X I nput Device Extension Library

X Consortium Standard

X Version 11, Release 6.4

Mark P atrick Ardent Computer
George Sachs Hewlett-Packard

Copyright © 1989, 1990, 1991 by Hewlett-Packard ComgpaArdent Computer.

Permission to use, cgpmodify, and distribute this documentation forygourpose and without

fee is hereby granted, provided that thevabmpyright notice and this permission notice appear
in all copies. Ardent, and Hewlett-Packard malo epresentations about the suitability for any
purpose of the information in this document. It is provided —awithout express or implied
warranty.

Copyright (c) 1989, 1990, 1991, 1992 Consortium

Permission is hereby granted, free of charge, ygparson obtaining a cemf this software and
associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, gomodify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
S0, subject to the following conditions:

The abwe mpyright notice and this permission notice shall be included in all copies or substan-
tial portions of the Software.

THE SOFTWARE IS PRVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NO LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGE-
MENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACTTORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising
or otherwise to promote the sale, use or other dealings in this Software without prior written
authorization from the X Consortium.

X Wndow Systeris a trademark of X Consortium, Inc.

1. Input Extension Overview

This document describes an extension to the X11 sefver purpose of this extension is to sup-
port the use of additional input devices beyond the pointer eyimbard devices defined by the
core X protocol. This first sectionvgs an awerview of the input &tension. Thdollowing sec-
tions correspond to chapters 9, 10, and 11, “Wimdnd Session Manager Functions”,

“ Events”, and “Event Handling Functionsf the “Xlib - C Language Interfacemanual and
describe hw to use the input device extension.

1.1. DesignrApproach

The design approach of the extension is to define functionsvanis$ @nalogous to the core func-
tions and eents. Thisallows extension input devices andets to be individually distinguish-
able from each other and from the core input devices\amise Thesdunctions andeents

make wse of a device identifier and support the reporting-dimensional motion data as well as
other data that is not currently reportable via the core inpute

1.2. Cor Input Devices

The X server core protocol supportotimput devices: apointer and adyboard. Thepointer

device has te major functions. First, it may be used to generate motion information that client
programs can detect. Second, it may also be used to indicate the current location and focus of the
X keyboard. D accomplish this, the server echoes a cursor at the current position of the X

pointer Unless the X &yboard has been explicitly focused, this cursor also shows the current
location and focus of the Xelboard.

The X keyboard is used to generate input that client programs can detect.

The X keyboard and X pointer are referred to in this document asoileetevices and the input
events thg generate KeyPress KeyRelease ButtonPress, ButtonRelease and MotionNo-
tify) are known as theore input events All other input devices are referred toeagension input
devicesand the input eents the generate are referred to egension input events

Note

This input extension does not change the behavior or functionality of the core input
devices, corewvents, or core protocol requests, with the exception of the core grab
requests. Thesequests may affect the synchronizationwahés from extension
devices. Seg¢he explanation in the section titled “Event Synchronization and Core
Grabs:

Selection of the physical devices to be initially used by the server as the core devices is left imple-
mentation dependent. Functions are defined that @lient programs to change which physical
devices are used as the core devices.

1.3. Extensionlnput Devices

The input extension controls access to input devices other than #yoakd and X pointerlt

allows client programs to select input from these devices independently from each other and inde-
pendently from the core diees. Inputevents from these devices are of extension types
(DeviceKeyPress DeviceKeyReleaseDeviceButtonPress DeviceButtonRelease DeviceMo-
tionNotify , and so on) and contain a device identifier so thetts of the same type coming

from different input devices can be distinguished.

Extension inputents are not limited in size by the size of the server 32-byte wirdse Exten-
sion input gents may be constructed by the server sending ag miag-sized gents as

X Input Extension Library X11, Release 6.4

necessary to return the information required for thiete Thelibrary event reformatting rou-
tines are responsible for combining these into one or more client XEvents.

Any input device that generatesykbutton, or motion data may be used as an extension input
device. Extensionnput devices may lva z2ro or more &ys, zero or more buttons, and may
report zero or more axes of motion. Motion may be reported asestadvements from a previ-
ous position or as an absolute position. All valuators reporting motion information fe@na gi
extension input device must report the same kind of motion information (absolute ee)yelati

This extension is designed to accommodate types of input devices that may be added in the
future. Theprotocol requests that refer to specific characteristics of input devgaeszerthat
information byinput device classesServer implementors may addwelasses of input devices
without changing the protocol requests.

All extension input devices are treatectlike core X kyboard in determining their location and

focus. Theserver does not track the location of these devices on an individual basis and, there-
fore, does not echo a cursor to indicate their current location. Instead, their location is determined
by the location of the core X pointekike the core X kyboard, some may be explicitly focused.

If they are not explicitly focused, their focus is determined by the location of the core X pointer.

1.3.1. InputDevice Classes

Some of the input extension requests divide input devices into classes based on their functionality.
This is intended to all® new dasses of input devices to be defined at a later time without chang-
ing the semantics of these functions. The following input device classes are currently defined:

KEY The device reportsay esents.

BUTTON The device reports buttonents.

VALUATOR The device reports valuator data in motigergs.
PROXIMITY The device reports proximityents.

FOCUS The device can be focused.

FEEDBACK The device supports feedbacks.

Additional classes may be added in the future. Functions that support multiple input classes, such
as theXListInputDevices function that lists all@ilable input devices, genize the data they

return by input class. Client programs that use these functions should not access data unless it
matches a class defined at the time those clients were compiled. In threwalasses can be

added without forcing existing clients that use these functions to be recompiled.

1.4. UsingExtension Input Devices

A client that wishes to access an input device does so through the library functions defined in the
following sections.A typical sequence of requests that a client wouldeniskas dllows:

. XListinputDevices - lists all of the wailable input dgices. Fronthe information
returned by this request, determine whether the desired input device is attached to the
server For a description of thXListinputDevices request, see the section entitled “List-
ing Available Devices.

. XOpenDevice- requests that the server open the device for access by this client. This
request returns akDevice structure that is used by most other input extension requests to
identify the specified déce. For a description of thXOpenDevicerequest, see the sec-
tion entitled “Enabling and Disabling Extension Devites.

. Determine theent types andwent classes heeded to select the desired input extension
evants, and identify them when thare receied. Thisis done via macros whose name

X Input Extension Library X11, Release 6.4

corresponds to the desiregkst, for exampleDeviceKeyPress For a description of these
macros, see the section entitled “Selecting Extension Device Events.

. XSelectExtensionEvent- selects the desiredrents from the serverFor a description of
the XSelextExtensionEventrequest, see the section entitled “Selecting Extension Device
Events.

. XNextEvent — receves the next gailable event. Thisis the coreXNextEvent function

provided by the standard X libarary.

Other requests are defined to grab and focus extension devices, to changs, thatitok, or
modifier mappings, to control the propagation of input extensiem® to get motion history
from an extension device, and to send input extensiamtsto another client. These functions
are described in the following sections.

2. Library Extension Requests

Extension input devices are accessed by client programs through the useaftoeol requests.
The following requests are provided as extensions to Xdimstants and structures referenced by
these functions may be found in the fi#e€l1/extensions/Xl.h>and<X11/extensions/XIn-

put.h>, which are attached to this document as Appendix A.

The library will returnNoSuchExtensionif an extension request is made to a server that does not
support the input extension.

Input extension requests cannot be used to access tdakd and X pointer devices.

2.1. Window M anager Functions

This section discusses the following X Input Extension Winbltanager topics:
. Changing the core devices

. Event synchronization and core grabs
. Extension actie gabs

. Passvely grabbing a ky

. Passvely grabbing a button

. Thawing a device

. Controlling device focus

. Controlling device feedback

. Ringing a bell on an input device

. Controlling device encoding

. Controlling button mapping

. Obtaining the state of a device

2.1.1. Changinghe Core Devices

These functions are provided to change which physical device is used as the X pointer or X
keyboard.

X Input Extension Library X11, Release 6.4

Note

Using these functions may change the characteristics of the aicedeThenew

pointer device may Iva a dfferent number of buttons from the old one, or the new
keyboard device may la a dfferent number of &ys or report a different range of
keycodes. Clienprograms may be running that depend on those characteristics.
example, a client program could allocate an array based on the number of buttons on
the pointer device and then use the button numberseddributton events as

indices into that arrayChanging the core devices could cause such client programs

to behae improperly or to terminate abnormally if $hignore theChangeDevi-

ceNotify event generated by these requests.

These functions change the ¥ykoard or X pointer device and generatexa@hangeDeviceNo-
tify event and aMappingNotify event. Thespecified device becomes thewng keyboard or X
pointer deice. Thelocation of the core device does not change as a result of this request.

These requests fail and retulitreadyGrabbed if either the specified device or the core device it
would replace are grabbed by some other client.yTaiéand returnGrabFrozen if either
device is frozen by the aeé gab of another client.

These requests fail withBadDeviceerror if the specified device isvid, has not previously
been opened viXOpenDevice or is rot supported as a core device by the server implementa-
tion.

Once the device has successfully replaced one of the core devices, it is treated as a core device
until it is in turn replaced by anoth@hangeDevicerequest or until the server terminates. The
termination of the client that changed the device will not cause it to change back. Attempts to use
the XCloseDevicerequest to close theweore device will fail with aBadDeviceerror.

To change which physical device is used as theeyb&ard, use thXChangeKeyboardDevice
function. Thespecified device must support input cl&sys (as reported in theistinputDe-
vicesrequest) or the request will fail withBadMatch error.

int XChangeleyboardDeice (display, device
Display *display,
XDevice *device

display Specifies the connection to the X server.
device Specifies the desired device.

If no error occursXChangeKeyboardDevicereturnsSuccess A ChangeDeviceNotifyevent
with the request field set tdewKeyboard is sent to all clients selecting thaeat. A Mapping-
Notify event with the request field set MappingKeyboard is sent to all clients. The requested
device becomes the Xelboard, and the oldegboard becomesvailable as an extension input
device. Thefocus state of the mekeyboard is the same as the focus state of the oleyidard.

XChangeKeyboardDevicecan generatélreadyGrabbed, BadDevice BadMatch, and
GrabFrozen errors.

To change which physical device is used as the X poinsertheXChangePointerDevicefunc-
tion. Thespecified device must support input cl&sguators (as reported in th&ListinputDe-
vicesrequest) and report at leasiotaxes of motion, or the request will fail with BadMatch

X Input Extension Library X11, Release 6.4

error. If the specified device reports more than awes, the tvo ecified in the xaxis and yaxis
arguments will be used. Data from other valuators on the device will be ignored.

If the specified device reports absolute positional information, and the server implementation does
not allowv such a device to be used as the X poirtter request will fail with @8adDeviceerror.

int XChangePointerDéce (display, device xaxis, yaxis)

Display *display;
XDevice *device
int xaxis,
int yaxis,
display Specifies the connection to the X server.
device Specifies the desired device.
xaxis Specifies the zero-based ind# the axis to be used as the x-axis of the pointer
device.
yaxis Specifies the zero-based ind# the axis to be used as the y-axis of the pointer
device.

If no error occursXChangePointerDevicereturnsSuccess A ChangeDeviceNotifyevent

with the request field set tdewPointer is sent to all clients selecting thaest. A Mapping-
Notify event with the request field set MappingPointer is sent to all clients. The requested
device becomes the X pointend the old pointer becomegatable as an extension input device.

XChangePointerDevicecan generatélreadyGrabbed, BadDevice BadMatch, and
GrabFrozen errors.

2.1.2. Eent Synchronization and Coe Grabs

Implementation of the input extension requires an extension of the meaniregpio$ynchroniza-
tion for the core grab requests. This is necessary in order vowsifaow managers to freeze all
input devices with a single request.

The core grab requests require a pointer_mode eyimbard _mode gument. Theneaning of

these modes is changed by the inpt¢rsion. Br the XGrabPointer and XGrabButton

requests, pointer_mode controls synchronization of the pointer devicegynwéid _mode con-

trols the synchronization of all other inputvaes. For the XGrabKeyboard and XGrabKey

requests, pointer_mode controls the synchronization of all input devices, excepteyimxré,

while keyboard_mode controls the synchronization of tegokard. Wherusing one of the core

grab requests, the synchronization of extension devices is controlled by the mode specified for the
device not being grabbed.

2.1.3. ExtensionmActive Grabs

Active gabs of extension devices are supported viaXtGeabDevice function in the same way
that core devices are grabbed using the ¥@eabKeyboard function, except that an extension
input device is passed as a function paramdtee XUngrabDevice function allows a previous
active gab for an extension device to be released.

Passive gabs of buttons andelys on extension devices are supported via X@rabDeviceBut-
ton and XGrabDeviceKey functions. Thespassie gabs are released via tiké&JngrabDe-
viceKey and XUngrabDeviceButton functions.

X Input Extension Library X11, Release 6.4

To gab an extension device, use @&rabDevice function. Thedevice must hae previously
been opened using th&penDevicefunction.

int XGrabDevice (display, device grab_window owner_eventsewent_countewent_list,
this_device_modether_device_moddime)
Display *display;
XDevice *device
Windowgrab_window
Bool owner_events
int event_count
XEventClass &went_list,
int this_device_mode
int other_device_mode

Timetime;
display Specifies the connection to the X server.
device Specifies the desired device.

grab_window Specifies the ID of a winaoassociated with the device specified ao
owner_events Specifies a boolean value of eitligmue or False.
ewvent_count Specifies the number of elements in theng _list array.

ewent_list Specifies a pointer to a list ofent classes that indicate whicheats the client
wishes to recee. These eent classes must kia keen obtained using the device
being grabbed.

this_device_mode
Controls further processing ofents from this deice. You can pass one of these
constantsGrabModeSync or GrabModeAsync.

other_device_mode
Controls further processing ofents from all other deces. You can pass one of
these constant$&srabModeSync or GrabModeAsync.

time Specifies the time. This may be either a timestamp expressed in milliseconds or
CurrentTime .

XGrabDevice actively grabs an extension input device and genefamsceFocusinand
DeviceFocusOutevents. Furtheinput events from this device are reported only to the grabbing
client. Thisfunction orerrides ary previous actre gab by this client for this device.

The event_list parameter is a pointer to a list wéet classes. This list indicates whicverts the
client wishes to recee while the grab is aate. If owner_eents isFalse, input ezents from this
device are reported with respect to grab_wimdnd are reported only if specified imeat_list.

If owner_events isTr ue, then if a generatedrent would normally be reported to this client, it is
reported normally Otherwise, thewent is reported with respect to the grab_winwdind is only
reported if specified invent_list.

The this_device_mode argument controls the further processingni$ drom this device, and
the other_device_mode argument controls the further processing ofwept# ffom all other
devices.

. If the this_device_mode argumen@GgsabModeAsync, device event processing continues
normally; if the device is currently frozen by this client, then processing of derdots és
resumed. Ithe this_deice_mode ajument isGrabModeSync, the state of the grabbed

X Input Extension Library X11, Release 6.4

device (as seen by client applications) appears to freeze, and no further denicaue
generated by the server until the grabbing client issues a rele@silogvDeviceEvents
call or until the device grab is released. Actual device inparte are not lost while the
device is frozen; theare simply queued for later processing.

. If the other_device_mode GrabModeAsync, event processing from other input devices
is unaffected by aatétion of the grab If other_device_mode i&rabModeSync, the state
of all devices except the grabbed device (as seen by client applications) appears to freeze,
and no furtherents are generated by the server until the grabbing client issues a releasing
XAllowEvents or XAllowDeviceEventscall or until the device grab is released. Actual
evants are not lost while the other devices are frozely,dreesimply queued for later pro-
cessing.

XGrabDevice fails on the following conditions:
. If the device is actely grabbed by some other client, it returkiseadyGrabbed.
. If grab_windav is not viewable, it returnsGrabNotViewable.

. If the specified time is earlier than the last-grab-time for the specified device or later than
the current X server time, it retur@ablnvalidTime . Otherwise, the last-grab-time for
the specified device is set to the specified timeGundentTime is replaced by the current
X server time.

. If the device is frozen by an aaigab of another client, it returrGrabFrozen.

If a grabbed device is closed by a client while arvaaiiab by that client is in effect, that aci
grab will be released. Ampassve gabs established by that client will be released. If the device
is frozen only by an aste gab of the requesting client, it is thawed.

XGrabDevice can generatBadClass BadDevice BadValue, and BadWindow errors.

To release a grab of an extension device, usXthegrabDevice function.

int XUngrabDevicedisplay, device time)

Display *display,
XDevice *device
Timetime;
display Specifies the connection to the X server.
device Specifies the desired device.
time Specifies the time. This may be either a timestamp expressed in milliseconds, or

CurrentTime .

XUngrabDevice allows a client to release an extension input device andueeued eents if

this client has it grabbed from eith&GrabDevice or XGrabDeviceKey. If any aher devices

are frozen by the gratXUngrabDevice thaws them. This function does not release the device
and ay queued eents if the specified time is earlier than the last-device-grab time or is later than
the current X server time. It also generdbeviceFocusinand DeviceFocusOutevents. TheX

server automatically performs aUngrabDevice if the event windaw for an actre cevice grab
becomes not vigable or if the client terminates without releasing the grab.

XUngrabDevice can generat®adDeviceerrors.

X Input Extension Library X11, Release 6.4

2.1.4. Rassvely Grabbing a Key

To passvely grab a single &y an an extension device, us¥GrabDeviceKey. That device must
have greviously been opened using tk®penDevicefunction, or the request will fail with a
BadDeviceerror. If the specified device does not support input dksss, the request will fail
with a BadMatch error.

int XGrabDevicekey(display, device keycode modifiers modifier_devicegrab_window
owner_eventsevent_countewent_list, this_device_modether_device_mode
Display *display;
XDevice *device
int keycode
unsigned inmodifiers
XDevice *modifier_device
Windowgrab_window
Bool owner_events
int event_count
XEventClass &went_list,
int this_device_mode
int other_device_mode

display Specifies the connection to the X server.

device Specifies the desired device.

keycode Specifies the &ycode of the Ry that is to be grabbedrou can pass either the
keycode orAnyKey.

modifiers Specifies the set oegmasks. Thignask is the bitwise inclugt OR of these

keymask bits:ShiftMask, LockMask, ControlMask , Mod1Mask,
Mod2Mask, Mod3Mask, Mod4Mask, and Mod5Mask.

You can also pasényMadifier , which is equialent to issuing the grabely
request for all possible modifier combinations (including the combination of no
modifiers).

modifier_device
Specifies the device whose modifiers are to be used. If NULL is specified, the
core X leyboard is used as the modifier_device.

grab_window Specifies the ID of a winaoassociated with the device specified a0
owner_events Specifies a boolean value of eitfigue or False.
event_count Specifies the number of elements in theng _list array.

ewent_list Specifies a pointer to a list ofent classes that indicate whicheats the client
wishes to recek.

this_device_mode
Controls further processing ofents from this deice. You can pass one of these
constantsGrabModeSync or GrabModeAsync.

other_device_mode
Controls further processing ofents from all other deces. You can pass one of
these constant&srabModeSync or GrabModeAsync.

XGrabDeviceKey is analogous to the codGrabKey function. Itcreates an explicit passi
grab for a ky a an tension deice. TheXGrabDeviceKey function establishes a passigab

X Input Extension Library X11, Release 6.4

on a deice. Consequentjyn the future,

. IF the device is not grabbed and the specifigglhich itself can be a modifieel is log-
ically pressed when the specified modifieyklogically are down on the specified modifier
device (and no otherels ae down),

. AND no other modifier &ys logically are down,

. AND EITHER the grab windw is an ancestor of (or is) the focus windor the grab win-
dow is a cescendent of the focus wind@nd contains the pointer,

. AND a passie gab on the same device aneykiombination does not exist onyaancestor
of the grab windw,

. THEN the device is actely grabbed, as foXGrabDevice, the last-device-grab time is set
to the time at which thedy was pressed (as transmitted in eviceKeyPressvent), and
the DeviceKeyPressevant is reported.

The interpretation of the remaining arguments is aXf@rabDevice. The actve gab is termi-
nated automatically when the logical state of the device has the speeifisiidased (indepen-
dent of the logical state of the modifiexnyk).

Note that the logical state of a device (as seen by means of the X protocol) may lag the physical
state if devicewent processing is frozen.

A modifier of AnyModifier is equvalent to issuing the request for all possible modifier combina-
tions (including the combination of no modifiers). It is not required that all modifiers specified
have aurrently assigneddycodes. Akey of AnyKey is equvalent to issuing the request for all
possible kycodes. Otherwisdhe lkey nust be in the range specified by miay¢ode and
max_leycode in the information returned by tK&istinputDevices function. Ifit is not within

that range XGrabDeviceKey generates 8adValue error.

XGrabDeviceKey generates 8adAccesserror if some other client has issueX@rabDe-
viceKey with the same device an@ék mmbination on the same wingo When usingAnyMod-
ifier or AnyKey, the request fails completely and the X server generaBaslAccesserror, and
no grabs are established if there is a conflicting grab foc@mbination.

XGrabDeviceKey returnsSuccesaipon successful completion of the request.

XGrabDeviceKey can generatBadAccess BadClass BadDevice BadMatch, BadValue,
and BadWindow errors.

To release a pas& gab of a single &y m an etension device, usEUngrabDeviceKey.

X Input Extension Library X11, Release 6.4

int XUngrabDeviceley(display, device keycode modifiers modifier_deviceungrab_windowy
Display *display;
XDevice *device
int keycode
unsigned inmodifiers
XDevice *modifier_device
Windowungrab_window

display Specifies the connection to the X server.

device Specifies the desired device.

keycode Specifies thed&ycode of the &y tat is to be ungrabbedou can pass either the
keycode orAnyKey.

modifiers Specifies the set oegmasks. Thignask is the bitwise incluge OR of these

keymask bits:ShiftMask, LockMask, ControlMask , Mod1Mask,
Mod2Mask, Mod3Mask, Mod4Mask, and Mod5Mask.

You can also pasgnyMadifier , which is equiaent to issuing the ungralek
request for all possible modifier combinations (including the combination of no

modifiers).
modifier_device Specifies the device whose modifiers are to be used. If NULL is speci-
fied, the core X &board is used as the modifier_device.
ungrab_window Specifies the ID of a winawoassociated with the device specified aho

XUngrabDeviceKey is analogous to the cop@UngrabKey function. Itreleases an explicit pas-
sive gab for a ley an an etension input device.

XUngrabDeviceKey can generat®adAlloc, BadDevice BadMatch, BadValue, and Bad-
Window errors.

2.1.5. Rssvely Grabbing a Button

To establish a pasat gab for a single button on an extension device XSeabDeviceButton.
The specified device mustygreviously been opened using tk®penDevicefunction, or the
request will fail with aBadDeviceerror. If the specified device does not support input diags
tons, the request will fail with 8adMatch error.

10

X Input Extension Library X11, Release 6.4

int XGrabDeviceButtordisplay, device button, modifiers modifier_device grab_window
owner_eventsewvent_countewent_list, this_device_modether_device_mode
Display *display;
XDevice *device
unsigned inbutton;
unsigned inmodifiers
XDevice *modifier_device
Windowgrab_window
Bool owner_events
int event_count
XEventClass &went_list,
int this_device_mode
int other_device_mode

display Specifies the connection to the X server.

device Specifies the desired device.

button Specifies the code of the button that is to be grabled.can pass either the
button or AnyButton .

modifiers Specifies the set oegmasks. Thignask is the bitwise incluge OR of these

keymask bits:ShiftMask, LockMask, ControlMask , Mod1Mask,
Mod2Mask, Mod3Mask, Mod4Mask, and Mod5Mask.

You can also pasanyMadifier , which is equialent to issuing the grab request
for all possible modifier combinations (including the combination of no modi-
fiers).

modifier_device
Specifies the device whose modifiers are to be used. If NULL is specified, the
core X leyboard is used as the modifier_device.

grab_window Specifies the ID of a windoassociated with the device specified abo
owner_events Specifies a boolean value of eitfigue or False.
ewent_count Specifies the number of elements in theng list array.

ewent_list Specifies a list ofvent classes that indicates which devieergs are to be
reported to the client.

this_device_mode
Controls further processing ofents from this deice. You can pass one of these
constantsGrabModeSync or GrabModeAsync.

other_device_mode
Controls further processing ofents from all other déces. You can pass one of
these constant&rabModeSync or GrabModeAsync.

XGrabDeviceButton is analogous to the cobéGrabButton function. Itcreates an explicit
passve gab for a button on an extension inputide. Becausthe server does not track exten-
sion devices, no cursor is specified with this requestthe same reason, there is no confine_to
parameter The device must va reviously been opened using tK®penDevicefunction.

The XGrabDeviceButton function establishes a passigab on a déce. Consequentjyn the
future,

11

X Input Extension Library X11, Release 6.4

. IF the device is not grabbed and the specified button is logically pressed when the specified
modifier keys logically are down (and no other buttons or modifeyslkare down),

. AND EITHER the grab windw is an ancestor of (or is) the focus winddOR the grab
window is a cescendent of the focus wind@nd contains the pointer,

. AND a passie gab on the same device and butt@y/kombination does not exist on any
ancestor of the grab windp

. THEN the device is actely grabbed, as foXGrabDevice, the last-grab time is set to the
time at which the button was pressed (as transmitted iDe¢heEeButtonPressevent), and
the DeviceButtonPressevent is reported.

The interpretation of the remaining arguments is aXf@rabDevice. The actve gab is termi-
nated automatically when logical state of the device has all buttons released (independent of the
logical state of the modifierels).

Note that the logical state of a device (as seen by means of the X protocol) may lag the physical
state if devicewent processing is frozen.

A modifier of AnyModifier is equvalent to issuing the request for all possible modifier combina-
tions (including the combination of no modifiers). It is not required that all modifiers specified
have aurrently assigneddycodes. Abutton of AnyButton is equialent to issuing the request for
all possible bttons. Otherwisédt is not required that the specified button be assigned to a physi-
cal button.

XGrabDeviceButton generates 8adAccesserror if some other client has issueX@rabDe-
viceButton with the same device and button combination on the same winden using
AnyModifier or AnyButton, the request fails completely and the X server generdadeslAc-
cesserror and no grabs are established if there is a conflicting grabyfoomaination.

XGrabDeviceButton can generat®adAccess BadClass BadDevice BadMatch, BadValue,
and BadWindow errors.

To release a pas& gab of a button on an extension device, ¥kigrabDeviceButton.

12

X Input Extension Library X11, Release 6.4

int XUngrabDeviceButtortisplay, device button, modifiers modifier_deviceungrab_windovy
Display *display;
XDevice *device
unsigned inbutton;
unsigned inmodifiers
XDevice *modifier_device
Windowungrab_window

display Specifies the connection to the X server.

device Specifies the desired device.

button Specifies the code of the button that is to be ungrab¥Yead can pass either a
button or AnyButton .

modifiers Specifies the set oegmasks. Thignask is the bitwise incluge OR of these

keymask bits:ShiftMask, LockMask, ControlMask , Mod1Mask,
Mod2Mask, Mod3Mask, Mod4Mask, and Mod5Mask.

You can also pasgnyMadifier , which is equiaent to issuing the ungralek
request for all possible modifier combinations (including the combination of no
modifiers).

modifier_device

Specifies the device whose modifiers are to be used. If NULL is specified, the
core X leyboard is used as the modifier_device.

ungrab_window
Specifies the ID of a windoassociated with the device specified ao

XUngrabDeviceButton is analogous to the coddUngrabButton function. Itreleases an
explicit passve gab for a button on an extensiorvibe. Thatdevice must hae previously been
opened using th&OpenDevicefunction, or aBadDeviceerror will result.

A modifier of AnyModifier is equialent to issuing the request for all possible modifier combina-
tions (including the combination of no modifiers).

XUngrabDeviceButton can generat®adAlloc, BadDevice BadMatch, BadValue, and Bad-
Window errors.

2.1.6. Thawinga Device

To dlow further &ents to be processed when a device has been frozeKAllsg/De-
viceEvents

13

X Input Extension Library X11, Release 6.4

int XAllowDeviceEventsdisplay, device event_modetime)
Display *display;
XDevice *device
int event_mode

Timetime;
display Specifies the connection to the X server.
device Specifies the desired device.

event_mode Specifies theveent mode. You can pass one of these constaitsyncThisDe-
vice, SyncThisDevice AsyncOtherDevices ReplayThisDevice AsyncAll, or
SyncAll.

time Specifies the time. This may be either a timestamp expressed in milliseconds, or
CurrentTime .

XAllowDeviceEventsreleases some queuegbsts if the client has caused a device to freeze. It
has no effect if the specified time is earlier than the last-grab time of the most revergrabti

for the client and device, or if the specified time is later than the current X server time. The fol-
lowing describes the processing that occurs depending on what constant you pass to the
event_mode argument:

. AsyncThisDevice

If the specified device is frozen by the clienerd processing for that continues as usual.
If the device is frozen multiple times by the client on behalf of multiple separate grabs,
AsyncThisDevicethaws for all. AsyncThisDevicehas no effect if the specified device is
not frozen by the client, but the device need not be grabbed by the client.

. SyncThisDevice

If the specified device is frozen and aelyy grabbed by the clientyent processing for that
device continues normally until the nex@yka button event is reported to the client. At

this time, the specified device again appears to freeze. Hn\ifehe reportedwent

causes the grab to be released, the specified device does not 8geeEhisDevicehas

no effect if the specified device is not frozen by the client or is not grabbed by the client.

. ReplayThisDevice

If the specified device is aedy grabbed by the client and is frozen as the result of an

event having been sent to the client (either from thesaiin of a GrabDeviceButton or

from a previousAllowDeviceEventswith modeSyncThisDevice but not from aGrab),

the grab is released and thagr@ is completely reprocessed. This time, hesvethe

request ignores grpassve gabs at or abee {oward the root) the grab-windoof the grab

just released. The request has no effect if the specified device is not grabbed by the client
or if it is not frozen as the result of avesnt.

. AsyncOtherDevices

If the remaining devices are frozen by the cliemneprocessing for them continues as

usual. Ifthe other devices are frozen multiple times by the client on behalf of multiple

separate grab#syncOtherDevices" thaws’ for all. AsyncOtherDeviceshas no effect if

the devices are not frozen by the client, but those devices need not be grabbed by the client.
. SyncAll

If all devices are frozen by the clienteat processing (for all devices) continues normally
until the next button ordy event is reported to the client for a grabbed device, at which

14

X Input Extension Library X11, Release 6.4

time the devices again appear to freeze. Hewé the reported\ent causes the grab to
be released, then the devices do not freeze (buy ideuice is still grabbed, then a subse-
quent @ent for it will still cause all devices to freezepyncAll has no effect unless all
devices are frozen by the client. Ifyadevice is frozen twice by the client on behalf of two
separate grab§yncAll "thaws" for both (but a subsequent freezeSgncAll will freeze
each device only once).

. AsyncAll

If all devices are frozen by the clienteat processing (for all devices) continues normally.
If any device is frozen multiple times by the client on behalf of multiple separate grabs,
AsyncAll “thaws “for all. If ary device is frozen twice by the client on behalf obteep-
arate grabsAsyncAll “thaws’ for both. AsyncAll has no effect unless all devices are
frozen by the client.

AsyncThisDevice SyncThisDevice and ReplayThisDevicehave ro efect on the processing of
evants from the remaining device®\syncOtherDeviceshas no effect on the processing of
events from the specified dige. Whenthe e/ent_mode isSyncAll or AsyncAll, the device
parameter is ignored.

It is possible for seeral grabs of different devices (by the same or different clients) to lve acti
simultaneously If a device is frozen on behalf of grgrab, no gent processing is performed for
the deice. Itis possible for a single device to be frozen becausevafagrabs. In this case,
the freeze must be released on behalf of each grab bgénts ean again be processed.

XAllowDeviceEventscan generatBadDeviceand BadValue errors.

2.1.7. Contolling Device Focus

The current focus windofor an extension input device can be determined using@etDe-
viceFocusfunction. Extensiomevices are focused using tK&etDeviceFocudunction in the
same way that theegboard is focused using the coX&etinputFocus function, except that a
device ID is passed as a function parame@re additional focus statépllowKeyboard, is
provided for extension devices.

To get the current focus stateyeet state, and focus time of an extension device XisetDe-
viceFocus

15

X Input Extension Library X11, Release 6.4

int XGetDeviceFocuslisplay, device focus_returnrevert_to_return focus_time_returh
Display *display;
XDevice *device
Window *focus_return
int *revert_to_return
Time *focus_time_return

display Specifies the connection to the X server.
device Specifies the desired device.

focus_return Specifies the address of a variable into which the server can return the ID of the
window that contains the device focus or one of the constdoit®, Pointer-
Root, or FollowKeyboard .

revert_to_return
Specifies the address of a variable into which the server can return the current
revert_to status for the device.

focus_time_return
Specifies the address of a variable into which the server can return the focus time
last set for the device.

XGetDeviceFocusreturns the focus state, theed-to state, and the last-focus-time for an exten-
sion input device.

XGetDeviceFocuscan generat®adDeviceand BadMatch errors.
To st the focus of an extension device, ¥&etDeviceFocus

int XSetDeviceFocuslisplay, device focus revert_to, time)
Display *display,
XDevice *device
Windowfocus

int revert_to;
Timetime;
display Specifies the connection to the X server.
device Specifies the desired device.
focus Specifies the ID of the wineoto which the devices focus should be set. This
may be a windw 1D, or PainterRoot, FollowKeyboard, or None.
revert_to Specifies to which winde the focus of the device shouldredt if the focus win-

dow becomes not vigable. Oneof the following constants may be passed:
RevertToParent, RevertToPointerRoot, RevertToNone, or RevertToFol-
lowKeyboard.

time Specifies the timeYou can pass either a timestamp, expressed in milliseconds,
or CurrentTime .

XSetDeviceFocushanges the focus for an extension input device and the last-focus-change-
time. Ithas no effect if the specified time is earlier than the last-focus-change-time or is later than
the current X server time. Otherwise, the last-focus-change-time is set to the specified time. This
function causes the X server to geneféviceFocusinand DeviceFocusOutevents.

16

X Input Extension Library X11, Release 6.4

The action taken by the server when this function is requested depends on the value of the focus
argument:

. If the focus argument ione, al input events from this device will be discarded until a
new focus winde is st. Inthis case, the vert_to argument is ignored.
. If the focus argument is a wingddD, it becomes the focus windioof the deice. Ifan

input event from the device would normally be reported to this wimdo to one of its infe-
riors, the gent is reported normallyOtherwise, theent is reported relate o the focus
window.

. If the focus argument BointerRoot, the focus windw is dynamically taken to be the root
window of whatever screen the pointer is on at each inpudree. Inthis case, the vert_to
argument is ignored.

. If the focus argument BollowKeyboard, the focus windw is dynamically taken to be
the same as the focus of the &ykoard at each inpuvent.

The specified focus winelomust be vigvable at the timeXSetDeviceFocuds called. Other-
wise, it generates BadMatch error. If the focus windw later becomes not vigble, the X
server gauates the neert_to argument to determine theanocus windav.

. If the revert_to argument iRRevertToParent, the focus reerts to the parent (or the closest
viewable ancestor), and thewgevet_to value is taken to bRevertToNone.
. If the revert_to argument iRRevertToPointerRoot, RevertToFollowKeyboard , or

RevertToNone, the focus reerts to that value.

When the focus kexrts, the X server generatBeviceFocuslinand DeviceFocusOutevents, but
the last-focus-change time is not affected.

XSetDeviceFocusan generatBadDevice BadMatch, BadValue, and BadWindow errors.

2.1.8. Contolling Device Feedback

To determine the current feedback settings of an extension input deviceGeseeedbackCon-
trol .

XFeedbackState * XGetFeedbackConuaplay, device num_feedbacks_retuyn
Display *display;
XDevice *device
int *num_feedbacks_return

display Specifies the connection to the X server.

device Specifies the desired device.

num_feedbacks_return
Returns the number of feedbacks supported by the device.

XGetFeedbackControl returns a list oFeedbackStatestructures that describe the feedbacks
supported by the specifieduiiee. Theres an XFeedbackStatestructure for each class of feed-
back. Thesare of variable length, but the first three members are common to all.

17

X Input Extension Library X11, Release 6.4

typedef struct {
XID class;
int length;
XID id;

} X FeedbackState;

The common members are as follows:

. The class member identifies the class of feedback. It may be compared to constants defined
in the file <X11/extensions/Xl.l>. Currentlydefined feedback constants inclu#dd-
FeedbackClass PtrFeedbackClass StringFeedbackClass IntegerFeedbackClass
LedFeedbackClassand BellFeedbackClass

. The length member specifies the length offkedbackStatestructure and can be used by
clients to traerse the list.

. The id member uniquely identifies a feedback fovargdevice and class. This allows a
device to support more than one feedback of the same class. Other feedbacks of other
classes or devices mayeaahe same ID.

Those feedbacks egualent to those supported by the cosstboard are reported in claBbd-
Feedback using theXKbdFeedbackStatestructure, which is defined as follows:

typedef struct {

XID class;

int length;

XID id;

int click;

int percent;

int pitch;

int duration;

int led_mask;

int global_auto_repeat;

char auto_repeats[32];
} X KbdFeedbackState;

The additional members of tiKbdFeedbackStatestructure report the current state of the
feedback:

. The click member specifies theykclick volume and has a value in the range 0 (off) to 100

(loud).

. The percent member specifies the bell volume and has a value in the range 0 (off) to 100
(loud).

. The pitch member specifies the bell pitch in Hz. The range of the value is implementation-
dependent.

. The duration member specifies the duration in milliseconds of the bell.

. The led_mask member is a bit mask that describes the current state of up to 32 LEDs. A
value of 1 in a bit indicates that the corresponding LED is on.

18

X Input Extension Library X11, Release 6.4

. The global_auto_repeat member has a valususdRepeatModeOnor AutoRepeat-
ModeOff.

. The auto_repeats member is a bit vectach bit set to 1 indicates that auto-repeat is
enabled for the correspondingyk The vector is represented as 32 bytes. Byte N (from 0)
contains the bits fordys 8N to 8N + 7, vith the least significant bit in the byte representing
key 8N.

Those feedbacks eqalent to those supported by the core pointer are reported inRiids=ed-
back using theXPtrFeedbackStatestructure, which is defined as follows:

typedef struct {
XID class;
int length;
XID id;
int accelNum;
int accelDenom;
int threshold;

} X PtrFeedbackState;

The additional members of téPtrFeedbackStatestructure report the current state of the feed-
back:

. The accelNum member returns the numerator for the acceleration multiplier.
. The accelDenom member returns the denominator for the acceleration multiplier.
. The accelDenom member returns the threshold for the acceleration.

Integer feedbacks are those capable of displaying integer numbers and reporteXhitethe
gerFeedbackStatestructure. Theninimum and maximum values that yhean display are
reported.

typedef struct {
XID class;
int length;
XID id;
int resolution;
int minVal;
int maxVal;
} X IntegerFeedbackState;

The additional members of thintegerFeedbackStatestructure report the capabilities of the
feedback:

. The resolution member specifies the number of digits that the feedback can display.
. The minVal member specifies the minimum value that the feedback can display.
. The maxVal specifies the maximum value that the feedback can display.

19

X Input Extension Library X11, Release 6.4

String feedbacks are those that can display character information and are reported via the
XStringFeedbackStatestructure. Clientset these feedbacks by passing a li€@fSymsto
be displayed. ThXGetFeedbackControl function returns the set ol symbols that the feed-
back can displayas vell as the maximum number of symbols that can be displayed. The
XStringFeedbackStatestructure is defined as follows:

typedef struct {

XID class;

int length;

XID id;

int max_symbols;

int num_syms_supported;

KeySym *syms_supported;
} X StringFeedbackState;

The additional members of théStringFeedbackStatestructure report the capabilities of the
feedback:

. The max_symbols member specifies the maximum number of symbols that can be dis-
played.

. The syms_supported member is a pointer to the list of supported symbols.
. The num_syms_supported member specifies the length of the list of supported symbols.

Bell feedbacks are those that can generate a sound and are reportecKBaltfreedbackState
structure. Somamplementations may support a bell as part EbaFeedback feedback. Class
BellFeedbackis provided for implementations that do not choose to do so and for devices that
support multiple feedbacks that can produce sound. The meaning of the members is the same as
that of the corresponding fields in ti&bdFeedbackStatestructure.

typedef struct {
XID class;
int length;
XID id;
int percent;
int pitch;
int duration;
} X BellFeedbackState;

Led feedbacks are those that can generate a light and are reporteddliadreedbackState
structure. Ugo 32 lights per feedback are supported. Each bit in led_mask corresponds to one
supported light, and the corresponding bit in led_values indicates whether that light is currently
on (1) or of (0). Somamplementations may support leds as part KbdFeedback feedback.
ClassLedFeedbackis provided for implementations that do not choose to do so and for devices
that support multiple led feedbacks.

20

X Input Extension Library X11, Release 6.4

typedef struct {
XID class;
int length;
XID id;
Mask led_values;
Mask led_mask;
} X LedFeedbackState;

XGetFeedbackControl can generat®adDeviceand BadMatch errors.

To free the information returned by tk&etFeedbackControl function, useXFreeFeedback-
List.

void XFreeFeedbackLidigt)
XFeedbackStatelist;

list Specifies the pointer to th&FeedbackStatestructure returned by a previous call
to XGetFeedbackControl.

XFreeFeedbackListfrees the list of feedback control information.

To change the settings of a feedback on an extension devicKQemngeFeedbackControl

This function modifies the current control values of the specified feedback using information
passed in the appropriaxd-eedbackControl structure for the feedback. Which values are mod-
ified depends on the valuemask passed.

int XChangeFeedbackContrdigplay, device valuemaskvalue)
Display *display;
XDevice *device
unsigned longaluemask
XFeedbackControlvalue;

display Specifies the connection to the X server.

device Specifies the desired device.

valuemask Specifies one value for each bit in the mask (least to most significant bit). The
values are associated with the feedbacks for the specified device.

value Specifies a pointer to théFeedbackControl structure.

XChangeFeedbackControlcontrols the device characteristics described by<theedback-
Control structure. Theres anXFeedbackControl structure for each class of feedback. These
are of variable length, but the first three members are common to all and are as follows:

21

X Input Extension Library X11, Release 6.4

typedef struct {
XID class;
int length;
XID id;

} X FeedbackControl,

Feedback claskbdFeedback controls feedbacks eyaent to those provided by the core
keyboard using th&bdFeedbackControl structure, which is defined as follows:.

typedef struct {

XID class;

int length;

XID id;

int click;

int percent;

int pitch;

int duration;

int led_mask;

int led_value;

int key;

int auto_repeat_mode;
} X KbdFeedbackControl;

This class controls the device characteristics described bBykthdFeedbackControl structure.
These include thedy click_percent, global_auto_repeat, and individesi &to-repeat. ¥lid
modes arAutoRepeatModeOn AutoRepeatModeOff, and AutoRepeatModeDefault

Valid masks are as follows:

#define DvKeyClickPercent (1L << 0)
#define DvPercent (1L << 1)
#define DvPitch (lL << 2)
#define DvDuration (AL << 3)
#define DvlLed (AL << 4)
#define DvLedMode (1L << 5)
#define DvKey (1L << 6)
#define DvAutoRepeatMode (AL << 7)

Feedback clasBtrFeedback controls feedbacks eqalent to those provided by the core pointer
using thePtrFeedbackControl structure, which is defined as follows:

22

X Input Extension Library X11, Release 6.4

typedef struct {
XID class;
int length;
XID id;
int accelNum;
int accelDenom;
int threshold;

} X PtrFeedbackControl;

Which values are modified depends on the valuemask passed.
Valid masks are as follows:

#define DvAccelnum (1L << 0)
#define DvAccelDenom (1L << 1)
#define DvThreshold (1L << 2)

The acceleration, expressed as a fraction, is a multiplier feement. for example, specifying

3/1 means that the device wes three times as fast as normal. The fraction may be rounded arbi-
trarily by the X server Acceleration takes effect only if the devicevesnore than threshold

pixels at once and applies only to the amount beyond the value in the threghatért: Setting
a\alue to -1 restores the @eft. Thevalues of the accelNumerator and threshold fields must be
nonzero for the pointer values to be set. Otherwise, the parameters will be uncharggtide Ne
values generate BadValue error, as abes a zero value for the accelDenominator field.

This request fails with 8adMatch error if the specified device is not currently reporting reati
motion. Ifa device that is capable of reporting both relatend absolute motion has its mode
changed fronRelative to Absolute by anXSetDeviceModerequest, valuator control values
will be ignored by the server while the device is in that mode.

Feedback clasmtegerFeedbackcontrols integer feedbacks displayed on input devices and are
reported via theéntegerFeedbackControl structure, which is defined as follows:

typedef struct {
XID class;
int length;
XID id;
int int_to_display;
} X IntegerFeedbackControl;

Valid masks are as follows:

#define Dvinteger (1L << 0)

Feedback clasStringFeedback controls string feedbacks displayed on input devices and
reported via thestringFeedbackControl structure, which is defined as follows:

23

X Input Extension Library X11, Release 6.4

typedef struct {

XID class;

int length;

XID id;

int num_leysyms;

KeySym *syms_to_display;
} X StringFeedbackControl;

Valid masks are as follows:

#define DvString (1L << 0)

Feedback clasBellFeedbackcontrols a bell on an input device and is reported vid#id-eed-
backControl structure, which is defined as follows:

typedef struct {
XID class;
int length;
XID id;
int percent;
int pitch;
int duration;
} X BellFeedbackControl;

Valid masks are as follows:

#define DvPercent (1L << 1)
#define DvPitch (1L << 2)
#define DvDuration (1L << 3)

Feedback classedFeedbackcontrols lights on an input device and are reported vid ¢ae
FeedbackControl structure, which is defined as follows:

typedef struct {
XID class;
int length;
XID id;
int led_mask;
int led_values;
} X LedFeedbackControl;

Valid masks are as follows:

24

X Input Extension Library X11, Release 6.4

#define DvlLed (1L << 4)
#define DvLedMode (1L << 5)

XChangeFeedbackControlcan generatBadDevice BadFeedBack BadMatch, and Bad-
Value errors.

2.1.9. Ringinga Bell on an Input Device
To ring a bell on an extension input device, Xd2eviceBell.

int XDeviceBell@display, device feedbackclasfeedbackidpercen)
Display *display;
XDevice *device
XID feedbackclasfeedbackic

int percent
display Specifies the connection to the X server.
device Specifies the desired device.
feedbackclass Specifies the feedbackclasglid values areKbdFeedbackClassand BellFeed-
backClass
feedbackid Specifies the ID of the feedback that has the bell.
percent Specifies the volume in the range -100 (quiet) to 100 percent (loud).

XDeviceBellis analogous to the codXBell function. Itrings the specified bell on the specified
input device feedback, using the specifietlmne. Thespecified volume is relat © the base
volume for the feedback. If the value for the percent argument is not in the range -100 to 100
inclusive, a BadValue error results. The volume at which the bell rings when the percent argu-
ment is honngative is:

base - [(base * percent) / 100] + percent
The volume at which the bell rings when the percent argumengéveis:
base + [(base * percent) / 100]

To change the base volume of the bell, ¥&hangeFeedbackControl
XDeviceBell can generatBadDeviceand BadValue errors.

2.1.10. Contolling Device Encoding

To get the ley mapping of an extension device that supports input days, use XGetDe-
viceKeyMapping.

25

X Input Extension Library X11, Release 6.4

KeySym * XGetDevicekeyMapping(display, device first_keycode wantegdkeycode _count
keysyms_per dycode_return)
Display *display;,
XDevice *device
KeyCodefirst_keycode_wanteq
int keycode_count
int *keysyms_per_dycode_return
display Specifies the connection to the X server.
device Specifies the desired device.

first_keycode wanted
Specifies the firstdycode that is to be returned.

keycode_countSpecifies the number oélcodes that are to be returned.

keysyms_per dycode return
Returns the number oklgsyms per kycode.

XGetDeviceKeyMapping is analogous to the coXGetKeyboardMapping function. It
returns the symbols for the specified humbereytkdes for the specified extension device.

XGetDeviceKeyMapping returns the symbols for the specified numbereytides for the spec-
ified extension device, starting with the specifiegckde. Thdirst_keycode wanted must be
greater than or equal to miycode as returned by thé_ istinputDevices request (else Bad-
Value error results). The following value:

first_keycode wanted +dycode_count — 1

must be less than or equal to maydode as returned by théListinputDevices request (else a
BadValue error results).

The number of elements in theygyms list is as follows:
keycode_count * kysyms_per_&ycode_return

And KEYSYM number N (counting from zero) foeycode K has an inagcounting from zero),
in keysyms, of the following:

(K - first_keycode_wanted) * &ysyms_per_&ycode_return + N

The keysyms_per_&ycode_return value is chosen arbitrarily by the server to be large enough to
report all requested symbolé special KEYSYM value oNoSymbolis used to fill in unused
elements for individualéycodes.

To free the data returned by this function, X$eee.

If the specified device has not first been opened by this clied@menDevice this request will
fail with a BadDeviceerror. If that device does not support input cl&sys, this request will
fail with a BadMatch error.

XGetDeviceKeyMapping can generat®adDevice BadMatch, and BadValue errors.

To change the &board mapping of an extension device that supports inputktass use
XChangeDeviceKeyMapping

26

X Input Extension Library X11, Release 6.4

int
XChangeDeviceKyMappinggisplay, device first_keycode keysyms_per dycode keysyms
num_codep
Display *display,
XDevice *device
int first_lkeycode
int keysyms_per dycode
KeySym *keysyms
int num_codes

display Specifies the connection to the X server.

device Specifies the desired device.
first_keycode Specifies the firstdycode that is to be changed.

keysyms_per_dycode
Specifies the d&ysyms that are to be used.

keysyms Specifies a pointer to an array @ykyms.
num_codes Specifies the number o&jcodes that are to be changed.

XChangeDeviceKeyMappingis analogous to the codChangeKeyboardMapping function.
It defines the symbols for the specified numbereyt&des for the specified extensiasyoard
device.

If the specified device has not first been opened by this cliedtQpenDevice this request will
fail with a BadDeviceerror. If the specified device does not support input dkasss, this
request will fail with aBadMatch error.

The number of elements in theygyms list must be a multiple oéisyms_per_&ycode. Other
wise, XChangeDeviceKeyMappinggenerates 8adLength error. The specified first dyycode
must be greater than or equal to the méyckde value returned by theastinputDevices

request, or this request will fail withBadValue error. In addition, if the following expression is
not less than the maxeycode value returned by théstinputDevices request, the request will
fail with a BadValue error:

first_keycode + (num_codes Elgsyms_per_&ycode) - 1
XChangeDeviceKeyMappingcan generat®adAlloc, BadDevice BadMatch, and BadValue

errors.

To dbtain the leycodes that are used as modifiers on an extension device that supports input class
Keys, use XGetDeviceModifierMapping.

XModifierKeymap * XGetDeviceModifierMappingj{splay, device
Display *display;
XDevice *device

display Specifies the connection to the X server.
device Specifies the desired device.

XGetDeviceModifierMapping is analogous to the codGetModifierMapping function. The
XGetDeviceModifierMapping function returns a newly creatéModifierKeymap structure

27

X Input Extension Library X11, Release 6.4

that contains thedys being used as modifiers for the specifiedicke Thestructure should be
freed after use witiKFreeModifierMapping . If only zero values appear in the set foy amodi-
fier, that modifier is disabled.

XGetDeviceModifierMapping can generat8adDeviceand BadMatch errors.

To st which leycodes are to be used as modifiers for an extension devickSesPeviceModi-
fierMapping .

int XSetDeviceModifierMappinglisplay, device modmay)
Display *display,
XDevice *device
XModifierKeymap *modmap

display Specifies the connection to the X server.
device Specifies the desired device.
modmap Specifies a pointer to théModifierKeymap structure.

XSetDeviceModifierMapping is analogous to the codSetModifierMapping function. The
XSetDeviceModifierMapping function specifies thedycodes of the &ys, if ary, that are to be
used as modifiersA zero value means that neksould be used. No twarguments can he
the same nonzeraicode alue. OtherwiseXSetDeviceMaodifierMapping generates 8ad-
Value error. There are eight modifiers, and the modifiermap member ofkhadifierKeymap
structure contains eight sets of magypkermod leycodes, one for each maodifier in the order
Shift, Lock, Control, Mod1, Mod2, Mod3, Mod4, and Mod5. Only nonzero kycodes hae
meaning in each set, and zeeytodes are ignored. In addition, all of the nonzexykdes
must be in the range specified by mieydode and max dycode reported by th¥ListinputDe-
vicesfunction. OtherwiseXSetModifierMapping generates 8adValue error. No keycode
may appear twice in the entire map. Otherwise, it generddesdalue error.

A X server can impose restrictions onahmodifiers can be changed, for example, if certaysk

do not generate up transitions in hardware or if multiple modiéigs &e not supported. If some
such restriction is violated, the status repliigppingFailed, and none of the modifiers are
changed. Ithe nev keycodes specified for a modifier differ from those currently defined and any
(current or new) &ys for that modifier are in the logically down state, the status rephajs
pingBusy, and none of the modifiers are changetSetModifierMapping generates a
DeviceMappingNotify event on aMappingSuccessstatus.

XSetDeviceModifierMapping can generat®adAlloc, BadDevice BadMatch, and BadValue
errors.

2.1.11. Contolling Button Mapping
To =t the mapping of the buttons on an extension deviceX8s&DeviceButtonMapping

28

X Input Extension Library X11, Release 6.4

int XSetDeviceButtonMappingd(splay, device map, nmap)
Display *display;
XDevice *device
unsigned chamag(];

int nmag
display Specifies the connection to the X server.
device Specifies the desired device.
map Specifies the mapping list.
nmap Specifies the number of items in the mapping list.

XSetDeviceButtonMapping sets the mapping of the buttons on an extensiviceleIf it suc-

ceeds, the X server generatddeviceMappingNotify event, andXSetDeviceButtonMapping
returnsMappingSuccess Elements of the list are inged garting from one. The length of the

list must be the same ¥GetDeviceButtonMapping would return, or 8BadValue error results.

The inde is a lutton numberand the element of the list defines the effectiumber A zero ele-

ment disables a button, and elements are not restricted in value by the number of physical buttons.
However, no two dements can ha the same nonzero value, oBadValue error results. If any

of the buttons to be altered are logically in the down sketDeviceButtonMappingreturns
MappingBusy, and the mapping is not changed.

XSetDeviceButtonMapping can generatBadDevice BadMatch, and BadValue errors.
To get the button mapping, usésetDeviceButtonMapping.

int XGetDeviceButtonMappingl{splay, device map_return nmap
Display *display;
XDevice *device
unsigned chamap_returd];

int nmap
display Specifies the connection to the X server.
device Specifies the desired device.
map_return Specifies the mapping list.
nmap Specifies the number of items in the mapping list.

XGetDeviceButtonMapping returns the current mapping of the specified extensivicele Ele-
ments of the list are inded garting from one.XGetDeviceButtonMapping returns the number

of physical buttons actually on the pointdihe nominal mapping for the buttons is the identity
mapping: map[i]=i. The nmap argument specifies the length of the array where the button map-
ping is returned, and only the first nmap elements are returned in map_return.

XGetDeviceButtonMapping can generat®adDeviceand BadMatch errors.

2.1.12. Obtainingthe State of a Device

To dbtain information that describes the state of s kbuttons, and valuators of an extension
device, use&XQueryDeviceState

29

X Input Extension Library X11, Release 6.4

XDeviceState * XQueryDeviceStatigplay, device
Display *display;
XDevice *device

display Specifies the connection to the X server.
device Specifies the desired device.

XQueryDeviceStatereturns a pointer to akDeviceStatestructure, which points to a list of
structures that describe the state of gskbuttons, and valuators on the device:

typedef struct {
XID device_id;
int num_classes;
XInputClass *data;
} X DeviceState;

The structures are of variable length, but the firsti@mbers are common to all and are as fol-
lows:

typedef struct {
unsigned char class;
unsigned char length;
} X InputClass;

The class member contains a class identifitais identifier can be compared with constants
defined in the file X11/extensions/Xl.h>. Currentlydefined constants ar&eyClass, Button-
Class, and ValuatorClass.

The length member contains the length of the structure and can be used by clientsswttia
list.

The XValuatorState structure describes the current state of the valuators onvice.d&he
num_valuators member contains the number of valuators onvloe ddhemode member is a
mask whose bits report the data mode and other state information fovitee dehefollowing
bits are currently defined:

DeviceMode 1<<0 Relatve = Q Absolute = 1
ProximityState k<1 InProximity = 0, OutOfProximity = 1

The valuators member contains a pointer to an array of integers that describe the current value of
the aluators. Ifthe mode iRelative, these values are undefined.

30

X Input Extension Library X11, Release 6.4

typedef struct {
unsigned char class;
unsigned char length;
unsigned char num_valuators;
unsigned char mode;
int *valuators;

} X ValuatorState;

The XKeyState structure describes the current state of s kbn he deice. ByteN (from 0)
contains the bits fordy 8\ to 8N + 7 with the least significant bit in the byte representieg k
8N.

typedef struct {
unsigned char class;
unsigned char length;
short num_kys;
char leys[32];

} X KeyState;

The XButtonState structure describes the current state of the buttons onvtoe d@yteN
(from 0) contains the bits for button 8N to 8N + 7 with the least significant bit in the byte repre-
senting button 8N.

typedef struct {
unsigned char class;
unsigned char length;
short num_buttons;
char buttons[32];

} X ButtonState;

XQueryDeviceStatecan generat®adDeviceerrors.
To free the data returned by this function, X$&eeDeviceState

void XFreeDeviceStats{ate)
XDeviceState *state;
state Specifies the pointer to th€DeviceStatedata returned by a previous call to
XQueryDeviceState

XFreeDeviceStatefrees the device state data.

2.2. Bwents

The input extension creates inpuegts analogous to the core inpueets. Thesextension
input events are generated by manipulating one of the extension ingiagede Thaemainder of

31

X Input Extension Library X11, Release 6.4

this section discusses the following X Input Extensizenetopics:
. Event types

. Event classes

. Event structures

2.2.1. Eent Types

Event types are integer numbers that a client can use to determine what kiet dffeas
receved. Theclient compares the type field of theest structure with knownwvent types to
male this determination.

The core inputent types are constants and are defined in the headeKfil&/X.h>. Extension
event types are not constants. Insteadytre dynamically allocated by the extensorquest
to the X server when the extension is initialized. Because of this, extemsidriypes must be
obtained by the client from the server.

The client program determines thesat type for an extensiorvent by using the information
returned by theXOpenDevicerequest. Thisype can then be used for comparison with the type
field of events receied by the client.

Extension eents propagate up the wingdierarcty in the same manner as cokegts. Ifa win-

dow is not interested in an extensioveat, it usually propagates to the closest ancestor that is
interested, unless the dont_propagate list prohibits it. Grabs of extension devices may alter the set
of windows that recee a @rticular extensionvent.

The following table lists thevent category and its associateeb# type or types.

Event Category Event Type

Device ley DeviceKeyPress
DeviceKeyRelease

Device motion DeviceButtonPress
DeviceButtonRelease
DeviceMotionNotify

Device input focus DeviceFocusIn
DeviceFocusOut

Device state notification DeviceStateNotify

Device proximity Proximityln
ProximityOut

Device mapping DeviceMappingNotify

Device change ChangeDeviceNotify

2.2.2. Eent Classes

Event classes are integer numbers that are used in the same way as thentorasks. They
are used by a client program to indicate to the server whtsethat client program wishes to

receve.

The core input\eent masks are constants and are defined in the headeXfilgX h>. Exten-

sion event classes are not constants. Instead, éheedynamically allocated by the extension’s
request to the X server when the extension is initialized. Because of this, exteesiariasses
must be obtained by the client from the server.

32

X Input Extension Library X11, Release 6.4

The e/ent class for an extensionant and device is obtained from information returned by the
XOpenDevicefunction. Thisclass can then be used iné8electExtensionEventequest to
ask that eents of that type from that device be sent to the client program.

For DeviceButtonPressevents, the client may specify whether or not an implicit pasgiab
should be done when the button is pressed. If the client wants to guarantee that it wélaecei
DeviceButtonReleaseevent for eachDeviceButtonPressevent it receves, it should specify the
DeviceButtonPressGrabclass in addition to thBeviceButtonPressclass. Thigestricts the
client in that only one client at a time may requeseticeButtonPressevents from the same
device and windw if any dient specifies this class.

If any client has specified thBeviceButtonPressGrabclass, ayp requests by another client
that specify the same device and wiwdmd specify eitheDeviceButtonPressor DeviceBut-
tonPressGrabwill cause anAccesserror to be generated.

If only the DeviceButtonPressclass is specified, no implicit pagsigab will be done when a
button is pressed on thevdee. Multipleclients may use this class to specify the same device and
window combination.

The client may also seleEteviceMotion events only when a button is dm. It does this by
specifying the eent classePeviceButton1Motion throughDeviceButton5Motion. An input
device will support only as mgrbutton motion classes as it has buttons.

2.2.3. Eent Structures

Each extensionvent type has a corresponding structure declareihlfextensions/XIn-
put.h>. All event structures hae the following common members:

type Seto the @ent type number that uniquely identifies For example, when the X
server reports deviceKeyPressvant to a client application, it sends XiDe-
viceKeyPressEventstructure.

serial Sefrom the serial number reported in the protocol but expanded from the 16-bit
least significant bits to a full 32-bit value.

send_gent Setto True if the event came from arXSendEventrequest.

display Seto a pointer to a structure that defines the display on whiclvénéeas
read.

Extension gent structures report the current position of the X pointtereddition, if the device
reports motion data and is reporting absolute data, the current valuevallaators the device
contains is also reported.

2.2.3.1. Deice Key Events

Key evants from extension devices contain all the information that is containeceineadnt

from the X leyboard. Inaddition, thg contain a device ID and report the current value of any
valuators on the device, if that device is reporting absolute data. If data for more than six valua-
tors is being reported, more than omy kvent will be sent. The axes_count member contains the
number of axes that are being reported. The server sends agfilase eents as are needed to
report the device data. Eaclhent contains the total number of axes reported in the axes_count
member and the first axis reported in the curreettan the first_axis membetf the device sup-
ports input clas¥aluators, but is not reporting absolute mode data, the axes_count member
contains zero (0).

The location reported in the X, y and x_root, y_root members is the location of the core X pointer.

33

X Input Extension Library X11, Release 6.4

The XDeviceKeyEventstructure is defined as follows:

typedef struct {
int type; * of event */
unsigned long serial; I* # of last request processed */
Bool send_eent; /* true if from SendEvent request */
Display *display; /* Display thewent was read from */
Window window; /* "event" window reported relatie to */
XID deviceid;
Window root; /* root windav event occurred on */
Window subwindow; /* child window */
Time time; /* milliseconds */
intx,y; [* X, y coordinates invent window */
int x_root; /* coordinates relate t root */
inty_root; [* coordinates relate root */
unsigned int state; [*d&y a button mask */
unsigned int kycode; [*detail */
Bool same_screen; [* same screen flag */
unsigned int déce_state; [device key a button mask */

unsigned char axes_count;
unsigned char first_axis;
int axis_data[6];

} X DeviceKkeyEvent;

typedef XDevicekeyEvent XDevicekeyPressedEvent;
typedef XDevicelkeyEvent XDeviceleyReleasedEvent;

2.2.3.2. Deice Button Events

Button events from extension devices contain all the information that is contained in a button
event from the X pointer In addition, the contain a device ID and report the current value of any
vauators on the device if that device is reporting absolute data. If data for more than six valua-
tors is being reported, more than one butiememay be sent. The axes_count member contains
the number of axes that are being reported. The server sendsyasfitimse gents as are

needed to report the device data. Eaamecontains the total number of axes reported in the
axes_count member and the first axis reported in the cusraritie the first_axis membelf the
device supports input cla¥&luators, but is not reporting absolute mode data, the axes_count
member contains zero (0).

The location reported in the X, y and x_root, y_root members is the location of the core X pointer.

34

X Input Extension Library

typedef struct {

int type;

unsigned long serial;
Bool send_eent;
Display *display;
Window window;
XID deviceid;
Window root;
Window subwindow;
Time time;

int x,y;

int x_root;
inty_root;
unsigned int state;
unsigned int btton;
Bool same_screen;

X11, Release 6.4

* of event */
* # of last request processed by server */
[* true if from a SendEvent request */
/* Display theent was read from */
[* "event" window reported relatie © */

/* root windaw that the gent occurred on */
/* child window */
/* milliseconds */
/* X, y coordinates invent window */
/* coordinates relatk © root */
/* coordinates relatt © root */
[*dy a button mask */
/* detail */
[* same screen flag */

unsigned int dédce_state;
unsigned char axes_count;
unsigned char first_axis;
int axis_data[6];

} X DeviceButtonEvent;

["device ley a button mask */

typedef XDeviceButtonEvent XDeviceButtonPressedEvent;
typedef XDeviceButtonEvent XDeviceButtonReleasedEvent;

2.2.3.3. Deice Motion Events

Motion events from extension devices contain all the information that is contained in a motion
event from the X pointer In addition, the contain a device ID and report the current value of any
valuators on the device.

The location reported in the x, y and x_root, y_root members is the location of the core X pointer,
and so is 2-dimensional.

Extension motion devices may report motion data for a variable numbegsof keaxes_count
member contains the number of axes that are being reported. The server sengscdshass
events as are needed to report the device data. E@oha@ntains the total number of axes
reported in the axes_count member and the first axis reported in the cuengim ¢he first_axis
member.

35

X Input Extension Library X11, Release 6.4

typedef struct {
int type; * of event */
unsigned long serial; * # of last request processed by server */
Bool send_eent; [* true if from a SendEvent request */
Display *display; /* Display theent was read from */
Window window; [* "event" window reported relatie © */
XID deviceid;
Window root; /* root windaw that the gent occurred on */
Window subwindow; /* child window */
Time time; /* milliseconds */
int x,y; /* X, y coordinates invent window */
int x_root; [* coordinates relatt root */
inty_root; [* coordinates relat © root */
unsigned int state; [*&y a button mask */
char is_hint; /* detail */
Bool same_screen; [* same screen flag */
unsigned int dédce_state; [device ley a button mask */

unsigned char axes_count;
unsigned char first_axis;
int axis_data[6];

} X DeviceMotionEvent;

2.2.3.4. Dewice Focus Events

These gents are equilent to the core focusvents. Thg contain the same information, with the
addition of a device ID to identify which device has had a focus change, and a timestamp.

DeviceFocusinand DeviceFocusOutevents are generated for focus changes of extension
devices in the same manner as core fogaste are generated.

36

X Input Extension Library X11, Release 6.4

typedef struct {
int type; * of event */
unsigned long serial; * # of last request processed by server */
Bool send_eent; [* true if this came from a SendEvent request */
Display *display; /* Display theent was read from */
Window window; [* "event" window it is reported relatie © */
XID deviceid;
int mode; /* NotifyNormal, NotifyGrab, NotifyUngrab */
int detail;
/-k
* N otifyAncestor NotifyVirtual, Notifylnferior,
* N otifyNonLinear,NotifyNonLinearVirtual, NotifyPointer,
* N otifyPointerRoot, NotifyDetailNone
*/
Time time;

} X DeviceFocusChangeEvent;

typedef XDeviceFocusChangeEvent XDeviceFocusInEvent;
typedef XDeviceFocusChangeEvent XDeviceFocusOutEvent;

2.2.3.5. Deice StateNotify Event

This event is analogous to the coreyknap &ent but reports the current state of the device for
each input class that it supports. It is generated afeey ®eviceFocusinevent andEnter-
Notify event and is deliered to clients who ha ®lectedXDeviceStateNotify events.

If the device supports input cla¥aluators, the mode member in théValuatorStatus structure
is a bitmask that reports the device mode, proximity state, and other state information. The fol-
lowing bits are currently defined:

0x01 Relatre = Q Absolute = 1
0x02 InProximity= 0, QutOfProximity = 1

If the device supports more valuators than can be reported in a Xigmt, multiple XDe-
viceStateNotify events will be generated.

37

X Input Extension Library X11, Release 6.4

typedef struct {
unsigned char class;
unsigned char length;
} X InputClass;

typedef struct {
int type;
unsigned long serial; * # of last request processed by server */
Bool send_eent; [* true if this came from a SendEvent request */
Display *display; /* Display thewent was read from */
Window window;
XID deviceid;
Time time;
int num_classes;
char data[64];

} X DeviceStateNotifyEvent;

typedef struct {
unsigned char class;
unsigned char length;
unsigned char num_valuators;
unsigned char mode;
int valuators[6];

} X ValuatorStatus;

typedef struct {
unsigned char class;
unsigned char length;
short num_kys;
char leys[32];

} X KeyStatus;

typedef struct {
unsigned char class;
unsigned char length;
short num_buttons;
char buttons[32];

} X ButtonStatus;

2.2.3.6. Derice Mapping Event

This event is equvalent to the coreMappingNotify event. It notifies client programs when the
mapping of keys, modifiers, or buttons on an extension device has changed.

38

X Input Extension Library X11, Release 6.4

typedef struct {
int type;
unsigned long serial;
Bool send_eent;
Display *display;
Window window;
XID deviceid;
Time time;
int request;
int first_keycode;
int count;

} X DeviceMappingEvent;

2.2.3.7. ChangeDaéceNotify Event

This event has no equélent in the core protocol. It notifies client programs when one of the core
devices has been changed.

typedef struct {
int type;
unsigned long serial;
Bool send_eent;
Display *display;
Window window;
XID deviceid;
Time time;
int request;

} X ChangeDeviceNotifyEvent;

2.2.3.8. Poximity Events

These gents hae ro equivalent in the core protocol. Some input devices such as graphics tablets
or touchscreens may send thegents to indicate that a stylus hasves into or out of contact
with a positional sensing surface.

The e/ent contains the current value ofyavaluators on the device if that device is reporting

absolute data. If data for more than six valuators is being reported, more than one proximity

event may be sent. The axes_count member contains the number of axes that are being reported.
The server sends as nyasf these eents as are needed to report the device data. Eaohaon-

tains the total number of axes reported in the axes_count member and the first axis reported in the
current gent in the first_axis membeif the device supports input clagaluators, but is not

reporting absolute mode data, the axes_count member contains zero (0).

39

X Input Extension Library X11, Release 6.4

typedef struct {

int type; /* Proximityln or ProximityOut */

unsigned long serial; * # of last request processed by server */
Bool send_eent; [* true if this came from a SendEvent request */
Display *display; /* Display theent was read from */
Window window;

XID deviceid,;

Window root;

Window subwindow;

Time time;

int x,y;

int x_root, y_root;

unsigned int state;

Bool same_screen;

unsigned int déce_state; [device key a button mask */

unsigned char axes_count;

unsigned char first_axis;

int axis_data[6];

} X ProximityNotifyEvent;

typedef XProximityNotifyEvent XProximitylnEvent;
typedef XProximityNotifyEvent XProximityOutEvent;

2.3. Ewent Handling Functions
This section discusses the X Input Extensigenthandling functions that alloyou to:

Determine the extension version

List the @ailable devices

Enable and disable extension devices
Change the mode of a device
Initialize valuators on an input device
Get input device controls

Change input device controls

Select extension devicerents
Determine selected deviceeats
Control event propogation

Send an eent

Get motion history

2.3.1. Determiningthe Extension Version

40

X Input Extension Library X11, Release 6.4

XExtensionVersion * XGetExtensionVersiatigplay, name
Display *display;
char ‘name

display Specifies the connection to the X server.
name Specifies the name of the desired extension.

XGetExtensionVersionallows a client to determine whether a server supports the desired ver-
sion of the input extension.

The XExtensionVersion structure returns information about the version of the extension sup-
ported by the server and is defined as follows:

typedef struct {
Bool present;
short major_version;
short minor_version;
} X ExtensionVersion;

The major and minor versions can be compared with constants defined in the header file
<X11/extensions/Xl.l>. Eachversion is a superset of the previous versions.

You should useXFree to free the data returned by this function.

2.3.2. ListingAvailable Devices

A client program that wishes to access a specific device must first determine whether that device
is connected to the X serverhis is done through th¥ListinputDevices function, which will

return a list of all devices that can be opened by the X seferclient program can use one of

the names defined in thex¢1/extensions/XI.l> header file in arXInternAtom request to

determine the device type of the desiredicke Thistype can then be compared with the device
types returned by th¥ListinputDevices request.

XDevicelnfo * XListInputDevicedfisplay, ndevice$
Display *display,
int *ndevices /* RETURN */

display Specifies the connection to the X server.

ndevices Specifies the address of a variable into which the server can return the number of
input devices ailable to the X server.

XListinputDevices allows a client to determine which devices arglable for X input and
information about those diees. Anarray of XDevicelnfo structures is returned, with one ele-
ment in the array for each\dee. Thenumber of devices is returned in the ndevices argument.

The X pointer device and Xeboard device are reported, as well as\allable extension input
devices. Theuse member of th&Devicelnfo structure specifies the current use of thaae If
the value of this member IsXPointer, the device is the X pointer dee. Ifthe value is
IsXKeyboard, the device is the Xdyboard deice. If the value idsXExtensionDevice the
device is gailable for use as an extension input device.

41

X Input Extension Library X11, Release 6.4

EachXDevicelnfo entry contains a pointer to a list of structures that describe the characteristics
of each class of input supported by thatice. Thenum_classes member contains the number of
entries in that list.

If the device supports input clasaluators, one of the structures pointed to by tkBevicelnfo
structure will be arKValuatorinfo structure. Thexes member of that structure contains the
address of an array ofAxisInfo structures. Theris one element in this array for each axis of
motion reported by the dice. Thenumber of elements in this array is contained in the
num_axes element of thévaluatorinfo structure. Theize of the motion buffer for the device
is reported in the motion_buffer member of fdaluatorinfo structure.

The XDevicelnfo structure is defined as follows:

typedef struct _XDevicelnfo {

XID id;

Atom type;

char *name;

int num_classes;

int use;

XAnyClassPtr inputclassinfo;
} X Devicelnfo;

The structures pointed to by tk@evicelnfo structure are defined as follows:

typedef struct _Xl€yinfo {
XID class;
int length;
unsigned short min eycode;
unsigned short maxekcode;
unsigned short numels;

} X Keyinfo;

typedef struct _XButtonInfo {
XID class;
int length;
short num_buttons;

} X ButtonlInfo;

typedef struct _XValuatorinfo {
XID class;
int length;
unsigned char num_axes;
unsigned char mode;
unsigned long motion_buffer;
XAxisInfoPtr axes;

} X Valuatorinfo;

The XAxisInfo structure pointed to by théValuatorinfo structure is defined as follows:

42

X Input Extension Library X11, Release 6.4

typedef struct _XAxisInfo {
int resolution;
int min_value;
int max_value;

} X AxislInfo;

The following atom names are defined in th€ld/extensions/X1.h> header file.

MOUSE QUADRATURE
TABLET SFRACEBALL
KEYBOARD DATAGLOVE
TOUCHSCREEN EYETREKER
TOUCHPRAD CURSORKEYS
BUTTONBOX FOOTMOUSE
BARCODE ID_MODULE
KNOB_BOX ONE_KNOB
TRACKBALL NINE_KNOB

These names can be used indnternAtom request to return an atom that can be used for com-
parison with the type member of théd®evicelnfo structure.

XListinputDevices returns NULL if there are no input devices to list.

To free the data returned XListinputDevices, use XFreeDeviceList

void XFreeDevicelLlistist)
XDevicelnfo #ist;

list Specifies the pointer to th¥Devicelnfo array returned by a previous call to
XListinputDevices.

XFreeDevicelListfrees the list of input device information.

2.3.3. Enablingand Disabling Extension Devices

Each client program that wishes to access an extension device must request that the server open
that device by calling th&OpenDevicefunction.

XDevice * XOpenDeviceadisplay, device_id
Display *display,
XID device _id
display Specifies the connection to the X server.

device_id Specifies the ID that uniquely identifies the device to be opened. This ID is
obtained from theXListInputDevices request.

XOpenDeviceopens the device for the requesting client and, on success, retbewice
structure, which is defined as follows:

43

X Input Extension Library X11, Release 6.4

typedef struct {
XID device_id;
int num_classes;
XInputClassinfo *classes;
} X Device;

The XDevice structure contains a pointer to an arraytriputClassinfo structures. Eachle-
ment in that array contains information aborends of a particular input class supported by the
input device.

The XinputClassinfo structure is defined as follows:

typedef struct {
unsigned char input_class;
unsigned chanent_type_base;
} X InputClassinfo;

A client program can determine theest type andeent class for a gien event by using macros
defined by the input@ension. Thename of the macro corresponds to the deswvedteand the
macro is passed the structure that describes the device from which input is desired, for example:

DeviceKeyPress(XDevice *deviceyvent_type, gent_class)

The macro will fill in the values of thevent class to be used in a¢BelectExtensionEvent
request to select theent and the went type to be used in comparing with tiverd types of
evants recered via XNextEvent.

XOpenDevicecan generat®adDeviceerrors.

Before terminating, the client program should request that the server close the device by calling
the XCloseDevicefunction.

int XCloseDevicedisplay, device

Display *display;

XDevice *device;
display Specifies the connection to the X server.
device Specifies the device to be closed.

XCloseDevicecloses the device for the requesting client and frees the assoXieite struc-
ture.

A client may open the same extension device more than once. Requests after the first successful
one return an additionadDevice structure with the same information as the first, but otherwise
have ro éfect. Asingle XCloseDevicerequest will terminate that cliestaccess to the device.

Closing a device releasesyaattive a passve gabs the requesting client has established. If the
device is frozen only by an aoti gab of the requesting client,yaqueued eents are released.

If a client program terminates without closing a device, the server will automatically close that
device on behalf of the client. This does not affegtaher clients that may be accessing that

44

X Input Extension Library X11, Release 6.4

device.
XCloseDevicecan generatBadDeviceerrors.

2.3.4. Changingthe Mode of a Device

Some devices are capable of reporting either velatiabsolute motion dataTo change the
mode of a device from relag © absolute, use&XSetDeviceMode

int XSetDeviceModedisplay, device mode

Display *display,

XDevice *device

int mode
display Specifies the connection to the X server.
device Specifies the device whose mode should be changed.
mode Specifies the modeYou can passAbsolute or Relative.

XSetDeviceModeallows a client to request the server to change the mode of a device that is
capable of reporting either absolute positional data orvelattion data. If the device isvalid

or if the client has not previously requested that the server open the devicex@peanDevice
request, this request will fail withBadDeviceerror. If the device does not support input class
Valuators or if it is not capable of reporting the specified mode, the request will fail viddda
Match error.

This request will fail and returBeviceBusyif another client has already opened the device and
requested a different mode.

XSetDeviceModecan generatBadDevice BadMatch, BadMode, and DeviceBusyerrors.

2.3.5. Initializing Valuators on an Input Device

Some devices that report absolute positional data can be initialized to a s@usmg®ices
that are capable of reporting rel&tinotion or absolute positional data may require that their val-
uators be initialized to a starting value after the mode of the device is chariyesbtate.

To initialize the valuators on such a device, ¥S&etDeviceValuators

Status XSetDeviceValuatodi§play, device valuators first_valuator, num_valuator$
Display *display,
XDevice *device
int *valuators first_valuator, num_valuators

display Specifies the connection to the X server.
device Specifies the device whose valuators should be initialized.
valuators Specifies the values to which each valuator should be set.

first_valuator Specifies the first valuator to be set.
num_valuatorsSpecifies the number of valuators to be set.

XSetDeviceValuatorsinitializes the specified valuators on the specified extension input device.
Valuators are numbered beginning with zero. Only the valuators in the range specified by

45

X Input Extension Library X11, Release 6.4

first_valuator and num_valuators are setBddValue error results if the number of valuators
supported by the device is less than the following expression:

first_valuator + num_valuators

If the request succeedSuccesss returned. If the specified device is grabbed by some other
client, the request will fail and a statusAdfeadyGrabbed will be returned.

XSetDeviceValuatorscan generatBadDevice BadLength, BadMatch, and BadValue
errors.

2.3.6. Gettinglnput Device Controls

Some input devices support various configuration controls that can be queried or changed by
clients. Theset of supported controls will vary from one input device to anofRequests to
manipulate these controls will fail if either the target X server or the target input device does not
support the requested device control.

Each device control has a unique identifigformation passed with each device control varies in
length and is mapped by data structures unigue to that device control.

To query a device control, us€GetDeviceControl.

XDeviceControl * XGetDeviceContralfsplay, device control)

Display *display;

XDevice *device

int control;
display Specifies the connection to the X server.
device Specifies the device whose configuration control status is to be returned.
control Identifies the specific device control to be queried.

XGetDeviceControl returns the current state of the specified device control. If the target X
server does not support that device contr@adValue error is returned. If the specified device
does not support that device controBadMatch error is returned.

If the request is successful, a pointer to a gern€lieviceStatestructure is returned. The infor-

mation returned varies according to the specified control and is mapped by a structure appropriate
for that control. The first tarmembers are common to all device controls and are defined as fol-
lows:

typedef struct {
XID control;
int length;

} X DeviceState;

The control may be compared to constants defined in theXild/extensions/Xl.l». Currently
defined device controls include DEVICE_RESOLUTION.

The information returned for the DEVICE_RESOLUTION control is defined irKibeviceRes-
olutionState structure, which is defined as follows:

46

X Input Extension Library X11, Release 6.4

typedef struct {
XID control;
int length;
int num_valuators;
int *resolutions;
int *min_resolutions;
int *max_resolutions;
} X DeviceResolutionState;

This device control returns a list of valuators and the range of valid resolutions allowed for each.
Valuators are numbered beginning with zero (0). Resolutions for all valuators on the device are
returned. Br each valuator i on the device, resolutions]i] returns the current setting of the resolu-
tion, min_resolutions]i] returns the minimum valid setting, and max_resolutions][i] returns the
maximum valid setting.

When this control is specifiekGetDeviceControl fails with a BadMatch error if the specified
device has no valuators.

XGetDeviceControl can generatBadMatch and BadValue errors.

2.3.7. Changingnput Device Controls

Some input devices support various configuration controls that can be changed by Tjigints.

cally, this would be done to initialize the device to a known state or configuration. The set of sup-
ported controls will vary from one input device to anatieequests to manipulate these controls

will fail if either the target X server or the target input device does not support the requested
device control. Setting the device control will also fail if the target input device is grabbed by
another client or is open by another client and has been set to a conflicting state.

Each device control has a unique identifieformation passed with each device control varies in
length and is mapped by data structures unique to that device control.

To change a device control, u¥&hangeDeviceControl

Status XChangeDeviceContrgi§play, device control, value)
Display *display,
XDevice *device
int control;
XDeviceControl ¥alue

display Specifies the connection to the X server.

device Specifies the device whose configuration control status is to be modified.
control Identifies the specific device control to be changed.

value Specifies a pointer to axDeviceControl structure that describes which control

is to be changed andat is to be dhanged.

XChangeDeviceControlchanges the current state of the specified device control. If the target X
server does not support that device contr@adValue error is returned. If the specified device
does not support that device controBadMatch error is returned. If another client has the tar-
get device grabbed, a statusAifeadyGrabbed is returned. If another client has the device

47

X Input Extension Library X11, Release 6.4

open and has set it to a conflicting state, a statisewviceBusyis returned. If the request fails
for ary reason, the device control will not be changed.

If the request is successful, the device control will be changed and a st8tuscebss returned.
The information passed varies according to the specified control and is mapped by a structure
appropriate for that control. The firstawmembers are common to all device controls:

typedef struct {
XID control;
int length;

} X DeviceControl;

The control may be set using constants defined in Xiel fextensions/XI.h> header file. Cur-
rently defined device controls include DEVICE_RESOLUTION.

The information that can be changed by the DEVICE_RESOLUTION control is defined in the
XDeviceResolutionControl structure, which is defined as follows:

typedef struct {
XID control;
int length;
int first_valuator;
int num_valuators;
int *resolutions;
} X DeviceResolutionControl;

This device control changes the resolution of the specified valuators on the specified extension
input device. \aluators are numbered beginning with zero. Only the valuators in the range speci-
fied by first_valuator and num_valuators are gevalue of -1 in the resolutions list indicates that
the resolution for this valuator is not to be changed. The num_valuators member specifies the
number of valuators in the resolutions list.

When this control is specifiekChangeDeviceControlfails with a BadMatch error if the spec-
ified device has noaluators. Ifa resolution is specified that is not within the range of valid val-
ues (as returned byGetDeviceControl), XChangeDeviceControlfails with a BadValue error.

A BadValue error results if the number of valuators supported by the device is less than the fol-
lowing expression:

first_valuator + num_valuators,

XChangeDeviceControlcan generatBadMatch and BadValue errors.

2.3.8. Selectingextension Device Events

To slect device inputvents, useXSelectExtensionEvent The parameters passed are a pointer
to a list of classes that define the desinshetypes and devices, a count of the number of ele-
ments in the list, and the ID of the windérom which @ents are desired.

48

X Input Extension Library X11, Release 6.4

int XSelectExtensionEvertisplay, window, event_list, event_coun}
Display *display;
Windowwindow,
XEventClass &went_list,
int event_count

display Specifies the connection to the X server.

window Specifies the ID of the winsofrom which the client wishes to receie/ents.

ewent_list Specifies a pointer to an array obet classes that specify whicheats are
desired.

ewvent_count Specifies the number of elements in theng list.

XSelectExtensionEventrequests the server to senayds that match thevents and devices
described by thevent list and that come from the requested wimddhe elements of the
XEventClassarray are thewvent_class values obtained bydaking a macro with the pointer to
an XDevice structure returned by théOpenDevicerequest. Br example, théeviceKeyPress
macro would return th&EventClassfor DeviceKeyPressevents from the specified device if it
were irvoked in the following form:

DevicekeyPress (XDevice *deviceyent type, gent_class)

Macros are defined for the followingeat classes:

DeviceKeyPress
DeviceKeyRelease
DeviceButtonPress
DeviceButtonRelease
DeviceMotionNotify
DeviceFocuslin
DeviceFocusOut
Proximityln
ProximityOut
DeviceStateNotify
DeviceMappingNotify
ChangeDeviceNotify
DevicePointerMotionHint
DeviceButton1Motion
DeviceButton2Motion
DeviceButton3Motion,
DeviceButton4Motion
DeviceButton5Motion
DeviceButtonMotion,
DeviceOwnerGrabButton
DeviceButtonPressGrab

To get the next @ilable event from within a client program, use the cotBlextEvent function.
This returns the nextvent whether it came from a core device or an extension device.

Succeeding{SelectExtensionEventequests usingvent classes for the same device as was
specified on a previous request will replace the previous set of seleetsifeom that device
with the nev set.

49

X Input Extension Library X11, Release 6.4

XSelectExtensionEventcan generat®adAccess BadClass BadLength, and BadWindow
errors.

2.3.9. DeterminingSelected Device Events

To determine which extensiovents are currently selected from a@i window, use XGetSe-
lectedExtensionEvents

int XGetSelectedExtensionEverdplay, window, this_client_countthis_client
all_clients_countall_clients)

Display *display,

Windowwindow;

int *this_client_count /* RETURN */

XEventClass *this_client /* RETURN */

int *all_clients_count /* RETURN */

XEventClass *all_clients, /* RETURN */

display Specifies the connection to the X server.
window Specifies the ID of the winsofrom which the client wishes to reeeie/ents.

this_client_count
Returns the number of elements in the this_client list.

this_client Returns a list oXEventClassesthat specify whichents are selected by this
client.

all_clients_count
Returns the number of elements in the all_clients list.

all_clients Returns a list oXEventClassesthat specify whichents are selected by all
clients.

XGetSelectedExtensionEventseturns pointers to twevent class arrays. One lists the exten-
sion e/ents selected by this client from the specified wimddhe other lists the extensioweats
selected by all clients from the specified wiwdorhis information is analogous to that returned
in your_event_mask and all vent_masks of theXWindowAttributes structure when an
XGetWindowAttributes request is madeTo free the tw arrays returned by this function, use
XFree.

XGetSelectedExtensionEventgsan generat8adWindow errors.

2.3.10. Contolling Event Propagation

Extension gents propagate up the wingdierarcty in the same manner as cokes. Ifa win-

dow is not interested in an extensioveat, it usually propagates to the closest ancestor that is
interested, unless the dont_propagate list prohibits it. Grabs of extension devices may alter the set
of windows that recge a @rticular extensionvent.

Client programs may controlvent propagation through the use of the followin@ fianctions:
XChangeDeviceDontPropagateListand XGetDeviceDontPropagateList

50

X Input Extension Library X11, Release 6.4

int XChangeDeviceDontPropagatelLdifplay, window, event_countevents mode
Display *display;
Windowwindow,
int event_count
XEventClass &wents

int mode
display Specifies the connection to the X server.
window Specifies the desired wingdo
ewvent_count Specifies the number of elements in thengs list.
ewents Specifies a pointer to the list of XEventClasses.
mode Specifies the modeYou can passAddToList or DeleteFromList.

XChangeDeviceDontPropagatelListadds anwent to or deletes arvent from the do_not_prop-
agate list of extensiorvents for the specified winao There is one list per wineg and the list
remains for the life of the windo The list is not altered if a client that changed the list termi-
nates.

Suppression ofwent propagation is not allowed for allents. Ifa pecified XEventClassis
invalid because suppression of thaéd is not allowed, 8adClasserror results.

XChangeDeviceDontPropagatelListan generat®adClass BadMode, and BadWindow
errors.

XEventClass * XGetDeviceDontPropagatelassplay, window, event_coun}

Display *display;

Windowwindow;

int *ewvent_count *RETURN */
display Specifies the connection to the X server.
window Specifies the desired windo

event_count Returns the number of elements in the array returned by this function.

XGetDeviceDontPropagateListallows a client to determine the do_not_propagate list of exten-
sion events for the specified windo It returns an array aKEventClass, each XEventClass
representing a devicefmt type pair To free the data returned by this function, X¢eee.

XGetDeviceDontPropagateListcan generat®adwWindow errors.

2.3.11. Sendin@n Event
To £nd an extensiorvent to another client, us€SendExtensionEvent

51

X Input Extension Library X11, Release 6.4

int XSendExtensionEvertisplay, device window, propagate event_counfewent_list, event)
Display *display;
XDevice *device
Windowwindow;
Bool propagate
int event_count
XEventClass &went_list,
XEvent *event;

display Specifies the connection to the X server.
device Specifies the device whose ID is recorded in teate
window Specifies the destination winddD. You can pass a windol D, PointerWin-

dow or InputFocus.
propagate Specifies a boolean value that is eitfiene or False.
ewvent_count Specifies the number of elements in theng _list array.
ewent_list Specifies a pointer to an arrayXEventClass.
event Specifies a pointer to theant that is to be sent.

XSendExtensionEventidentifies the destination windo determines which clients should
receve the specifiedent, and ignores arective gabs. Itrequires a list oKEventClassto be
specified. Thesare obtained by opening an input device withXi@penDevicerequest.

XSendExtensionEventuses the winde argument to identify the destination wingdas bllows:

. If you passPainterWindow , the destination windme is the windav that contains the
pointer.
. If you pasdnputFocus and if the focus winde contains the pointethe destination win-

dow is the windav that contains the pointetf the focus windw does not contain the
pointer the destination windm is the focus windw.

To determine which clients should reeeithe specified\ents, XSendExtensionEventuses the
propagate argument as follows:

. If propagate id-alse, the event is sent toeery client selecting from the destination window
ary of the events specified in thevent_list array.
. If propagate islt ue and no clients hee slected from the destination wind@ny of the

events specified in thevent_list arraythe destination is replaced with the closest ancestor
of destination for which some client has selected one of the speeifietd and for which

no intervening winde has that eent in its do_not_propagate mask. If no such window
exists, or if the windw is an ancestor of the focus win#g and InputFocus was aiginally
specified as the destination, therd is not sent to anclients. Otherwisethe event is
reported to eery client selecting on the final destinatioryarf the events specified in
event_list.

The avent in the XEvent structure must be one of theeats defined by the input extension, so
that the X server can correctly byte swap the contents as neceBsamgontents of thevent are

otherwise unaltered and unchecked by the X server except to force\ssmdo &r ue in the for-
warded &ent and to set the sequence number in leatecorrectly.

XSendExtensionEventreturns zero if the comrsion-to-wire protocol failed; otherwise, it
returns nonzero.

52

X Input Extension Library X11, Release 6.4

XSendExtensionEventcan generat®adClass BadDevice BadValue, and BadWindow
errors.

2.3.12. GettingMotion History

XDeviceTimeCoord * XGetDeviceMotionEventigplay, device start, stop, nevents_returnmode_return
axis_count_returj
Display *display,
XDevice *device
Timestart, stop;
int *nevents_return
int *mode_return
int *axis_count_return

display Specifies the connection to the X server.
device Specifies the desired device.

start Specifies the start time.

stop Specifies the stop time.

nevents_returnReturns the number of positions in the motion buffer returned for this request.

mode_return Returns the mode of theveats information. The mode will be one of the fol-
lowing: Absolute or Relative.

axis_count_return
Returns the number of axes reported in each of the positions returned.

XGetDeviceMotionEventsreturns all positions in the devisatotion history buffer that fall
between the specified start and stop times inausf the start time is in the future or is later
than the stop time, no positions are returned.

The return type for this function is aDeviceTimeCoord structure, which is defined as follows:

typedef struct {
Time time;
unsigned int *data;
} X DeviceTimeCoord;

The data member is a pointer to an array of data items. Each item is of type int, and there is one
data item per axis of motion reported by theide Thenumber of axes reported by the device is
returned in the axis_count variable.

The value of the data items depends on the mode of vieedelhemode is returned in the mode
variable. Ifthe mode isAbsolute, the data items are thewaalues generated by the device.

These may be scaled by the client program using the maximum values that the device can gener-
ate for each axis of motion that it reports. The maximum value for each axis is reported in the
max_val member of th¥AxisInfo structure, which is part of the information returned by the
XListlnputDevices request.

If the mode isRelative, the data items are the relagivalues generated by thevitee. Theclient
program must choose an initial position for the device and maintain a current position by accumu-
lating these relate values.

53

X Input Extension Library X11, Release 6.4

Consecutie @lls to XGetDeviceMotionEventscan return data of different modes, that is, if
some client program has changed the mode of the device ¥&atDeviceModerequest.

XGetDeviceMotionEventscan generat®adDeviceand BadMatch errors.

To free the data returned B§GetDeviceMotionEvents use XFreeDeviceMotionEvents

void XFreeDeviceMotionEvents{ents)
XDeviceTimeCoord &wents

ewents Specifies the pointer to th€DeviceTimeCoord array returned by a previous
call to XGetDeviceMotionEvents

XFreeDeviceMotionEventsfrees the specified array of motion information.

54

X Input Extension Library X11, Release 6.4

Appendix A

The following information is contained in thk&X11/extensions/XInput.h>and<X11/exten-
sions/X1.h>header files:

55

X Input Extension Library X11, Release 6.4

/*****************************‘k******************************

Copyright 1989, 1998 The (pen QG oup

Perm ssion to use, copy, nodify, distribute, and sell this software and its
docunentation for any purpose is hereby granted w thout fee, provided that
the above copyright notice appear in all copies and that both that
copyright notice and this perm ssion notice appear in supporting

docunent at i on.

The above copyright notice and this pernission notice shall be included in
all copies or substantial portions of the Software.

THE SCFTWARE |S PROVIDED "AS | S', WTHOUT WARRANTY CF ANY KI ND, EXPRESS (R
I MPLI ED, 1 NCLUDI NG BUT NOT LI M TED TO THE WARRANTI ES CF MERCHANTABI LI TY,

FI TNESS FCR A PARTI CULAR PURPCSE AND NONI NFRINGEMENT. | N NO EVENT SHALL THE
OPEN GROP BE LI ABLE FCR ANY CLAIM DAVAGES CR OTHER LI ABILITY, WHETHER I N
AN ACTI ON CF OONTRACT, TCORT CR OTHERWSE, ARISING FROM QUT CF CRIN
CONNECTI ON WTH THE SCFTWARE OR THE USE CR OTHER DEALI NGS | N THE SCFTWARE.

Except as contained in this notice, the name of The (pen Goup shall not be
used in advertising or otherwise to pronote the sale, use or other dealings
inthis Software without prior witten authorization fromThe en G oup.

Copyri ght 1989 by Hew ett-Packard Conpany, Palo Alto, California.
Al R ghts Reserved

Perm ssion to use, copy, nmodify, and distribute this software and its
docunentation for any purpose and wi thout fee is hereby granted,

provi ded that the above copyright notice appear in all copies and that
both that copyright notice and this perm ssion notice appear in
supporting docunentation, and that the nane of Hew ett-Packard not be
used in advertising or publicity pertaining to distribution of the
software w thout specific, witten prior perm ssion.

HEW.ETT- PACKARD DI SCLAI M5 ALL WARRANTI ES WTH REGARD TO TH S SCFTWARE, | NCLUDI NG
ALL | MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS, | N NO EVENT SHALL
HEW.ETT- PACKARD BE LI ABLE FCR ANY SPECI AL, | NDI RECT CR CONSEQUENTI AL DAMAGES CR
ANY DAVAGES WHATSCEVER RESULTI NG FROM LCSS OF USE, DATA CR PRCFI TS,

WHETHER | N AN ACTI ON OF GONTRACT, NEGLI GENCE CR OTHER TCRTI QUS ACTI QN

AR SING QUT OF CR I N CONNECTI ON WTH THE USE OR PERFCRVANCE CF TH S

SCFTWARE.

HK K KKK KKK KK K Kk KKk Kk kR Rk kR Rk R kR Rk kR kR ko kR k ok Rk ok ok ok ok ok koK [

/* $XFree86: xc/doc/specs/Xi/library.nms,v 1.3 2006/ 01/ 09 14:56: 34 dawes Exp $ */
/* Definitions used by the library and client */

#i fndef _XINPUT_H_

56

X Input Extension Library X11, Release 6.4

#define _XINPUT_H_

#i ncl ude <X11/ X i b. h>
#i ncl ude <X11/ extensions/ Xl . h>

#define _devi ceKeyPress
#defi ne _devi ceKeyRel ease 1

#define _devi ceButtonPress 0
#define _devi ceButtonRel ease 1

#define _devi ceMtionNotify 0

#define _devi ceFocusln
#define _devi ceFocusQut 1

#define _proximtyln
#define _proximtyQut

#define _deviceStateNotify 0

#define _devi ceMappi ngNotify 1

#def i ne _changeDevi ceNoti fy 2

#define Fi ndTypeAndd ass(d, type, _cl ass, cl assi d, of fset) { int _i; Xinputdasslinfo *_ip; type = 0; _class = 0; f
#defi ne Devi ceKeyPress(d,type, _cl ass) Fi ndTypeAndd ass(d, type, _class, Keyd ass, _devi ceKeyPress)

#def i ne Devi ceKeyRel ease(d, type, _cl ass) Fi ndTypeAndd ass(d, type, _class, Keyd ass, _devi ceKeyRel ease)

#defi ne Devi ceButtonPress(d,type, _class) Fi ndTypeAndd ass(d, type, _class, Buttond ass, _deviceButtonPress)

#defi ne Devi ceButtonRel ease(d, type, _cl ass) Fi ndTypeAndd ass(d, type, _class, Buttond ass, _devi ceButtonRel ease)

#defi ne Devi ceMotionNotify(d,type,_class) Fi ndTypeAndd ass(d, type, _class, Valuatord ass, _deviceMtionNotify)

#defi ne Devi ceFocusl n(d, type, _cl ass) Fi ndTypeAndd ass(d, type, _class, Focusd ass, _deviceFocusln)

#defi ne Devi ceFocusQut (d, type, _cl ass) Fi ndTypeAndd ass(d, type, _class, Focusd ass, _devi ceFocusQut)

#define Proximtyln(d,type, _class) Fi ndTypeAndd ass(d, type, _class, Proximtyd ass, _proximtyln)

#define ProxinmtyQut(d,type,_class) Fi ndTypeAndd ass(d, type, _class, Proxinityd ass, _proxinityQut)

#define DeviceStateNotify(d,type, _class) Fi ndTypeAndd ass(d, type, _class, Gherdass, _deviceStateNotify)

#def i ne Devi ceMappi ngNot i fy(d, type, _cl ass) Fi ndTypeAndd ass(d, type, _class, Qherd ass, _devi ceMappi ngNoti fy)

#defi ne ChangeDevi ceNoti fy(d,type,_cl ass) Fi ndTypeAndd ass(d, type, _class, QG herd ass, _changeDeviceNotify)

#defi ne Devi cePoi nterMtionH nt(d, type, class) { _class = ((XDevice *) d)->device_ id << 8 | _devi cePointerMtionH nt;

57

X Input Extension Library

X11, Release 6.4

#define Devi ceButtonlMtion(d,type, _class) { _class = ((XDevice *) d)->device_id << 8 | _deviceButtonlhtion;}
#defi ne Devi ceButton2Mtion(d, type, cl ass) { _class = ((XDevice *) d)->device_id << 8 | _deviceButton2Mti on;}
#defi ne Devi ceButton3Mtion(d,type, _cl ass) { _class = ((XDevice *) d)->device_id << 8 | _deviceButton3Mtion;}
#define Devi ceButton4hMtion(d,type, _class) { _class = ((XDevice *) d)->device_id << 8 | _deviceButton4htion;}
#defi ne Devi ceButton5Motion(d, type, cl ass) { _class = ((XDevice *) d)->device_id << 8 | _deviceButton5Mtion;}
#defi ne Devi ceButtonMtion(d,type, _class) { _class = ((XDevice *) d)->device_id << 8 | _deviceButtonMbtion;}
#defi ne Devi ceOmner @ abButton(d, type, _cl ass) { _class = ((XDevice *) d)->device_id << 8 | _devi ceOmner @ abButton;}
#defi ne Devi ceButtonPress@G ab(d,type,_cl ass) { _class = ((XDevice *) d)->device_id << 8 | _deviceButtonG ab;}
#def i ne NoExt ensi onEvent (d, type, _cl ass) { _class = ((XDevice *) d)->device_id << 8 | _noExtensionEvent;}

#defi ne BadDevi ce(dpy, error) _xi baddevi ce(dpy, &error)

#defi ne Badd ass(dpy, error) _xi badcl ass(dpy, &error)

#defi ne BadEvent (dpy, error) _xi badevent (dpy, &error)

#defi ne BadMbde(dpy, error) _xi badnode(dpy, &error)

#defi ne Devi ceBusy(dpy, error) _xi devi cebusy(dpy, &error)

[k ok K K kK ek K ek R R R R K R KRR KR R Kk R kK ok R kR K Rk K R R R R kR kK kR ok

*

* Devi ceKey events.

* support input class Keys.
* The location of the X pointer is reported in the coordinate

These events are sent by input devices that

* fields of the x,y and x_root,y root fields.

*

*/

typedef struct
{
i nt
unsi gned | ong
Bool
D spl ay
W ndow
X D
W ndow
W ndow
Ti me
int
int

type;
serial;

send_event ;

*di spl ay;
w ndow;
devi cei d;
root;
subwi ndow,
tine;

X, Y;
X_root;

/*
| *
/*
/*
/*

/*
| *
/*
/*
/*

of event */

of last request processed */

true if from SendEvent request */

D splay the event was read from */
"event" window reported relative to */

root w ndow event occured on */
child w ndow */

m|liseconds */

X, y coordinates in event w ndow */
coordinates relative to root */

58

X Input Extension Library

int

unsi gned i nt
unsi gned i nt
Bool

unsi gned i nt
unsi gned char
unsi gned char
int

y_root;
state;
keycode;

sane_screen;

axes_count ;
first_axis;
axi s_dat a[6] ;

} XDevi ceKeyEvent ;

/*
/*
/*
/*
devi ce_state; /*

coordinates relative to root */
key or button nmask */

detail */

same screen flag */

devi ce key or button mask */

typedef XDevi ceKeyEvent XDevi ceKeyPressedEvent ;

typedef XDevi ceKeyEvent XDevi ceKeyRel easedEvent;

/***

*

* Devi ceButton events.

These events are sent by extension devices

* that support input class Buttons.

*

*/

typedef struct {
i nt
unsi gned | ong
Bool
D spl ay
W ndow
X D
W ndow
W ndow
Ti me
int
int
i nt
unsi gned i nt
unsi gned i nt
Bool
unsi gned i nt
unsi gned char
unsi gned char
i nt

type;

serial;
send_event ;
*di spl ay;

wi ndow;

devi cei d;
root;

subwi ndow;
tinme;

X, VY;

X_root;
y_root;
state;

but t on;
sanme_screen;
devi ce_state;
axes_count ;
first_axis;
axi s_dat a[6] ;

} XDevi ceButt onEvent;

/*
| *
/*
/*
/*

/*
| *
/*
/*
/*
/*
/*
| *
/*
/*

of event */

of |ast request processed by server */
true if froma SendEvent request */

D splay the event was read from */
"event" wi ndow reported relative to */

root wi ndow that the event occured on */
child w ndow */

mlliseconds */

X, Yy coordinates in event w ndow */
coordinates relative to root */
coordinates relative to root */

key or button mask */

detail */

sane screen flag */

devi ce key or button mask */

t ypedef XDevi ceButtonEvent XDevi ceButtonPressedEvent;
typedef XDevi ceButtonEvent XDevi ceButtonRel easedEvent;

[KRR R KK KKK KK K KK K K R KK K KK KK R KK R KK KKk R Kk R Kk Rk KRRk Kk R Kk R Kk Rk kR ko Kk ok

*

* Devi ceMotionNotify event.

These events are sent by extension devices

* that support input class Valuators.

*

59

X11, Release 6.4

X Input Extension Library

*/

typedef struct

{

int type;

unsi gned | ong serial ;
Bool send_event
D spl ay *di spl ay;
W ndow wi ndow;

X D devi cei d;
W ndow root;

W ndow subwi ndow;
Ti me time;

i nt X, Y;

int X_root;

i nt y_root;

unsigned int state;
char is_hint;

/* of event */

/* # of last request processed by server */
; /* true if froma SendEvent request */

/* Display the event was read from*/

/* "event" w ndow reported relative to */

/* root w ndow that the event occured on */
/* child wi ndow */

/* mlliseconds */

/* x, y coordinates in event w ndow */

/* coordinates relative to root */

/* coordinates relative to root */

/* key or button nask */

/* detail */

Bool sane_screen; /* sane screen flag */

unsigned int device state; /* device key or button mask */

unsi gned char axes_count

unsi gned char first_axis;

i nt axi s_dat a[6] ;

} XDevi ceMbti onEvent ;

/***

*
*
*

*

*/

Devi ceFocusChange events.

These events are sent when the focus

of an extension device that can be focused is changed.

typedef struct

{
i nt type;
unsi gned | ong serial ;
Bool send_event
D spl ay *di spl ay;
W ndow wi ndow;
X D devi cei d;
i nt node;
i nt detail;

/*

/* of event */
/* # of last request processed by server */

; /* true if froma SendEvent request */

/* D splay the event was read from*/
/* "event" wi ndow reported relative to */

/* NotifyNormal, NotifyGab, NotifyUngrab */

* NotifyAncestor, NotifyVirtual, Notifylnferior,
* Noti fyNonLi near, NotifyNonLi nearVirtual, NotifyPointer,

* Noti fyPoi nt er Root,
*
/

Not i f yDet ai | None

Ti me time;

} XDevi ceFocusChangeEvent ;

60

X11, Release 6.4

X Input Extension Library

t ypedef XDevi ceFocusChangeEvent XDevi ceFocusl nEvent;
t ypedef XDevi ceFocusChangeEvent XDevi ceFocusQut Event ;

[R K K KR K Kk K Kk K K R KK R KR KR R KK R KK R Kk R kR R Rk Rk R Rk kKR R Kk R Rk Rk kR ko ok k ok

*

* ProximtyNotify events. These events are sent by those absol ute

* positioning devices that are capable of generating proximty information.

*

*/

typedef struct

{

int

unsi gned | ong
Bool

type; /* Proximtyln or ProximtyQut */

serial; /* # of last request processed by server */

send_event; /* true if this came froma SendEvent request */

D spl ay *display; /* Display the event was read from=*/
W ndow Wi ndow;

XD devi cei d;

W ndow root;

W ndow subwi ndow;

Ti me time;

i nt X, Y,

i nt X_root, y_root;

unsi gned i nt state;

Bool

unsi gned i nt
unsi gned char
unsi gned char
i nt

sane_scr een;

device_state; /* device key or button mask */
axes_count ;

first_axis;

axi s_dat a[6] ;

} XProxi mtyNotifyEvent;
typedef XProximtyNotifyEvent XProximtylnEvent;
typedef XProxi mtyNotifyEvent XProximtyQutEvent;

[K K K kK ok K ek K Kk R K R KR R R R KR R KR R R Rk Rk Rk R kR R Rk R Rk R Rk R Rk kR ko ko k

*

*

*

*

*/

Devi ceStateNotify events are generated on Ent er Wndow and Focusln

for those clients who have sel ected DeviceState.

typedef struct

#i f defined(__cplusplus) ||

{

unsi gned char

#el se

unsi gned char

#endi f

unsi gned char

} X nputd ass;

defi ned(c_pl uspl us)

c_cl ass;

cl ass;

| engt h;

61

X11, Release 6.4

X Input Extension Library

typedef struct {

int type;

unsi gned | ong serial ;

Bool send_event ;

D spl ay *di spl ay; /* D splay the event
W ndow w ndow;

X D devi cei d;

Ti me tinme;

int num cl asses;

char dat a[64] ;

} XDeviceStateNotifyEvent;

typedef struct {
#if defined(__cplusplus) ||
unsi gned char

defi ned(c_pl uspl us)
c_cl ass;
#el se
unsi gned char cl ass;
#endi f
unsi gned char |ength;
unsi gned char numval uators;
unsi gned char node;
i nt
} Xval uat or St at us;

val uat or s[6] ;

typedef struct {

#if defined(__cplusplus) || defined(c_plusplus)

unsi gned char c_cl ass;
#el se

unsi gned char cl ass;
#endi f

unsi gned char |ength;

short num keys;

char keys[32] ;
} XKeySt at us;

typedef struct {
#i f defined(__cplusplus) ||
unsi gned char

defi ned(c_pl uspl us)
c_cl ass;
#el se

unsi gned char cl ass;
#endi f

unsi gned char |ength;
short num but t ons;
char but t ons[32] ;

} XButtonStatus;

/* # of last request processed by server */
/* true if this came froma SendEvent request */

was read from*/

1SR R R R R RS R RS R RS RS RE R E RS E R

*

* Devi ceMappi ngNoti fy event.
* nodi fier nmapping,

This event is sent when the key mapping,
or button mappi ng of an extension device is changed.

62

X11, Release 6.4

X Input Extension Library X11, Release 6.4

*

*/

typedef struct {

int type;

unsi gned | ong serial ; /* # of last request processed by server */

Bool send_event ; /* true if this came froma SendEvent request */

D spl ay *di spl ay; /* Display the event was read from?*/

W ndow wi ndow; /* unused */

X D devi cei d;

Time tinme;

i nt request; /* one of Mappi nghbdifier, Mappi ngKeyboard,
Mappi ngPoi nter */

int first_keycode;/* first keycode */

int count; /* defines range of change w. first_keycode*/

} XDevi ceMappi ngEvent ;

/***
*

* ChangeDevi ceNotify event. This event is sent when an

* XChangeKeyboard or XChangePoi nter request is nade.

*

*/

typedef struct {

int type;

unsi gned | ong serial ; /* # of last request processed by server */

Bool send_event ; /* true if this came froma SendEvent request */
D spl ay *di spl ay; /* D splay the event was read from*/

W ndow w ndow; /* unused */

X D devi cei d;

Ti me time;

int request; /* NewPoi nter or NewKeyboard */

} XChangeDevi ceNot i f yEvent ;

/***

*
* Control structures for input devices that support input class

* Feedback. These are used by the XGet FeedbackControl and
* XChangeFeedbackControl functions.

*

*/

typedef struct {
#i f defined(__cplusplus) || defined(c_plusplus)

XD c_cl ass;
#el se

XD cl ass;
#endi f

int | engt h;

63

X Input Extension Library X11, Release 6.4

X D id;
} XreedbackState;

typedef struct {
#i f defined(__cplusplus) || defined(c_plusplus)

X D c_cl ass;
#el se
X D cl ass;
#endi f
i nt | engt h;
X D id;
i nt click;
int percent ;
i nt pi tch;
i nt durati on;
int | ed_nask;
i nt gl obal _aut o_r epeat ;
char aut o_repeat s[32] ;

} XKbdFeedback$St at e;

typedef struct {
#if defined(__cplusplus) || defined(c_plusplus)

X D c_cl ass;
#el se

X D cl ass;
#endi f

int | engt h;

X D id;

i nt accel Num

i nt accel Denom

int t hreshol d;

} XPtrFeedbackSt at e;

typedef struct {
#i f defined(__cplusplus) || defined(c_plusplus)

X D c_cl ass;
#el se

X D cl ass;
#endi f

i nt | engt h;

X D id;

i nt resol uti on;

int m nval ;

i nt maxVal ;

} Xl nt eger FeedbackSt at €;

typedef struct {

#if defined(__cplusplus) || defined(c_plusplus)
X D c_cl ass;

#el se

64

X Input Extension Library

X D cl ass;
#endi f
int | engt h;
X D id;
i nt nmax_synbol s;
i nt num syns_support ed;

KeySym *syns_support ed;
} XStringFeedbackSt at e;

typedef struct {
#i f defined(__cplusplus) || defined(c_plusplus)

X D c_cl ass;
#el se

X D cl ass;
#endi f

i nt | engt h;

X D id;

i nt percent ;

int pi tch;

i nt durati on;

} XBel | FeedbackSt at e;

typedef struct {
#i f defined(__cplusplus) || defined(c_plusplus)

X D c_cl ass;
#el se

X D cl ass;
#endi f

i nt | engt h;

X D id;

int | ed_val ues;

int | ed_nask;

} XlLedFeedbackSt at e;

typedef struct {
#if defined(__cplusplus) || defined(c_plusplus)

XD c_cl ass;
#el se

XD cl ass;
#endi f

int | engt h;

XD id;

} XFeedbackControl ;

typedef struct {
#if defined(__cplusplus) || defined(c_plusplus)

X D c_cl ass;
#el se

X D cl ass;
#endi f

65

X11, Release 6.4

X Input Extension Library X11, Release 6.4

int I engt h;

XD id;

i nt accel Num

i nt accel Denom
i nt t hreshol d;

} XPtrFeedbackControl ;

typedef struct {
#i f defined(__cplusplus) || defined(c_plusplus)

XD c_cl ass;
#el se

X D cl ass;
#endi f

i nt | engt h;

X D id;

i nt click;

i nt percent ;

i nt pi tch;

int durati on;

int | ed_nask;

int | ed_val ue;

i nt key;

i nt aut o_r epeat _node;

} XKbdFeedbackControl ;

typedef struct {
#i f defined(__cplusplus) || defined(c_plusplus)

XD c_cl ass;
#el se
X D cl ass;
#endi f
i nt | engt h;
X D id;
i nt num keysyns;

KeySym *syns_t o_di spl ay;
} XStringFeedbackControl ;

typedef struct {
#i f defined(__cplusplus) || defined(c_plusplus)

XD c_cl ass;
#el se
X D cl ass;
#endi f
i nt | engt h;
X D id;
i nt int_to_display;

} X nt eger FeedbackControl ;

typedef struct {
#if defined(__cplusplus) || defined(c_plusplus)

66

X Input Extension Library X11, Release 6.4

X D c_cl ass;
#el se

X D cl ass;
#endi f

i nt | engt h;

X D id;

int per cent ;

i nt pi tch;

i nt durati on;

} XBel | FeedbackControl ;

typedef struct {
#if defined(__cplusplus) || defined(c_plusplus)

X D c_cl ass;
#el se

X D cl ass;
#endi f

i nt | engt h;

XD id;

int | ed_nask;

int | ed_val ues;

} XLedFeedbackControl ;

/***
*

* Device control structures.

*

*/

typedef struct {
XD control;
int | engt h;
} XDeviceControl;

typedef struct {

XD control;

int I engt h;

int first_valuator;
int num val uat or s;
int *resol uti ons;

} XDevi ceResol utionControl ;

typedef struct {

Xl D control ;

int | engt h;

int num val uat or s;
int *resol utions;

int *m n_resol utions;
int *max_resol utions;

} XDevi ceResol utionSt at e;

67

X Input Extension Library

/***

*

* An array of XDevicelist structures is returned by the

* XLi st nput Devi ces function. Each entry contains infornmation

* about one input device. Among that infornation is an array of
* pointers to structures that describe the characteristics of

* the input device.

*

*/
typedef struct _XAnyd assinfo *XAnyd assPtr;

typedef struct _XAnyd assinfo {
#if defined(__cplusplus) || defined(c_plusplus)

X D c_cl ass;
#el se

X D cl ass;
#endi f

int | engt h;

} XAnyd assl nf o;

typedef struct _XDevicel nfo *XDevicel nfoPtr;

typedef struct _XDevicelnfo

{

XD id;

At om type;

char *nane;

i nt num cl asses;
i nt use;

XAnyd assPtr i nputcl assi nfo;
} XDevi cel nf o;

typedef struct _XKeylnfo *XKeyl nfoPtr;

typedef struct _XKeylnfo

{

#if defined(__cplusplus) || defined(c_plusplus)
X D c_cl ass;

#el se
X D cl ass;

#endi f
int I engt h;
unsi gned short m n_keycode;
unsi gned short nmax_keycode;
unsi gned short num keys;
} XKeyl nfo;

typedef struct _XButtonlnfo *XButtonlnfoPtr;

68

X11, Release 6.4

X Input Extension Library

typedef struct _XButtonlnfo {
#if defined(__cplusplus) || defined(c_plusplus)

X D c_cl ass;
#el se

X D cl ass;
#endi f

int I engt h;

short num but t ons;
} XButtonl nfo;

typedef struct _XAxislnfo *XAxislnfoPtr;

typedef struct _XAxislnfo {

i nt resol ution;
int m n_val ue;
int nax_val ue;
} XAxi sl nf o;

typedef struct _XVal uatorlnfo *Xval uatorlnfoPtr;

typedef struct _XVal uat or I nfo
{
#i f defined(__cplusplus) || defined(c_plusplus)
X D c_cl ass;
#el se
X D cl ass;
#endi f
i nt | engt h;
unsi gned char num axes;
unsi gned char node;
unsi gned | ong moti on_buffer;
XAxi sl nfoPtr axes;

} Xval uat or | nf o;

/***

*

* An XDevice structure is returned by the XOpenDevi ce function.

* |t contains an array of pointers to Xl nputd asslnfo structures.

* Each contains information about a class of input supported by the

* device, including a pointer to an array of data for each type of event
* the device reports.

*

*/

typedef struct {

unsi gned char i nput _cl ass;

unsi gned char event _type_base;
} X' nputd assl nf o;

69

X11, Release 6.4

X Input Extension Library X11, Release 6.4

typedef struct {

X D devi ce_i d;
int num cl asses;
Xl nput 4 assl nf o *cl asses;

} XDevi ce;

/***

*

* The followi ng structure is used to return infornation for the
* XGet Sel ect edExt ensi onEvents functi on.

*

*/

typedef struct {

XEvent A ass event _type;
Xl D devi ce;
} XEvent Li st;

/***

*

* The followi ng structure is used to return notion history data from
* an input device that supports the input class Valuators.
* This infornmation is returned by the XGet Devi ceMdti onEvents function.

*

*/

typedef struct {
Time tineg;
int *dat a;
} XDevi ceTi meCoor d;

[K K kK Kk K Kk K K R K R KR R R R R R R KR R Rk Rk K Rk Rk R R Rk Rk R Rk R Rk R Rk kR Rk ok k ok

*

* Device state structure.
* This is returned by the XQueryDevi ceState request.

*

*/

typedef struct {

X D devi ce_i d;
int num cl asses;
Xl nput A ass *dat a;

} XDeviceState;

AR R R R RS EE SRR SRS E RS

*

* Note that the node field is a bitfield that reports the Proximty
* status of the device as well as the node. The node field shoul d

70

X Input Extension Library

* be ORd with the nask Devi ceMde and conpared with the val ues

* Absolute and Relative to determne the node, and should be CR d

* with the mask ProximtyState and conpared with the values InProximty
* and QutFProximty to determne the proximty state.

*

*/

typedef struct {
#i f defined(__cplusplus) || defined(c_plusplus)
unsi gned char c_cl ass;
#el se
unsi gned char cl ass;
#endi f
unsi gned char |ength;
unsi gned char numval uators;
unsi gned char node;
int *val uat or s;
} Xval uator St at e;

typedef struct {

#i f defined(__cplusplus) || defined(c_plusplus)
unsi gned char c_cl ass;

#el se
unsi gned char cl ass;

#endi f
unsi gned char |ength;

short num keys;
char keys[32] ;
} XKeyState;

typedef struct {
#if defined(__cplusplus) || defined(c_plusplus)
unsi gned char c_cl ass;
#el se
unsi gned char cl ass;
#endi f
unsi gned char |ength;
short num but t ons;
char but t ons[32] ;
} XButtonState;

/***

*
* Function definitions.
*
*/

_XFUNCPROTCBEGQ N

extern int XChangeKeyboar dDevi ce(

71

X11, Release 6.4

X Input Extension Library

D spl ay*
XDevi ce*
)

/* display */,
/* device */

extern int XChangePoi nt er Devi ce(

D spl ay*
XDevi ce*
int
i nt

)

/* display */,

/* device */,
/* xaxis */,
/* yaxis */

extern int XQ abDevi ce(

D spl ay*
XDevi ce*

W ndow

Bool

i nt

XEvent d ass*
int

int

Ti me

)

/* display */,
/* device */,
/* grab_wi ndow */,
/* owner Events */,
/* event count */,
/* event_list */,
/* this_device_node */,
/* other_devi ces_node */,
/* time */

extern int XUngrabDevi ce(

D spl ay*
XDevi ce*
Ti ne

)

/* display */,
/* device */,
/* time */

extern int X abDevi ceKey(

D spl ay*
XDevi ce*
unsi gned i nt
unsi gned i nt
XDevi ce*

W ndow

Bool

unsi gned i nt
XEvent A ass*
i nt

i nt

/* display */,
/* device */,
/* key */,

/* nodifiers */,

/* nodi fier_device */,

/* grab_wi ndow */,

/* owner_events */,

/* event_count */,

/* event_list */,
/* this_device_node */,
/* other_devi ces_node */

extern int XUngrabDevi ceKey(

D spl ay*
XDevi ce*
unsi gned i nt
unsi gned i nt
XDevi ce*

W ndow

/* display */,
/* device */,
I* key */,

/* modifiers */,
/* nodifier_dev */,
/* grab_wi ndow */

72

X11, Release 6.4

X Input Extension Library

extern int XGQ abDevi ceButt on(
D spl ay* /* display */,
XDevi ce* /* device */,
unsigned int /* button */,
unsigned int /* nodifiers */,

XDevi ce* /* nodifier_device */,
W ndow /* grab_wi ndow */,
Bool /* owner_events */,

unsigned int /* event_count */,

XEventd ass* /* event_list */,

int /* this_device_node */,
int /* other_devi ces_node */

)

extern int XUngrabDevi ceButt on(
D spl ay* /* display */,
XDevi ce* /* device */,
unsigned int /* button */,
unsigned int /* nodifiers */,
XDevi ce* /* nodifier_dev */,

W ndow /* grab_wi ndow */

extern int XA | owDevi ceEvent s(

D spl ay* /* display */,

XDevi ce* /* device */,

i nt /* event _node */,
Ti me [* time */

extern int XGet Devi ceFocus(

D spl ay* /* display */,
XDevi ce* /* device */,
W ndow* /* focus */,
int* /* revert_to */,
Ti me* /* time */

)

extern int XSet Devi ceFocus(

D spl ay* /* display */,

XDevi ce* /* device */,

W ndow /* focus */,

int /* revert_to */,
Ti me /* time */

)

extern XFeedbackState * XCet FeedbackCont r ol (
D spl ay* /* display */,

73

X11, Release 6.4

X Input Extension Library X11, Release 6.4

XDevi ce* /* device */,
int* /* num f eedbacks */

)

extern voi d XFreeFeedbackLi st (
XFeedbackSt at e* /* list */

extern int XChangeFeedbackControl (
D spl ay* /* display */,
XDevi ce* /* device */,
unsigned long /* mask */,
XFeedbackCont r ol * [* f *

)

extern int XDeviceBell (

D spl ay* /* display */,
XDevi ce* /* device */,
X D /* feedbackcl ass */,
X D /* feedbackid */,
i nt /* percent */
)
extern KeySym * XGet Devi ceKeyMappi ng(
D spl ay* /* display */,
XDevi ce* /* device */,

#i f NeedW dePr ot ot ypes
unsigned int /* first */,

#el se
KeyCode I* first */,
#endi f
int /* keycount */,
int* /* syns_per_code */
)
extern int XChangeDevi ceKeyMappi ng(
D spl ay* /* display */,
XDevi ce* /* device */,
i nt [* first */,
i nt /* syns_per_code */,
Key Syt /* keysyns */,
int /* count */

extern XModifierKeymap *XGet Devi ceModi fi er Mappi ng(
D spl ay* /* display */,
XDevi ce* /* device */

extern int XSetDevi ceMdi fi er Mappi ng(

74

X Input Extension Library

D spl ay* /* display */,
XDevi ce* /* device */,
XModi f i er Keymap* /* nodmap */
)
extern int XSet Devi ceButt onMappi ng(
D spl ay* /* display */,
XDevi ce* /* device */,

unsi gned char* /* map[] */,
i nt /* nmap */

)

extern int XGet Devi ceBut t onVappi ng(
D spl ay* /* display */,
XDevi ce* /* device */,
unsi gned char* /* map[] */,
unsigned int /* nmap */

)

extern XDevi ceState * XQuer yDevi ceSt at e(
D spl ay* /* display */,
XDevi ce* /* device */

)

extern void XFreeDeviceStat e(
XDevi ceState* /* list */
)

ext ern XExt ensi onVer si on * XGet Ext ensi onVer si on(

D spl ay* /* display */,
_Xconst char* /* name */

)

extern XDevi cel nfo *XLi st | nput Devi ces(
D spl ay* /* display */,
int* /* ndevices */

extern voi d XFreeDevi celi st (
XDevi cel nfo* /* list */
)

extern XDevice * XOpenDevi ce(

D spl ay* /* display */,
X D [*id */
)
extern int XA oseDevi ce(
D spl ay* /* display */,
XDevi ce* /* device */

75

X11, Release 6.4

X Input Extension Library

extern int XSet Devi ceMbde(

D spl ay* /* display */,
XDevi ce* /* device */,
i nt /* mode */

extern int XSet Devi ceVal uat or s(

D spl ay* /* display */,

XDevi ce* /* device */,

int* /* valuators */,

int /* first_valuator */,
int /* numval uators */

)

extern XDevi ceControl * XGet Devi ceCont r ol (

D spl ay* /* display */,
XDevi ce* /* device */,
int /* control */

)

extern int XChangeDevi ceControl (

D spl ay* /* display */,
XDevi ce* /* device */,
i nt /* control */,
XDevi ceCont r ol * [* d */
)
extern int XSel ect Ext ensi onEvent (
D spl ay* /* display */,
W ndow [* w*/,

XEventd ass* /* event_list */,
i nt /* count */

)

extern int XGet Sel ect edExt ensi onEvent s(

D spl ay* /* display */,

W ndow [* w*/,

int* /* this_client_count */,
XEventd ass** [* this_client_list */,
int* /* all_clients_count */,

XEvent d ass** /* all_clients_list */

)

extern int XChangeDevi ceDont Pr opagat eLi st (

D spl ay* /* display */,
W ndow /* wi ndow */,
int /* count */,

XEvent d ass* /* events */,

76

X11, Release 6.4

X Input Extension Library

i nt /* node */

)

extern XBEvent d ass *XGet Devi ceDont Pr opagat eLi st (

D spl ay* [* display */,
W ndow /* window */,
int* /* count */
)
extern Status XSendExt ensi onEvent (
D spl ay* /* display */,
XDevi ce* /* device */,
W ndow /* dest */,
Bool /* prop */,
int /* count */,
XEventd ass* /* list */,
XEvent * /* event */
)

extern XDevi ceTi meCoord *XGet Devi ceMot i onEvent s(

D spl ay* /* display */,
XDevi ce* /* device */,
Time /* start */,

Ti me /* stop */,

int* /* nEvents */,
int* /* nmode */,

int* /* axis_count */

)

extern voi d XFreeDevi ceMdti onEvent s(
XDevi ceTi meCoor d* /* events */

)

extern void XFreeDevi ceControl (
XDevi ceCont r ol * /* control */

extern voi d _xi baddevi ce(D splay *dpy, int *error);

extern void _xibadcl ass(Di splay *dpy, int *error);
extern void _xi badevent (D splay *dpy, int *error);
extern voi d _xi badnode(Di splay *dpy, int *error);

extern voi d _xi devi cebusy(Di splay *dpy, int *error);

_ XFUNCPROTCEND

#endif /* XINPUT_H_*/

/**

77

X11, Release 6.4

X Input Extension Library X11, Release 6.4

Copyright 1989, 1998 The (pen G oup

Perm ssion to use, copy, nodify, distribute, and sell this software and its
docunentation for any purpose is hereby granted w thout fee, provided that
the above copyright notice appear in all copies and that both that
copyright notice and this perm ssion notice appear in supporting

docunent at i on.

The above copyright notice and this perm ssion notice shall be included in
all copies or substantial portions of the Software.

THE SCFTWARE | S PROVIDED "AS I S', WTHOUT WARRANTY CF ANY KIND, EXPRESS CR
I MPLI ED, I NCLUDI NG BUT NOT LI M TED TO THE WARRANTI ES CF MERCHANTABI LI TY,

FI TNESS FCR A PARTI CULAR PURPCSE AND NONI NFRINGEMENT. | N NO EVENT SHALL THE
CPEN GROUP BE LI ABLE FCR ANY CLAIM DAVAGES CR OTHER LI ABILITY, WHETHER I N
AN ACTI ON CF CONTRACT, TCORT CR OTHERWSE, ARISING FROM QUT GF (R IN
CONNECTI ON WTH THE SCFTWARE CR THE USE OR OTHER DEALI NGS IN THE SOFTWARE

Except as contained in this notice, the name of The Qpen Goup shall not be
used in advertising or otherwise to promote the sale, use or other dealings
inthis Software without prior witten authorization fromThe pen G oup.

Copyright 1989 by Hew ett-Packard Conpany, Palo Alto, California.
Al Rghts Reserved

Perm ssion to use, copy, nodify, and distribute this software and its
docunent ation for any purpose and without fee is hereby granted,

provi ded that the above copyright notice appear in all copies and that
both that copyright notice and this perm ssion notice appear in
supporting docunentation, and that the nanme of Hew ett-Packard not be
used in advertising or publicity pertaining to distribution of the
software wi thout specific, witten prior perm ssion.

HEWLETT- PACKARD DI SCLAI M5 ALL WARRANTI ES WTH REGARD TO TH S SCFTWARE, | NCLUDI NG
ALL | MPLI ED WARRANTI ES CF MERCHANTABI LI TY AND FI TNESS, | N NO EVENT SHALL
HEW.ETT- PACKARD BE LI ABLE FCR ANY SPECI AL, | NDI RECT CR CONSEQUENTI AL DAVAGES CR
ANY DAVAGES WHATSCEVER RESULTI NG FROM LGSS OF USE, DATA CR PRCFI TS,

WHETHER | N AN ACTI ON CF CONTRACT, NEGQLI GENCE CR OTHER TCRTI QUS ACTI QN,

ARISING QUT CF CR I N CONNECTI N WTH THE USE CR PERFCRVANCE COF TH S

SCFTWARE.

******************************‘k*************************/

/* $XFree86: xc/doc/specs/Xi/library.ns,v 1.3 2006/ 01/09 14:56: 34 dawes Exp $ */
/* Definitions used by the server, library and client */
#ifndef _XI_H_

#define _XI_H_

78

X Input Extension Library

#define
#define
#defi ne
#defi ne
#defi ne
#defi ne
#define
#define
#defi ne
#defi ne
#defi ne
#defi ne
#define
#define
#defi ne
#defi ne
#defi ne
#defi ne
#define
#define
#defi ne
#defi ne
#defi ne
#defi ne
#define
#define
#defi ne
#defi ne
#defi ne
#defi ne
#define
#define
#defi ne
#defi ne
#defi ne
#defi ne
#define
#define
#defi ne
#defi ne
#defi ne
#defi ne
#define
#define
#defi ne
#defi ne
#defi ne
#defi ne
#define
#define

sz_xCet Ext ensi onVer si onReq

sz_xCet Ext ensi onVer si onRepl y

sz_xLi st | nput Devi cesReq
sz_xLi st | nput Devi cesRepl y
sz_xQpenDevi ceReq
sz_xQpenDevi ceRepl y

sz_x0 oseDevi ceReq

sz_xSet Devi ceMbdeReq
sz_xSet Devi ceModeRepl y
sz_xSel ect Ext ensi onEvent Req

sz_xCet Sel ect edExt ensi onEvent sReq

32

32

32

32

12
8

sz_xGCet Sel ect edExt ensi onEvent sRepl y 32
sz_xChangeDevi ceDont Pr opagat eLi st Req
sz_xGet Devi ceDont Propagat eLi stReq 8
sz_xGCet Devi ceDont Pr opagat eLi st Repl y 32

sz_xGCet Devi ceMdt i onEvent sReq
sz_xGCet Devi ceMdt i onEvent sRepl y

sz_xChangeKeyboar dDevi ceReq

sz_xChangeKeyboar dDevi ceRepl y

sz_xChangePoi nt er Devi ceReq

sz_xChangePoi nt er Devi ceRepl y

sz_xQ abDevi ceReq

Ssz_x@ abDevi ceRepl y
sz_xUngr abDevi ceReq
sz_xQ abDevi ceKeyReq
sz_xG abDevi ceKeyRepl y
sz_xUngr abDevi ceKeyReq
sz_x@Q abDevi ceBut t onReq
Sz_x@ abDevi ceBut t onRepl y
sz_xUngr abDevi ceBut t onReq
sz_xAl | owDevi ceEvent sReq
sz_xCet Devi ceFocusReq
sz_xGCet Devi ceFocusRepl y
sz_xSet Devi ceFocusReq
sz_xGCet FeedbackCont r ol Req
sz_xGCet FeedbackCont r ol Repl y

sz_xChangeFeedbackCont r ol Req

sz_xGCet Devi ceKeyMappi ngReq

sz_xGet Devi ceKeyMappi ngRepl y
sz_xChangeDevi ceKeyMappi ngReq
sz_xGet Devi ceModi fi er Mappi ngReq
sz_xSet Devi ceModi f i er Mappi hgReq
sz_xSet Devi ceModi fi er Mappi ngRepl y
sz_xGet Devi ceBut t onMappi ngReq
sz_xGet Devi ceBut t onMappi ngRepl y
sz_xSet Devi ceBut t onMappi ngReq
sz_xSet Devi ceBut t onVappi ngRepl y

sz_xQueryDevi ceSt at eReq
sz_xQueryDevi ceSt at eRepl y
sz_xSendExt ensi onEvent Req

16

32

16

12

16

32
12

32

32
16

12

32

20

32

32

32

79

X11, Release 6.4

X Input Extension Library

#define
#define
#defi ne
#defi ne
#defi ne
#defi ne
#define

#defi ne

#defi ne
#defi ne
#define
#define
#defi ne
#defi ne
#defi ne
#defi ne
#define
#define
#defi ne
#defi ne
#defi ne
#defi ne
#define
#define
#defi ne
#defi ne

#defi ne
#define
#define
#defi ne
#defi ne

#def i ne
#def i ne

#defi ne
#defi ne

#def i ne
#def i ne

#defi ne
#defi ne

#def i ne
#def i ne

sz_xDevi ceBel | Req

sz_xSet Devi ceVal uat or sReq
sz_xSet Devi ceVal uat or sRepl y
sz_xGCet Devi ceCont r ol Req
Ssz_xGet Devi ceCont rol Repl y
sz_xChangeDevi ceCont r ol Req
sz_xChangeDevi ceCont r ol Repl y

© 0

32

32
8
32

1 NAME "Xl nput Ext ensi on"

X _KEYBOARD " KEYBOARD"
Xl _MOUSE " MOUSE'

X _TABLET " TABLET"

X _TOUCHSCREEN " TOUCHSCREEN'
X _TOUCHPAD " TQUCHPAD!

X _BARCCDE " BARCCDE"

X _BUTTONBOX " BUTTCNBOX"

X _KNOB_BOX " KNOB_BOX"

XI _ONE_KNCB " ONE_KNCB'
XI_N NE_KNCB "N NE_KNCB'
X _TRACKBALL " TRACKBALL"

X _QUADRATURE " QUADRATURE"
X _| D MCDULE "| D_MCDULE"

X _SPACEBALL " SPACEBALL"

X _DATAGLOVE " DATAGLOVE'

X _EYETRACKER "EYETRACKER'
X _OURSCRKEYS " CURSCRKEYS'
X _FOOTMOUSE " FOOTMOUSE"

Dont _Check 0

Xinput _I nitial _Rel ease 1
Xl nput _Add_XDevi ceBel | 2
Xl nput _Add_XSet Devi ceVal uat or s
Xl nput _Add_XChangeDevi ceCont r ol

Xl _Absent 0
Xl _Present 1

Xl _Initial_Rel ease_Mj or
Xl _Initial_Rel ease_M nor

Xl _Add_XDevi ceBel | _Mj or
Xl _Add_XDevi ceBel | _M nor

Xl _Add_XSet Devi ceVal uat ors_Mj or
Xl _Add_XSet Devi ceVal uat ors_M nor

Xl _Add_XChangeDevi ceCont r ol _Mj or
Xl _Add_XChangeDevi ceCont r ol _M nor

80

X11, Release 6.4

X Input Extension Library X11, Release 6.4

#def i ne DEVI CE_RESQLUTI CN 1
#defi ne NoSuchExt ensi on 1

#defi ne COUNT

#defi ne CREATE 1
#defi ne NewPoi nt er 0

#defi ne NewKeyboar d 1
#defi ne XPA NTER 0

#def i ne XKEYBQARD 1

#defi ne UseXKeyboard OxFF
#defi ne | sXPoi nter 0

#defi ne | sXKeyboard

#def i ne | sXExt ensi onDevi ce 2

#defi ne AsyncThi sDevi ce

#define SyncThi sDevi ce 1

#def i ne Repl ayThi sDevi ce 2

#defi ne AsyncQ her Devi ces 3

#define AsyncAll 4

#define SyncAll 5

#defi ne Fol | owkeyboar d 3

#i f ndef Revert ToFol | owkKeyboar d

#defi ne Revert ToFol | owKeyboar d 3
#endi f

#define DvAccel Num (1L << 0)
#defi ne DvAccel Denom (1L << 1)
#def i ne DvThreshol d (1L << 2)
#defi ne DvKeyd i ckPer cent (1L<<0)
#defi ne DvPercent (1L<<1)

#define DvPi tch (1L<<2)
#define DvDuration (1L<<3)

#define DvLed (1L<<4)
#defi ne DvLedMbde (1L<<5)

#defi ne DvKey (1L<<6)

#def i ne DvAut oRepeat Mbde (1L<<7)

#define DvString (1L << 0)
#defi ne Dvl nteger (1L << 0)
#defi ne Devi ceMbde (1L << 0)
#define Rel ative 0

81

X Input Extension Library X11, Release 6.4

#defi ne Absol ute 1

/* Merged fromMetrolink tree for XINPUT stuff */
#define TS Raw 57
#define TS Scal ed 58

#defi ne SendCor eEvent s 59

#def i ne Dont SendCor eEvent s 60

/* End of nerged section */

#define ProximtyState (1L << 1)
#define InProximty (0L << 1)
#define QuUtCFProximty (1L << 1)

#defi ne AddToLi st
#define Del et eFronti st

#def i ne Keyd ass 0
#define Buttond ass
#define Val uatord ass
#def i ne Feedbackd ass
#define Proxinmtydass 4
#def i ne Focusd ass

#define G herd ass

o O

#defi ne KbdFeedbackd ass
#defi ne PtrFeedbackd ass
#define StringFeedbackd ass
#def i ne | nt eger Feedbackd ass
#def i ne LedFeedbackd ass
#defi ne Bel | Feedbackd ass

g b WO N P O

#def i ne _devi cePoi nterMtionH nt O
#defi ne _devi ceButtonlMtion
#define _devi ceButt on2Moti on
#defi ne _devi ceButt on3Moti on
#define _devi ceButt on4Moti on
#define _devi ceButt on5Moti on
#define _devi ceButtonhbtion
#defi ne _devi ceButtonG ab
#define _devi ceOwmner @ abBut t on

#defi ne _noExt ensi onEvent

© 00 N O O b~ W NP

#define X _BadDevi ce 0
#defi ne X _BadEvent 1
#define Xl _BadMode 2

#define X _Devi ceBusy 3
#define Xl _Badd ass 4

/* Make XBEventd ass be a CARD32 for 64 bit servers. Don't affect client

* definition of XBventd ass since that would be a library interface change.
* See the top of X h for nmore _XSERVER64 nagi c.

82

X Input Extension Library

*/
#i f def _XSERVER64
t ypedef CARD32 XEvent A ass;
#el se
t ypedef unsi gned | ong XEvent d ass;
#endi f

/***

*

* Extension version structure.

*

*/

typedef struct {

int present;
short naj or _ver si on;
short m nor _versi on;

} XExt ensi onVer si on;

#endif /* _XI_H */

83

X11, Release 6.4

X Input Extension Library X11, Release 6.4

84

Table of Contents

1. Input Extension Overwe

1.1. Design Approach .

1.2. Core Input Déces

1.3. Extension Input Déces
1.3.1. Input Device Classes .
1.4. Using Extension Input Diees
2. Library Extension Requests .
2.1. Windav Manager Functions.
2.1.1. Changing the Core idees .

2.1.2. Event Synchronization and Core Grabs :

2.1.3. Extension Acte Gabs .

2.1.4. Passely Grabbing a ley

2.1.5. Passely Grabbing a Button .
2.1.6. Thawing a Dece . :

2.1.7. Controlling Device ¢cus

2.1.8. Controlling Device Feedback
2.1.9. Ringing a Bell on an Input {Ziee .
2.1.10. Controlling Device Encoding .
2.1.11. Controlling Button Mapping.
2.1.12. Obtaining the State of a\iee
2.2. BEents e e
2.2.1. Event ypes . .

2.2.2. Event Classes.

2.2.3. Event Structures. .

2.2.3.1. Device Ky Bvents .

2.2.3.2. Device Button Ents .
2.2.3.3. Device Motion Eants . .
2.2.3.4. Device Focus Euts . .
2.2.3.5. Device StateNotify Ent .
2.2.3.6. Device Mapping Ewnt .
2.2.3.7. ChangeDeviceNotify Emt
2.2.3.8. Proximity Egnts

2.3. Event Handling Functions .
2.3.1. Determining the Extensiomigion
2.3.2. Listing Available Devices

2.3.3. Enabling and Disabling Extensmnvl[mes .

2.3.4. Changing the Mode of a \bhee .
2.3.5. Initializing Valuators on an Input {dee
2.3.6. Getting Input Device Controls .
2.3.7. Changing Input Device Controls
2.3.8. Selecting Extension Devicediws .
2.3.9. Determining Selected Devicedews . .
2.3.10. Controlling Event Propation

2.3.11. Sending an Ent . .

2.3.12. Getting Motion History

2.3.12. Appendix A . .

UV WWWNNR R R R

FUURHODENOHNETIRRORWOONDWRWUNNEO 0NN NG WD

X Input Extension Library X11, Release 6.4

