILMASK { KeycodesName , GeometryName , SymbolsName ,

PhysSymbolsName , TypesName, CompatName,
KeyTypeNames , KTLevelNames ,
IndicatorNames , KeyNames, KeyAliases ,
VirtualModNames , GroupNames, RGNames}

KB_AXNDETAILMASK { AXN_SKPress , AXN_SKAccept , AXN_SKReject ,
AXN_SKRelease, AXN_BKAccept,
AXN_BKReject, AXN_AXKWarning }

KB_AXSKOPTSMASK { AX_TwoKeys, AX_LatchToLock }
KB_AXFBOPTSMASK { AX_SKPressFB , AX_SKAcceptFB , AX_FeatureFB ,

AX_SlowWarnFB, AX_IndicatorFB ,
AX_StickyKeysFB , AX_SKReleaseFB ,
AX_SKRejectFB , AX_BKRejectFB ,
AX_DumbBellFB }

KB_AXOPTIONSMASK KB_AXFBOPTSMASK or KB_AXSKOPTSMASK
KB_GBNDETAILMASK { GBN_Types, GBN_CompatMap,

GBN_ClientSymbols , GBN_ServerSymbols ,
GBN_IndicatorMap , GBN_KeyNames,
GBN_Geometry, GBN_OtherNames }

KB_BELLDETAILMASK { XkbAllBellNotifyEvents }
KB_MSGDETAILMASK { XkbAllActionMessages }

Name Value

11/6/97 Protocol Version 1.0/Document Revision 1.0 54

The X Keyboard Extension Protocol Specification

KB_EVENTTYPE { XkbNewKeyboardNotify , XkbMapNotify ,
XkbStateNotify , XkbControlsNotify ,
XkbIndicatorStateNotify ,
XkbIndicatorMapNotify , XkbNamesNotify ,
XkbCompatMapNotify , XkbBellNotify ,
XkbActionMessage , XkbAccessXNotify ,
XkbExtensionDeviceNotify }

KB_ACTION [type: CARD8
data: LISTofCARD8]

KB_BEHAVIOR [type: CARD8, data: CARD 8]
KB_MODDEF [mask: KEYMASK,

mods: KEYMASK,
vmods: KB_VMODMASK]

KB_KTMAPENTRY [active: BOOL,
level: CARD8,
mods: KB_MODDEF]

KB_KTSETMAPENTRY [level: CARD8,
mods: KB_MODDEF]

KB_KEYTYPE [mods: KB_MODDEF,
numLevels: CARD8,
map: LISTofKB_KTMAPENTRY,
preserve: LISTofKB_MODDEF]

KB_SETKEYTYPE [realMods: KEYMASK,
vmods: CARD16,
numLevels: CARD8,
map: LISTofKB_KTSETMAPENTRY,
preserve: LISTofKB_MODDEF]

KB_KEYSYMMAP [ktIndex: LISTofCARD8, width: CARD8
 numGroups: 0…4,
 groupsWrap: KB_GROUPSWRAP,
 redirectGroup: 0…3,
syms: LISTofKEYSYM]

KB_KEYVMODMAP [key: KEYCODE, vmods: CARD16]
KB_KEYMODMAP [key: KEYCODE, mods: KEYMASK]
KB_EXPLICITMASK { ExplicitKeyType1 , ExplicitKeyType2 ,

ExplicitKeyType3 , ExplicitKeyType4 ,
ExplicitInterpret , ExplicitAutoRepeat ,
ExplicitBehavior , ExplicitVModMap }

KB_INDICATORMASK CARD32, each bit corresponds to an indicator
KB_IMFLAGS { IM_NoExplicit , IM_NoAutomatic ,

IM_LEDDrivesKB }
KB_IMMODSWHICH { IM_UseNone , IM_UseBase , IM_UseLatched ,

IM_UseLocked , IM_UseEffective ,
IM_UseCompat }

KB_IMGROUPSWHICH { IM_UseNone , IM_UseBase , IM_UseLatched ,
IM_UseLocked , IM_UseEffective }

Name Value

11/6/97 Protocol Version 1.0/Document Revision 1.0 55

The X Keyboard Extension Protocol Specification

These types are used by theXkbGetGeometry andXkbSetGeometry requests:

KB_INDICATORMAP [flags: CARD8,
mods: KB_MODDEF,
whichMods:
groups: KB_GROUPMASK,
whichGroups:
ctrls: KB_BOOLCTRLMASK]

KB_SYMINTERPMATCH { SI_NoneOf , SI_AnyOfOrNone , SI_AnyOf ,
SI_AllOf , SI_Exactly }

KB_SYMINTERP [sym: KEYSYM,
mods; KEYMASK,
levelOneOnly: BOOL,
match: KB_SYMINTERPMATCH,
virtualMod: CARD8,
autoRepeat: BOOL,
lockingKey: BOOL]

KB_PCFMASK { PCF_DetectableAutorepeat ,
PCF_GrabsUseXkbState ,
PCF_AutoResetControls ,
PCF_LookupStateWhenGrabbed ,
PCF_SendEventUsesXKBState }

KB_LCFLAGSMASK { LC_Hidden , LC_Default , LC_Partial }
KB_LCSYMFLAGSMASK { LC_AlphanumericKeys , LC_ModifierKeys ,

LC_KeypadKeys , LC_FunctionKeys ,
LC_AlternateGroup }

Name Value
KB_PROPERTY [name, value: STRING8]
KB_POINT [x, y: CARD16]
KB_OUTLINE [cornerRadius: CARD8, points: LISTofKB_POINT]
KB_SHAPE [name: ATOM, outlines: LISTofKB_OUTLINE

primaryNdx, approxNdx: CARD8]
KB_KEYNAME [name: LISTofCHAR]
KB_KEYALIAS [real: LISTofCHAR, alias: LISTofCHAR]
KB_KEY [name: KB_KEYNAME, gap: INT16,

shapeNdx, colorNdx: CARD8]
KB_ROW [top, left: INT16, vertical: BOOL, keys LISTofKB_KEY]
KB_OVERLAYKEY [over, under: KB_KEYNAME]
KB_OVERLAYROW [rowUnder: CARD8, keys: LISTofKB_OVERLAYKEY]
KB_OVERLAY [sectionUnder: CARD8,

rows: LISTofKB_OVERLAYROW]
KB_SHAPEDOODAD [name: ATOM, priority: CARD8, top, left: INT16,

type: { SolidDoodad, OutlineDoodad },
angle: INT16, width, height: CARD16
colorNdx, shapeNdx: CARD8]

Name Value

11/6/97 Protocol Version 1.0/Document Revision 1.0 56

The X Keyboard Extension Protocol Specification

These types are used byXkbGetDeviceInfo andXkbSetDeviceInfo :

16.3 Requests
This section lists all of the requests supported by the X Keyboard Extension, separated
into categories of related requests.

16.3.1 Initializing the X Keyboard Extension

 XkbUseExtension
wantedMajor, wantedMinor: CARD16

→
supported: BOOL
serverMajor, serverMinor: CARD16


This request enables XKB extension capabilities for the client that issues the request;
thewantedMajor andwantedMinor fields specify the extension version in use by the
requesting client. Thesupported field isTrue if the server supports a compatible ver-

KB_TEXTDOODAD [name: ATOM, priority: CARD8, top, left: INT16,
angle: INT16, width, height: CARD16,
colorNdx: CARD8, text: STRING8, font: STRING8]

KB_INDICATORDOODAD [name: ATOM, priority: CARD8, top, left: INT16,
angle: INT16,
shapeNdx, onColorNdx, offColorNdx: CARD8]

KB_LOGODOODAD [name: ATOM, priority: CARD8, top, left: INT16,
angle: INT16, colorNdx, shapeNdx: CARD8,
logoName: STRING8]

KB_DOODAD KB_SHAPEDOODAD, or KB_TEXTDOODAD, or
KB_INDICATORDOODAD, or KB_LOGODOODAD

KB_SECTION [name: ATOM,
top, left, angle: INT16,
width, height: CARD16,
priority: CARD8,
rows: LISTofKB_ROW,
doodads: LISTofKB_DOODAD,
overlays: LISTofKB_OVERLAY]

Name Value
KB_XIDEVFEATUREMASK { XI_ButtonActions , XI_IndicatorNames ,

XI_IndicatorMaps , XI_IndicatorState }
KB_XIFEATUREMASK { KB_XIDEVFEATURES orXI_Keyboards

KB_XIDETAILMASK { KB_XIFEATURES or XI_UnsupportedFeature }

KB_DEVICELEDINFO [ledClass: KB_LEDCLASSSPEC,
ledID: KB_IDSPEC,
physIndicators: CARD32,
state: CARD32,
names: LISTofATOM,
maps: LISTofKB_INDICATORMAP]

Name Value

11/6/97 Protocol Version 1.0/Document Revision 1.0 57

The X Keyboard Extension Protocol Specification

sion,False otherwise. TheserverMajor andserverMinor fields return the actual ver-
sion supported by the server.

Until a client explicitly and successfully requests the XKB extension, an XKB capable
server reports compatibility state in all core protocol events and requests. Once a client
asks for XKB extension semantics by issuing this request, the server reports the
extended XKB keyboard state in some core protocol events and requests, as described
in the overview section of this specification.

Clients should issue anXkbUseExtension request before using any other exten-
sion requests.

16.3.2 Selecting Events

 XkbSelectEvents
deviceSpec:KB_DEVICESPEC
affectWhich, clear, selectAll: KB_EVENTTYPE
affectMap, map: KB_MAPPARTMASK
details: LISTofITEMs

Errors:Keyboard , Match , Value


This request updates the event masks of the keyboard indicated bydeviceSpec for this
client. If deviceSpec specifies an illegal device, aKeyboard error results.

TheaffectMap andmap fields specify changes to the event details mask for the
XkbMapNotify event. If any map components are set inmap but not inaffectMap, a
Match error results. Otherwise, any map components that are set inaffectMap are set
or cleared in the map notify details mask, depending on the value of the corresponding
field in map.

TheaffectWhich, clear, andselectAll fields specify changes to any other event details
masks. If any event types are set in bothclear andselectAll, aMatch error results; if
any event types are specified in eitherclear or selectAll but not inaffectWhich, a
Match error results. Otherwise, the detail masks for any event types specified in the
affectWhich field of this request are changed as follows:

• If the event type is also set inclear, the detail mask for the corresponding event is set to
0 or False , as appropriate.

• If the event type is also set inselectAll, the detail mask for the corresponding event is
set to include all legal detail values for that type.

• If the event type is not set in eitherclear or selectAll, the corresponding element of
details lists a set of explicit changes to the details mask for the event, as described
below.

Each entry of thedetails list specifies changes to the event details mask for a single
type of event, and consists of anaffects mask and avalues mask. All details that are
specified inaffects are set to the corresponding value fromvalues; if any details are
listed invalues but not inaffects, aMatch error results.

11/6/97 Protocol Version 1.0/Document Revision 1.0 58

The X Keyboard Extension Protocol Specification

The details list contains entries only for those event types, if any, that are listed in the
affectWhich mask and not in eitherclear or selectAll. When present, the items of the
details list appear in the following order:

Detail masks for event types that are not specified inaffectWhich are not changed.

If any components are specified in a client’s event masks, the X server sends the client
an appropriate event whenever any of those components change state. Unless explic-
itly modified, all event detail masks are empty. Section 16.4 describes all XKB events
and the conditions under which the server generates them.

16.3.3 Generating Named Keyboard Bells

 XkbBell
deviceSpec: KB_DEVICESPEC
bellClass: KB_BELLCLASSSPEC
bellID: KB_IDSPEC
percent: INT8
forceSound: BOOL
eventOnly: BOOL
pitch, duration: INT16
name: ATOM
window: WINDOW

Errors:Keyboard , Value , Match


This request generates audible bells and/orXkbBellNotify events for the bell
specified by thebellClass andbellID on the device specified bydeviceSpec at the
specifiedpitch, duration and volume (percent). If deviceSpec specifies a device that
does not have a bell or keyboard feedback, aKeyboard error results.

If both forceSound andeventOnly are set, this request yields aMatch error. Other-
wise, if forceSound is True , this request always generates a sound and never gener-
ates an event; ifeventOnly is True , it causes an event but no sound. If neither

Event Type Legal Details Type

XkbNewKeyboardNotify KB_NKNDETAILSMASK CARD16

XkbStateNotify KB_STATEPARTMASK CARD16

XkbControlsNotify KB_CONTROLMASK CARD32

XkbIndicatorMapNotify KB_INDICATORMASK CARD32

XkbIndicatorStateNotify KB_INDICATORMASK CARD32

XkbNamesNotify KB_NAMEDETAILMASK CARD16

XkbCompatMapNotify KB_CMDETAILMASK CARD8

XkbBellNotify KB_BELLDETAILMASK CARD8

XkbActionMessage KB_MSGDETAILMASK CARD8

XkbAccessXNotify KB_AXNDETAILMASK CARD16

XkbExtensionDeviceNotify KB_XIDETAILMASK CARD16

11/6/97 Protocol Version 1.0/Document Revision 1.0 59

The X Keyboard Extension Protocol Specification

forceSound noreventOnly areTrue , this request always generates an event; if the
keyboard’s globalAudibleBell control is enabled, it also generates a sound.

Any bell event generated by this request contains all of the information about the bell
that was requested, including the symbolic name specified byname and the event win-
dow specified by window. Thename andwindow are not directly interpreted by XKB,
but they must have the valueNone or specify a legal Atom or Window, respectively.
XkbBellNotify events generated in response to core protocol or X input extension
bell requests always reportNone as theirname.

ThebellClass, bellID, andpercent fields are interpreted as for the X input extension
DeviceBell request. Ifpitch andduration are zero, the server uses the correspond-
ing values for that bell from the core protocol or input extension, otherwisepitch and
duration are interpreted as for the core protocolChangeKeyboardControl
request; if they do not include legal values, aValue error results. Thewindow field
must specify a legal Window or have the valueNone, or aValue error results. The
name field must specify a legal Atom or have the valueNone, or anAtom error
results. If an error occurs, this request has no other effect (i.e. does not cause a sound
or generate an event).

Thepitch, volume, andduration are suggested values for the bell, but XKB does not
require the server to honor them.

16.3.4 Querying and Changing Keyboard State

 XkbGetState
deviceSpec: KB_DEVICESPEC

→
deviceID: CARD8
mods, baseMods, latchedMods, lockedMods: KEYMASK
group, lockedGroup: KB_GROUP
baseGroup, latchedGroup: INT16
compatState: KEYMASK
grabMods, compatGrabMods: KB_GROUP
lookupMods, compatLookupMods: KEYMASK
ptrBtnState: BUTMASK

Errors:Keyboard


This request returns a detailed description of the current state of the keyboard speci-
fied bydeviceSpec.

ThedeviceID return value contains the input extension identifier for the specified
device, or0 if the server does not support the input extension.

ThebaseMods return value reports the modifiers that are set because one or more
modifier keys are logically down. ThelatchedMods andlockedMods return values
report the modifiers that are latched or locked respectively. Themods return value
reports the effective modifier mask which results from the current combination of
base, latched and locked modifiers.

11/6/97 Protocol Version 1.0/Document Revision 1.0 60

The X Keyboard Extension Protocol Specification

ThebaseGroup return value reports the group state selected by group shift keys that
are logically down. ThelatchedGroup andlockedGroup return values detail the effects
of latching or locking group shift keys andXkbLatchLockState requests. The
group return value reports the effective keyboard group which results from the current
combination of base, latched and locked group values.

The lookupMods return value reports the lookup modifiers, which consist of the cur-
rent effective modifiers minus any server internal modifiers. ThegrabMods return
value reports the grab modifiers, which consist of the lookup modifiers minus any
members of the ignore locks mask that are not either latched or logically depressed.
Section 2.0 describes the lookup modifiers and grab modifiers in more detail.

TheptrBtnState return value reports the current logical state of up to five buttons on
the core pointer device.

ThecompatState return value reports the compatibility state that corresponds to the
effective keyboard group and modifier state. ThecompatLookupMods andcompat-
GrabMods return values report the core protocol compatibility states that correspond
to the XKB lookup and grab state. All of the compatibility states are computed by
applying the group compatibility mapping to the corresponding XKB modifier and
group states, as described in Section 12.1.

 XkbLatchLockState
deviceSpec: KB_DEVICESPEC
affectModLocks, modLocks: KEYMASK
lockGroup: BOOL
groupLock: KB_GROUP
affectModLatches,modLatches: KEYMASK
latchGroup: BOOL
groupLatch: INT16

Errors:Keyboard , Value


This request locks or latches keyboard modifiers and group state for the device speci-
fied bydeviceSpec. If deviceSpec specifies an illegal or non-keyboard device, aKey-
board error occurs.

The locked state of any modifier specified in theaffectModLocks mask is set to the
corresponding value frommodLocks. If lockGroup is True , the locked keyboard
group is set to the group specified bygroupLock. If any modifiers are set inmodLocks
but notaffectModLocks, aMatch error occurs.

The latched state of any modifier specified in theaffectModLatches mask is set to the
corresponding value frommodLatches. If latchGroup is True , the latched keyboard
group is set to the group specified bygroupLatch. if any modifiers are set inmod-
Latches but not inaffectModLatches, aMatch error occurs.

If the locked group exceeds the maximum number of groups permitted for the speci-
fied keyboard, it is wrapped or truncated back into range as specified by the global
GroupsWrap control. No error results from an out-of-range group specification.

11/6/97 Protocol Version 1.0/Document Revision 1.0 61

The X Keyboard Extension Protocol Specification

After changing the locked and latched modifiers and groups as specified, the X server
recalculates the effective and compatibility keyboard state and generatesXkb-
StateNotify events as appropriate if any state components have changed. Chang-
ing the keyboard state might also turn indicators on or off which can cause
XkbIndicatorStateNotify events as well.

If any errors occur, this request has no effect.

16.3.5 Querying and Changing Keyboard Controls

 XkbGetControls
deviceSpec: KB_DEVICESPEC

→
deviceID: CARD8
mouseKeysDfltBtn: CARD8
numGroups: CARD8
groupsWrap: KB_GROUPINFO
internalMods,ignoreLockMods: KB_MODDEF
repeatDelay,repeatInterval: CARD16
slowKeysDelay, debounceDelay: CARD16
mouseKeysDelay, mouseKeysInterval: CARD16
mouseKeysTimeToMax, mouseKeysMaxSpeed: CARD16
mouseKeysCurve: INT16
accessXOptions: KB_AXOPTIONMASK
accessXTimeout: CARD16
accessXTimeoutOptionsMask, accessXTimeoutOptionValues: CARD16
accessXTimeoutMask,accessXTimeoutValues: CARD32
enabledControls: KB_BOOLCTRLMASK
perKeyRepeat: LISTofCARD8

Errors:Keyboard


This request returns the current values and status of all controls for the keyboard spec-
ified by deviceSpec. If deviceSpec specifies an illegal device aKeyboard error
results. On return, thedeviceID specifies the identifier of the requested device or zero
if the server does not support the input extension.

ThenumGroups return value reports the current number of groups, andgroupsWrap
reports the treatment of out-of-range groups, as described in Section 7.2.2. Theinter-
nalMods andignoreLockMods return values report the current values of the server
internal and ignore locks modifiers as described in section 2.0. Both are modifier defi-
nitions (section 3.1) which report the real modifiers, virtual modifiers, and the result-
ing combination of real modifiers that are bound to the corresponding control.

TherepeatDelay, repeatInterval, slowKeysDelay anddebounceDelay fields report the
current values of the for the autorepeat delay, autorepeat interval, slow keys delay and
bounce keys timeout, respectively. ThemouseKeysDelay, mouseKeysInterval,
mouseKeysTimeToMax andmouseKeysMaxSpeed andmouseKeysCurve return values
report the current acceleration applied to mouse keys, as described in section 4.6. All
times are reported in milliseconds.

11/6/97 Protocol Version 1.0/Document Revision 1.0 62

The X Keyboard Extension Protocol Specification

ThemouseKeysDfltBtn return value reports the current default pointer button for
which events are synthesized by the mouse keys server actions.

TheaccessXOptions return value reports the current settings of the various AccessX
options flags which govern the behavior of theStickyKeys control and of AccessX
feedback.

TheaccessXTimeout return value reports the length of time, in seconds, that the key-
board must remain idle before AccessX controls are automatically changed; an
accessXTimeout of 0 indicates that AccessX controls are not automatically changed.
TheaccessXTimeoutMask specifies the boolean controls to be changed if the AccessX
timeout expires; theaccessXTimeoutValues field specifies new values for all of the
controls in the timeout mask. TheaccessXTimeoutOptionsMask field specifies the
AccessX options to be changed when the AccessX timeout expires; theaccessXTime-
outOptionValues return value reports the values to which they will be set.

TheenabledControls return value reports the current state of all of the global boolean
controls.

TheperKeyRepeat array consists of one bit per key and reports the current autorepeat
behavior of each keyboard key; if a bit is set inperKeyRepeat, the corresponding key
repeats if it is held down while global keyboard autorepeat is enabled. This array par-
allels the core protocol and input extension keyboard controls, if the autorepeat behav-
ior of a key is changed via the core protocol or input extension, those changes are
automatically reflected in theperKeyRepeat array.

11/6/97 Protocol Version 1.0/Document Revision 1.0 63

The X Keyboard Extension Protocol Specification

 XkbSetControls
deviceSpec: KB_DEVICESPEC
affectInternalRealMods, internalRealMods: KEYMASK
affectInternalVirtualMods,internalVirtualMods: KB_VMODMASK
affectIgnoreLockRealMods,ignoreLockRealMods: KB_MODMASK
affectIgnoreLockVirtualMods,ignoreLockVirtualMods: KB_VMODMASK
mouseKeysDfltBtn: CARD8
groupsWrap: KB_GROUPINFO
accessXOptions: CARD16
affectEnabledControls: KB_BOOLCTRLMASK
enabledControls: KB_BOOLCTRLMASK
changeControls: KB_CONTROLMASK
repeatDelay,repeatInterval: CARD16
slowKeysDelay, debounceDelay: CARD16
mouseKeysDelay, mouseKeysInterval: CARD16
mouseKeysTimeToMax, mouseKeysMaxSpeed: CARD16
mouseKeysCurve: INT16
accessXTimeout: CARD16
accessXTimeoutMask, accessXTimeoutValues: KB_BOOLCTRLMASK
accessXTimeoutOptionsMask,accessXTimeoutOptionsValues: CARD16
perKeyRepeat: LISTofCARD8

Errors: Keyboard , Value


This request sets the keyboard controls indicated inchangeControls for the keyboard
specified bydeviceSpec. Each bit that is set inchangeControls indicates that one or
more of the other request fields should be applied, as follows:

Bit in changeControls Field(s) to be Applied
XkbRepeatKeysMask repeatDelay, repeatInterval
XkbSlowKeysMask slowKeysDelay
XkbStickyKeysMask accessXOptions (only theXkbAX_TwoKeys and the

XkbAX_LatchToLock options are affected)
XkbBounceKeysMask debounceDelay
XkbMouseKeysMask mouseKeysDfltBtn
XkbMouseKeysAccelMask mouseKeysDelay, mouseKeysInterval,

mouseKeysCurve, mouseKeysTimeToMax,
mouseKeysMaxSpeed

XkbAccessXKeysMask accessXOptions (all options)
XkbAccessXTimeoutMask accessXTimeout, accessXTimeoutMask,

accessXTimeoutValues, accessXTimeoutOptionsMask,
accessXTimeoutOptionsValues

XkbAccessXFeedbackMask accessXOptions (all options except those affected by the
XkbStickyKeysMask bit)

XkbGroupsWrapMask groupsWrap
XkbInternalModsMask affectInternalRealMods, internalRealMods,

affectInternalVirtualMods, internalVirtualMods
XkbIgnoreLockModsMask affectIgnoreLockRealMods, ignoreLockRealMods,

affectIgnoreLockVirtualMods, ignoreLockVirtualMods

11/6/97 Protocol Version 1.0/Document Revision 1.0 64

The X Keyboard Extension Protocol Specification

If any other bits are set inchangeControls, aValue error results. If any of the bits
listed above are not set inchangeControls, the corresponding fields must have the
value0, or aMatch error results.

If applied,repeatDelay andrepeatInterval change the autorepeat characteristics of the
keyboard, as described in section 4.1. If specified,repeatDelay andrepeatInterval
must both be non-zero or aValue error results.

If applied, theslowKeysDelay field specifies a new delay for theSlowKeys control,
as defined in section 4.2. If specified,slowKeysDelay must be non-zero, or aValue
error results.

If applied, thedebounceDelay field specifies a new delay for theBounceKeys con-
trol, as described in section 4.3. If present, thedebounceDelay must be non-zero or a
Value error results.

If applied, themouseKeysDfltBtn field specifies the core pointer button for which
events are generated whenever aSA_PtrBtn or SA_LockPtrBtn key action is
activated. If present,mouseKeysDfltBtn must specify a legal button for the core
pointer device, or aValue error results. Section 6.3 describes theSA_PtrBtn and
SA_LockPtrBtn actions in more detail.

If applied, themouseKeysDelay, mouseKeysInterval, mouseKeysTimeToMax,
mouseKeysMaxSpeed andmouseKeysCurve fields change the rate at which the pointer
moves when a key which generates aSA_MovePtr action is held down. Section 4.6
describes theseMouseKeysAccel parameters in more detail. If defined, the
mouseKeysDelay, mouseKeysInterval, mouseKeysTimeToMax andmouseKeysMax-
Speed values must all be greater than zero, or aValue error results. ThemouseKey-
sCurve value must be greater than-1000 or aValue error results.

If applied, theaccessXOptions field sets the AccessX options, which are described in
detail in section 4.7. If either one ofXkbStickyKeysMask andXkbAccessX-
FeedbackMask are set inchangeControls andXkbAccessXKeysMask is not,
only a subset of the AccessX options are changed, as described in the table above; if
both are set or if theAccessXKeys bit is set inchangeControls, all of the AccessX
options are updated. Any bit inaccessXOptions whose interpretation is undefined
must be zero, or aValue error results.

If applied, theaccessXTimeout, accessXTimeoutMask, accessXTimeoutValues,
accessXTimeoutOptionsMask andaccessXTimeoutOptionsValues fields change the
behavior of the AccessX Timeout control, as described in section 4.8. TheaccessX-
Timeout must be greater than zero, or aValue error results. TheaccessXTimeout-
Mask or accessXTimeoutValues fields must specify only legal boolean controls, or a
Value error results. TheaccessXTimeoutOptionsMask andaccessXTimeoutOptions-
Values fields must contain only legal AccessX options or aValue error results. If any
bits are set in either values field but not in the corresponding mask, aMatch error
results.

XkbPerKeyRepeatMask perKeyRepeat
XkbControlsEnabledMask affectEnabledControls, enabledControls

Bit in changeControls Field(s) to be Applied

11/6/97 Protocol Version 1.0/Document Revision 1.0 65

The X Keyboard Extension Protocol Specification

If present, thegroupsWrap field specifies the treatment of out-of-range keyboard
groups, as described in section 7.2.2. If thegroupsWrap field does not specify a legal
treatment for out-of-range groups, aValue error results.

If present, theaffectInternalRealMods field specifies the set of real modifiers to be
changed in the internal modifier definition and theinternalRealMods field specifies
new values for those modifiers. TheaffectInternalVirtualMods andinternalVirtualM-
ods fields update the virtual modifier component of the modifier definition that
describes the internal modifiers in the same way. If any bits are set in either values
field but not in the corresponding mask field, aMatch error results.

If present, theaffectIgnoreLockRealMods field specifies the set of real modifiers to be
changed in the ignore locks modifier definition and theignoreLockRealMods field
specifies new values for those modifiers. TheaffectIgnoreLockVirtualMods and
ignoreLockVirtualMods fields update the virtual modifier component of the ignore
locks modifier definition in the same way. If any bits are set in either values field but
not in the corresponding mask field, aMatch error results.

If present, theperKeyRepeat array specifies the repeat behavior of the individual key-
board keys. The corresponding core protocol or input extension per-key autorepeat
information is updated to reflect any changes specified inperKeyRepeat. If the bits
that correspond to any out-of-range keys are set inperKeyRepeat, aValue error
results.

If present, theaffectEnabledControls andenabledControls field enable and disable
global boolean controls. Any controls set in both fields are enabled; any controls that
are set inaffectEnabledControls but not inenabledControls are disabled. Controls that
are not set in either field are not affected. If any controls are specified inenabledCon-
trols but not inaffectEnabledControls, aMatch error results. If either field contains
anything except boolean controls, aValue error results.

11/6/97 Protocol Version 1.0/Document Revision 1.0 66

The X Keyboard Extension Protocol Specification

16.3.6 Querying and Changing the Keyboard Mapping

 XkbGetMap
deviceSpec: KB_DEVICESPEC
full, partial:KB_MAPPARTMASK
firstType, nTypes: CARD8
firstKeySym, firstKeyAction: KEYCODE
nKeySyms, nKeyActions: CARD8
firstKeyBehavior,firstKeyExplicit: KEYCODE
nKeyBehaviors,nKeyExplicit: CARD8
firstModMapKey,firstVModMapKey: KEYCODE
nModMapKeys, nVModMapKeys: CARD8
virtualMods: KB_VMODMASK

→
deviceID: CARD8
minKeyCode, maxKeyCode: KEYCODE
present: KB_MAPPARTMASK
firstType, nTypes, nTotalTypes: CARD8
firstKeySym, firstKeyAction: KEYCODE
nKeySyms, nKeyActions: CARD8
totalSyms, totalActions: CARD16
firstKeyBehavior, firstKeyExplicit: KEYCODE
nKeyBehaviors, nKeyExplicit: CARD8
totalKeyBehaviors, totalKeyExplicit: CARD8
firstModMapKey, firstVModMapKey: KEYCODE
nModMapKeys, nVModMapKeys: CARD8
totalModMapKeys, totalVModMapKeys: CARD8
virtualMods: KB_VMODMASK
typesRtrn: LISTofKB_KEYTYPE
symsRtrn: LISTofKB_KEYSYMMAP
actsRtrn: { count: LISTofCARD8, acts: LISTofKB_ACTION }
behaviorsRtrn: LISTofKB_SETBEHAVIOR
vmodsRtrn: LISTofSETofKEYMASK
explicitRtrn: LISTofKB_SETEXPLICIT
modmapRtrn: LISTofKB_KEYMODMAP
vmodMapRtrn: LISTofKB_KEYVMODMAP

Errors:Keyboard , Value , Match , Alloc


This request returns the indicated components of the server and client maps of the key-
board specified bydeviceSpec. Thefull mask specifies the map components to be
returned in full; thepartial mask specifies the components for which some subset of
the legal elements are to be returned. The server returns aMatch error if any compo-
nent is specified in bothfull andpartial, or aValue error if any undefined bits are set
in eitherfull or partial.

11/6/97 Protocol Version 1.0/Document Revision 1.0 67

The X Keyboard Extension Protocol Specification

Each bit in thepartial mask controls the interpretation of one or more of the other
request fields, as follows:

If any of these keyboard map components are specified inpartial, the corresponding
values must specify a valid subset of the requested components or this request reports
aValue error. If a keyboard map component is not specified inpartial, the corre-
sponding fields must contain zeroes, or aMatch error results.

If any error is generated, the request aborts and does not report any values.

On successful return, thedeviceID field reports the X input extension device ID of the
keyboard for which information is being returned, or0 if the server does not support
the X input extension. TheminKeyCode andmaxKeyCode return values report the
minimum and maximum keycodes that are legal for the keyboard in question.

Thepresent return value lists all of the keyboard map components contained in the
reply. The bits inpresent affect the interpretation of the other return values as follows:

If XkbKeyTypesMask is set inpresent:
• firstType andnTypes specify the types reported in the reply.
• nTotalTypes reports the total number of types defined for the keyboard
• typesRtrn hasnTypes elements of type KB_KEYTYPE which describe consecutive key

types starting fromfirstType.

If XkbKeySymsMask is set inpresent:
• firstKeySym andnKeySyms specify the subset of the keyboard keys for which symbols

will be reported.
• totalSyms reports the total number of keysyms bound to the keys returned in this reply.
• symsRtrn hasnKeySyms elements of type KB_KEYSYMMAP, which describe the

symbols bound to consecutive keys starting fromfirstKeySym.

If XkbKeyActionsMask is set inpresent:
• firstKeyAction andnKeyActions specify the subset of the keys for which actions are

reported.
• totalActions reports the total number of actions bound to the returned keys.
• Thecountfield of theactsRtrn return value hasnKeyActions entries of type CARD8,

which specify the number of actions bound to consecutive keys starting fromfirstKey-
Action. Theacts field ofactsRtrn hastotalActions elements of type KB_ACTION and
specifies the actions bound to the keys.

If XkbKeyBehaviorsMask is set inpresent:
• ThefirstKeyBehavior andnKeyBehaviors return values report the range of keyboard

keys for which behaviors will be reported.

Bit in the Partial Mask Type Corresponding Field(s)
XkbKeyTypesMask key types firstType, nTypes
XkbKeySymsMask keycodes firstKeySym, nKeySyms
XkbKeyActionsMask keycodes firstKeyAction, nKeyActions
XkbKeyBehaviorsMask keycodes firstKeyBehavior, nKeyBehaviors
XkbExplicitComponentsMask keycodes firstKeyExplicit, nKeyExplicit
XkbModifierMapMask keycodes firstModMapKey, nModMapKeys
XkbVirtualModMapMask keycodes firstVModMapKey, nVModMapKeys
XkbVirtualModsMask virtual

modifiers
virtualMods

11/6/97 Protocol Version 1.0/Document Revision 1.0 68

The X Keyboard Extension Protocol Specification

• ThetotalKeyBehaviors return value reports the number of keys in the range to be
reported that have non-default values.

• ThebehaviorsRtrn value hastotalKeyBehaviors entries of type KB_BEHAVIOR. Each
entry specifies a key in the range for which behaviors are being reported and the behav-
ior associated with that key. Any keys in that range that do not have an entry inbehav-
iorsRtrn have the default behavior,KB_Default .

If XkbExplicitComponentsMask is set inpresent:
• ThefirstKeyExplicit andnKeyExplicit return values report the range of keyboard keys

for which the set of explicit components is to be returned.
• ThetotalKeyExplicit return value reports the number of keys in the range specified by

firstKeyExplicit andnKeyExplicit that have one or more explicit components.
• TheexplicitRtrn return value hastotalKeyExplicit entries of type KB_KEYEXPLICIT.

Each entry specifies the a key in the range for which explicit components are being
reported and the explicit components that are bound to it. Any keys in that range that do
not have an entry inexplicitRtrn have no explicit components.

If XkbModifierMapMask is set inpresent:
• ThefirstModMapKey andnModMapKeys return values report the range of keyboard

keys for which the modifier map is to be reported.
• ThetotalModMapKeys return value reports the number of keys in the range specified

by firstModMapKey andnModMapKeys that are bound with to one or more modifiers.
• ThemodmapRtrn return value hastotalModMapKeys entries of type

KB_KEYMODMAP. Each entry specifies the a key in the range for which the modifier
map is being reported and the set of modifiers that are bound to that key. Any keys in
that range that do not have an entry inmodmapRtrn are not associated with any modifi-
ers by the modifier mapping.

If XkbVirtualModMapMask is set inpresent:
• ThefirstVModMapKey andnVModMapKeys return values report the range of keyboard

keys for which the virtual modifier map is to be reported.
• ThetotalVModMapKeys return value reports the number of keys in the range specified

by firstVModMapKey andnVModMapKeys that are bound with to or more virtual mod-
ifiers.

• ThevmodmapRtrn return value hastotalVModMapKeys entries of type
KB_KEYVMODMAP. Each entry specifies the a key in the range for which the virtual
modifier map is being reported and the set of virtual modifiers that are bound to that
key. Any keys in that range that do not have an entry invmodmapRtrn are not associ-
ated with any virtual modifiers,

If XkbVirtualModsMask is set inpresent:
• ThevirtualMods return value is a mask with one bit per virtual modifier which speci-

fies the virtual modifiers for which a set of corresponding real modifiers is to be
returned.

• ThevmodsRtrn return value is a list with one entry of type KEYBUTMASK for each
virtual modifier that is specified invirtualMods. The entries invmodsRtrn contain the
real modifier bindings for the specified virtual modifiers, beginning with the lowest-
numbered virtual modifier that is present invirtualMods and proceeding to the highest.

If any of these bits are not set inpresent, the corresponding numeric fields all have the
value zero, and the corresponding lists are all of length zero.

11/6/97 Protocol Version 1.0/Document Revision 1.0 69

The X Keyboard Extension Protocol Specification

 XkbSetMap
deviceSpec: KB_DEVICESPEC
flags: { SetMapResizeTypes, SetMapRecomputeActions }
present: KB_MAPPARTMASK
minKeyCode, maxKeyCode: KEYCODE
firstType, nTypes: CARD8
firstKeySym, firstKeyAction: KEYCODE
nKeySyms, nKeyActions: CARD8
totalSyms, totalActions: CARD16
firstKeyBehavior, firstKeyExplicit: KEYCODE
nKeyBehaviors, nKeyExplicit: CARD8
totalKeyBehaviors, totalKeyExplicit: CARD8
firstModMapKey, firstVModMapKey: KEYCODE
nModMapKeys, nVModMapKeys: CARD8
totalModMapKeys, totalVModMapKeys: CARD8
virtualMods: VMODMASK
types: LISTofKB_KEYTYPE
syms: LISTofKB_KEYSYMMAP
actions: { count: LISTofCARD8, actions: LISTofKB_ACTION }
behaviors: LISTofKB_BEHAVIOR
vmods: LISTofKEYMASK
explicit: LISTofKB_EXPLICIT
modmap: LISTofKB_KEYMODMAP
vmodmap: LISTofKB_KEYVMODMAP

Errors:Keyboard , Value , Match , Alloc


This request changes the indicated parts of the keyboard specified bydeviceSpec. With
XKB, the effect of a key release is independent of the keyboard mapping at the time of
the release, so this request can be processed regardless of the logical state of the modi-
fier keys at the time of the request.

Thepresent field specifies the keyboard map components contained to be changed.
The bits inpresent affect the interpretation of the other fields as follows:

If XkbKeyTypesMask is set inpresent, firstType andnTypes specify a subset of the
key types bound to the keyboard to be changed or created. The index of the first key
type to be changed must be less than or equal to the unmodified length of the list of
key types or aValue error results.

If XkbKeyTypesMask is set inpresent andSetMapResizeTypes is set inflags,
the server resizes the list of key types bound to the keyboard so that the last key type
specified by this request is the last element in the list. If the list of key types is shrunk,
any existing key definitions that use key types that eliminated are automatically
assigned key types from the list of canonical key types as described in Section 12.2.3.
The list of key types bound to a keyboard must always include the four canonical types
and cannot have more thanXkbMaxTypesPerKey (32) types; any attempt to reduce
the number of types bound to a keyboard below four or aboveXkbMaxTypesPer-
Key causes aValue error. Symbolic names for newly created key types or levels
within a key type are initialized toNone.

11/6/97 Protocol Version 1.0/Document Revision 1.0 70

The X Keyboard Extension Protocol Specification

If XkbKeyTypesMask is set inpresent, the types list hasnTypes entries of type
KB_KEYTYPE.Each key type specified intypes must be valid or aValue error
results. To be valid a key type definition must meet the following criteria:
• ThenumLevels for the type must be greater than zero.
• If the key type isONE_LEVEL (i.e. index zero in the list of key types),numLevels must

be one.
• If the key type isTWO_LEVEL or KEYPAD, orALPHABETIC (i.e. index one, two, or

three in the lest of key types) group width must be two.

Each key type in types must also be internally consistent, or a Match error results. To
be internally consistent, a key type definition must meet the following criteria:
• Each map entry must specify a resulting level that is legal for the type.
• Any real or virtual modifiers specified in any of the map entries must also be specified

in themods for the type.

If XkbKeySymsMask is set inpresent, firstKeySym andnKeySyms specify a subset
of the keyboard keys to which new symbols are to be assigned andtotalSyms specifies
the total number of symbols to be assigned to those keys. If any of the keys specified
by firstKeySym andnKeySyms are not legal, aMatch error results. Thesyms list has
nKeySyms elements of type KB_KEYSYMMAP. Each key in the resulting key sym-
bol map must be valid and internally consistent or aValue error results. To be valid
and internally consistent, a key symbol map must meet the following criteria:
• The key type indices must specify legal result key types.
• The number of groups specified bygroupInfo must be in the range0…4.
• Thewidth of the key symbol map must be equal tonumLevels of the widest key type

bound to the key.
• The number of symbols,nSyms, must equal the number of groups timeswidth.

If XkbKeyActionsMask is set inpresent, firstKeyAction andnKeyActions specify a
subset of the keyboard keys to which new actions are to be assigned andtotalActions
specifies the total number of actions to be assigned to those keys. If any of the keys
specified byfirstKeyAction andnKeyActions are not legal, aMatch error results. The
count field of theactions return value hasnKeyActions elements of type CARD8; each
element ofcount specifies the number of actions bound to the corresponding key. The
actions list in theactions field hastotalActions elements of type KB_ACTION. These
actions are assigned to each target key in turn, as specified bycount. The list of actions
assigned to each key must either be empty or have exactly as many actions as the key
has symbols, or aMatch error results.

If XkbKeyBehaviorsMask is set inpresent, firstKeyBehavior andnKeyBehaviors
specify a subset of the keyboard keys to which new behaviors are to be assigned, and
totalKeyBehaviors specifies the total number of keys in that range to be assigned non-
default behavior. If any of the keys specified byfirstKeyBehavior andnKeyBehaviors
are not legal, aMatch error results. Thebehaviors list hastotalKeyBehaviors ele-
ments of type KB_BEHAVIOR; each entry ofbehaviors specifies a key in the speci-
fied range and a new behavior for that key; any key that falls in the range specified by
firstBehavior andnBehaviors for which no behavior is specified inbehaviors is
assigned the default behavior,KB_Default . The new behaviors must be legal, or a
Value error results. To be legal, the behavior specified in theXkbSetMap request
must:
• Specify a key in the range indicated byfirstKeyBehavior andnKeyBehaviors.
• Not specify thepermanent flag; permanent behaviors cannot be set or changed using

theXkbSetMap request.

11/6/97 Protocol Version 1.0/Document Revision 1.0 71

The X Keyboard Extension Protocol Specification

• If present, theKB_Overlay1 andKB_Overlay2 behaviors must specify a keycode
for the overlay key that is valid for the current keyboard.

• If present, theKB_RadioGroup behavior must specify a legal index (0…31) for the
radio group to which the key belongs.

Key behaviors that are not recognized by the server are accepted but ignored. Attempts
to replace a “permanent” behavior are silently ignored; the behavior is not replaced,
but not error is generated and any other components specified in theXkbSetMap
request are updated, as appropriate.

If XkbVirtualModsMask is set inpresent, virtualMods is a mask which specifies
the virtual modifiers to be rebound. Thevmods list specifies the real modifiers that are
bound to each of the virtual modifiers specified invirtualMods, starting from the low-
est numbered virtual modifier and progressing upward. Any virtual modifier that is not
specified invirtualMods has no corresponding entry invmods, so thevmods list has
one entry for each bit that is set invirtualMods.

If XkbExplicitComponentsMask is set inpresent, firstKeyExplicit andnKeyEx-
plicit specify a subset of the keyboard keys to which new explicit components are to
be assigned, andtotalKeyExplicit specifies the total number of keys in that range that
have at least one explicit component. Theexplicit list hastotalKeyExplicit elements of
type KB_KEYEXPLICIT; each entry ofexplicit specifies a key in the specified range
and a new set of explicit components for that key. Any key that falls in the range spec-
ified by firstKeyExplicit andnKeyExplicit that is not assigned some value inexplicit
has no explicit components.

If XkbModifierMapMask is set inpresent, firstModMapKey andnModMapKeys
specify a subset of the keyboard keys for which new modifier mappings are to be
assigned, andtotalModMapKeys specifies the total number of keys in that range to
which at least one modifier is bound. Themodmap list hastotalModMapKeys ele-
ments of type KB_KEYMODMAP; each entry ofmodmap specifies a key in the spec-
ified range and a new set of modifiers to be associated with that key. Any key that falls
in the range specified byfirstModMapKey andnModMapKeys that is not assigned
some value inmodmap has no associated modifiers.

If the modifier map is changed by theXkbSetMap request, any changes are also
reflected in the core protocol modifier mapping. Changes to the core protocol modifier
mapping are reported to XKB-unaware clients viaMappingNotify events and can
be retrieved with the core protocolGetModifierMapping request.

If XkbVirtualModMapMask is set inpresent, firstVModMapKey andnVModMap-
Keys specify a subset of the keyboard keys for which new modifier mappings are to be
assigned, andtotalVModMapKeys specifies the total number of keys in that range to
which at least one virtual modifier is bound. Thevmodmap list hastotalVModMap-
Keys elements of type KB_KEYVMODMAP; each entry ofvmodmap specifies a key
in the specified range and a new set of virtual modifiers to be associated with that key.
Any key that falls in the range specified byfirstVModMapKey andnVModMapKeys
that is not assigned some value invmodmap has no associated virtual modifiers.

If the resulting keyboard map is legal, the server updates the keyboard map. Changes
to some keyboard components have indirect effects on others:

If the XkbSetMapRecomputeActions bit is set inflags, the actions associated
with any keys for which symbol or modifier bindings were changed by this request are

11/6/97 Protocol Version 1.0/Document Revision 1.0 72

The X Keyboard Extension Protocol Specification

recomputed as described in section 12.2.4. Note that actions are recomputedafterany
actions specified in this request are bound to keys, so the actions specified in this
request might be clobbered by the automatic assignment of actions to keys.

If the group width of an existing key type is changed, the list of symbols associated
with any keys of the changed type might be resized accordingly. If the list increases in
size, any unspecified new symbols are initialized toNoSymbol .

If the list of actions associated with a key is not empty, changing the key type of the
key resizes the list. Unspecified new actions are calculated by applying any keyboard
symbol interpretations to the corresponding symbols.

The number of groups global to the keyboard is always equal to the largest number of
groups specified by any of the key symbol maps. Changing the number of groups in
one or more key symbol maps may change the number of groups global to the key-
board.

Assigning key behaviorKB_RadioGroup to a key adds that key as a member of the
specified radio group. Changing a key with the existing behaviorKB_RadioGroup
removes that key from the group. Changing the elements of a radio group can cause
synthetic key press or key release events if the key to be added or removed is logically
down at the time of the change.

Changing a key with behaviorKB_Lock causes a synthetic key release event if the
key is logically but not physically down at the time of the change.

This request sends anXkbMapNotify event which reflects both explicit and indirect
map changes to any interested clients. If any symbolic names are changed, it sends a
XkbNamesNotify reflecting the changes to any interested clients. XKB-unaware
clients are notified of keyboard changes via core protocolMappingNotify events.

Key press and key release events caused by changing key behavior may cause addi-
tionalXkbStateNotify or XkbIndicatorStateNotify events.

16.3.7 Querying and Changing the Compatibility Map

 XkbGetCompatMap
deviceSpec: KB_DEVICESPEC
groups: KB_GROUPMASK
getAllSI: BOOL
firstSI, nSI: CARD16

→
deviceID: CARD8
groupsRtrn: KB_GROUPMASK
firstSIRtrn, nSIRtrn, nTotalSI: CARD16
siRtrn: LISTofKB_SYMINTERP
groupRtrn: LISTofKB_MODDEF

Errors:Keyboard , Match , Alloc


This request returns the listed compatibility map components for the keyboard speci-
fied bydeviceSpec. If deviceSpec does not specify a valid keyboard device, aKey-

11/6/97 Protocol Version 1.0/Document Revision 1.0 73

The X Keyboard Extension Protocol Specification

board Error results. On return,deviceID reports the input extension identifier of the
keyboard device or0 if the server does not support the input extension.

If getAllSI is False , firstSI andnSI specify a subset of the symbol interpretations to
be returned; if used,nSI must be greater than0 and all of the elements specified by
firstSI andnSI must be defined or aValue error results. IfgetAllSyms is True , the
server ignoresfirstSym andnSyms and returns all of the symbol interpretations defined
for the keyboard.

Thegroups mask specifies the groups for which compatibility maps are to be returned.

ThenTotalSI return value reports the total number of symbol interpretations defined
for the keyboard. On successful return, thesiRtrn return list contains the definitions
for nSIRtrn symbol interpretations beginning atfirstSIRtrn.

ThegroupRtrn return values report the entries in the group compatibility map for any
groups specified in thegroupsRtrn return value.

 XkbSetCompatMap
deviceSpec: KB_DEVICESPEC
recomputeActions: BOOL
truncateSI: BOOL
groups: KB_GROUPMASK
firstSI, nSI: CARD16
si: LISTofKB_SYMINTERPRET
groupMaps: LISTofKB_MODDEF

Errors:Keyboard , Match , Value , Alloc


This request changes a specified subset of the compatibility map of the keyboard indi-
cated bydeviceSpec. If deviceSpec specifies an invalid device, aKeyboard error
results and nothing is changed.

ThefirstSI andnSI fields specify a subset of the keyboard symbol interpretations to be
changed. Thesi list specifies new values for each of the interpretations in that range.

The first symbol interpretation to be changed,firstSI, must be less than or equal to the
unchanged length of the list of symbol interpretations, or aValue error results. If the
resulting list would be larger than the unchanged list, it server list of symbol interpre-
tations is automatically increased in size. Otherwise, iftruncateSyms is True , the
server deletes any symbol interpretations after the last element changed by this
request, and reduces the length of the list accordingly.

ThegroupMaps fields contain new definitions for a subset of the group compatibility
map;groups specifies the group compatibility map entries to be updated fromgroup-
Maps.

 All changed compatibility maps and symbol interpretations must either ignore group
state or specify a legal range of groups, or aValue error results.

If the recomputeActions field isTrue , the server regenerates recalculates the actions
bound to all keyboard keys by applying the new symbol interpretations to the entire
key symbol map, as described in section 12.2.4.

11/6/97 Protocol Version 1.0/Document Revision 1.0 74

The X Keyboard Extension Protocol Specification

16.3.8 Querying and Changing Indicators

 XkbGetIndicatorState
deviceSpec: KB_DEVICESPEC

→
deviceID: CARD8
state: KB_INDICATORMASK

Errors:Keyboard


This request reports the current state of the indicators for the keyboard specified by
deviceSpec. If deviceSpec does not specify a valid keyboard, aKeyboard error
results.

On successful return, thedeviceID field reports the input extension identifier of the
keyboard or0 if the server does not support the input extension. Thestate return value
reports the state of each of the thirty-two indicators on the specified keyboard. The
least-significant bit corresponds to indicator 0, the most significant bit to indicator 31;
if a bit is set, the corresponding indicator is lit.

 XkbGetIndicatorMap
deviceSpec: KB_DEVICESPEC
which: KB_INDICATORMASK

→
deviceID: CARD8
which: KB_INDICATORMASK
realIndicators: KB_INDICATORMASK
nIndicators: CARD8
maps: LISTofKB_INDICATORMAP

Errors:Keyboard , Value


This request returns a subset of the maps for the indicators on the keyboard specified
by deviceSpec. If deviceSpec does not specify a valid keyboard device, aKeyboard
error results.

Thewhich field specifies the subset to be returned; a set bit in the which field indicates
that the map for the corresponding indicator should be returned.

On successful return, thedeviceID field reports the input extension identifier of the
keyboard or0 if the server does not support the input extension. Any indicators speci-
fied in realIndicators are actually present on the keyboard; the rest are virtual indica-
tors. Virtual indicators do not directly cause any visible or audible effect when they
change state, but they do causeXkbIndicatorStateNotify events.

Themaps return value reports the requested indicator maps. Indicator maps are
described in section 9.2.1

11/6/97 Protocol Version 1.0/Document Revision 1.0 75

The X Keyboard Extension Protocol Specification

 XkbSetIndicatorMap
deviceSpec: KB_DEVICESPEC
which: KB_INDICATORMASK
maps: LISTofKB_INDICATORMAP

Errors:Keyboard , Value


This request changes a subset of the maps on the keyboard specified bydeviceSpec. If
deviceSpec does not specify a valid keyboard device, aKeyboard error results.

Thewhich field specifies the subset to be changed; themaps field contains the new
definitions.

If successful, the new indicator maps are applied immediately. If any indicators
change state as a result of the new maps, the server generatesXkbIndica-
torStateNotify events as appropriate.

 XkbGetNamedIndicator
deviceSpec: KB_DEVICESPEC
ledClass: KB_LEDCLASSSPEC
ledID: KB_IDSPEC
indicator: ATOM

→
deviceID: CARD8
supported: BOOL
indicator: ATOM
found: BOOL
on: BOOL
realIndicator: BOOL
ndx: CARD8
map: KB_INDICATORMAP

Errors:Keyboard , Atom, Value


This request returns information about the indicator specified byledClass, ledID, and
indicator on the keyboard specified bydeviceSpec. Theindicator field specifies the
name of the indicator for which information is to be returned.

If deviceSpec does not specify a device with indicators, aKeyboard error results. If
ledClass does not have the valueDfltXIClass , LedFeedbackClass , orKbd-
FeedbackClass , aValue error results. IfledID does not have the value
DfltXIId or specify the identifier of a feedback of the class specified byledClass on
the device specified bydeviceSpec, aMatch error results. Ifindicator is not a valid
ATOM other thanNone, anAtom error results.

This request is always supported with default class and identifier on the core keyboard
device. If the request specifies a device other than the core keyboard device or a feed-
back class and identifier other than the defaults, and the server does not support indi-
cator names or indicator maps for extension devices, thesupported return value is
False and the values of the other fields in the reply are undefined. If the client which

11/6/97 Protocol Version 1.0/Document Revision 1.0 76

The X Keyboard Extension Protocol Specification

issued the unsupported request has also selected to do so, it will also receive an
XkbExtensionDeviceNotify event which reports the attempt to use an unsup-
ported feature, in this case one or both ofXkbXI_IndicatorMaps or
XkbXI_IndicatorNames .

Otherwise,supported is True and thedeviceID field reports the input extension iden-
tifier of the keyboard or0 if the server does not support the input extension. Theindi-
cator return value reports the name for which information was requested and thefound
return value isTrue if an indicator with the specified name was found on the device.

If a matching indicator was found:
• Theon return value reports the state of the indicator at the time of the request.
• TherealIndicator return value isTrue if the requested indicator is actually present on

the keyboard orFalse if it is virtual.
• Thendx return value reports the index of the indicator in the requested feedback.
• Themap return value reports the indicator map used by to automatically change the

state of the specified indicator in response to changes in keyboard state or controls.

If no matching indicator is found, thefound return value isFalse , and theon, real-
Indicator, ndx, andmap return values are undefined.

 XkbSetNamedIndicator
deviceSpec: KB_DEVICESPEC
ledClass: KB_LEDCLASSSPEC
ledID: KB_IDSPEC
indicator: ATOM
setState: BOOL
on: BOOL
setMap: BOOL
createMap: BOOL
map: KB_SETINDICATORMAP

Errors:Keyboard , Atom, Access


This request changes various aspects of the indicator specified byledClass, ledID, and
indicator on the keyboard specified bydeviceSpec. Theindicator argument specifies
the name of the indicator to be updated.

If deviceSpec does not specify a device with indicators, aKeyboard error results. If
ledClass does not have the valueDfltXIClass , LedFeedbackClass , orKbd-
FeedbackClass , aValue error results. IfledID does not have the value
DfltXIId or specify the identifier of a feedback of the class specified byledClass on
the device specified bydeviceSpec, aMatch error results. Ifindicator is not a valid
ATOM other thanNone, anAtom error results.

This request is always supported with default class and identifier on the core keyboard
device. If the request specifies a device other than the core keyboard device or a feed-
back class and identifier other than the defaults, and the server does not support indi-
cator names or indicator maps for extension devices, thesupported return value is
False and the values of the other fields in the reply are undefined. If the client which
issued the unsupported request has also selected to do so, it will also receive an
XkbExtensionDeviceNotify event which reports the attempt to use an unsup-

11/6/97 Protocol Version 1.0/Document Revision 1.0 77

The X Keyboard Extension Protocol Specification

ported feature, in this case one or both ofXkbXI_IndicatorMaps and
XkbXI_IndicatorNames .

Otherwise,supported is True and thedeviceID field reports the input extension iden-
tifier of the keyboard or0 if the server does not support the input extension. Theindi-
cator return value reports the name for which information was requested and thefound
return value isTrue if an indicator with the specified name was found on the device.

If no indicator with the specified name is found on the specified device, and thecre-
ateMap field isTrue , XKB assigns the specified name to the lowest-numbered indi-
cator that has no name (i.e. whose name isNone) and applies the rest of the fields in
the request to the newly named indicator. If no unnamed indicators remain, this
request reports no error and has no effect.

If no matching indicator is found or new indicator assigned this request reports no
error and has no effect. Otherwise, it updates the indicator as follows:

If setMapis True , XKB changes the map for the indicator (see section 9.2.1) to
reflect the values specified inmap.

If setState is True , XKB attempts to explicitly change the state of the indicator to the
state specified inon. The effects of an attempt to explicitly change the state of an indi-
cator depend on the values in the map for that indicator and are not guaranteed to suc-
ceed.

If this request affects both indicator map and state, it updates the indicator map before
attempting to change its state, so the success of the explicit change depends on the
indicator map values specified in the request.

If this request changes the indicator map, it applies the new map immediately to deter-
mine the appropriate state for the indicator given the new indicator map and the cur-
rent state of the keyboard.

11/6/97 Protocol Version 1.0/Document Revision 1.0 78

The X Keyboard Extension Protocol Specification

16.3.9 Querying and Changing Symbolic Names

 XkbGetNames
deviceSpec: KB_DEVICESPEC
which: KB_NAMEDETAILMASK

→
deviceID: CARD8
which: KB_NAMESMASK
minKeyCode, maxKeyCode: KEYCODE
nTypes: CARD8
nKTLevels: CARD16
groupNames: KB_GROUPMASK
virtualMods: KB_VMODMASK
firstKey: KEYCODE
nKeys: CARD8
indicators: KB_INDICATORMASK
nRadioGroups, nKeyAliases: CARD8
present: KB_NAMEDETAILMASK
valueList: LISTofITEMs

Errors:Keyboard , Value


This request returns the symbolic names for various components of the keyboard map-
ping for the device specified bydeviceSpec. Thewhich field specifies the keyboard
components for which names are to be returned. IfdeviceSpec does not specify a valid
keyboard device, aKeyboard error results. If any undefined bits inwhich are non-
zero, aValue error results.

ThedeviceID return value contains the X Input Extension device identifier of the spec-
ified device or0 if the server does not support the input extension. Thepresent and
valueList return values specify the components for which names are being reported. If
a component is specified inpresent, the corresponding element is present in theval-
ueList, otherwise that component has length0. The components of thevalueList
appear in the following order, when present:.

Component Size Type

XkbKeycodesName 1 ATOM
XkbGeometryName 1 ATOM
XkbSymbolsName 1 ATOM
XkbPhysSymbolsName 1 ATOM
XkbTypesName 1 ATOM
XkbCompatName 1 ATOM
XkbKeyTypeNames nTypes LISTofATOM
XkbKTLevelNames nTypes,

nKTLevels
{ count: LISTofCARD8,

names: LISTofATOM }
XkbIndicatorNames One per bit set inindicators LISTofATOM
XkbVirtualModNames One per bit set invirtualMods LISTofATOM
XkbGroupNames One per bit set ingroupNames LISTofATOM

11/6/97 Protocol Version 1.0/Document Revision 1.0 79

The X Keyboard Extension Protocol Specification

If type names are reported, thenTypes return value reports the number of types
defined for the keyboard, and the list of key type names invalueList hasnTypes ele-
ments.

If key type level names are reported, the list of key type level names in thevalueList
has two parts: Thecount array hasnTypes elements, each of which reports the number
of level names reported for the corresponding key type. Thenames array hasnKTLev-
els atoms and reports the names of each type sequentially. ThenKTLevels return value
is always equal to the sum of all of the elements of thecount array.

If indicator names are reported, theindicators mask specifies the indicators for which
names are defined; any indicators not specified inindicators have the nameNone.
The list of indicator names invalueList contains the names of the listed indicators,
beginning with the lowest-numbered indicator for which a name is defined and pro-
ceeding to the highest.

If virtual modifier names are reported, thevirtualMods mask specifies the virtual mod-
ifiers for which names are defined; any virtual modifiers not specified invirtualMods
have the nameNone. The list of virtual modifier names invalueList contains the
names of the listed virtual modifiers, beginning with the lowest-numbered virtual
modifier for which a name is defined and proceeding to the highest.

If group names are reported, thegroupNames mask specifies the groups for which
names are defined; any groups not specified ingroupNames have the nameNone. The
list of group names invalueList contains the names of the listed groups, beginning
with the lowest-numbered group for which a name is defined and proceeding to the
highest.

If key names are reported, thefirstKey andnKeys return values specify a range of keys
which includes all keys for which names are defined; any key that does not fall in the
range specified byfirstKey andnKeys has the nameNullKeyName . The list of key
names in thevalueList hasnKeys entries and specifies the names of the keys beginning
atfirstKey.

If key aliases are reported, thenKeyAliases return value specifies the total number of
key aliases defined for the keyboard. The list of key aliases invalueList hasnKey-
Aliases entries, each of which reports an alias and the real name of the key to which it
corresponds.

If radio group names are reported, thenRadioGroups return value specifies the num-
ber of radio groups on the keyboard for which names are defined. The list of radio
group names invalueList reports the names of each group and hasnRadioGroups
entries.

XkbKeyNames nKeys LISTofKB_KEYNAME
XkbKeyAliases nKeyAliases LISTofKB_KEYALIAS
XkbRGNames nRadioGroups LISTofATOM

Component Size Type

11/6/97 Protocol Version 1.0/Document Revision 1.0 80

The X Keyboard Extension Protocol Specification

 XkbSetNames
deviceSpec: KB_DEVICESPEC
which: KB_NAMEDETAILMASK
virtualMods: KB_VMODMASK
firstType, nTypes: CARD8
firstKTLevel, nKTLevels: CARD8
totalKTLevelNames: CARD16
indicators: KB_INDICATORMASK
groupNames: KB_GROUPMASK
nRadioGroups: CARD8
firstKey: KEYCODE
nKeys, nKeyAliases: CARD8
valueList: LISTofITEMs

Errors:Keyboard , Atom, Value , Match , Alloc


This request changes the symbolic names for the requested components of the key-
board specified bydeviceSpec. Thewhich field specifies the components for which
one or more names are to be updated. IfdeviceSpec does not specify a valid keyboard
device, aKeyboard error results. If any undefined bits inwhich are non-zero, a
Value error results. If any error (other thanAlloc or Implementation) occurs,
this request returns without modifying any names.

Thewhich andvalueList fields specify the components to be changed; the type of each
valueList entry, the order in which components appear in thevalueList when specified,
and the correspondence between components inwhich and the entries in thevalueList
are as specified for theXkbGetNames request.

If keycodes, geometry, symbols, physical symbols, types or compatibility map names
are to be changed, the corresponding entries in thevalueList must have the value
None or specify a valid ATOM, else anAtom error occurs.

If key type names are to be changed, thefirstType andnTypes fields specify a range of
types for which new names are supplied, and the list of key type names invalueList
hasnTypes elements. Names for types that fall outside of the range specified byfirst-
Type andnTypes are not affected. If this request specifies names for types that are not
present on the keyboard, aMatch error results. All of the type names in thevalueList
must be valid ATOMs or have the valueNone, or anAtom error results.

The names of the first four keyboard types are specified by the XKB extension and
cannot be changed; including any of the canonical types in this request causes an
Access error, as does trying to assign the name reserved for a canonical type to one
of the other key types.

If key type level names are to be changed, thefirstKTLevel andnKTLevels fields spec-
ify a range of key types for which new level names are supplied, and the list of key
type level names in thevalueList has two parts: Thecount array hasnKTLevels ele-
ments, each of which specifies the number of levels for which names are supplied on
the corresponding key type; any levels for which no names are specified are assigned
the nameNone. Thenames array hastotalKTLevels atoms and specifies the names of
each type sequentially. ThetotalKTLevels field must always equal the sum of all of the

11/6/97 Protocol Version 1.0/Document Revision 1.0 81

The X Keyboard Extension Protocol Specification

elements of thecount array. Level names for types that fall outside of the specified
range are not affected. If this request specifies level names for types that are not
present on the keyboard, or if it specifies more names for a type than the type has lev-
els, aMatch error results. All specified type level names must beNone or a valid
ATOM or anAtom error results.

If indicator names are to be changed, theindicators mask specifies the indicators for
which new names are specified; the names for indicators not specified inindicators
are not affected. The list of indicator names invalueList contains the new names for
the listed indicators, beginning with the lowest-numbered indicator for which a name
is defined and proceeding to the highest. All specified indicator names must be a valid
ATOM or None, or anAtom error results.

If virtual modifier names are to be changed, thevirtualMods mask specifies the virtual
modifiers for which new names are specified; names for any virtual modifiers not
specified invirtualMods are not affected. The list of virtual modifier names invalueL-
ist contains the new names for the specified virtual modifiers, beginning with the low-
est-numbered virtual modifier for which a name is defined and proceeding to the
highest. All virtual modifier names must be valid ATOMs orNone, or anAtom error
results.

If group names are to be changed, thegroupNames mask specifies the groups for
which new names are specified; the name of any group not specified ingroupNames is
not changed. The list of group names invalueList contains the new names for the
listed groups, beginning with the lowest-numbered group for which a name is defined
and proceeding to the highest. All specified group names must be a valid ATOM or
None, or anAtom error results.

If key names are to be changed, thefirstKey andnKeys fields specify a range of keys
for which new names are defined; the name of any key that does not fall in the range
specified byfirstKey andnKeys is not changed. The list of key names in thevalueList
hasnKeys entries and specifies the names of the keys beginning atfirstKey.

If key aliases are to be changed, thenKeyAliases field specifies the length of a new list
of key aliases for the keyboard. The list of key aliases can only be replaced in its
entirety; it cannot be replaced. The list of key aliases invalueList hasnKeyAliases
entries, each of which reports an alias and the real name of the key to which it corre-
sponds.

XKB does not check key names or aliases for consistency and validity, so applications
should take care not to assign duplicate names or aliases

If radio group names are to be changed, thenRadioGroups field specifies the length of
a new list of radio group names for the keyboard. There is no way to edit the list of
radio group names; it can only be replaced in its entirety. The list of radio group names
in valueList reports the names of each group and hasnRadioGroups entries. If the list
of radio group names specifies names for more radio groups than XKB allows (32), a
Match error results. All specified radio group names must be valid ATOMs or have
the valueNone, or anAtom error results.

11/6/97 Protocol Version 1.0/Document Revision 1.0 82

The X Keyboard Extension Protocol Specification

16.3.10 Querying and Changing Keyboard Geometry

 XkbGetGeometry
deviceSpec: KB_DEVICESPEC
name: ATOM

→
deviceID: CARD8
name: ATOM
found: BOOL
widthMM, heightMM: CARD16
baseColorNdx, labelColorNdx: CARD8
properties: LISTofKB_PROPERTY
colors: LISTofSTRING8
shapes: LISTofKB_SHAPE
sections: LISTofKB_SECTION
doodads: LISTofKB_DOODAD
keyAliases: LISTofKB_KEYALIAS

Errors:Keyboard


This request returns a description of the physical layout of a keyboard. If thename
field has the valueNone, or if name is identical to the name of the geometry for the
keyboard specified bydeviceSpec, this request returns the geometry of the keyboard
specified bydeviceSpec; otherwise, ifname is a valid atom other thanNone, the
server returns the keyboard geometry description with that name in the server database
of keyboard components (see section 13.0) if one exists. IfdeviceSpec does not spec-
ify a valid keyboard device, aKeyboard error results. Ifname has a value other than
None or a valid ATOM, anAtom error results.

On successful return, thedeviceID field reports the X Input extension identifier of the
keyboard device specified in the request, or0 if the server does not support the input
extension.

Thefound return value reports whether the requested geometry was available. Iffound
is False , no matching geometry was found and the remaining fields in the request
reply are undefined; iffound is True , the remaining fields of the reply describe the
requested keyboard geometry. The interpretation of the components that make up a
keyboard geometry is described in detail in section 11.0

11/6/97 Protocol Version 1.0/Document Revision 1.0 83

The X Keyboard Extension Protocol Specification

 XkbSetGeometry
deviceSpec: KB_DEVICESPEC
name: ATOM
widthMM, heightMM, CARD16
baseColorNdx, labelColorNdx: CARD8
shapes: LISTofKB_SHAPE
sections: LISTofKB_SECTION
properties: LISTofKB_PROPERTY
colors: LISTofSTRING8
doodads: LISTofKB_DOODAD
keyAliases: LISTofKB_KEYALIAS

Errors:Keyboard , Atom, Value


This request changes the reported description of the geometry for the keyboard speci-
fied bydeviceSpec. If deviceSpec does not specify a valid keyboard device, aKey-
board error results.

Thename field specifies the name of the new keyboard geometry and must be a valid
ATOM or anAtom error results. The new geometry is not added to the server data-
base of keyboard components, but it can be retrieved using theXkbGetGeometry
request for as long as it is bound to the keyboard. The keyboard geometry symbolic
name is also updated from the name field, and anXkbNamesNotify event is gener-
ated, if necessary.

The list ofcolors must include at least two definitions, or aValue error results. All
color definitions in the geometry must specify a legal color (i.e. must specify a valid
index for one of the entries of thecolors list) or aMatch error results. ThebaseCol-
orNdx and thelabelColorNdx must be different or aMatch error results.

The list ofshapes must include at least one shape definition, or aValue error results.
If any two shapes have the same name, aMatch error result. All doodads and keys
which specify shape must specify a valid index for one of the elements of theshapes
list, or aMatch error results.

All section, shape and doodad names must be valid ATOMs or anAtom error results;
the constantNone is not permitted for any of these components.

All doodads must be of a known type; XKB does not support “private” doodad types.

If, after rotation, any keys or doodads fall outside of the bounding box for a section,
the bounding box is automatically adjusted to the minimum size which encloses all of
its components.

If, after adjustment and rotation, the bounding box of any section or doodad extends
below zero on either the X or Y axes, the entire geometry is translated so that the min-
imum extent along either axis is zero.

If, after rotation and translation, any keyboard components fall outside of the rectangle
specified bywidthMM andheightMM, the keyboard dimensions are automatically
resized to the minimum bounding box that surrounds all components. Otherwise, the
width and height of the keyboard are left as specified.

11/6/97 Protocol Version 1.0/Document Revision 1.0 84

The X Keyboard Extension Protocol Specification

Theunder field of any overlay key definitions must specify a key that is in the section
that contains the overlay key, or aMatch error results. This request does not check
the value of theover field of an overlay key definition, so applications must be careful
to avoid conflicts with actual keys.

This request does not verify that key names or aliases are unique. It also does not ver-
ify that all key names specified in the geometry are bound to some keycode or that all
keys that are named in the keyboard definition are also available in the geometry.
Applications should make sure that keyboard geometry has no internal conflicts and is
consistent with the other components of the keyboard definition, but XKB does not
check for or guarantee it.

16.3.11 Querying and Changing Per-Client Flags

 XkbPerClientFlags
deviceSpec: KB_DEVICESPEC
change: KB_PCFMASK
value: KB_PCFMASK
ctrlsToChange: KB_BOOLCTRLMASK
autoCtrls: KB_BOOLCTRLMASK
autoCtrlValues: KB_BOOLCTRLMASK

→
deviceID: CARD8
supported: KB_PCFMASK
value: KB_PCFMASK
autoCtrls: KB_BOOLCTRLMASK
autoCtrlValues: KB_BOOLCTRLMASK
where: KB_PCFMASK:

Errors:Keyboard , Value , Match , Alloc


Changes the client specific flags for the keyboard specified bydeviceSpec. Reports a
Keyboard error ifdeviceSpec does not specify a valid keyboard device.

Any flags specified inchange are set to the corresponding values invalue, provided
that the server supports the requested control. Legal per-client-flags are:

If PCF_AutoResetControls is set in bothchange andvalue, the client’s mask of
controls to be changed is updated fromctrlsToChange, autoCtrls, andautoCtrlValues.
Any controls specified inctrlsToChange are modified in the auto-reset controls mask
for the client; the corresponding bits from theautoCtrls field are copied into the auto-
reset controls mask and the corresponding bits fromautoCtrlValues are copied into the
auto-reset controls state values. If any controls are specified inautoCtrlValues but not

Flag… Described in…
XkbPCF_DetectableAutorepeat Section 4.1.2 on page 8
XkbPCF_GrabsUseXKBStateMask Section 12.1.1 on page 39
XkbPCF_AutoResetControlsMask Section 4.12 on page 12
XkbPCF_LookupStateWhenGrabbed Section 12.3 on page 43
XkbPCF_SendEventUsesXKBState Section 12.5 on page 45

11/6/97 Protocol Version 1.0/Document Revision 1.0 85

The X Keyboard Extension Protocol Specification

in autoCtrls, aMatch error results. If any controls are specified inautoCtrls but not in
ctrlsToChange, aMatch error results.

If PCF_AutoResetControls is set inchange but not invalue, the client’s mask of
controls to be changed is reset to all zeroes (i.e. the client does not change any controls
when it exits).

This request reports aMatch error if a bit is set in any of the value masks but not in
the control mask that governs it or aValue error if any undefined bits are set in any
of the masks.

On successful return, thedeviceID field reports the X Input extension identifier of the
keyboard, or0 if the server does not support the X Input Extension.

Thesupported return value reports the set of per-client flags that are supported by the
server; in this version of XKB, only theXkbPCF_DetectableAutorepeat per-
client flag is optional; all other per-client flags must be supported.

Thevalue return value reports the current settings of all per-client flags for the speci-
fied keyboard. TheautoCtrls return value reports the current set of controls to be reset
when the client exits, while theautoCtrlValues return value reports the state to which
they should be set.

16.3.12 Using the Server’s Database of Keyboard Components

 XkbListComponents
deviceSpec: KB_DEVICESPEC
maxNames: CARD16
keymapsSpec: STRING8
keycodesSpec: STRING8
typesSpec: STRING8
compatMapSpec: STRING8
symbolsSpec: STRING8
geometrySpec: STRING8

→
deviceID: CARD8
extra: CARD16
keymaps,keycodes,types,compatMaps: LISTofKB_COMPONENTNAME
symbols, geometries: LISTofKB_COMPONENTNAME

Where:

KB_COMPONENTNAME { hints: CARD8, name: STRING8 }

Errors:Keyboard , Alloc


This request returns one or more lists of keyboard components that are available from
the X server database of keyboard components for the device specified bydeviceSpec.
The X server is allowed, but not required or expected, to maintain separate databases
for each keyboard device. AKeyboard error results ifdeviceSpec does not specify a
valid keyboard device.

11/6/97 Protocol Version 1.0/Document Revision 1.0 86

The X Keyboard Extension Protocol Specification

ThemaxNames field specifies the maximum number of component names to be
reported, in total, by this request.

ThekeymapsSpec, keycodesSpec, typesSpec, compatMapSpec, symbolsSpec and
geometrySpec request fields specify a pattern to be matched against the names of all
components of the corresponding type in the server database of keyboard components.

Each pattern uses the ISO Latin-1 encoding and should contain only parentheses, the
wildcard characters “?” and “*” or characters that are permitted in a component class
or member name (see section 13.1). Illegal characters in a pattern are simply ignored;
no error results if a pattern contains illegal characters.

Comparison is case-sensitive and, in a pattern, the “?” wildcard character matches any
single character except parentheses while the “*” character matches any number of
characters except parentheses. If an implementation accepts characters other than
those required by XKB, whether or not those characters match either wildcard is also
implementation dependent. An empty pattern does not match any component names.

On successful return, thedeviceID return value reports the X Input Extension device
identifier of the specified device, or0 if the server does not support the X input exten-
sion. Theextra return value reports the number of matching component names that
could not be returned due to the setting of themaxNames field in the request.

Thekeymaps, keycodes, types, compatMaps, symbols andgeometries return the hints
(see section 13.3) and names of any components from the server database that match
the corresponding pattern.

Section 13.0 describes the X server database of keyboard components in more detail.

 XkbGetKbdByName
deviceSpec: KB_DEVICESPEC
need, want: KB_GBNDETAILMASK
load: BOOL
keymapsSpec: STRING8
keycodesSpec, typesSpec: STRING8
compatMapSpec, symbolsSpec: STRING8
geometrySpec: STRING8

→
deviceID: CARD8
minKeyCode, maxKeyCode: KEYCODE
loaded, newKeyboard: BOOL
found, reported: KB_GBNDETAILMASK
map: optionalXkbGetMap reply
compat: optionalXkbGetCompatMap reply
indicators: optionalXkbGetIndicatorMap reply
names: optionalXkbGetNames reply
geometry: optionalXkbGetGeometry reply

Errors:Keyboard , Access , Alloc


Assembles and returns a keymap from the current mapping and specified elements
from the server database of keymap components for the keyboard specified bydevice-

11/6/97 Protocol Version 1.0/Document Revision 1.0 87

The X Keyboard Extension Protocol Specification

Spec, and optionally replaces the current keyboard mapping with the newly generated
description. IfdeviceSpec does not specify a valid keyboard device, aKeyboard
error results.

ThekeymapsSpec, keycodesSpec, typesSpec, compatMapSpec, symbolsSpec and
geometrySpec component expressions (see section 13.2) specify the database compo-
nents to be used to assemble the keyboard description.

Thewant field lists the pieces of the keyboard description that the client wants to have
reported for the newly constructed keymap. Theneed field lists all of the pieces that
must be reported. If any of the pieces inneed cannot be loaded from the specified
names, no description of the keyboard is returned.

Thewant andneed fields can include any combinations of theseXkbGetMap-
ByName (GBN) components:

If either field contains a GBN component that depends on some database component
for which the request does not supply an expression, XKB automatically substitutes
the special pattern “%” which copies the corresponding component from the current
keyboard description, as described in section 13.2.

The load flag asks the server to replace the current keyboard description fordevice-
Spec with the newly constructed keyboard description. Ifload is True , the request
must include component expressions for all of the database components; if any are
missing, XKB substitutes “%” as described above.

If all necessary components are both specified and found, the new keyboard descrip-
tion is loaded. If the new keyboard description has a different geometry or keycode
range than the previous keyboard description, XKB sendsXkbNewKeyboardNo-
tify events to all interested clients. See section 14.0 for more information about the
effects of replacing the keyboard description on the fly.

If the range of keycodes changes, clients that have requestedXkbNewKeyboardNo-
tify events are not sent any other change notification events by this request. Clients
that do not requestXkbNewKeyboardNotify events are sent other XKB change

XkbGetMapByName
Keyboard Component…

Database
Component…

Components of Keyboard Description

XkbGBN_Types types key types
XkbGBN_CompatMap compat symbol interpretations, group compatibility

map
XkbGBN_ClientSymbols symbols, types,

keycodes
key types, key symbol mappings, modifier
mapping

XkbGBN_ServerSymbols symbols, types,
keycodes

key behaviors, key actions, key explicit
components, virtual modifiers, virtual modi-
fier mapping

XkbGBN_IndicatorMap compat indicator maps, indicator names
XkbGBN_KeyNames keycodes key names, key aliases
XkbGBN_Geometry geometry keyboard geometry
XkbGBN_OtherNames all key types, symbol interpretations, indicator

maps, names, geometry

11/6/97 Protocol Version 1.0/Document Revision 1.0 88

The X Keyboard Extension Protocol Specification

notification events (e.g.XkbMapNotify , XkbNamesNotify) as necessary to alert
them to as many of the keyboard changes as possible.

If no error occurs, the request reply reports the GBN components that were found and
sends a description of any of the resulting keyboard that includes and of the compo-
nents that were requested.

ThedeviceID return value reports the X Input extension device identifier of the key-
board that was used, or0 if the server does not support the X input extension.

TheminKeyCode andmaxKeyCode return values report the legal range of keycodes
for the keyboard description that was created. If the resulting keyboard description
does not include at least one of the key names, client symbols or server symbols com-
ponents,minKeyCode andmaxKeyCode are both0.

The loaded return value reports whether or not the existing keyboard definition was
replaced with the newly created one. Ifloaded isTrue , thenewKeyboard return value
reports whether or not the new map changed the geometry or range of keycodes and
causedXkbNewKeyboardNotify events for clients that have requested them.

Thefound return value reports the GBN components that were present in the keymap
that was constructed by this request. Thereported return value lists the subset of those
components for which descriptions follow. if any of the components specified in the
need field of the request were not found,reported is empty, otherwise it contains the
intersection of thefound return value with the union of theneed andwant request
fields.

If any ofGBN_Types, GBN_ClientSymbols or GBN_ServerSymbols are set
in reported, themap return value has the same format as the reply to anXkbGetMap
request and reports the corresponding pieces of the newly constructed keyboard
description.

If GBN_CompatMap is set inreported, thecompat return value has the same format
as the reply to anXkbGetCompatMap request and reports the symbol interpretations
and group compatibility map for the newly constructed keyboard description.

If GBN_IndicatorMap is set inreported, theindicators return value has the same
format as the reply to anXkbGetIndicatorMap request and reports the physical
indicators and indicator maps for the newly constructed keyboard description.

If GBN_KeyNames or GBN_OtherNames are set inreported, thenames return
value has the same format as the reply to anXkbGetNames reply and reports the cor-
responding set of symbolic names for the newly constructed keyboard description.

If GBN_Geometry is set inreported, thegeometry return value has the same format
as the reply to anXkbGetGeometryMap request and reports the keyboard geometry
for the newly constructed keyboard description.

11/6/97 Protocol Version 1.0/Document Revision 1.0 89

The X Keyboard Extension Protocol Specification

16.3.13 Querying and Changing Input Extension Devices

 XkbGetDeviceInfo
deviceSpec: KB_DEVICESPEC
wanted: KB_XIDEVFEATUREMASK
ledClass: KB_LEDCLASSSPEC
ledID: KB_IDSPEC
allButtons: BOOL
firstButton, nButtons: CARD8

→
deviceID: CARD8
present: KB_XIDEVFEATUREMASK
supported: KB_XIFEATUREMASK
unsupported: KB_XIFEATUREMASK
firstBtnWanted: CARD8
nBtnsWanted: CARD8
firstBtnRtrn: CARD8
nBtnsRtrn: CARD8
totalBtns: CARD8
hasOwnState: BOOL
dfltKbdFB, dfltLedFB: KB_IDSPEC
devType: ATOM
name: STRING
btnActions: LISTofKB_ACTION
leds: LISTofKB_DEVICELEDINFO

Errors:Device , Match , Access , Alloc


Reports a subset of the XKB-supplied information about the input device specified by
deviceSpec. Unlike most XKB requests, the device specified forXkbGetDevice-
Info need not be a keyboard device. Nonetheless, aKeyboard error results if
deviceSpec does not specify a valid core or input extension device.

Thewanted field specifies the types of information to be returned, and controls the
interpretation of the other request fields.

If the server does not support assignment of XKB actions to extension device buttons,
theallButtons, firstButton andnButtons fields are ignored.

Otherwise, if theXkbXI_ButtonActions flag is set inwanted, theallButtons,
firstButton andnButtons fields specify the device buttons for which actions should be
returned. SettingallButtons to True requests actions for all device buttons; ifallBut-
tons is False , firstButton andnButtons specify a range of buttons for which actions
are requested. If the device has no buttons or iffirstButton andnButtons specify illegal
buttons, aMatch error results. IfallButtons is True , firstButton andnButtons are
ignored.

If the server does not support XKB access to any aspect of the indicators on extension
devices, or if thewanted field does not include any of the indicator flags, theledClass
andledID fields are ignored. Otherwise,ledClass andledID specify one or more feed-
back(s) for which indicator information is requested. IfledClass or ledID have illegal

11/6/97 Protocol Version 1.0/Document Revision 1.0 90

The X Keyboard Extension Protocol Specification

values, aValue error results. If they have legal values but do not specify a keyboard
or indicator class feedback for the device in question, aMatch error results.

The ledClass field can specify eitherKbdFeedbackClass , LedFeedback-
Class , XkbDfltXIClass , orXkbAllXIClasses . If at least one keyboard feed-
back is defined for the specified device,XkbDfltXIClass is equivalent to
KbdFeedbackClass , otherwise it is equivalent toLedFeedbackClass . If
XkbAllXIClasses is specified, this request returns information about both indica-
tor and keyboard class feedbacks which match the requested identifier, as described
below.

The ledID field can specify any valid input extension feedback identifier,XkbD-
fltXIId , orXkbAllXIIds . The default keyboard feedback is the one that is
affected by core protocol requests; the default led feedback is implementation-spe-
cific. If XkbAllXIIds is specified, this request returns indicator information about
all feedbacks of the class(es) specified byledClass.

If no error results, thedeviceID return value reports the input extension device identi-
fier of the device for which values are being returned. Thesupported return value
reports the set of optional XKB extension device features that are supported by this
implementation (see section 15.0) for the specified device, and the unsupported return
value reports anyunsupported features.

If hasOwnState is True , the device is also a keyboard, and any indicator maps bound
to the device use the current state and control settings for this device to control auto-
matic changes. IfhasOwnState is False , the state and control settings of the core
keyboard device control automatic indicator changes.

Thename field reports the X Input Extension name for the device. ThedevType field
reports the X Input Extension device type. Both fields are provided merely for conve-
nience and are not interpreted by XKB.

Thepresent return value reports the kinds of device information being returned, and
controls the interpretation of the remaining fields. Thepresent field consists of the
wanted field from the original request minus the flags for any unsupported features.

If XkbXI_ButtonActions is set inpresent, thetotalBtns return value reports the
total number of buttons present on the device,firstBtnWanted andnBtnsWanted spec-
ify the range of buttons for which actions were requested, and thefirstBtnRtrn and
nBtnsRtrnvalues specify the range of buttons for which actions are reported. The
actionsRtrn list hasnButtonsRtrn entries which contain the actions bound to the speci-
fied buttons on the device. Any buttons for which actions were requested but not
returned have the actionNoAction() .

If any indicator information is reported, the leds list contains one element for each
requested feedback. For example, ifledClass is XkbAllXIClasses andledID is
XkbAllXIIds , leds describes all of the indicators on the device and has one element
for each keyboard or led class feedback defined for the device. If any information at
all is reported about a feedback, the set of physical indicators is also reported in the
physIndicators field of the corresponding element ofleds.

If the server supports assignment of indicator maps to extension device indicators, and
if the XkbXI_IndicatorMaps flag is set inwanted, each member ofleds reports
any indicators on the corresponding feedback to which names have been assigned.

11/6/97 Protocol Version 1.0/Document Revision 1.0 91

The X Keyboard Extension Protocol Specification

Any indicators for which no map is reported have the default map, which allows
explicit changes and does not request any automatic changes.

If the server supports assignment of indicator names to extension device indicators,
and theXkbXI_IndicatorNames flag is set inwanted, each member ofleds
reports any indicators on the corresponding feedback to which names have been
assigned. Any indicators for which no name is reported have the nameNone.

If the server supports XKB access to the state of extension device indicators, and the
XkbXI_IndicatorState flag is set in wanted, each member of leds reports the
state of the indicators on the corresponding feedback.

If any unsupported features are requested, and the requesting client has selected for
them, the server sends the client anXkbExtensionDeviceNotify event which
indicates that an unsupported feature was requested. This event is only generated if the
client which issued the unsupported request has selected for it and, if generated, is not
sent to any other clients.

 XkbSetDeviceInfo
deviceSpec: KB_DEVICESPEC
change: KB_XIDEVFEATUREMASK
firstBtn, nBtns: CARD8
btnActions:LISTofKB_ACTION
leds: LISTofKB_DEVICELEDINFO

Errors:Device , Match , Access , Alloc


Changes a subset of the XKB-supplied information about the input device specified by
deviceSpec. Unlike most XKB requests, the device specified forXkbGetDevice-
Info need not be a keyboard device. Nonetheless, aKeyboard error results if
deviceSpec does not specify a valid core or input extension device

Thechange field specifies the features for which new values are supplied, and controls
the interpretation of the other request fields.

If the server does not support assignment of XKB actions to extension device buttons,
thefirstButton andnButtons fields are ignored.

Otherwise, if theXkbXI_ButtonActions flag is set inchange, thefirstBtn and
nBtns fields specify a range of buttons for which actions are specified in this request.
If the device has no buttons or iffirstBtn andnBtns specify illegal buttons, aMatch
error results.

Each element of theleds list describes the changes for a single keyboard or led feed-
back. If theledClass field of any element ofleds contains any value other thanKbd-
FeedbackClass , LedFeedbackClass or XkbDfltXIClass , aValue error
results. If theledId field of any element of leds contains any value other than a valid

11/6/97 Protocol Version 1.0/Document Revision 1.0 92

The X Keyboard Extension Protocol Specification

input extension feedback identifier orXkbDfltXIId , aValue error results. If both
fields are valid, but the device has no matching feedback, aMatch error results.

The fields of each element ofleds are interpreted as follows:
• If XkbXI_IndicatorMaps is set inchange and the server supports XKB assign-

ment of indicator maps to the corresponding feedback, the maps for all indicators on
the corresponding feedback are taken fromleds. If the server does not support this fea-
ture, any maps specified inleds are ignored.

• If XkbXI_IndicatorNames is set inchange, and the server supports XKB assign-
ment of names to indicators for the corresponding feedback, the names for all indica-
tors on the corresponding feedback are taken fromleds. If the server does not support
this feature, any names specified inleds are ignored. Regardless of whether they are
used, any names be a valid Atom orNone, or anAtom error results.

• If XkbXI_IndicatorState is set in change, and the server supports XKB changes
to extension device indicator state, the server attempts to change the indicators on the
corresponding feedback as specified byleds. Any indicator maps bound to the feed-
back are applied, so state changes might be blocked or have side-effects.

If any unsupported features are requested, and the requesting client has selected for
them, the server sends the client anXkbExtensionDeviceNotify event which
indicates that an unsupported feature was requested. This event is only generated if the
client which issued the unsupported request has selected for it and, if generated, is not
sent to any other clients.

16.3.14 Debugging the X Keyboard Extension

 XkbSetDebuggingFlags
affectFlags, flags: CARD32
affectCtrls, ctrls: CARD32
message: STRING

→
currentFlags, supportedFlags: CARD32
currentCtrls, supportedCtrls: CARD32


This request sets up various internal XKB debugging flags and controls. It is intended
for developer use and may be disabled in production servers. If disabled,XkbSetDe-
buggingFlags has no effect but returnsSuccess .

TheaffectFlags field specifies the debugging flags to be changed, theflags field spec-
ifies new values for the changed flags. The interpretation of the debugging flags is
implementation-specific, but flags are intended to control debugging output and
should not otherwise affect the operation of the server.

TheaffectCtrls field specifies the debugging controls to be changed, thectrls field
specifies new values for the changed controls. The interpretation of the debugging
controls is implementation-specific, but debugging controls are allowed to affect the
behavior of the server.

Themessage field provides a message that the X server can print in any logging or
debugging files before changing the flags. The server must accept this field but it is
not required to actually display it anywhere.

11/6/97 Protocol Version 1.0/Document Revision 1.0 93

The X Keyboard Extension Protocol Specification

The X Test Suite makes some assumptions about the implementation of locking modi-
fier keys that do not apply when XKB is present. TheXkbDF_DisableLocks
debugging control provides a simple workaround to these test suite problems by sim-
ply disabling all locking keys. IfXkbDF_DisableLocks is enabled, the
SA_LockMods andSA_LockGroup actions behave likeSA_SetMods and
SA_LockMods , respectively. If it is disabled,SA_LockMods andSA_LockGroup
actions behave normally.

Implementations are free to ignore theXkbDF_DisableLocks debugging control
or to define others.

ThecurrentFlags return value reports the current setting for the debugging flags, if
applicable. ThecurrentCtrls return value reports the setting for the debugging con-
trols, if applicable. ThesupportedFlags andsupportedCtrls fields report the flags and
controls that are recognized by the implementation. Attempts to change unsupported
fields or controls are silently ignored.

If the XkbSetDebuggingFlags request contains more data than expected, the
server ignores the extra data, but no error results. If the request has less data than
expected, aLength error results.

If the XkbSetDebuggingFlags reply contains more data than expected, the client
just ignores any uninterpreted data without reporting an error. If the reply has less data
than expected, aLength error results.

16.4 Events

All XKB events report the time at which they occurred in a field namedtime and the
device on which they occurred in a field nameddeviceID. XKB uses a single X event
code for all events and uses a common field to distinguish XKB event type.

16.4.1 Tracking Keyboard Replacement

 XkbNewKeyboardNotify
time: TIMESTAMP
deviceID: CARD8
changed: KB_NKNDETAILMASK
minKeyCode, maxKeyCode: KEYCODE
oldDeviceID: CARD8
oldMinKeyCode, oldMaxKeyCode: KEYCODE
requestMajor, requestMinor: CARD8


An XkbNewKeyboardNotify event reports that a new core keyboard has been
installed. New keyboard notify events can be generated:
• When the X server detects that the keyboard was changed.
• When a client installs a new extension device as the core keyboard using the X Input

ExtensionChangeKeyboardDevice request.
• When a client issues anXkbGetMapByName request which changes the keycodes

range or geometry.

11/6/97 Protocol Version 1.0/Document Revision 1.0 94

The X Keyboard Extension Protocol Specification

Thechanged field of the event reports the aspects of the keyboard that have changed,
and can contain any combination of the event details for this event:

The server sends anXkbNewKeyboardNotify event to a client only if at least one
of the bits that is set in thechanged field of the event is also set in the appropriate
event details mask for the client.

TheminKeyCode andmaxKeyCode fields report the minimum and maximum key-
codes that can be returned by the new keyboard. TheoldMinKeyCode andoldMaxKey-
Code fields report the minimum and maximum values that could be returned before
the change. This event always reports all four values, but the old and new values are
the same unlessNKN_Keycodes is set inchanged.

Once a client receives a new keyboard notify event which reports a new keycode
range, the X server reports events from all keys in the new range to that client. Clients
that do not request or receive new keyboard notify events receive events only from
keys that fall in the last range for legal keys reported to that client. See section 14.0 for
a more detailed explanation.

If NKN_Keycodes is set inchanged, theXkbNewKeyboardNotify event sub-
sumes all other change notification events (e.g.XkbMapNotify , XkbNamesNo-
tify) that would otherwise result from the keyboard change. Clients who receive an
XkbNewKeyboardNotify event should assume that all other aspects of the key-
board mapping have changed and regenerate the entire local copy of the keyboard
description.

ThedeviceID field reports the X Input Extension device identifier of the new keyboard
device;oldDeviceID reports the device identifier before the change. This event always
includes both values, but they are the same unlessNKN_DeviceID is set inchanged.
If the server does not support the X Input Extension, both fields have the value0.

TherequestMajor andrequestMinor fields report the major and minor opcode of the
request that caused the keyboard change. If the keyboard change was not caused by
some client request, both fields have the value0.

Bit in Changed Meaning
NKN_Keycodes The new keyboard has a different minimum or maximum keycode.
NKN_Geometry The new keyboard has a different keyboard geometry.
NKN_DeviceID The new keyboard has a new X Input Extension device identifier

11/6/97 Protocol Version 1.0/Document Revision 1.0 95

The X Keyboard Extension Protocol Specification

16.4.2 Tracking Keyboard Mapping Changes

 XkbMapNotify
time: TIMESTAMP
deviceID: CARD8
ptrBtnActions: CARD8
changed: KB_MAPPARTMASK
minKeyCode, maxKeyCode: KEYCODE
firstType, nTypes: CARD8
firstKeySym, firstKeyAction: KEYCODE
nKeySyms, nKeyActions: CARD8
firstKeyBehavior, firstKeyExplicit: KEYCODE
nKeyBehaviors, nKeyExplicit: CARD8
virtualMods: KB_VMODMASK
firstModMapKey, firstVModMapKey: KEYCODE
nModMapKeys, nVModMapKeys: CARD8


An XkbMapNotify event reports that some aspect of XKB map for a keyboard has
changed. Map notify events can be generated whenever some aspect of the keyboard
map is changed by an XKB or core protocol request.

ThedeviceID field reports the keyboard for which some map component has changed
and thechanged field reports the components with new values, and can contain any of
the values that are legal for thefull andpartial fields of theXkbGetMap request. The
server sends anXkbMapNotify event to a client only if at least one of the bits that is
set in thechanged field of the event is also set in the appropriate event details mask for
the client.

TheminKeyCode andmaxKeyCode fields report the range of keycodes that are legal
on the keyboard for which the change is being reported.

If XkbKeyTypesMask is set inchanged, thefirstType andnTypes fields report a
range of key types that includes all changed types. Otherwise, both fields are0.

If XkbKeySymsMask is set inchanged, thefirstKeySym andnKeySyms fields report
a range of keycodes that includes all keys with new symbols. Otherwise, both fields
are0.

If XkbKeyActionsMask is set inchanged, thefirstKeyAction andnKeyActions
fields report a range of keycodes that includes all keys with new actions. Otherwise,
both fields are0.

If XkbKeyBehaviorsMask is set inchanged, thefirstKeyBehaviorandnKeyBe-
haviors fields report a range of keycodes that includes all keys with new key behavior.
Otherwise, both fields are0.

If XkbVirtualModsMask is set inchanged, virtualMods contains all virtual modi-
fiers to which a new set of real modifiers is bound. Otherwise,virtualMods is 0.

If XkbExplicitComponentsMask is set inchanged, thefirstKeyExplicit and
nKeyExplicit fields report a range of keycodes that includes all keys with changed
explicit components. Otherwise, both fields are0.

11/6/97 Protocol Version 1.0/Document Revision 1.0 96

The X Keyboard Extension Protocol Specification

If XkbModifierMapMask is set inchanged, thefirstModMapKey andnModMap-
Keys fields report a range of keycodes that includes all keys with changed modifier
bindings. Otherwise, both fields are0.

If XkbVirtualModMapMask is set inchanged, thefirstVModMapKey andnVMod-
MapKeys fields report a range of keycodes that includes all keys with changed virtual
modifier mappings. Otherwise, both fields are0.

16.4.3 Tracking Keyboard State Changes

 XkbStateNotify
time: TIMESTAMP
deviceID: CARD8
mods, baseMods, latchedMods, lockedMods: KEYMASK
group, lockedGroup: CARD8
baseGroup, latchedGroup: INT16
compatState: KEYMASK
grabMods, compatGrabMods: KEYMASK
lookupMods, compatLookupMods: KEYMASK
ptrBtnState: BUTMASK
changed: KB_STATEPARTMASK
keycode: KEYCODE
eventType: CARD8
requestMajor, requestMinor: CARD8


An XkbStateNotify event reports that some component of the XKB state (see
section 2.0) has changed. State notify events are usually caused by key or pointer
activity, but they can also result from explicit state changes requested by the
XkbLatchLockState request or by other extensions.

ThedeviceID field reports the keyboard on which some state component changed. The
changed field reports the XKB state components (see section 2.0) that have changed
and contain any combination of:

Bit in changed Event field Changed component
ModifierState mods The effective modifiers
ModifierBase baseMods The base modifiers
ModifierLatch latchedMods The latched modifiers
ModifierLock lockedMods The locked modifiers
GroupState group The effective keyboard group
GroupBase baseGroup The base keyboard group
GroupLatch latchedGroup The latched keyboard group
GroupLock lockedGroup The locked keyboard group
PointerButtons ptrBtnState The state of the core pointer buttons
GrabMods grabMods The XKB state used to compute grabs
LookupMods lookupMods The XKB state used to look up symbols
CompatState compatState Default state for non-XKB clients
CompatGrabMods compatGrabMods The core state used to compute grabs

11/6/97 Protocol Version 1.0/Document Revision 1.0 97

The X Keyboard Extension Protocol Specification

The server sends anXkbStateNotify event to a client only if at least one of the
bits that is set in thechanged field of the event is also set in the appropriate event
details mask for the client.

A state notify event reports current values for all state components, even those with
unchanged values.

Thekeycode field reports the key or button which caused the change in state while the
eventType field reports the exact type of event (e.g.KeyPress). If the change in state
was not caused by key or button activity, both fields have the value0.

TherequestMajor andrequestMinor fields report the major and minor opcodes of the
request that caused the change in state and have the value0 if it was resulted from key
or button activity.

16.4.4 Tracking Keyboard Control Changes

 XkbControlsNotify
time: TIMESTAMP
deviceID: CARD8
numGroups: CARD8
changedControls: KB_CONTROLMASK
enabledControls,enabledControlChanges: KB_BOOLCTRLMASK
keycode: KEYCODE
eventType: CARD8
requestMajor: CARD8
requestMinor: CARD8


An XkbControlsNotify event reports a change in one or more of the global key-
board controls (see section 4.0) or in the internal modifiers or ignore locks masks (see
section 2.3.1). Controls notify events are usually caused by andXkbSetControls
request, but they can also be caused by keyboard activity or certain core protocol and
input extension requests.

ThedeviceID field reports the keyboard for which some control has changed, and the
changed field reports the controls that have new values.

Thechanged field can contain any of the values that are permitted for thechangeCon-
trols field of theXkbSetControls request. The server sends anXkbControls-
Notify event to a client only if at least one of the bits that is set in thechanged field
of the event is also set in the appropriate event details mask for the client.

ThenumGroups field reports the total number of groups defined for the keyboard,
whether or not the number of groups has changed.

TheenabledControls field reports the current status of all of the boolean controls,
whether or not any boolean controls changed state. IfEnabledControls is set in
changed, theenabledControlChanges field reports the boolean controls that were

CompatLookupMods compatLookupMods The core state used to look up symbols
Bit in changed Event field Changed component

11/6/97 Protocol Version 1.0/Document Revision 1.0 98

The X Keyboard Extension Protocol Specification

enabled or disabled; if a control is specified inenabledControlChanges, the value that
is reported for that control inenabledControls represents a change in state.

Thekeycode field reports the key or button which caused the change in state while the
eventType field reports the exact type of event (e.g.KeyPress). If the change in state
was not caused by key or button activity, both fields have the value0.

TherequestMajor andrequestMinor fields report the major and minor opcodes of the
request that caused the change in state and have the value0 if it was resulted from key
or button activity.

16.4.5 Tracking Keyboard Indicator State Changes

 XkbIndicatorStateNotify
time: TIMESTAMP
deviceID: CARD8
stateChanged, state: KB_INDICATORMASK


An XkbIndicatorStateNotify event indicates that one or more of the indica-
tors on a keyboard have changed state. Indicator state notify events can be caused by:
• Automatic update to reflect changes in keyboard state (keyboard activity,

XkbLatchLockState requests).
• Automatic update to reflect changes in keyboard controls (XkbSetControls , key-

board activity, certain core protocol and input extension requests).
• Explicit attempts to change indicator state (core protocol and input extension requests,

XkbSetNamedIndicator requests).
• Changes to indicator maps (XkbSetIndicatorMap andXkbSetNamedIndica-

tor requests).

ThedeviceID field reports the keyboard for which some indicator has changed, and the
state field reports the new state for all indicators on the specified keyboard. Thestate-
Changed field specifies which of the values instate represent a new state for the corre-
sponding indicator. The server sends anXkbIndicatorStateNotify event to a
client only if at least one of the bits that is set in thestateChanged field of the event is
also set in the appropriate event details mask for the client.

16.4.6 Tracking Keyboard Indicator Map Changes

 XkbIndicatorMapNotify
time: TIMESTAMP
deviceID: CARD8
state: KB_INDICATORMASK
mapChanged: KB_INDICATORMASK


An XkbIndicatorMapNotify event indicates that the maps for one or more key-
board indicators have been changed. Indicator map notify events can be caused by
XkbSetIndicatorMap andXkbSetNamedIndicator requests.

ThedeviceID field reports the keyboard for which some indicator map has changed,
and themapChanged field reports the indicators with changed maps. The server sends

11/6/97 Protocol Version 1.0/Document Revision 1.0 99

The X Keyboard Extension Protocol Specification

anXkbIndicatorMapNotify event to a client only if at least one of the bits that
is set in themapChanged field of the event is also set in the appropriate event details
mask for the client.

Thestate field reports the current state of all indicators on the specified keyboard.

16.4.7 Tracking Keyboard Name Changes

 XkbNamesNotify
time: TIMESTAMP
deviceID: CARD8
changed: KB_NAMEDETAILMASK
firstType, nTypes: CARD8
firstLevelName, nLevelNames: CARD8
firstKey: KEYCODE
nKeys, nKeyAliases, nRadioGroups: CARD8
changedGroupNames: KB_GROUPMASK
changedVirtualMods: KB_VMODMASK
changedIndicators: KB_INDICATORMASK


An XkbNamesNotify event reports a change to one or more of the symbolic names
associated with a keyboard. Symbolic names can change when:
• Some client explicitly changes them usingXkbSetNames .
• The list of key types or radio groups is resized
• The group width of some key type is changed

ThedeviceID field reports the keyboard on which names were changed. Thechanged
mask lists the components for which some names have changed and can have any
combination of the values permitted for thewhich field of theXkbGetNames
request. The server sends anXkbNamesNotify event to a client only if at least one
of the bits that is set in thechanged field of the event is also set in the appropriate
event details mask for the client.

If KeyTypeNames is set inchanged, thefirstType andnTypes fields report a range of
types that includes all types with changed names. Otherwise, both fields are0.

If KTLevelNames is set inchanged, thefirstLevelName andnLevelNames fields
report a range of types that includes all types with changed level names. Otherwise,
both fields are0.

If IndicatorNames is set inchanged, thechangedIndicators field reports the indi-
cators with changed names. Otherwise,changedIndicators is 0.

If VirtualModNames is set inchanged, thechangedVirtualMods field reports the
virtual modifiers with changed names. Otherwise,changedVirtualMods is 0.

If GroupNames is set inchanged, thechangedGroupNames field reports the groups
with changed names. Otherwise,changedGroupNames is 0.

If KeyNames is set inchanged, thefirstKey andnKeys fields report a range of key-
codes that includes all keys with changed names. Otherwise, both fields are0.

11/6/97 Protocol Version 1.0/Document Revision 1.0 100

The X Keyboard Extension Protocol Specification

ThenKeyAliases field reports the total number of key aliases associated with the key-
board, regardless of whetherKeyAliases is set inchanged.

ThenRadioGroups field reports the total number of radio group names associated with
the keyboard, regardless of whetherRGNames is set inchanged.

16.4.8 Tracking Compatibility Map Changes

 XkbCompatMapNotify
time: TIMESTAMP
deviceID: CARD8
changedGroups: KB_GROUPMASK
firstSI, nSI: CARD16
nTotalSI: CARD16


An XkbCompatMapNotify event indicates that some component of the compatibil-
ity map for a keyboard has been changed. Compatibility map notify events can be
caused byXkbSetCompatMap andXkbGetMapByName requests.

ThedeviceID field reports the keyboard for which the compatibility map has changed;
if the server does not support the X input extension,deviceID is 0.

ThechangedGroups field reports the keyboard groups, if any, with a changed entry in
the group compatibility map. ThefirstSI andnSI fields specify a range of symbol
interpretations in the symbol compatibility map that includes all changed symbol
interpretations; if the symbol compatibility map is unchanged, both fields are0. The
nTotalSI field always reports the total number of symbol interpretations present in the
symbol compatibility map, regardless of whether any symbol interpretations have
been changed.

The server sends anXkbCompatMapNotify event to a client only if at least one of
the following conditions is met:
• ThenSI field of the event is non-zero, and theXkbSymInterpMask bit is set in the

appropriate event details mask for the client.
• ThechangedGroups field of the event contains at least one group, and theXkb-

GroupCompatMask bit is set in the appropriate event details mask for the client.

11/6/97 Protocol Version 1.0/Document Revision 1.0 101

The X Keyboard Extension Protocol Specification

16.4.9 Tracking Application Bell Requests

 XkbBellNotify
time: TIMESTAMP
deviceID: CARD8
bellClass: { KbdFeedbackClass, BellFeedbackClass }
bellID: CARD8
percent: CARD8
pitch: CARD16
duration: CARD16
eventOnly: BOOL
name: ATOM
window: WINDOW


An XkbBellNotify event indicates that some client has requested a keyboard bell.
Bell notify events are usually caused byBell , DeviceBell , orXkbBell requests,
but they can also be generated by the server (e.g. if theAccessXFeedback control
is active).

The server sends anXkbBellNotify event to a client if the appropriate event
details field for the client has the valueTrue .

ThedeviceID field specifies the device for which a bell was requested, while the
bellClass andbellID fields specify the input extension class and identifier of the feed-
back for which the bell was requested. If the reporting server does not support the
input extension, all three fields have the value 0.

Thepercent, pitch andduration fields report the volume, tone and duration requested
for the bell as specified by theXkbBell request. Bell notify events caused by core
protocol or input extension requests use the pitch and duration specified in the corre-
sponding bell or keyboard feedback control.

If the bell was caused by anXkbBell request or by the X server,name reports an
optional symbolic name for the bell and thewindow field optionally reports the win-
dow for which the bell was generated. Otherwise, both fields have the valueNone.

If the eventOnly field isTrue , the server did not generate a sound in response to the
request, otherwise the server issues the beep before sending the event. The eventOnly
field can beTrue if theAudibleBell control is disabled or if a client explicitly
requestseventOnly when it issues anXkbBell request.

11/6/97 Protocol Version 1.0/Document Revision 1.0 102

The X Keyboard Extension Protocol Specification

16.4.10 Tracking Messages Generated by Key Actions

 XkbActionMessage
time: TIMESTAMP
deviceID: CARD8
keycode: KEYCODE
press: BOOL
mods: KEYMASK
group: KB_GROUP
keyEventFollows: BOOL
message: LISTofCARD8


An XkbActionMessage event is generated when the user operates a key to which
anSA_ActionMessage message is bound under the appropriate state and group.
The server sends anXkbActionMessage event to a client if the appropriate event
details field for the client has the valueTrue .

ThedeviceID field specifies the keyboard device that contains the key which activated
the event. Thekeycode field specifies the key whose operation caused the message and
press isTrue if the message was caused by the user pressing the key. Themods and
group fields report the effective keyboard modifiers and group in effect at the time the
key was pressed or released.

If keyEventFollows is True , the server will also send a key press or release event, as
appropriate, for the key that generated the message. If it isFalse , the key causes only
a message. Note that the key event is delivered normally with respect to passive grabs,
keyboard focus, and cursor position, so thatkeyEventFollows does not guarantee that
any particular client which receives theXkbActionMessage notify event will also
receive a key press or release event.

Themessage field isNULL-terminated string of up toActionMessageLength (6)
bytes, which reports the contents of themessage field in the action that caused the
message notify event.

16.4.11 Tracking Changes to AccessX State and Keys

 XkbAccessXNotify
time: TIMESTAMP
deviceID: CARD8
detail: KB_AXNDETAILMASK
keycode: KEYCODE
slowKeysDelay: CARD16
debounceDelay: CARD16


An XkbAccessXNotify event reports on some kinds of keyboard activity when
any of theSlowKeys , BounceKeys or AccessXKeys controls are active. Com-
patibility map notify events can only be caused by keyboard activity.

11/6/97 Protocol Version 1.0/Document Revision 1.0 103

The X Keyboard Extension Protocol Specification

ThedeviceID andkeycode fields specify the keyboard and key for which the event
occurred. Thedetail field describes the event that occurred and has one of the follow-
ing values:

Each subclass of the AccessX notify event is generated only when the control speci-
fied in the table above is enabled. The server sends anXkbAccessXNotify event
to a client only if the bit which corresponds to the value of thedetail field for the event
is set in the appropriate event details mask for the client.

Regardless of the value ofdetail, theslowKeysDelay anddebounceDelay fields always
reports the current slow keys acceptance delay (see section 4.2) and debounce delay
(see section 4.3) for the specified keyboard.

16.4.12 Tracking Changes To Extension Devices

 XkbExtensionDeviceNotify
time: TIMESTAMP
deviceID: CARD16
ledClass: { KbdFeedbackClass, LedFeedbackClass }
ledID: CARD16
reason: KB_XIDETAILMASK
supported: KB_XIFEATUREMASK
unsupported: KB_XIFEATUREMASK
ledsDefined: KB_INDICATORMASK
ledState: KB_INDICATORMASK
firstButton, nButtons: CARD8


An XkbExtensionDeviceNotify event reports:
• A change to some part of the XKB information for an extension device.
• An attempt to use an XKB extension device feature that is not supported for the speci-

fied device by the current implementation.

ThedeviceID field specifies the X Input Extension device identifier of some device on
which an XKB feature was requested, orXkbUseCorePtr if the request affected the
core pointer device. Thereason field explains why the event was generated in
response to the request, and can contain any combination of
XkbXI_UnsupportedFeature and the values permitted for the change field of
theXkbSetDeviceInfo request.

If XkbXI_ButtonActions is set inreason, this event reports a successful change
to the XKB actions bound to one or more buttons on the core pointer or an extension

Detail Control Meaning
AXN_SKPress SlowKeys Key pressed
AXN_SKAccept SlowKeys K ey held until it was accepted.
AXN_SKReject SlowKeys Key released before it was accepted.
AXN_SKRelease SlowKeys Key released after it was accepted.
AXN_BKAccept BounceKeys Key pressed while it was active.
AXN_BKReject BounceKeys Key pressed while it was still disabled.
AXN_AXKWarning AccessXKeys Shift key held down for four seconds

11/6/97 Protocol Version 1.0/Document Revision 1.0 104

The X Keyboard Extension Protocol Specification

device. ThefirstButton andnButtons fields report a range of device buttons that
include all of the buttons for which actions were changed.

If any combination ofXkbXI_IndicatorNames , XkbXI_IndicatorMaps , or
XkbXI_IndicatorState is set in eitherreason or unsupported, theledClass and
ledID fields specify the X Input Extension feedback class and identifier of the feed-
back for which the change is reported. If this event reports any changes to an indicator
feedback, theledsDefined field reports all indicators on that feedback for which either
a name or a indicator map are defined, andledState reports the current state of all of
the indicators on the specified feedback.

If XkbXI_IndicatorNames is set inreason, this event reports a successful change
to the symbolic names bound to one or more extension device indicators by XKB. If
XkbXI_IndicatorMaps is set inreason, this event reports a successful change to
the indicator maps bound to one or more extension device indicators by XKB. If
XkbXI_IndicatorState is set in reason, this event reports that one or more indi-
cators in the specified device and feedback have changed state.

If XkbXI_UnsupportedFeature is set in reason, this event reports an unsuccess-
ful attempt to use some XKB extension device feature that is not supported by the
XKB implementation in the server for the specified device. Theunsupported mask
reports the requested features that are not available on the specified device. See section
15.0 for more information about possible XKB interactions with the X Input Exten-
sion.

The server sends anXkbExtensionDeviceNotify event to a client only if at
least one of the bits that is set in thereason field of the event is also set in the appropri-
ate event details mask for the client.

Events that report a successful change to some extension device feature are reported to
all clients that have expressed interest in the event; events that report an attempt to use
an unsupported feature are reported only to the client which issued the request. Events
which report a partial success are reported to all interested clients, but only the client
that issued the request is informed of the attempt to use unsupported features.

11/6/97 Protocol Version 1.0/Document Revision 1.0 A-1

The X Keyboard Extension Protocol Specification

Appendix A. Default Symbol Transformations

1.0 Interpreting the Control Modifier

If theControl modifier is not consumed by the symbol lookup process, routines that
determine the symbol and string that correspond to an event should convert the symbol
to a string as defined in the table below. Only the string to be returned is affected by
theControl modifier; the symbol is not changed.

This table lists the decimal value of the standard control characters that correspond to
some keysyms for ASCII characters. Control characters for symbols not listed in this
table are application-specific.

2.0 Interpreting the Lock Modifier

If the Lock modifier is not consumed by the symbol lookup process, routines that
determine the symbol and string that correspond to an event should capitalize the
result. Unlike the transformation forControl , the capitalization transformation
changes both the symbol and the string returned by the event.

2.1 Locale-Sensitive Capitalization
If Lock is set in an event and not consumed, applications should capitalize the string
and symbols that result from an event according to the capitalization rules in effect for
the system on which the application is running, taking the current state of the user
environment (e.g. locale) into account.

2.2 Locale-Insensitive Capitalization
XKB recommends but does not require locale-sensitive capitalization. In cases where
the locale is unknown or where locale-sensitive capitalization is prohibitively expen-
sive, applications can capitalize according to the rules defined in this extension.

The following tables list all of the keysyms for which XKB defines capitalization
behavior. Any keysyms not explicitly listed in these tables are not capitalized by XKB
when locale-insensitive capitalization is in effect and are not automatically assigned
theALPHABETIC type as described in section 12.2.3.

Keysyms Value Keysyms Value Keysyms Value Keysyms Value
atsign 0 h, H 8 p, P 16 x, X 24
a, A 1 i, I 9 q, Q 17 y, Y 25
b, B 2 j, J 10 r, R 18 z, Z 26
c, C 3 k, K 11 s, S 19 left_bracket 27
d, D 4 l, L 12 t, T 20 backslash 28
e, E 5 m, M 13 u, U 21 right_bracket 29
f, F 6 n, N 14 v, V 22 asciicircum 30
g, G 8 o, O 15 w, W 23 underbar 31

11/6/97 Protocol Version 1.0/Document Revision 1.0 A-2

The X Keyboard Extension Protocol Specification

2.2.1 Capitalization Rules for Latin-1 Keysyms
This table lists the Latin-11 keysyms for which XKB defines upper and lower case:

2.2.2 Capitalization Rules for Latin-2 Keysyms
This table lists the Latin-2 keysyms for which XKB defines upper and lower case:

2.2.3 Capitalization Rules for Latin-3 Keysyms
This table lists the Latin-3 keysyms for which XKB defines upper and lower case:

2.2.4 Capitalization Rules for Latin-4 Keysyms
This table lists the Latin-4 keysyms for which XKB defines upper and lower case:

Lower
Case

Upper
Case

Lower
Case

Upper
Case Lower Case Upper Case Lower Case Upper Case

a A o O acircumflex Acircumflex eth ETH
b B p P adiaeresis Adiaeresis ntilde Ntilde
c C q Q atilde Atilde ograve Ograve
d D r R aring Aring oacute Oacute
e E s S ae AE ocircumflex Ocircumflex
f F t T ccedilla Ccedilla otilde Otilde
g G u U egrave Egrave odiaeresis Odiaeresis
h H v V eacute Eacute oslash Ooblique
i I w W ecircumflex Ecircumflex ugrave Ugrave
j J x X ediaeresis Ediaeresis uacute Uacute
k K y Y igrave Igrave ucircumflex Ucircumflex
l L z Z iacute Iacute udiaeresis Udiaeresis
m M agrave Agrave icircumflex Icircumflex yacute Yacute
n N aacute Aacute idiaeresis Idiaeresis thorn THORN

Lower Case Upper Case Lower Case Upper Case Lower Case Upper Case
aogonek Aogonek zabovedot Zabovedot dstroke Dstroke
lstroke Lstroke racute Racute nacute Nacute
lcaron Lcaron abreve Abreve ncaron Ncaron
sacute Sacute lacute Lacute odoubleacute Odoubleacute
scaron Scaron cacute Cacute rcaron Rcaron
scedilla Scedilla ccaron Ccaron uabovering Uabovering
tcaron Tcaron eogonek Eogonek udoubleacute Udoubleacute
zacute Zacute ecaron Ecaron tcedilla Tcedilla
zcaron Zcaron dcaron Dcaron

Lower Case Upper Case Lower Case Upper Case Lower Case Upper Case
hstroke Hstroke jcircumflex Jcircumflex gcircumflex Gcircumflex

hcircumflex Hcircumflex cabovedot Cabovedot ubreve Ubreve
idotless Iabovedot ccircumflex Ccircumflex scircumflex Scircumflex
gbreve Gbreve gabovedot Gabovedot

Lower Case Upper Case Lower Case Upper Case Lower Case Upper Case
rcedilla Rcedilla eng ENG omacron Omacron
itilde Itilde amacron Amacron kcedilla Kcedilla

lcedilla Lcedilla iogonek Iogonek uogonek Uogonek
emacron Emacron eabovedot eabovedot utilde Utilde

11/6/97 Protocol Version 1.0/Document Revision 1.0 A-3

The X Keyboard Extension Protocol Specification

2.2.5 Capitalization Rules for Cyrillic Keysyms
This table lists the Cyrillic keysyms for which XKB defines upper and lower case:

2.2.6 Capitalization Rules for Greek Keysyms
This table lists the Greek keysyms for which XKB defines upper and lower case:

gcedilla Gcedilla imacron Imacron umacron Umacron
tslash Tslash ncedilla Ncedilla

Lower Case Upper Case Lower Case Upper Case
Serbian_dje Serbian_DJE Cyrillic_i Cyrillic_I

Macedonia_gje Macedonia_GJE Cyrillic_shorti Cyrillic_SHORTI
Cyrillic_io Cyrillic_IO Cyrillic_ka Cyrillic_KA

Ukrainian_ie Ukrainian_IE Cyrillic_el Cyrillic_EL
Macedonia_dse Macedonia_DSE Cyrillic_em Cyrillic_EM

Ukrainian_i Ukrainian_I Cyrillic_en Cyrillic_EN
Ukrainian_yi Ukrainian_YI Cyrillic_o Cyrillic_O
Cyrillic_je Cyrillic_JE Cyrillic_pe Cyrillic_PE
Cyrillic_lje Cyrillic_LJE Cyrillic_ya Cyrillic_YA
Cyrillic_nje Cyrillic_NJE Cyrillic_er Cyrillic_ER
Serbian_tshe Serbian_TSHE Cyrillic_es Cyrillic_ES

Macedonia_kje Macedonia_KJE Cyrillic_te Cyrillic_TE
Byelorussian_shortu Byelorussian_SHORTU Cyrillic_u Cyrillic_U

Cyrillic_dzhe Cyrillic_DZHE Cyrillic_zhe Cyrillic_ZHE
Cyrillic_yu Cyrillic_YU Cyrillic_ve Cyrillic_VE
Cyrillic_a Cyrillic_A Cyrillic_softsign Cyrillic_SOFTSIGN
Cyrillic_be Cyrillic_BE Cyrillic_yeru Cyrillic_YERU
Cyrillic_tse Cyrillic_TSE Cyrillic_ze Cyrillic_ZE
Cyrillic_de Cyrillic_DE Cyrillic_sha Cyrillic_SHA
Cyrillic_ie Cyrillic_IE Cyrillic_e Cyrillic_E
Cyrillic_ef Cyrillic_EF Cyrillic_shcha Cyrillic_SHCHA

Cyrillic_ghe Cyrillic_GHE Cyrillic_che Cyrillic_CHE
Cyrillic_ha Cyrillic_HA Cyrillic_hardsign Cyrillic_HARDSIGN

Lower Case Upper Case Lower Case Upper Case
Greek_omegaaccent Greek_OMEGAACCENT Greek_iota Greek_IOTA
Greek_alphaaccent Greek_ALPHAACCENT Greek_kappa Greek_KAPPA

Greek_epsilonaccent Greek_EPSILONACCENT Greek_lamda Greek_LAMDA
Greek_etaaccent Greek_ETAACCENT Greek_lambda Greek_LAMBDA
Greek_iotaaccent Greek_IOTAACCENT Greek_mu Greek_MU
Greek_iotadieresis Greek_IOTADIERESIS Greek_nu Greek_NU

Greek_omicronaccent Greek_OMICRONACCENT Greek_xi Greek_XI
Greek_upsilonaccent Greek_UPSILONACCENT Greek_omicron Greek_OMICRON
Greek_upsilondieresis Greek_UPSILONDIERESIS Greek_pi Greek_PI

Greek_alpha Greek_ALPHA Greek_rho Greek_RHO
Greek_beta Greek_BETA Greek_sigma Greek_SIGMA

Greek_gamma Greek_GAMMA Greek_tau Greek_TAU
Greek_delta Greek_DELTA Greek_upsilon Greek_UPSILON

Greek_epsilon Greek_EPSILON Greek_phi Greek_PHI

Lower Case Upper Case Lower Case Upper Case Lower Case Upper Case

11/6/97 Protocol Version 1.0/Document Revision 1.0 A-4

The X Keyboard Extension Protocol Specification

2.2.7 Capitalization Rules for Other Keysyms
XKB defines no capitalization rules for symbols in any other set of keysyms provided
by the consortium. Applications are free to apply additional rules for private keysyms
or for other keysyms not covered by XKB.

Greek_zeta Greek_ZETA Greek_chi Greek_CHI
Greek_eta Greek_ETA Greek_psi Greek_PSI

Greek_theta Greek_THETA Greek_omega Greek_OMEGA

Lower Case Upper Case Lower Case Upper Case

12/15/97 Protocol Version 1.00/Document Revision 1.0 B-1

The X Keyboard Extension Protocol Specification

Appendix B. Canonical Key Types

1.0 Canonical Key Types

1.1 The ONE_LEVEL Key Type
TheONE_LEVEL key type describes groups that have only one symbol. The default
ONE_LEVEL type has no map entries and does not pay attention to any modifiers.

1.2 The TWO_LEVEL Key Type
TheTWO_LEVEL key type describes groups that have two symbols but are neither
alphabetic nor numeric keypad keys. The defaultTWO_LEVEL type uses only the
Shift modifier. It returns level two ifShift is set, level one if it is not.

1.3 The ALPHABETIC Key Type
TheALPHABETIC key type describes groups that consist of two symbols — the low-
ercase form of a symbol followed by the uppercase form of the same symbol. The
defaultALPHABETIC type implements locale-sensitive “shift cancels caps lock”
behavior using both theShift andLock modifiers as follows:

• If Shift andLock are both set, the defaultALPHABETIC type yields level one.
• If Shift alone is set, it yields level two.
• If Lock alone is set, it yields level one but preserves theLock modifier.
• If neitherShift norLock are set, it yields level one.

1.4 The KEYPAD Key Type
TheKEYPAD key type describes that consist of two symbols, at least one of which is a
numeric keypad symbol. The defaultKEYPAD type implements “shift cancels numeric
lock” behavior using theShift modifier and the real modifier bound to the virtual
modifier named “NumLock” (the “NumLock” modifier) as follows:

• If Shift and the “NumLock” modifier are both set, the defaultKEYPAD type yields
level one.

• If eitherShift or the “NumLock” modifier alone are set, it yields level two.

If neitherShift nor the “NumLock” modifier are set, it yields level one.

12/15/97 Protocol Version 1.0/Document Revision 1.0 C-1

The X Keyboard Extension Protocol Specification

Appendix C. New KeySyms

1.0 New KeySyms

1.1 KeySyms Used by the ISO9995 Standard

Byte 3 Byte 4 Character Name

254 1 ISO LOCK
254 2 ISO LATCHING LEVEL TWO SHIFT
254 3 ISO LEVEL THREE SHIFT
254 4 ISO LATCHING LEVEL THREE SHIFT
254 5 ISO LEVEL THREE SHIFT LOCK
254 6 ISO LATCHING GROUP SHIFT
254 7 ISO GROUP SHIFT LOCK
254 8 ISO NEXT GROUP
254 9 ISO LOCK NEXT GROUP
254 10 ISO PREVIOUS GROUP
254 11 ISO LOCK PREVIOUS GROUP
254 12 ISO FIRST GROUP
254 13 ISO LOCK FIRST GROUP
254 14 ISO LAST GROUP
254 15 ISO LOCK LAST GROUP
254 32 LEFT TAB
254 33 MOVE LINE UP
254 34 MOVE LINE DOWN
254 35 PARTIAL LINE UP
254 36 PARTIAL LINE DOWN
254 37 PARTIAL SPACE LEFT
254 38 PARTIAL SPACE RIGHT
254 39 SET MARGIN LEFT
254 40 SET MARGIN RIGHT
254 41 RELEASE MARGIN LEFT
254 42 RELEASE MARGIN RIGHT
254 43 RELEASE MARGIN LEFT AND RIGHT
254 44 FAST CURSOR LEFT
254 45 FAST CURSOR RIGHT
254 46 FAST CURSOR UP
254 47 FAST CURSOR DOWN
254 48 CONTINUOUS UNDERLINE
254 49 DISCONTINUOUS UNDERLINE
254 50 EMPHASIZE
254 51 CENTER OBJECT
254 52 ISO_ENTER

12/15/97 Protocol Version 1.0/Document Revision 1.0 C-2

The X Keyboard Extension Protocol Specification

1.2 KeySyms Used to Control The Core Pointer

1.3 KeySyms Used to Change Keyboard Controls

Byte 3 Byte 4 Character Name

254 224 POINTER LEFT
254 225 POINTER RIGHT
254 226 POINTER UP
254 227 POINTER DOWN
254 228 POINTER UP AND LEFT
254 229 POINTER UP AND RIGHT
254 230 POINTER DOWN AND LEFT
254 231 POINTER DOWN AND RIGHT
254 232 DEFAULT POINTER BUTTON
254 233 POINTER BUTTON ONE
254 234 POINTER BUTTON TWO
254 235 POINTER BUTTON THREE
254 236 POINTER BUTTON FOUR
254 237 POINTER BUTTON FIVE
254 238 DEFAULT POINTER BUTTON DOUBLE CLICK
254 239 POINTER BUTTON ONE DOUBLE CLICK
254 240 POINTER BUTTON TWO DOUBLE CLICK
254 241 POINTER BUTTON THREE DOUBLE CLICK
254 242 POINTER BUTTON FOUR DOUBLE CLICK
254 243 POINTER BUTTON FIVE DOUBLE CLICK
254 244 DRAG DEFAULT POINTER BUTTON
254 245 DRAG POINTER BUTTON ONE
254 246 DRAG POINTER BUTTON TWO
254 247 DRAG POINTER BUTTON THREE
254 248 DRAG POINTER BUTTON FOUR
254 249 ENABLE POINTER FROM KEYBOARD
254 250 ENABLE KEYBOARD POINTER ACCEL
254 251 SET DEFAULT POINTER BUTTON NEXT
254 252 SET DEFAULT POINTER BUTTON PREVIOUS
254 253 DRAG POINTER BUTTON FIVE

Byte 3 Byte 4 Character Name

254 112 ENABLE ACCESSX KEYS
254 113 ENABLE ACCESSX FEEDBACK
254 114 TOGGLE REPEAT KEYS
254 115 TOGGLE SLOW KEYS
254 116 ENABLE BOUNCE KEYS
254 117 ENABLE STICKY KEYS
254 118 ENABLE MOUSE KEYS
254 119 ENABLE MOUSE KEYS ACCELERATION

12/15/97 Protocol Version 1.0/Document Revision 1.0 C-3

The X Keyboard Extension Protocol Specification

1.4 KeySyms Used To Control The Server

1.5 KeySyms for Non-Spacing Diacritical Keys

254 120 ENABLE OVERLAY1
254 121 ENABLE OVERLAY2
254 122 ENABLE AUDIBLE BELL

Byte Byte Character Name

254 208 FIRST SCREEN
254 209 PREVIOUS SCREEN
254 210 NEXT SCREEN
254 211 LAST SCREEN
254 212 TERMINATE SERVER

Byte Byte Character Name

254 80 DEAD GRAVE ACCENT
254 81 DEAD ACUTE ACCENT
254 82 DEAD CIRCUMFLEX
254 83 DEAD TILDE
254 84 DEAD MACRON
254 85 DEAD BREVE
254 86 DEAD DOT ABOVE
254 87 DEAD DIAERESIS
254 88 DEAD RING ABOVE
254 89 DEAD DOUBLE ACUTE ACCENT
254 90 DEAD CARON
254 91 DEAD CEDILLA
254 92 DEAD OGONEK
254 93 DEAD IOTA
254 94 DEAD VOICED SOUND
254 95 DEAD SEMI VOICED SOUND
254 96 DEAD DOT BELOW

Byte 3 Byte 4 Character Name

12/15/97 Protocol Version 1.0/Document Revision 1.0 D-1

The X Keyboard Extension Protocol Specification

Appendix D. Protocol Encoding

1.0 Syntactic Conventions

This document uses the same syntactic conventions as the encoding of the core X pro-
tocol, with the following additions:

A LISTofITEMs contains zero or more items of variable type and size. The encode
form for a LISTofITEMs is:

v LISTofITEMs NAME
TYPE MASK-EXPRESSION
value1 corresponding field(s)
...
valuen corresponding field(s)

The MASK-EXPRESSION is an expression using C-style boolean operators and
fields of the request which specifies the bitmask used to determine whether or not a
mem ber of the LISTofITEMs is present. If present, TYPE specifies the interpretation
of the resulting bitmask and the values are listed using the symbolic names of the
members of the set. If TYPE is blank, the values are numeric constants.

It is possible for a single bit in the MASK-EXPRESSION to control more than one
ITEM — if the bit is set, all listed ITEMs are present. It is also possible for multiple
bits in the MASK-EXPRESSION to control a single ITEM — if any of the bits associ-
ated with an ITEM are set, it is present in the LISTofITEMs.

The size of a LISTofITEMS is derived from the items that are present in the list, so it
is always given as a variable in the request description, and the request is followed by
a section of the form:

ITEMs
encode-form
...
encode-form

listing an encode-form for each ITEM. The NAME in each encode-form keys to the
fields listed as corresponding to each bit in the MASK-EXPRESSION. Items are not
necessarily the same size, and the size specified in the encoding form is the size that
the item occupies if it is present.

Some types are of variable size. The encode-form for a list of items of a single type but
variable size is:

S0+..Ss LISTofTYPE name

Which indicates that the list hass elements of variable size and that the size of the list
is the sum of the sizes of all of the elements that make up the list. The notation Sn
refers to the size of thenth element of the list and the notation S* refers to the size of
the list as a whole.

The definition of a type of variable size includes an expression which specifies the
size. The size is specified as a constant plus a variable expression; the constant speci-
fies the size of the fields that are always present and the variables which make up the
variable expression are defined in the constant portion of the structure. For example,

12/15/97 Protocol Version 1.0/Document Revision 1.0 D-2

The X Keyboard Extension Protocol Specification

the following definition specifies a counted string with a two-byte length field preced-
ing the string:

TYPE 2+n+p
2 n length
n STRING8 string
p unused,p=pad(n)

Some fields are optional. The size of an optional field has the form: “[expr]” where
expr specifies the size of the field if it is present. An explanation of the conditions
under which the field is present follows the name in the encode form:

1 BOOL more
3 unused
[4] CARD32 optData, if more==TRUE

This portion of the structure is four bytes long if more is FALSE or eight bytes long if
more is TRUE. This notation can also be used in size expressions; for example, the
size of the previous structure is written as “4+[4]” bytes.

2.0 Common Types

SETofKB_EVENTTYPE
#x0001 XkbNewKeyboardNotify
#x0002 XkbMapNotify
#x0004 XkbStateNotify
#x0008 XkbControlsNotify
#x0010 XkbIndicatorStateNotify
#x0020 XkbIndicatorMapNotify
#x0040 XkbNamesNotify
#x0080 XkbCompatMapNotify
#x0100 XkbBellNotify
#x0200 XkbActionMessage
#x0400 XkbAccessXNotify
#x0800 XkbExtensionDeviceNotify

SETofKB_NKNDETAIL
#x01 XkbNKN_Keycodes
#x02 XkbNKN_Geometry
#x04 XkbNKN_DeviceID

SETofKB_AXNDETAIL
#x01 XkbAXN_SKPress
#x02 XkbAXN_SKAccept
#x04 XkbAXN_SKReject
#x08 XkbAXN_SKRelease
#x10 XkbAXN_BKAccept
#x20 XkbAXN_BKReject
#x40 XkbAXN_AXKWarning

SETofKB_MAPPART
#x0001 XkbKeyTypes
#x0002 XkbKeySyms
#x0004 XkbModifierMap
#x0008 XkbExplicitComponents

12/15/97 Protocol Version 1.0/Document Revision 1.0 D-3

The X Keyboard Extension Protocol Specification

#x0010 XkbKeyActions
#x0020 XkbKeyBehaviors
#x0040 XkbVirtualMods
#x0080 XkbVirtualModMap

SETofKB_STATEPART
#x0001 XkbModifierState
#x0002 XkbModifierBase
#x0004 XkbModifierLatch
#x0008 XkbModifierLock
#x0010 XkbGroupState
#x0020 XkbGroupBase
#x0040 XkbGroupLatch
#x0080 XkbGroupLock
#x0100 XkbCompatState
#x0200 XkbGrabMods
#x0400 XkbCompatGrabMods
#x0800 XkbLookupMods
#x1000 XkbCompatLookupMods
#x2000 XkbPointerButtons

SETofKB_BOOLCTRL
#x00000001 XkbRepeatKeys
#x00000002 XkbSlowKeys
#x00000004 XkbBounceKeys
#x00000008 XkbStickyKeys
#x00000010 XkbMouseKeys
#x00000020 XkbMouseKeysAccel
#x00000040 XkbAccessXKeys
#x00000080 XkbAccessXTimeoutMask
#x00000100 XkbAccessXFeedbackMask
#x00000200 XkbAudibleBellMask
#x00000400 XkbOverlay1Mask
#x00000800 XkbOverlay2Mask
#x00001000 XkbIgnoreGroupLockMask

SETofKB_CONTROL
Encodings are the same as for SETofKB_BOOLCTRL, with the addition of:
#x080000000 XkbGroupsWrap
#x100000000 XkbInternalMods
#x200000000 XkbIgnoreLockMods
#x400000000 XkbPerKeyRepeat
#x800000000 XkbControlsEnabled

SETofKB_AXFBOPT
#x0001 XkbAX_SKPressFB
#x0002 XkbAX_SKAcceptFB
#x0004 XkbAX_FeatureFB
#x0008 XkbAX_SlowWarnFB
#x0010 XkbAX_IndicatorFB
#x0020 XkbAX_StickyKeysFB
#x0100 XkbAX_SKReleaseFB
#x0200 XkbAX_SKRejectFB
#x0400 XkbAX_BKRejectFB
#x0800 XkbAX_DumbBell

12/15/97 Protocol Version 1.0/Document Revision 1.0 D-4

The X Keyboard Extension Protocol Specification

SETofKB_AXSKOPT
#x0040 XkbAX_TwoKeys
#x0080 XkbAX_LatchToLock

SETofKB_AXOPTION
Encoding same as the bitwise union of :
SETofKB_AXFBOPT
SETofKB_AXSKOPT

KB_DEVICESPEC
0..255 input extension device id
#x100 XkbUseCoreKbd
#x200 XkbUseCorePtr

KB_LEDCLASSRESULT
0 KbdFeedbackClass
4 LedFeedbackClass

KB_LEDCLASSSPEC
Encoding same as KB_LEDCLASSRESULT, with the addition of:
#x0300 XkbDfltXIClass
#x0500 XkbAllXIClasses

KB_BELLCLASSRESULT
0 KbdFeedbackClass
5 BellFeedbackClass

KB_BELLCLASSSPEC
Encoding same as KB_BELLCLASSRESULT, with the addition of:
#x0300 XkbDfltXIClass

KB_IDSPEC
0..255 input extension feedback id
#x0400 XkbDfltXIId

KB_IDRESULT
Encoding same as KB_IDSPEC, with the addition of:
#xff00 XkbXINone

KB_MULTIIDSPEC
encodings same as KB_IDSPEC, with the addition of:
#x0500 XkbAllXIIds

KB_GROUP
0 XkbGroup1
1 XkbGroup2
2 XkbGroup3
3 XkbGroup4

KB_GROUPS
Encoding same as KB_GROUP, with the addition of:
254 XkbAnyGroup
255 XkbAllGroups

SETofKB_GROUP
#x01 XkbGroup1
#x02 XkbGroup2
#x04 XkbGroup3
#x08 XkbGroup4

12/15/97 Protocol Version 1.0/Document Revision 1.0 D-5

The X Keyboard Extension Protocol Specification

SETofKB_GROUPS
Encoding same as SETofKB_GROUP, with the addition of:
#x80 XkbAnyGroup

KB_GROUPSWRAP
#x00 XkbWrapIntoRange
#x40 XkbClampIntoRange
#x80 XkbRedirectIntoRange

SETofKB_VMODSHIGH
#x80 virtual modifier 15
#x40 virtual modifier 14
#x20 virtual modifier 13
#x10 virtual modifier 12
#x08 virtual modifier 11
#x04 virtual modifier 10
#x02 virtual modifier 9
#x01 virtual modifier 8

SETofKB_VMODSLOW
#x80 virtual modifier 7
#x40 virtual modifier 6
#x20 virtual modifier 5
#x10 virtual modifier 4
#x08 virtual modifier 3
#x04 virtual modifier 2
#x02 virtual modifier 1
#x01 virtual modifier 0

SETofKB_VMOD
#x8000 virtual modifier 15
#x4000 virtual modifier 14
#x2000 virtual modifier 13
#x1000 virtual modifier 12
#x0800 virtual modifier 11
#x0400 virtual modifier 10
#x0200 virtual modifier 9
#x0100 virtual modifier 8
#x0080 virtual modifier 7
#x0040 virtual modifier 6
#x0020 virtual modifier 5
#x0010 virtual modifier 4
#x0008 virtual modifier 3
#x0004 virtual modifier 2
#x0002 virtual modifier 1
#x0001 virtual modifier 0

SETofKB_EXPLICIT
#x80 XkbExplicitVModMap
#x40 XkbExplicitBehavior
#x20 XkbExplicitAutoRepeat
#x10 XkbExplicitInterpret
#x08 XkbExplicitKeyType4
#x04 XkbExplicitKeyType3
#x02 XkbExplicitKeyType2
#x01 XkbExplicitKeyType1

12/15/97 Protocol Version 1.0/Document Revision 1.0 D-6

The X Keyboard Extension Protocol Specification

KB_SYMINTERPMATCH
#x80 XkbSI_LevelOneOnly
#x7f operation, one of the following:

0 XkbSI_NoneOf
1 XkbSI_AnyOfOrNone
2 XkbSI_AnyOf
3 XkbSI_AllOf
4 XkbSI_Exactly

SETofKB_IMFLAG
#x80 XkbIM_NoExplicit
#x40 XkbIM_NoAutomatic
#x20 XkbIM_LEDDrivesKB

SETofKB_IMMODSWHICH
#x10 XkbIM_UseCompat
#x08 XkbIM_UseEffective
#x04 XkbIM_UseLocked
#x02 XkbIM_UseLatched
#x01 XkbIM_UseBase

SETofKB_IMGROUPSWHICH
#x10 XkbIM_UseCompat
#x08 XkbIM_UseEffective
#x04 XkbIM_UseLocked
#x02 XkbIM_UseLatched
#x01 XkbIM_UseBase

KB_INDICATORMAP
1 SETofKB_IMFLAGS flags
1 SETofKB_IMGROUPSWHICH whichGroups
1 SETofKB_GROUP groups
1 SETofKB_IMMODSWHICH whichMods
1 SETofKEYMASK mods
1 SETofKEYMASK realMods
2 SETofKB_VMOD vmods
4 SETofKB_BOOLCTRL ctrls

SETofKB_CMDETAIL
#x01 XkbSymInterp
#x02 XkbGroupCompat

SETofKB_NAMEDETAIL
#x0001 XkbKeycodesName
#x0002 XkbGeometryName
#x0004 XkbSymbolsName
#x0008 XkbPhysSymbolsName
#x0010 XkbTypesName
#x0020 XkbCompatName
#x0040 XkbKeyTypeNames
#x0080 XkbKTLevelNames
#x0100 XkbIndicatorNames
#x0200 XkbKeyNames
#x0400 XkbKeyAliases
#x0800 XkbVirtualModNames
#x1000 XkbGroupNames
#x2000 XkbRGNames

12/15/97 Protocol Version 1.0/Document Revision 1.0 D-7

The X Keyboard Extension Protocol Specification

SETofKB_GBNDETAIL
#x01 XkbGBN_Types
#x02 XkbGBN_CompatMap
#x04 XkbGBN_ClientSymbols
#x08 XkbGBN_ServerSymbols
#x10 XkbGBN_IndicatorMaps
#x20 XkbGBN_KeyNames
#x40 XkbGBN_Geometry
#x80 XkbGBN_OtherNames

SETofKB_XIEXTDEVFEATURE
#x02 XkbXI_ButtonActions
#x04 XkbXI_IndicatorNames
#x08 XkbXI_IndicatorMaps
#x10 XkbXI_IndicatorState

SETofKB_XIFEATURE
Encoding same as SETofKB_XIEXTDEVFEATURE, with the addition of:
#x01 XkbXI_Keyboards

SETofKB_XIDETAIL
Encoding same as SETofKB_XIFEATURE, with the addition of:
#x8000 XkbXI_UnsupportedFeature

SETofKB_PERCLIENTFLAG
#x01 XkbDetectableAutorepeat
#x02 XkbGrabsUseXKBState
#x04 XkbAutoResetControls
#x08 XkbLookupStateWhenGrabbed
#x10 XkbSendEventUsesXKBState

KB_MODDEF
1 SETofKEYMASK mask
1 SETofKEYMASK realMods
2 SETofVMOD vmods

KB_COUNTED_STRING8
1 l length
l STRING8 string

KB_COUNTED_STRING16
2 l length
l STRING8 string
p unused,p=pad(2+l)

3.0 Errors

Keyboard
1 0 Error
2 ?? code
2 CARD16 sequence
4 CARD32 error value

most significant 8 bits of error value have the meaning:
0xff XkbErrBadDevice
0xfe XkbErrBadClass
0xfd XkbErrBadId
the least significant 8 bits of the error value contain the device id, class, or

12/15/97 Protocol Version 1.0/Document Revision 1.0 D-8

The X Keyboard Extension Protocol Specification

feedback
id which failed.

2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

4.0 Key Actions

SA_NoAction
1 0 type
7 unused

SA_SetMods
1 1 type
1 BITMASK flags

#x01 XkbSA_ClearLocks
#x02 XkbSA_LatchToLock
#x04 XkbSA_UseModMapMods

1 SETofKEYMASK mask
1 SETofKEYMASK real modifiers
1 SETofKB_VMODSHIGH virtual modifiers high
1 SETofKB_VMODSLOW virtual modifiers low
2 unused

SA_LatchMods
1 2 type
1 BITMASK flags

#x01 XkbSA_ClearLocks
#x02 XkbSA_LatchToLock
#x04 XkbSA_UseModMapMods

1 SETofKEYMASK mask
1 SETofKEYMASK real modifiers
1 SETofKB_VMODSHIGH virtual modifiers high
1 SETofKB_VMODSLOW virtual modifiers low
2 unused

SA_LockMods
1 3 type
1 BITMASK flags

#x01 XkbSA_LockNoLock
#x02 XkbSA_LockNoUnlock
#x04 XkbSA_UseModMapMods

1 SETofKEYMASK mask
1 SETofKEYMASK real modifiers
1 SETofKB_VMODSHIGH virtual modifiers high
1 SETofKB_VMODSLOW virtual modifiers low
2 unused

12/15/97 Protocol Version 1.0/Document Revision 1.0 D-9

The X Keyboard Extension Protocol Specification

SA_SetGroup
1 4 type
1 BITMASK flags

#x01 XkbSA_ClearLocks
#x02 XkbSA_LatchToLock
#x04 XkbSA_GroupAbsolute

1 INT8 group
5 unused

SA_LatchGroup
1 5 type
1 BITMASK flags

#x01 XkbSA_ClearLocks
#x02 XkbSA_LatchToLock
#x04 XkbSA_GroupAbsolute

1 INT8 group
5 unused

SA_LockGroup
1 6 type
1 BITMASK flags

#x01 XkbSA_LockNoLock
#x02 XkbSA_LockNoUnlock
#x04 XkbSA_GroupAbsolute

1 INT8 group
5 unused

SA_MovePtr
1 7 type
1 BITMASK flags

#x01 XkbSA_NoAcceleration
#x02 XkbSA_MoveAbsoluteX
#x04 XkbSA_MoveAbsoluteY

1 INT8 x high
1 CARD8 x low
1 INT8 y high
1 CARD8 y low
2 unused

SA_PtrBtn
1 8 type
1 BITMASK flags
1 CARD8 count
1 CARD8 button
4 unused

SA_LockPtrBtn
1 9 type
1 BITMASK flags
1 unused
1 CARD8 button
4 unused

12/15/97 Protocol Version 1.0/Document Revision 1.0 D-10

The X Keyboard Extension Protocol Specification

SA_SetPtrDflt
1 10 type
1 BITMASK flags

#x02 XkbSA_DfltBtnAbsolute
1 BITMASK affect

#x01 XkbSA_AffectDfltBtn
1 INT8 value
4 unused

SA_ISOLock
1 11 type
1 BITMASK flags

#x01 XkbSA_LockNoLock
#x02 XkbSA_LockNoUnlock
#x04 XkbSA_UseModMapMods (if SA_ISODfltIsGroup

is 0)
#x04 XkbSA_GroupAbsolute (if SA_ISODfltIsGroup is 1)
#x80 XkbSA_ISODfltIsGroup

1 SETofKEYMASK mask
1 SETofKEYMASK real modifiers
1 INT8 group
1 BITMASK affect

#x08 XkbSA_ISONoAffectCtrls
#x10 XkbSA_ISONoAffectPtr
#x20 XkbSA_ISONoAffectGroup
#x40 XkbSA_ISONoAffectMods

1 SETofKB_VMODSHIGH virtual modifiers high
1 SETofKB_VMODSLOW virtual modifiers low

SA_Terminate
1 12 type
7 unused

SA_SwitchScreen
1 13 type
1 BITMASK flags

#x01 XkbSA_SwitchApplication
#x04 XkbSA_SwitchAbsolute

1 INT8 new screen
5 unused (must be 0)

SA_SetControls
1 14 type
3 unused (must be 0)
1 BITMASK boolean controls high

#x01 XkbAccessXFeedbackMask
#x02 XkbAudibleBellMask
#x04 XkbOverlay1Mask
#x08 XkbOverlay2Mask
#x10 XkbIgnoreGroupLockMask

1 BITMASK boolean controls low
#x01 XkbRepeatKeys
#x02 XkbSlowKeys
#x04 XkbBounceKeys

12/15/97 Protocol Version 1.0/Document Revision 1.0 D-11

The X Keyboard Extension Protocol Specification

#x08 XkbStickyKeys
#x10 XkbMouseKeys
#x20 XkbMouseKeysAccel
#x40 XkbAccessXKeys
#x80 XkbAccessXTimeoutMask

2 unused (must be 0)

SA_LockControls
1 15 type
3 unused (must be 0)
1 BITMASK boolean controls high

#x01 XkbAccessXFeedbackMask
#x02 XkbAudibleBellMask
#x04 XkbOverlay1Mask
#x08 XkbOverlay2Mask
#x10 XkbIgnoreGroupLockMask

1 BITMASK boolean controls low
#x01 XkbRepeatKeys
#x02 XkbSlowKeys
#x04 XkbBounceKeys
#x08 XkbStickyKeys
#x10 XkbMouseKeys
#x20 XkbMouseKeysAccel
#x40 XkbAccessXKeys
#x80 XkbAccessXTimeoutMask

2 unused (must be 0)

SA_ActionMessage
1 16 type
1 BITMASK flags

#x01 XkbSA_MessageOnPress
#x02 XkbSA_MessageOnRelease
#x04 XkbSA_MessageGenKeyEvent

6 STRING message

SA_RedirectKey
1 17 type
1 KEYCODE new key
1 SETofKEYMASK mask
1 SETofKEYMASK real modifiers
1 SETofKB_VMODSHIGH virtual modfiiers mask high
1 SETofKB_VMODSLOW virtual modifiers mask low
1 SETofKB_VMODSHIGH virtual modifiers high
1 SETofKB_VMODSLOW virtual modfiers low

SA_DeviceBtn
1 18 type
1 0 flags
1 CARD8 count
1 CARD8 button
1 CARD8 device
3 unused (must be 0)

12/15/97 Protocol Version 1.0/Document Revision 1.0 D-12

The X Keyboard Extension Protocol Specification

SA_LockDeviceBtn
1 19 type
1 BITMASK flags

#x01 XkbSA_LockNoLock
#x02 XkbSA_LockNoUnlock

1 unused
1 CARD8 button
1 CARD8 device

SA_DeviceValuator
1 20 type
1 CARD8 device
1 KB_SA_VALWHAT valuator 1 what

#x00 XkbSA_IgnoreVal
#x01 XkbSA_SetValMin
#x02 XkbSA_SetValCenter
#x03 XkbSA_SetValMax
#x04 XkbSA_SetValRelative
#x05 XkbSA_SetValAbsolute

1 CARD8 valuator 1 index
1 CARD8 valuator 1 value
1 KB_SA_VALWHAT valuator 2 what

Encodings as for “valuator 1 what” above
1 CARD8 valuator 2 index
1 CARD8 valuator 2 value

5.0 Key Behaviors

KB_Default
1 #x00 type
1 unused

KB_Lock
1 #x01 type
1 unused

KB_RadioGroup
1 #x02 type
1 0..31 group

KB_Overlay1
1 #x03 type
1 KEYCODE key

KB_Overlay2
1 #x04 type
1 CARD8 key

KB_PermanentLock
1 #x81 type
1 unused

12/15/97 Protocol Version 1.0/Document Revision 1.0 D-13

The X Keyboard Extension Protocol Specification

KB_PermanentRadioGroup
1 #x82 type
1 0..31 group

KB_PermanentOverlay1
1 #x83 type
1 KEYCODE key

KB_PermanentOverlay2
1 #x84 type
1 KEYCODE key

6.0 Requests

XkbUseExtension
1 ?? opcode
1 0 xkb-opcode
2 2 request-length
2 CARD16 wantedMajor
2 CARD16 wantedMinor

→
1 1 Reply
1 BOOL supported
2 CARD16 sequence number
4 0 reply length
2 1 serverMajor
2 0 serverMinor
20 unused

XkbSelectEvents
1 ?? opcode
1 1 xkb-opcode
2 4+(V+p)/4 request-length
2 KB_DEVICESPEC deviceSpec
2 SETofKB_EVENTTYPE affectWhich
2 SETofKB_EVENTTYPE clear
2 SETofKB_EVENTTYPE selectAll
2 SETofKB_MAPDETAILS affectMap
2 SETofKB_MAPDETAILS map
V LISTofITEMs details

SETofKB_EVENTTYPE (affectWhich&(~clear)&(~selectAll))
XkbNewKeyboardNotify affectNewKeyboard, newKeyboardDetails
XkbStateNotify affectState, stateDetails
XkbControlsNotify affectCtrls, ctrlDetails
XkbIndicatorStateNotify affectIndicatorState, indicatorStateDetails
XkbIndicatorMapNotify affectIndicatorMap, indicatorMapDetails
XkbNamesNotify affectNames, namesDetails
XkbCompatMapNotify affectCompat, compatDetails
XkbBellNotify affectBell, bellDetails
XkbActionMessage affectMsgDetails, msgDetails
XkbExtensionDeviceNotify affectExtDev, extdevDetails

p unused, p=pad(V)

12/15/97 Protocol Version 1.0/Document Revision 1.0 D-14

The X Keyboard Extension Protocol Specification

ITEMs
2 SETofKB_NKNDETAIL affectNewKeyboard
2 SETofKB_NKNDETAIL newKeyboardDetails
2 SETofKB_STATEPART affectState
2 SETofKB_STATEPART stateDetails
4 SETofKB_CONTROL affectCtrls
4 SETofKB_CONTROL ctrlDetails
4 SETofKB_INDICATOR affectIndicatorState
4 SETofKB_INDICATOR indicatorStateDetails
4 SETofKB_INDICATOR affectIndicatorMaps
4 SETofKB_INDICATOR indicatorMapDetails
2 SETofKB_NAME_DETAIL affectNames
2 SETofKB_NAME_DETAIL namesDetails
1 SETofKB_CMDETAIL affectCompat
1 SETofKB_CMDETAIL compatDetails
1 SETofKB_BELLDETAIL affectBell
1 SETofKB_BELLDETAIL bellDetails
1 SETofKB_MSGDETAIL affectMsgDetails
1 SETofKB_MSGDETAIL msgDetails
2 SETofKB_AXNDETAIL affectAccessX
2 SETofKB_AXNDETAIL accessXDetails
2 SETofKB_XIDETAIL affectExtDev
2 SETofKB_XIDETAIL extdevDetails

XkbBell
1 ?? opcode
1 3 xkb-opcode
2 7 request-length
2 KB_DEVICESPEC deviceSpec
2 KB_BELLCLASSSPEC bellClass
2 KB_IDSPEC bellID
1 INT8 percent
1 BOOL forceSound
1 BOOL eventOnly
1 unused
2 INT16 pitch
2 INT16 duration
2 unused
4 ATOM name
4 WINDOW window

XkbGetState
1 ?? opcode
1 4 xkb-opcode
2 2 request-length
2 KB_DEVICESPEC deviceSpec
2 unused

→
1 1 Reply
1 CARD8 deviceID
2 CARD16 sequence number
4 0 length
1 SETofKEYMASK mods
1 SETofKEYMASK baseMods

12/15/97 Protocol Version 1.0/Document Revision 1.0 D-15

The X Keyboard Extension Protocol Specification

1 SETofKEYMASK latchedMods
1 SETofKEYMASK lockedMods
1 KP_GROUP group
1 KP_GROUP lockedGroup
2 INT16 baseGroup
2 INT16 latchedGroup
1 SETofKEYMASK compatState
1 SETofKEYMASK grabMods
1 SETofKEYMASK compatGrabMods
1 SETofKEYMASK lookupMods
1 SETofKEYMASK compatLookupMods
1 unused
2 SETofBUTMASK ptrBtnState
6 unused

XkbLatchLockState
1 ?? opcode
1 5 xkb-opcode
2 4 request-length
2 KB_DEVICESPEC deviceSpec
1 SETofKEYMASK affectModLocks
1 SETofKEYMASK modLocks
1 BOOL lockGroup
1 KB_GROUP groupLock
1 SETofKEYMASK affectModLatches
1 SETofKEYMASK modLatches
1 unused
1 BOOL latchGroup
2 INT16 groupLatch

XkbGetControls
1 ?? opcode
1 6 xkb-opcode
2 2 request-length
2 KB_DEVICESPEC deviceSpec
2 unused

→
1 1 Reply
1 CARD8 deviceID
2 CARD16 sequence number
4 15 length
1 CARD8 mouseKeysDfltBtn
1 CARD8 numGroups
1 CARD8 groupsWrap
1 SETofKEYMASK internalMods.mask
1 SETofKEYMASK ignoreLockMods.mask
1 SETofKEYMASK internalMods.realMods
1 SETofKEYMASK ignoreLockMods.realMods
1 unused
2 SETofKB_VMOD internalMods.vmods
2 SETofKB_VMOD ignoreLockMods.vmods
2 CARD16 repeatDelay
2 CARD16 repeatInterval
2 CARD16 slowKeysDelay

12/15/97 Protocol Version 1.0/Document Revision 1.0 D-16

The X Keyboard Extension Protocol Specification

2 CARD16 debounceDelay
2 CARD16 mouseKeysDelay
2 CARD16 mouseKeysInterval
2 CARD16 mouseKeysTimeToMax
2 CARD16 mouseKeysMaxSpeed
2 INT16 mouseKeysCurve
2 SETofKB_AXOPTION accessXOptions
2 CARD16 accessXTimeout
2 SETofKB_AXOPTION accessXTimeoutOptionsMask
2 SETofKB_AXOPTION accessXTimeoutOptionValues
2 unused
4 SETofKB_BOOLCTRL accessXTimeoutMask
4 SETofKB_BOOLCTRL accessXTimeoutValues
4 SETofKB_BOOLCTRL enabledControls
32 LISTofCARD8 perKeyRepeat

XkbSetControls
1 ?? opcode
1 7 xkb-opcode
2 25 request-length
2 KB_DEVICESPEC deviceSpec
1 SETofKEYMASK affectInternalRealMods
1 SETofKEYMASK internalRealMods
1 SETofKEYMASK affectIgnoreLockRealMods
1 SETofKEYMASK ignoreLockRealMods
2 SETofKB_VMOD affectInternalVirtualMods
2 SETofKB_VMOD internalVirtualMods
2 SETofKB_VMOD affectIgnoreLockVirtualMods
2 SETofKB_VMOD ignoreLockVirtualMods
1 CARD8 mouseKeysDfltBtn
1 CARD8 groupsWrap
2 SETofKB_AXOPTION accessXOptions
2 unused
4 SETofKB_BOOLCTRL affectEnabledControls
4 SETofKB_BOOLCTRL enabledControls
4 SETofKB_CONTROL changeControls
2 CARD16 repeatDelay
2 CARD16 repeatInterval
2 CARD16 slowKeysDelay
2 CARD16 debounceDelay
2 CARD16 mouseKeysDelay
2 CARD16 mouseKeysInterval
2 CARD16 mouseKeysTimeToMax
2 CARD16 mouseKeysMaxSpeed
2 INT16 mouseKeysCurve
2 CARD16 accessXTimeout
4 SETofKB_BOOLCTRL accessXTimeoutMask
4 SETofKB_BOOLCTRL accessXTimeoutValues
2 SETofKB_AXOPTION accessXTimeoutOptionsMask
2 SETofKB_AXOPTION accessXTimeoutOptionsValues
32 LISTofCARD8 perKeyRepeat

12/15/97 Protocol Version 1.0/Document Revision 1.0 D-17

The X Keyboard Extension Protocol Specification

XkbGetMap
1 CARD8 opcode
1 8 xkb-opcode
2 7 request-length
2 KB_DEVICESPEC deviceSpec
2 SETofKB_MAPPART full
2 SETofKB_MAPPART partial
1 CARD8 firstType
1 CARD8 nTypes
1 KEYCODE firstKeySym
1 CARD8 nKeySyms
1 KEYCODE firstKeyAction
1 CARD8 nKeyActions
1 KEYCODE firstKeyBehavior
1 CARD8 nKeyBehaviors
2 SETofKB_VMOD virtualMods
1 KEYCODE firstKeyExplicit
1 CARD8 nKeyExplicit
1 KEYCODE firstModMapKey
1 CARD8 nModMapKeys
1 KEYCODE firstVModMapKey
1 CARD8 nVModMapKeys
2 unused

→
1 1 Reply
1 CARD8 deviceID
2 CARD16 sequence number
4 2+(I/4) length
2 unused
1 KEYCODE minKeyCode
1 KEYCODE maxKeyCode
2 SETofKB_MAPPART present
1 CARD8 firstType
1 t nTypes
1 CARD8 totalTypes
1 KEYCODE firstKeySym
2 S totalSyms
1 s nKeySyms
1 KEYCODE firstKeyAction
2 A totalActions
1 a nKeyActions
1 KEYCODE firstKeyBehavior
1 b nKeyBehaviors
1 B totalKeyBehaviors
1 KEYCODE firstKeyExplicit
1 e nKeyExplicit
1 E totalKeyExplicit
1 KEYCODE firstModMapKey
1 m nModMapKeys
1 M totalModMapKeys
1 KEYCODE firstVModMapKey
1 0 nVModMapKeys
1 V totalVModMapKeys

12/15/97 Protocol Version 1.0/Document Revision 1.0 D-18

The X Keyboard Extension Protocol Specification

1 unused
2 SETofKB_VMOD virtualMods (has v bits set to 1)
I LISTofITEMs map

SETofKB_MAPPART (present)
XkbKeyTypes typesRtrn
XkbKeySyms symsRtrn
XkbKeyActions actsRtrn.count, actsRtrn.acts
XkbKeyBehaviors behaviorsRtrn
XkbVirtualMods vmodsRtrn
XkbExplicitComponents explicitRtrn
XkbModifierMap modmapRtrn
XkbVirtualModMap vmodMapRtrn

ITEMs
T1+..Tt LISTofKB_KEYTYPE typesRtrn
8s+4S LISTofKB_KEYSYMMAP symsRtrn
a LISTofCARD8 actsRtrn.count
p unused,p=pad(a)
8A LISTofKB_ACTION actsRtrn.acts
4B LISTofKB_SETBEHAVIOR behaviorsRtrn
v LISTofSETofKEYMASK vmodsRtrn
p unused, p=pad(v)
2E LISTofKB_SETEXPLICIT explicitRtrn
p unused,p=pad(2E)
2M LISTofKB_KEYMODMAP modmapRtrn
p unused, p=pad(2M)
4V LISTofKB_KEYVMODMAP vmodMapRtrn

KB_KEYTYPE 8+8m+[4m]
1 SETofKEYMASK mods.mask
1 SETofKEYMASK mods.mods
2 SETofKB_VMOD mods.vmods
1 CARD8 numLevels
1 m nMapEntries
1 BOOL hasPreserve
1 unused
8m LISTofKB_KTMAPENTRY map
[4m] LISTofKB_MODDEF preserve

KB_KTMAPENTRY
1 BOOL active
1 SETofKEYMASK mods.mask
1 CARD8 level
1 SETofKEYMASK mods.mods
2 SETofKB_VMOD mods.vmods
2 unused

KB_KEYSYMMAP 8+4n
4 LISTofCARD8 ktIndex
1 CARD8 groupInfo
1 CARD8 width
2 n nSyms
4n LISTofKEYSYM syms

12/15/97 Protocol Version 1.0/Document Revision 1.0 D-19

The X Keyboard Extension Protocol Specification

KB_SETBEHAVIOR
1 KEYCODE keycode
2 KB_BEHAVIOR behavior
1 unused

KB_SETEXPLICIT
1 KEYCODE keycode
1 SETofKB_EXPLICIT explicit

KB_KEYMODMAP
1 KEYCODE keycode
1 SETofKB_KEYMASK mods

KB_KEYVMODMAP
1 KEYCODE keycode
1 unused
2 SETofKB_VMOD vmods

XkbSetMap
1 CARD8 opcode
1 9 xkb-opcode
2 9+(I/4) request-length
2 KB_DEVICESPEC deviceSpec
2 SETofKB_MAPPART present
2 SETofKB_SETMAPFLAGS flags

#0001 SetMapResizeTypes
#0002 SetMapRecomputeActions

1 KEYCODE minKeyCode
1 KEYCODE maxKeyCode
1 CARD8 firstType
1 t nTypes
1 KEYCODE firstKeySym
1 s nKeySyms
2 S totalSyms
1 KEYCODE firstKeyAction
1 a nKeyActions
2 A totalActions
1 KEYCODE firstKeyBehavior
1 b nKeyBehaviors
1 B totalKeyBehaviors
1 KEYCODE firstKeyExplicit
1 e nKeyExplicit
1 E totalKeyExplicit
1 KEYCODE firstModMapKey
1 m nModMapKeys
1 M totalModMapKeys
1 KEYCODE firstVModMapKey
1 v nVModMapKeys
1 V totalVModMapKeys
2 SETofKB_VMOD virtualMods (has n bits set to 1)
I LISTofITEMs values

SETofKB_MAPPART (present)
XkbKeyTypes types
XkbKeySymbols syms
XkbKeyActions actions.count,actions.actions
XkbKeyBehaviors behaviors

12/15/97 Protocol Version 1.0/Document Revision 1.0 D-20

The X Keyboard Extension Protocol Specification

XkbVirtualMods vmods
XkbExplicitComponents explicit
XkbModifierMap modmap
XkbVirtualModMap vmodmap

ITEMs
T0+..Tt LISTofKB_SETKEYTYPE types
8s+4S LISTofKB_KEYSYMMAP syms
a LISTofCARD8 actions.count
p unused,p=pad(a)
8A LISTofKB_ACTION actions.actions
4B LISTofKB_SETBEHAVIOR behaviors
v LISTofSETofKEYMASK vmods
p unused, p=pad(v)
2E LISTofKB_SETEXPLICIT explicit
p unused,p=pad(2E)
2M LISTofKB_KEYMODMAP modmap
P unused, p=pad(2M)
4V LISTofKB_KEYVMODMAP vmodmap

KB_SETKEYTYPE 8+4m+[4m]
1 SETofKEYMASK mask
1 SETofKEYMASK realMods
2 SETofKB_VMOD virtualMods
1 CARD8 numLevels
1 m nMapEntries
1 BOOL preserve
1 unused
4m LISTofKB_KTSETMAPENTRY entries
[4m] LISTofKB_MODDEF preserveEntries (if preserve==TRUE)

KB_KTSETMAPENTRY
1 CARD8 level
1 SETofKEYMASK realMods
2 SETofKB_VMOD virtualMods

XkbGetCompatMap
1 ?? opcode
1 10 xkb-opcode
2 3 request-length
2 KB_DEVICESPEC deviceSpec
1 SETofKB_GROUP groups
1 BOOL getAllSI
2 CARD16 firstSI
2 CARD16 nSI

→
1 1 Reply
1 CARD8 deviceID
2 CARD16 sequence number
4 (16n+4g)/4 length
1 SETofKB_GROUP groupsRtrn (has g bits set to 1)
1 unused
2 CARD16 firstSIRtrn
2 n nSIRtrn

12/15/97 Protocol Version 1.0/Document Revision 1.0 D-21

The X Keyboard Extension Protocol Specification

2 CARD16 nTotalSI
16 unused
16n LISTofKB_SYMINTERPRET siRtrn
4g LISTofKB_MODDEF groupRtrn

XkbSetCompatMap
1 ?? opcode
1 11 xkb-opcode
2 4+(16n+4g) request-length
2 KB_DEVICESPEC deviceSpec
1 unused
1 BOOL recomputeActions
1 BOOL truncateSI
1 SETofKB_GROUP groups (has g bits set to 1)
2 CARD16 firstSI
2 n nSI
2 unused
16n LISTofKB_SYMINTERPRET si
4g LISTofKB_MODDEF groupMaps

XkbGetIndicatorState
1 ?? opcode
1 12 xkb-opcode
2 2 request-length
2 KB_DEVICESPEC deviceSpec
2 unused

→
1 1 Reply
1 CARD8 deviceID
2 CARD16 sequence number
4 0 length
4 SETofKB_INDICATOR state
20 unused

XkbGetIndicatorMap
1 ?? opcode
1 13 xkb-opcode
2 3 request-length
2 KB_DEVICESPEC deviceSpec
2 unused
4 SETofKB_INDICATOR which

→
1 1 Reply
1 CARD8 deviceID
2 CARD16 sequence number
4 12n/4 length
4 SETofKB_INDICATOR which (has n bits set to 1)
4 SETofKB_INDICATOR realIndicators
1 n nIndicators
15 unused
12n LISTofKB_INDICATORMAP maps

12/15/97 Protocol Version 1.0/Document Revision 1.0 D-22

The X Keyboard Extension Protocol Specification

XkbSetIndicatorMap
1 ?? opcode
1 14 xkb-opcode
2 3+3n request-length
2 KB_DEVICESPEC deviceSpec
2 unused
4 SETofKB_INDICATOR which (has n bits set to 1)
12n LISTofKB_INDICATORMAP maps

XkbGetNamedIndicator
1 CARD8 opcode
1 15 xkb-opcode
2 4 request-length
2 KB_DEVICESPEC deviceSpec
2 KB_LEDCLASSSPEC ledClass
2 KB_IDSPEC ledID
2 unused
4 ATOM indicator

→
1 1 Reply
1 CARD8 deviceID
2 CARD16 sequence number
4 0 length
4 ATOM indicator
1 BOOL found
1 BOOL on
1 BOOL realIndicator
1 KB_INDICATOR ndx
1 SETofKB_IMFLAGS map.flags
1 SETofKB_IMGROUPSWHICH map.whichGroups
1 SETofKB_GROUPS map.groups
1 SETofKB_IMMODSWHICH map.whichMods
1 SETofKEYMASK map.mods
1 SETofKEYMASK map.realMods
2 SETofKB_VMOD map.vmods
4 SETofKB_BOOLCTRL map.ctrls
1 BOOL supported
3 unused

XkbSetNamedIndicator
1 ?? opcode
1 16 xkb-opcode
2 8 request-length
2 KB_DEVICESPEC deviceSpec
2 KB_LEDCLASSSPEC ledClass
2 KB_IDSPEC ledID
2 unused
4 ATOM indicator
1 BOOL setState
1 BOOL on
1 BOOL setMap
1 BOOL createMap
1 unused
1 SETofKB_IMFLAGS map.flags

12/15/97 Protocol Version 1.0/Document Revision 1.0 D-23

The X Keyboard Extension Protocol Specification

1 SETofKB_IMGROUPSWHICH map.whichGroups
1 SETofKB_GROUP map.groups
1 SETofKB_IMMODSWHICH map.whichMods
1 SETofKEYMASK map.realMods
2 SETofKB_VMOD map.vmods
4 SETofKB_BOOLCTRL map.ctrls

XkbGetNames
1 CARD8 opcode
1 17 xkb-opcode
2 3 request-length
2 KB_DEVICESPEC deviceSpec
2 unused
4 SETofKB_NAMEDETAIL which

→
1 1 Reply
1 CARD8 deviceID
2 CARD16 sequence number
4 V/4 length
4 SETofKB_NAMEDETAIL which
1 KEYCODE minKeyCode
1 KEYCODE maxKeyCode
1 t nTypes
1 SETofKB_GROUP groupNames (has g bits set to 1)
2 SETofKB_VMOD virtualMods (has v bits set to 1)
1 KEYCODE firstKey
1 k nKeys
4 SETofKB_INDICATOR indicators (has i bits set to 1)
1 r nRadioGroups
1 a nKeyAliases
2 l nKTLevels
4 unused
V LISTofITEMs valueList

SETofKB_NAMEDETAIL (which)
XkbKeycodesName keycodesName
XkbGeometryName geometryName
XkbSymbolsName symbolsName
XkbPhySymbolsName physSymbolsName
XkbTypesName typesName
XkbCompatName compatName
XkbKeyTypeNames typeNames
XkbKTLevelNames nLevelsPerType, ktLevelNames
XkbIndicatorNames indicatorNames
XkbVirtualModNames virtualModNames
XkbGroupNames groupNames
XkbKeyNames keyNames
XkbKeyAliases keyAliases
XkbRGNames radioGroupNames

ITEMs
4 ATOM keycodesName
4 ATOM geometryName
4 ATOM symbolsName
4 ATOM physSymbolsName
4 ATOM typesName

12/15/97 Protocol Version 1.0/Document Revision 1.0 D-24

The X Keyboard Extension Protocol Specification

4 ATOM compatName
4t LISTofATOM typeNames
l LISTofCARD8 nLevelsPerType, sum of all elements=L
p unused, p=pad(l)
4L LISTofATOM ktLevelNames
4i LISTofATOM indicatorNames
4v LISTofATOM virtualModNames
4g LISTofATOM groupNames
4k LISTofKB_KEYNAME keyNames
8a LISTofKB_KEYALIAS keyAliases
4r LISTofATOM radioGroupNames

XkbSetNames
1 CARD8 opcode
1 18 xkb-opcode
2 7+(V/4) request-length
2 KB_DEVICESPEC deviceSpec
2 SETofKB_VMOD virtualMods
4 SETofKB_NAMEDETAIL which
1 CARD8 firstType
1 t nTypes
1 CARD8 firstKTLevel
1 l nKTLevels
4 SETofKB_INDICATOR indicators (has i bits set to 1)
1 SETofKB_GROUP groupNames (has g bits set to 1)
1 r nRadioGroups
1 KEYCODE firstKey
1 k nKeys
1 a nKeyAliases
1 unused
2 L totalKTLevelNames
V LISTofITEMs values

SETofKB_NAMEDETAIL (which)
XkbKeycodesName keycodesName
XkbGeometryName geometryName
XkbSymbolsName symbolsName
XkbPhySymbolsName physSymbolsName
XkbTypesName typesName
XkbCompatName compatName
XkbKeyTypeNames typeNames
XkbKTLevelNames nLevelsPerType, ktLevelNames
XkbIndicatorNames indicatorNames
XkbVirtualModNames virtualModNames
XkbGroupNames groupNames
XkbKeyNames keyNames
XkbKeyAliases keyAliases
XkbRGNames radioGroupNames

ITEMs
4 ATOM keycodesName
4 ATOM geometryName
4 ATOM symbolsName
4 ATOM physSymbolsName
4 ATOM typesName
4 ATOM compatName

12/15/97 Protocol Version 1.0/Document Revision 1.0 D-25

The X Keyboard Extension Protocol Specification

4t LISTofATOM typeNames
l LISTofCARD8 nLevelsPerType
p unused, p=pad(l)
4L LISTofATOM ktLevelNames
4i LISTofATOM indicatorNames
4v LISTofATOM virtualModNames
4g LISTofATOM groupNames
4k LISTofKB_KEYNAME keyNames
8a LISTofKB_KEYALIAS keyAliases
4r LISTofATOM radioGroupNames

XkbGetGeometry
1 CARD8 opcode
1 19 xkb-opcode
2 3 request-length
2 KB_DEVICESPEC deviceSpec
2 unused
4 ATOM name

→
1 1 Reply
1 CARD8 deviceID
2 CARD16 sequence number
4 (f+8p+C*+H*+S*+D*+A*)/4 length
4 ATOM name
1 BOOL found
1 unused
2 CARD16 widthMM
2 CARD16 heightMM
2 p nProperties
2 c nColors
2 h nShapes
2 s nSections
2 d nDoodads
2 a nKeyAliases
1 CARD8 baseColorNdx
1 CARD8 labelColorNdx
f KB_COUNTED_STRING16 labelFont
8p LISTofKB_PROPERTY properties
C0+..Cc LISTofKB_COUNTED_STRING16 colors
H0+..Hh LISTofKB_SHAPE shapes
S0+..Ss LISTofKB_SECTION sections
D0+..Dd LISTofKB_DOODAD doodads
A0+..Aa LISTofKB_KEYALIAS keyAliases

KB_PROPERTY 4+n+v
2 n nameLength
n STRING8 name
2 v valueLength
v STRING8 value

12/15/97 Protocol Version 1.0/Document Revision 1.0 D-26

The X Keyboard Extension Protocol Specification

KB_SHAPE 8+O*
4 ATOM name
1 o nOutlines
1 CARD8 primaryNdx
1 CARD8 approxNdx
1 unused
O0+..Oo LISTofKB_OUTLINE outlines

KB_OUTLINE 4+4p
1 p nPoints
1 CARD8 cornerRadius
2 unused
4p LISTofKB_POINT points

KB_POINT
2 INT16 x
2 INT16 y

KB_SECTION 20+R*+D*+O*
4 ATOM name
2 INT16 top
2 INT16 left
2 CARD16 width
2 CARD16 height
2 INT16 angle
1 CARD8 priority
1 r nRows
1 d nDoodads
1 o nOverlays
2 unused
R0+..Rr LISTofKB_ROW rows
D0+..Dd LISTofKB_DOODAD doodads
O0+..Oo LISTofKB_OVERLAY overlays

KB_ROW 8+8k
2 INT16 top
2 INT16 left
1 k nKeys
1 BOOL vertical
2 unused
8k LISTofKB_KEY keys

KB_KEY
4 STRING8 name
2 INT16 gap
1 CARD8 shapeNdx
1 CARD8 colorNdx

KB_OVERLAY 8+R*
4 ATOM name
1 r nRows
3 unused
R0+..Rr LISTofKB_OVERLAYROW rows

12/15/97 Protocol Version 1.0/Document Revision 1.0 D-27

The X Keyboard Extension Protocol Specification

KB_OVERLAYROW 4+8k
1 CARD8 rowUnder
1 k nKeys
2 unused
8k LISTofKB_OVERLAYKEY keys

KB_OVERLAYKEY
4 STRING8 over
4 STRING8 under

KB_SHAPEDOODAD
4 ATOM name
1 CARD8 type

#1 XkbOutlineDoodad
#2 XkbSolidDoodad

1 CARD8 priority
2 INT16 top
2 INT16 left
2 INT16 angle
1 CARD8 colorNdx
1 CARD8 shapeNdx
6 unused

KB_TEXTDOODAD 20+t+f
4 ATOM name
1 CARD8 type

#3 XkbTextDoodad
1 CARD8 priority
2 INT16 top
2 INT16 left
2 INT16 angle
2 CARD16 width
2 CARD16 height
1 CARD8 colorNdx
3 unused
t KB_COUNTED_STRING16 text
f KB_COUNTED_STRING16 font

KB_INDICATORDOODAD
4 ATOM name
1 CARD8 type

#4 XkbIndicatorDoodad
1 CARD8 priority
2 INT16 top
2 INT16 left
2 INT16 angle
1 CARD8 shapeNdx
1 CARD8 onColorNdx
1 CARD8 offColorNdx
5 unused

KB_LOGODOODAD 20+n
4 ATOM name
1 CARD8 type

#5 XkbLogoDoodad
1 CARD8 priority

12/15/97 Protocol Version 1.0/Document Revision 1.0 D-28

The X Keyboard Extension Protocol Specification

2 INT16 top
2 INT16 left
2 INT16 angle
1 CARD8 colorNdx
1 CARD8 shapeNdx
6 unused
n KB_COUNTED_STRING16 logoName

KB_DOODAD:
KB_SHAPEDOODAD, or KB_TEXTDOODAD, or
KB_INDICATORDOODAD, or KB_LOGODOODAD

XkbSetGeometry
1 CARD8 opcode
1 20 xkb-opcode
2 7+(f+8p+C*+H*+S*+D*+A*)/4 request-length
2 KB_DEVICESPEC deviceSpec
1 h nShapes
1 s nSections
4 ATOM name
2 CARD16 widthMM
2 CARD16 heightMM
2 p nProperties
2 c nColors
2 d nDoodads
2 a nKeyAliases
1 CARD8 baseColorNdx
1 CARD8 labelColorNdx
2 unused
f KB_COUNTED_STRING16 labelFont
8p LISTofKB_PROPERTY properties
C0+..Cc LISTofKB_COUNTED_STRING16 colors
H0+..Hh LISTofKB_SHAPE shapes
S0+..Ss LISTofKB_SECTION sections
D0+..Dd LISTofKB_DOODAD doodads
A0+..Aa LISTofKB_KEYALIAS keyAliases

XkbPerClientFlags
1 CARD8 opcode
1 21 xkb-opcode
2 7 request-length
2 KB_DEVICESPEC deviceSpec
2 unused
4 SETofKB_PERCLIENTFLAG change
4 SETofKB_PERCLIENTFLAG value
4 SETofKB_BOOLCTRL ctrlsToChange
4 SETofKB_BOOLCTRL autoCtrls
4 SETofKB_BOOLCTRL autoCtrlValues

→
1 1 Reply
1 CARD8 deviceID
2 CARD16 sequence number
4 0 length
4 SETofKB_PERCLIENTFLAG supported

12/15/97 Protocol Version 1.0/Document Revision 1.0 D-29

The X Keyboard Extension Protocol Specification

4 SETofKB_PERCLIENTFLAG value
4 SETofKB_BOOLCTRL autoCtrls
4 SETofKB_BOOLCTRL autoCtrlValues
8 unused

XkbListComponents
1 CARD8 opcode
1 22 xkb-opcode
2 2+(6+m+k+t+c+s+g+p)/4 request-length
2 KB_DEVICESPEC deviceSpec
2 CARD16 maxNames
1 m keymapsSpecLen
m STRING keymapsSpec
1 k keycodesSpecLen
k STRING keycodesSpec
1 t typesSpecLen
t STRING typesSpec
1 c compatMapSpecLen
c STRING compatMapSpec
1 s symbolsSpecLen
s STRING symbolsSpec
1 g geometrySpecLen
g STRING geometrySpec
p unused,p=pad(6+m+k+t+c+s+g)

→
1 1 Reply
1 CARD8 deviceID
2 CARD16 sequence number
4 (M*+K*+T*+C*+S*+G*+p)/4 length
2 m nKeymaps
2 k nKeycodes
2 t nTypes
2 c nCompatMaps
2 s nSymbols
2 g nGeometries
2 CARD16 extra
10 unused
M0+..Mm LISTofKB_LISTING keymaps
K0+..Kk LISTofKB_LISTING keycodes
T0+..Tt LISTofKB_LISTING types
C0+..Cc LISTofKB_LISTING compatMaps
S0+..Ss LISTofKB_LISTING symbols
G0+..Gg LISTofKB_LISTING geometries
p unused,p=pad(M*+K*+T*+C*+S*+G*)

KB_LISTING 4+n+p
2 CARD16 flags
2 n length
n STRING8 string
p unused,p=pad(n) to a 2-byte boundary

12/15/97 Protocol Version 1.0/Document Revision 1.0 D-30

The X Keyboard Extension Protocol Specification

XkbGetKbdByName
1 CARD8 opcode
1 23 xkb-opcode
2 3+(6+m+k+t+c+s+g+p)/4 request-length
2 KB_DEVICESPEC deviceSpec
2 SETofKB_GBNDETAILMASK need
2 SETofKB_GBNDETAILMASK want
1 BOOL load
1 unused
1 m keymapsSpecLen
m STRING8 keymapsSpec
1 k keycodesSpecLen
k STRING8 keycodesSpec
1 t typesSpecLen
t STRING8 typesSpec
1 c compatMapSpecLen
c STRING8 compatMapSpec
1 s symbolsSpecLen
s STRING8 symbolsSpec
1 g geometrySpecLen
g STRING8 geometrySpec
p unused,p=pad(6+m+k+t+c+s+g)

→
1 1 Reply
1 CARD8 deviceID
2 CARD16 sequence number
4 V/4 length
1 KEYCODE minKeyCode
1 KEYCODE maxKeyCode
1 BOOL loaded
1 BOOL newKeyboard
2 SETofKB_GBNDETAILMASK found
2 SETofKB_GBNDETAILMASK reported
16 unused
V LISTofITEMs replies

SETofKB_GBNDETAILMASK (reported)
XkbGBN_Types map
XkbGBN_CompatMap compat
XkbGBN_ClientSymbols map
XkbGBN_ServerSymbols map
XkbGBN_IndicatorMap indicators
XkbGBN_KeyNames names
XkbGBN_OtherNames names
XkbGBN_Geometry geometry

ITEMs
M XkbGetMap reply map
C XkbGetCompatMap reply compat
I XkbGetIndicatorMap reply indicators
N XkbGetNames reply names
G XkbGetGeometry reply geometry

12/15/97 Protocol Version 1.0/Document Revision 1.0 D-31

The X Keyboard Extension Protocol Specification

XkbGetDeviceInfo
1 CARD8 opcode
1 24 xkb-opcode
2 4 request-length
2 KB_DEVICESPEC deviceSpec
2 SETofKB_DEVFEATURE wanted
1 BOOL allButtons
1 CARD8 firstButton
1 CARD8 nButtons
1 unused
2 KB_LEDCLASSSPEC ledClass
2 KB_IDSPEC ledID

→
1 1 Reply
1 CARD8 deviceID
2 CARD16 sequence number
4 (2+n+p+8b+L*)/4 length
2 SETofKB_DEVFEATURE present
2 SETofKB_FEATURE supported
2 SETofKB_FEATURE unsupported
2 l nDeviceLedFBs
1 CARD8 firstBtnWanted
1 CARD8 nBtnsWanted
1 CARD8 firstBtnRtrn
1 b nBtnsRtrn
1 CARD8 totalBtns
1 BOOL hasOwnState
2 SETofKB_IDRESULT dfltKbdFB
2 SETofKB_IDRESULT dfltLedFB
2 unused
4 ATOM devType
2 n nameLen
n STRING8 name
p unused,p=pad(2+n)
8b LISTofKB_ACTION btnActions
L0+..Ll LISTofKB_DEVICELEDINFO leds

KB_DEVICELEDINFO 20+4n+12m
2 KB_LEDCLASSSPEC ledClass
2 KB_IDSPEC ledID
4 SETofKB_INDICATOR namesPresent (has n bits set to 1)
4 SETofKB_INDICATOR mapsPresent (has m bits set to 1)
4 SETofKB_INDICATOR physIndicators
4 SETofKB_INDICATOR state
4n LISTofATOM names
12m LISTofKB_INDICATORMAP maps

XkbSetDeviceInfo
1 ?? opcode
1 25 xkb-opcode
2 3+(8b+L*)/4 request-length
2 KB_DEVICESPEC deviceSpec
1 CARD8 firstBtn
1 b nBtns

12/15/97 Protocol Version 1.0/Document Revision 1.0 D-32

The X Keyboard Extension Protocol Specification

2 SETofKB_DEVFEATURE change
2 l nDeviceLedFBs
8b LISTofKB_ACTION btnActions
L0+..Ll LISTofKB_DEVICELEDINFO leds

Encoding of KB_DEVICELEDINFO is as for XkbGetDeviceInfo

XkbSetDebuggingFlags
1 ?? opcode
1 101 xkb-opcode
2 6+(n+p)/4 request-length
2 n msgLength
2 unused
4 CARD32 affectFlags
4 CARD32 flags
4 CARD32 affectCtrls
4 CARD32 ctrls
n STRING8 message
p unused, p=pad(n)

→
1 1 Reply
1 unused
2 CARD16 sequence number
4 0 length
4 CARD32 currentFlags
4 CARD32 currentCtrls
4 CARD32 supportedFlags
4 CARD32 supportedCtrls
8 unused

7.0 Events

XkbNewKeyboardNotify
1 ?? code
1 0 xkb code
2 CARD16 sequence number
4 TIMESTAMP time
1 CARD8 deviceID
1 CARD8 oldDeviceID
1 KEYCODE minKeyCode
1 KEYCODE maxKeyCode
1 KEYCODE oldMinKeyCode
1 KEYCODE oldMaxKeyCode
1 CARD8 requestMajor
1 CARD8 requestMinor
2 SETofKB_NKNDETAIL changed
14 unused

XkbMapNotify
1 ?? code
1 1 xkb code
2 CARD16 sequence number
4 TIMESTAMP time
1 CARD8 deviceID

12/15/97 Protocol Version 1.0/Document Revision 1.0 D-33

The X Keyboard Extension Protocol Specification

1 SETofBUTMASK ptrBtnActions
2 SETofKB_MAPPART changed
1 KEYCODE minKeyCode
1 KEYCODE maxKeyCode
1 CARD8 firstType
1 CARD8 nTypes
1 KEYCODE firstKeySym
1 CARD8 nKeySyms
1 KEYCODE firstKeyAct
1 CARD8 nKeyActs
1 KEYCODE firstKeyBehavior
1 CARD8 nKeyBehavior
1 KEYCODE firstKeyExplicit
1 CARD8 nKeyExplicit
1 KEYCODE firstModMapKey
1 CARD8 nModMapKeys
1 KEYCODE firstVModMapKey
1 CARD8 nVModMapKeys
2 SETofKB_VMOD virtualMods
2 unused

XkbStateNotify
1 ?? code
1 2 xkb code
2 CARD16 sequence number
4 TIMESTAMP time
1 CARD8 deviceID
1 SETofKEYMASK mods
1 SETofKEYMASK baseMods
1 SETofKEYMASK latchedMods
1 SETofKEYMASK lockedMods
1 KB_GROUP group
2 INT16 baseGroup
2 INT16 latchedGroup
1 KB_GROUP lockedGroup
1 SETofKEYMASK compatState
1 SETofKEYMASK grabMods
1 SETofKEYMASK compatGrabMods
1 SETofKEYMASK lookupMods
1 SETofKEYMASK compatLookupMods
2 SETofBUTMASK ptrBtnState
2 SETofKB_STATEPART changed
1 KEYCODE keycode
1 CARD8 eventType
1 CARD8 requestMajor
1 CARD8 requestMinor

XkbControlsNotify
1 ?? code
1 3 xkb code
2 CARD16 sequence number
4 TIMESTAMP time
1 CARD8 deviceID
1 CARD8 numGroups

12/15/97 Protocol Version 1.0/Document Revision 1.0 D-34

The X Keyboard Extension Protocol Specification

2 unused
4 SETofKB_CONTROL changedControls
4 SETofKB_BOOLCTRL enabledControls
4 SETofKB_BOOLCTRL enabledControlChanges
1 KEYCODE keycode
1 CARD8 eventType
1 CARD8 requestMajor
1 CARD8 requestMinor
4 unused

XkbIndicatorStateNotify
1 ?? code
1 4 xkb code
2 CARD16 sequence number
4 TIMESTAMP time
1 CARD8 deviceID
3 unused
4 SETofKB_INDICATOR state
4 SETofKB_INDICATOR stateChanged
12 unused

XkbIndicatorMapNotify
1 ?? code
1 5 xkb code
2 CARD16 sequence number
4 TIMESTAMP time
1 CARD8 deviceID
3 unused
4 SETofKB_INDICATOR state
4 SETofKB_INDICATOR mapChanged
12 unused

XkbNamesNotify
1 ?? code
1 6 xkb code
2 CARD16 sequence number
4 TIMESTAMP time
1 CARD8 deviceID
1 unused
2 SETofKB_NAMEDETAIL changed
1 CARD8 firstType
1 CARD8 nTypes
1 CARD8 firstLevelName
1 CARD8 nLevelNames
1 unused
1 CARD8 nRadioGroups
1 CARD8 nKeyAliases
1 SETofKB_GROUP changedGroupNames
2 SETofKB_VMOD changedVirtualMods
1 KEYCODE firstKey
1 CARD8 nKeys
4 SETofKB_INDICATOR changedIndicators
4 unused

12/15/97 Protocol Version 1.0/Document Revision 1.0 D-35

The X Keyboard Extension Protocol Specification

XkbCompatMapNotify
1 ?? code
1 7 xkb code
2 CARD16 sequence number
4 TIMESTAMP time
1 CARD8 deviceID
1 SETofKB_GROUP changedGroups
2 CARD16 firstSI
2 CARD16 nSI
2 CARD16 nTotalSI
16 unused

XkbBellNotify
1 ?? code
1 8 xkb code
2 CARD16 sequence number
4 TIMESTAMP time
1 CARD8 deviceID
1 KB_BELLCLASSRESULT bellClass
1 CARD8 bellID
1 CARD8 percent
2 CARD16 pitch
2 CARD16 duration
4 ATOM name
4 WINDOW window
1 BOOL eventOnly
7 unused

XkbActionMessage
1 ?? code
1 9 xkb code
2 CARD16 sequence number
4 TIMESTAMP time
1 CARD8 deviceID
1 KEYCODE keycode
1 BOOL press
1 BOOL keyEventFollows
1 SETofKEYMASK mods
1 KB_GROUP group
8 STRING8 message
10 unused

XkbAccessXNotify
1 ?? code
1 10 xkb code
2 CARD16 sequence number
4 TIMESTAMP time
1 CARD8 deviceID
1 KEYCODE keycode
2 SETofKB_AXNDETAIL detail
2 CARD16 slowKeysDelay
2 CARD16 debounceDelay
16 unused

12/15/97 Protocol Version 1.0/Document Revision 1.0 D-36

The X Keyboard Extension Protocol Specification

XkbExtensionDeviceNotify
1 ?? code
1 11 xkb code
2 CARD16 sequence number
4 TIMESTAMP time
1 CARD8 deviceID
1 unused
2 SETofKB_XIDETAIL reason
2 KB_LEDCLASSRESULT ledClass
2 CARD8 ledID
4 SETofKB_INDICATOR ledsDefined
4 SETofKB_INDICATOR ledState
1 CARD8 firstButton
1 CARD8 nButtons
2 SETofKB_XIFEATURE supported
2 SETofKB_XIFEATURE unsupported
2 unused

