
X I nput Device Extension Library

X Consortium Standard

X Version 11, Release 6.4

Mark Patrick Ardent Computer

George Sachs Hewlett-Packard

Copyright © 1989, 1990, 1991 by Hewlett-Packard Company, Ardent Computer.

Permission to use, copy, modify, and distribute this documentation for any purpose and without
fee is hereby granted, provided that the above copyright notice and this permission notice appear
in all copies. Ardent, and Hewlett-Packard make no representations about the suitability for any
purpose of the information in this document. It is provided ``as is’’ w ithout express or implied
warranty.

Copyright (c) 1989, 1990, 1991, 1992X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the ‘‘Software’’), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substan-
tial portions of the Software.

THE SOFTWARE IS PROVIDED ‘‘A S IS’’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGE-
MENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising
or otherwise to promote the sale, use or other dealings in this Software without prior written
authorization from the X Consortium.

X Window Systemis a trademark of X Consortium, Inc.

1. Input Extension Overview

This document describes an extension to the X11 server. The purpose of this extension is to sup-
port the use of additional input devices beyond the pointer and keyboard devices defined by the
core X protocol. This first section gives an overview of the input extension. Thefollowing sec-
tions correspond to chapters 9, 10, and 11, ‘‘Window and Session Manager Functions’’,
‘‘ Events’’, and ‘‘Event Handling Functions’’ of the ‘‘Xlib - C Language Interface’’ manual and
describe how to use the input device extension.

1.1. DesignApproach

The design approach of the extension is to define functions and events analogous to the core func-
tions and events. Thisallows extension input devices and events to be individually distinguish-
able from each other and from the core input devices and events. Thesefunctions and events
make use of a device identifier and support the reporting ofn-dimensional motion data as well as
other data that is not currently reportable via the core input events.

1.2. Core Input Devices

The X server core protocol supports two input devices: apointer and a keyboard. Thepointer
device has two major functions. First, it may be used to generate motion information that client
programs can detect. Second, it may also be used to indicate the current location and focus of the
X keyboard. To accomplish this, the server echoes a cursor at the current position of the X
pointer. Unless the X keyboard has been explicitly focused, this cursor also shows the current
location and focus of the X keyboard.

The X keyboard is used to generate input that client programs can detect.

The X keyboard and X pointer are referred to in this document as thecore devices, and the input
ev ents they generate (KeyPress, KeyRelease, ButtonPress, ButtonRelease, and MotionNo-
tify) are known as thecore input events. All other input devices are referred to asextension input
devices, and the input events they generate are referred to asextension input events.

Note

This input extension does not change the behavior or functionality of the core input
devices, core events, or core protocol requests, with the exception of the core grab
requests. Theserequests may affect the synchronization of events from extension
devices. Seethe explanation in the section titled ‘‘Event Synchronization and Core
Grabs.’’

Selection of the physical devices to be initially used by the server as the core devices is left imple-
mentation dependent. Functions are defined that allow client programs to change which physical
devices are used as the core devices.

1.3. ExtensionInput Devices

The input extension controls access to input devices other than the X keyboard and X pointer. It
allows client programs to select input from these devices independently from each other and inde-
pendently from the core devices. Inputev ents from these devices are of extension types
(DeviceKeyPress, DeviceKeyRelease, DeviceButtonPress, DeviceButtonRelease, DeviceMo-
tionNotify , and so on) and contain a device identifier so that events of the same type coming
from different input devices can be distinguished.

Extension input events are not limited in size by the size of the server 32-byte wire events. Exten-
sion input events may be constructed by the server sending as many wire-sized events as

1

X I nput Extension Library X11, Release 6.4

necessary to return the information required for that event. Thelibrary event reformatting rou-
tines are responsible for combining these into one or more client XEvents.

Any input device that generates key, button, or motion data may be used as an extension input
device. Extensioninput devices may have zero or more keys, zero or more buttons, and may
report zero or more axes of motion. Motion may be reported as relative movements from a previ-
ous position or as an absolute position. All valuators reporting motion information for a given
extension input device must report the same kind of motion information (absolute or relative).

This extension is designed to accommodate new types of input devices that may be added in the
future. Theprotocol requests that refer to specific characteristics of input devices organize that
information byinput device classes. Server implementors may add new classes of input devices
without changing the protocol requests.

All extension input devices are treated like the core X keyboard in determining their location and
focus. Theserver does not track the location of these devices on an individual basis and, there-
fore, does not echo a cursor to indicate their current location. Instead, their location is determined
by the location of the core X pointer. Like the core X keyboard, some may be explicitly focused.
If they are not explicitly focused, their focus is determined by the location of the core X pointer.

1.3.1. InputDevice Classes

Some of the input extension requests divide input devices into classes based on their functionality.
This is intended to allow new classes of input devices to be defined at a later time without chang-
ing the semantics of these functions. The following input device classes are currently defined:

KEY The device reports key events.

BUTTON The device reports button events.

VALUAT OR The device reports valuator data in motion events.

PROXIMITY The device reports proximity events.

FOCUS The device can be focused.

FEEDBACK The device supports feedbacks.

Additional classes may be added in the future. Functions that support multiple input classes, such
as theXListInputDevices function that lists all available input devices, organize the data they
return by input class. Client programs that use these functions should not access data unless it
matches a class defined at the time those clients were compiled. In this way, new classes can be
added without forcing existing clients that use these functions to be recompiled.

1.4. UsingExtension Input Devices

A client that wishes to access an input device does so through the library functions defined in the
following sections.A typical sequence of requests that a client would make is as follows:

• XListInputDevices − lists all of the available input devices. Fromthe information
returned by this request, determine whether the desired input device is attached to the
server. For a description of theXListInputDevices request, see the section entitled ‘‘List-
ing Available Devices.’’

• XOpenDevice− requests that the server open the device for access by this client. This
request returns anXDevice structure that is used by most other input extension requests to
identify the specified device. For a description of theXOpenDevicerequest, see the sec-
tion entitled ‘‘Enabling and Disabling Extension Devices.’’

• Determine the event types and event classes needed to select the desired input extension
ev ents, and identify them when they are received. Thisis done via macros whose name

2

X I nput Extension Library X11, Release 6.4

corresponds to the desired event, for example,DeviceKeyPress. For a description of these
macros, see the section entitled ‘‘Selecting Extension Device Events.’’

• XSelectExtensionEvent− selects the desired events from the server. For a description of
the XSelextExtensionEventrequest, see the section entitled ‘‘Selecting Extension Device
Events.’’

• XNextEvent − receives the next available event. Thisis the coreXNextEvent function
provided by the standard X libarary.

Other requests are defined to grab and focus extension devices, to change their key, button, or
modifier mappings, to control the propagation of input extension events, to get motion history
from an extension device, and to send input extension events to another client. These functions
are described in the following sections.

2. Library Extension Requests

Extension input devices are accessed by client programs through the use of new protocol requests.
The following requests are provided as extensions to Xlib. Constants and structures referenced by
these functions may be found in the files<X11/extensions/XI.h>and<X11/extensions/XIn-
put.h>, which are attached to this document as Appendix A.

The library will returnNoSuchExtensionif an extension request is made to a server that does not
support the input extension.

Input extension requests cannot be used to access the X keyboard and X pointer devices.

2.1. Window Manager Functions

This section discusses the following X Input Extension Window Manager topics:

• Changing the core devices

• Event synchronization and core grabs

• Extension active grabs

• Passively grabbing a key

• Passively grabbing a button

• Thawing a device

• Controlling device focus

• Controlling device feedback

• Ringing a bell on an input device

• Controlling device encoding

• Controlling button mapping

• Obtaining the state of a device

2.1.1. Changingthe Core Devices

These functions are provided to change which physical device is used as the X pointer or X
keyboard.

3

X I nput Extension Library X11, Release 6.4

Note

Using these functions may change the characteristics of the core devices. Thenew
pointer device may have a different number of buttons from the old one, or the new
keyboard device may have a different number of keys or report a different range of
keycodes. Clientprograms may be running that depend on those characteristics.For
example, a client program could allocate an array based on the number of buttons on
the pointer device and then use the button numbers received in button events as
indices into that array. Changing the core devices could cause such client programs
to behave improperly or to terminate abnormally if they ignore theChangeDevi-
ceNotify ev ent generated by these requests.

These functions change the X keyboard or X pointer device and generate anXChangeDeviceNo-
tify ev ent and aMappingNotify ev ent. Thespecified device becomes the new X keyboard or X
pointer device. Thelocation of the core device does not change as a result of this request.

These requests fail and returnAlreadyGrabbed if either the specified device or the core device it
would replace are grabbed by some other client. They fail and returnGrabFrozen if either
device is frozen by the active grab of another client.

These requests fail with aBadDeviceerror if the specified device is invalid, has not previously
been opened viaXOpenDevice, or is not supported as a core device by the server implementa-
tion.

Once the device has successfully replaced one of the core devices, it is treated as a core device
until it is in turn replaced by anotherChangeDevicerequest or until the server terminates. The
termination of the client that changed the device will not cause it to change back. Attempts to use
the XCloseDevicerequest to close the new core device will fail with aBadDeviceerror.

To change which physical device is used as the X keyboard, use theXChangeKeyboardDevice
function. Thespecified device must support input classKeys (as reported in theListInputDe-
vices request) or the request will fail with aBadMatch error.

int XChangeKeyboardDevice (display, device)
Display *display;
XDevice *device;

display Specifies the connection to the X server.

device Specifies the desired device.

If no error occurs,XChangeKeyboardDevicereturnsSuccess. A ChangeDeviceNotifyev ent
with the request field set toNewKeyboard is sent to all clients selecting that event. A Mapping-
Notify ev ent with the request field set toMappingKeyboard is sent to all clients. The requested
device becomes the X keyboard, and the old keyboard becomes available as an extension input
device. Thefocus state of the new keyboard is the same as the focus state of the old X keyboard.

XChangeKeyboardDevicecan generateAlreadyGrabbed, BadDevice, BadMatch, and
GrabFrozen errors.

To change which physical device is used as the X pointer, use theXChangePointerDevicefunc-
tion. Thespecified device must support input classValuators (as reported in theXListInputDe-
vices request) and report at least two axes of motion, or the request will fail with aBadMatch

4

X I nput Extension Library X11, Release 6.4

error. If the specified device reports more than two axes, the two specified in the xaxis and yaxis
arguments will be used. Data from other valuators on the device will be ignored.

If the specified device reports absolute positional information, and the server implementation does
not allow such a device to be used as the X pointer, the request will fail with aBadDeviceerror.

int XChangePointerDevice (display, device, xaxis, yaxis)
Display *display;
XDevice *device;
int xaxis;
int yaxis;

display Specifies the connection to the X server.

device Specifies the desired device.

xaxis Specifies the zero-based index of the axis to be used as the x-axis of the pointer
device.

yaxis Specifies the zero-based index of the axis to be used as the y-axis of the pointer
device.

If no error occurs,XChangePointerDevicereturnsSuccess. A ChangeDeviceNotifyev ent
with the request field set toNewPointer is sent to all clients selecting that event. A Mapping-
Notify ev ent with the request field set toMappingPointer is sent to all clients. The requested
device becomes the X pointer, and the old pointer becomes available as an extension input device.

XChangePointerDevicecan generateAlreadyGrabbed, BadDevice, BadMatch, and
GrabFrozen errors.

2.1.2. Event Synchronization and Core Grabs

Implementation of the input extension requires an extension of the meaning of event synchroniza-
tion for the core grab requests. This is necessary in order to allow window managers to freeze all
input devices with a single request.

The core grab requests require a pointer_mode and keyboard_mode argument. Themeaning of
these modes is changed by the input extension. For theXGrabPointer andXGrabButton
requests, pointer_mode controls synchronization of the pointer device, and keyboard_mode con-
trols the synchronization of all other input devices. For theXGrabKeyboard andXGrabKey
requests, pointer_mode controls the synchronization of all input devices, except the X keyboard,
while keyboard_mode controls the synchronization of the keyboard. Whenusing one of the core
grab requests, the synchronization of extension devices is controlled by the mode specified for the
device not being grabbed.

2.1.3. ExtensionActive Grabs

Active grabs of extension devices are supported via theXGrabDevice function in the same way
that core devices are grabbed using the coreXGrabKeyboard function, except that an extension
input device is passed as a function parameter. The XUngrabDevice function allows a previous
active grab for an extension device to be released.

Passive grabs of buttons and keys on extension devices are supported via theXGrabDeviceBut-
ton andXGrabDeviceKey functions. Thesepassive grabs are released via theXUngrabDe-
viceKey andXUngrabDeviceButton functions.

5

X I nput Extension Library X11, Release 6.4

To grab an extension device, use theXGrabDevice function. Thedevice must have previously
been opened using theXOpenDevicefunction.

int XGrabDevice (display, device, grab_window, owner_events, event_count, event_list,
this_device_mode, other_device_mode, time)

Display *display;
XDevice *device;
Windowgrab_window;
Bool owner_events;
int event_count;
XEventClass *event_list;
int this_device_mode;
int other_device_mode;
Timetime;

display Specifies the connection to the X server.

device Specifies the desired device.

grab_window Specifies the ID of a window associated with the device specified above.

owner_events Specifies a boolean value of eitherTr ue or False.

event_count Specifies the number of elements in the event_list array.

event_list Specifies a pointer to a list of event classes that indicate which events the client
wishes to receive. These event classes must have been obtained using the device
being grabbed.

this_device_mode
Controls further processing of events from this device. You can pass one of these
constants:GrabModeSync or GrabModeAsync.

other_device_mode
Controls further processing of events from all other devices. You can pass one of
these constants:GrabModeSync or GrabModeAsync.

time Specifies the time. This may be either a timestamp expressed in milliseconds or
CurrentTime .

XGrabDevice actively grabs an extension input device and generatesDeviceFocusInand
DeviceFocusOutev ents. Furtherinput events from this device are reported only to the grabbing
client. Thisfunction overrides any previous active grab by this client for this device.

The event_list parameter is a pointer to a list of event classes. This list indicates which events the
client wishes to receive while the grab is active. If owner_events isFalse, input events from this
device are reported with respect to grab_window and are reported only if specified in event_list.
If owner_events isTr ue, then if a generated event would normally be reported to this client, it is
reported normally. Otherwise, the event is reported with respect to the grab_window and is only
reported if specified in event_list.

The this_device_mode argument controls the further processing of events from this device, and
the other_device_mode argument controls the further processing of input events from all other
devices.

• If the this_device_mode argument isGrabModeAsync, device event processing continues
normally; if the device is currently frozen by this client, then processing of device events is
resumed. Ifthe this_device_mode argument isGrabModeSync, the state of the grabbed

6

X I nput Extension Library X11, Release 6.4

device (as seen by client applications) appears to freeze, and no further device events are
generated by the server until the grabbing client issues a releasingXAllowDeviceEvents
call or until the device grab is released. Actual device input events are not lost while the
device is frozen; they are simply queued for later processing.

• If the other_device_mode isGrabModeAsync, event processing from other input devices
is unaffected by activation of the grab. If other_device_mode isGrabModeSync, the state
of all devices except the grabbed device (as seen by client applications) appears to freeze,
and no further events are generated by the server until the grabbing client issues a releasing
XAllowEvents or XAllowDeviceEventscall or until the device grab is released. Actual
ev ents are not lost while the other devices are frozen; they are simply queued for later pro-
cessing.

XGrabDevice fails on the following conditions:

• If the device is actively grabbed by some other client, it returnsAlreadyGrabbed.

• If grab_window is not viewable, it returnsGrabNotViewable.

• If the specified time is earlier than the last-grab-time for the specified device or later than
the current X server time, it returnsGrabInvalidTime . Otherwise, the last-grab-time for
the specified device is set to the specified time andCurrentTime is replaced by the current
X server time.

• If the device is frozen by an active grab of another client, it returnsGrabFrozen.

If a grabbed device is closed by a client while an active grab by that client is in effect, that active
grab will be released. Any passive grabs established by that client will be released. If the device
is frozen only by an active grab of the requesting client, it is thawed.

XGrabDevice can generateBadClass, BadDevice, BadValue, and BadWindow errors.

To release a grab of an extension device, use theXUngrabDevice function.

int XUngrabDevice(display, device, time)
Display *display;
XDevice *device;
Timetime;

display Specifies the connection to the X server.

device Specifies the desired device.

time Specifies the time. This may be either a timestamp expressed in milliseconds, or
CurrentTime .

XUngrabDevice allows a client to release an extension input device and any queued events if
this client has it grabbed from eitherXGrabDevice or XGrabDeviceKey. If any other devices
are frozen by the grab,XUngrabDevice thaws them. This function does not release the device
and any queued events if the specified time is earlier than the last-device-grab time or is later than
the current X server time. It also generatesDeviceFocusInandDeviceFocusOutev ents. TheX
server automatically performs anXUngrabDevice if the event window for an active device grab
becomes not viewable or if the client terminates without releasing the grab.

XUngrabDevice can generateBadDeviceerrors.

7

X I nput Extension Library X11, Release 6.4

2.1.4. Passively Grabbing a Key

To passively grab a single key on an extension device, useXGrabDeviceKey. That device must
have previously been opened using theXOpenDevicefunction, or the request will fail with a
BadDeviceerror. If the specified device does not support input classKeys, the request will fail
with a BadMatch error.

int XGrabDeviceKey(display, device, keycode, modifiers, modifier_device, grab_window,
owner_events, event_count, event_list, this_device_mode, other_device_mode)

Display *display;
XDevice *device;
int keycode;
unsigned intmodifiers;
XDevice *modifier_device;
Windowgrab_window;
Bool owner_events;
int event_count;
XEventClass *event_list;
int this_device_mode;
int other_device_mode;

display Specifies the connection to the X server.

device Specifies the desired device.

keycode Specifies the keycode of the key that is to be grabbed.You can pass either the
keycode orAnyKey .

modifiers Specifies the set of keymasks. Thismask is the bitwise inclusive OR of these
keymask bits:ShiftMask , LockMask , ControlMask , Mod1Mask,
Mod2Mask, Mod3Mask, Mod4Mask, and Mod5Mask.

You can also passAnyModifier , which is equivalent to issuing the grab key
request for all possible modifier combinations (including the combination of no
modifiers).

modifier_device
Specifies the device whose modifiers are to be used. If NULL is specified, the
core X keyboard is used as the modifier_device.

grab_window Specifies the ID of a window associated with the device specified above.

owner_events Specifies a boolean value of eitherTr ue or False.

event_count Specifies the number of elements in the event_list array.

event_list Specifies a pointer to a list of event classes that indicate which events the client
wishes to receive.

this_device_mode
Controls further processing of events from this device. You can pass one of these
constants:GrabModeSync or GrabModeAsync.

other_device_mode
Controls further processing of events from all other devices. You can pass one of
these constants:GrabModeSync or GrabModeAsync.

XGrabDeviceKey is analogous to the coreXGrabKey function. Itcreates an explicit passive
grab for a key on an extension device. TheXGrabDeviceKey function establishes a passive grab

8

X I nput Extension Library X11, Release 6.4

on a device. Consequently, in the future,

• IF the device is not grabbed and the specified key, which itself can be a modifier key, is log-
ically pressed when the specified modifier keys logically are down on the specified modifier
device (and no other keys are down),

• AND no other modifier keys logically are down,

• AND EITHER the grab window is an ancestor of (or is) the focus window or the grab win-
dow is a descendent of the focus window and contains the pointer,

• AND a passive grab on the same device and key combination does not exist on any ancestor
of the grab window,

• THEN the device is actively grabbed, as forXGrabDevice, the last-device-grab time is set
to the time at which the key was pressed (as transmitted in theDeviceKeyPressev ent), and
the DeviceKeyPressev ent is reported.

The interpretation of the remaining arguments is as forXGrabDevice. The active grab is termi-
nated automatically when the logical state of the device has the specified key released (indepen-
dent of the logical state of the modifier keys).

Note that the logical state of a device (as seen by means of the X protocol) may lag the physical
state if device event processing is frozen.

A modifier of AnyModifier is equivalent to issuing the request for all possible modifier combina-
tions (including the combination of no modifiers). It is not required that all modifiers specified
have currently assigned keycodes. Akey of AnyKey is equivalent to issuing the request for all
possible keycodes. Otherwise,the key must be in the range specified by min_keycode and
max_keycode in the information returned by theXListInputDevices function. If it is not within
that range,XGrabDeviceKey generates aBadValue error.

XGrabDeviceKey generates aBadAccesserror if some other client has issued aXGrabDe-
viceKey with the same device and key combination on the same window. When usingAnyMod-
ifier or AnyKey , the request fails completely and the X server generates aBadAccesserror, and
no grabs are established if there is a conflicting grab for any combination.

XGrabDeviceKey returnsSuccessupon successful completion of the request.

XGrabDeviceKey can generateBadAccess, BadClass, BadDevice, BadMatch, BadValue,
andBadWindow errors.

To release a passive grab of a single key on an extension device, useXUngrabDeviceKey.

9

X I nput Extension Library X11, Release 6.4

int XUngrabDeviceKey(display, device, keycode, modifiers, modifier_device, ungrab_window)
Display *display;
XDevice *device;
int keycode;
unsigned intmodifiers;
XDevice *modifier_device;
Windowungrab_window;

display Specifies the connection to the X server.

device Specifies the desired device.

keycode Specifies the keycode of the key that is to be ungrabbed.You can pass either the
keycode orAnyKey .

modifiers Specifies the set of keymasks. Thismask is the bitwise inclusive OR of these
keymask bits:ShiftMask , LockMask , ControlMask , Mod1Mask,
Mod2Mask, Mod3Mask, Mod4Mask, and Mod5Mask.

You can also passAnyModifier , which is equivalent to issuing the ungrab key
request for all possible modifier combinations (including the combination of no
modifiers).

modifier_device Specifies the device whose modifiers are to be used. If NULL is speci-
fied, the core X keyboard is used as the modifier_device.

ungrab_window Specifies the ID of a window associated with the device specified above.

XUngrabDeviceKey is analogous to the coreXUngrabKey function. Itreleases an explicit pas-
sive grab for a key on an extension input device.

XUngrabDeviceKey can generateBadAlloc, BadDevice, BadMatch, BadValue, and Bad-
Window errors.

2.1.5. Passively Grabbing a Button

To establish a passive grab for a single button on an extension device, useXGrabDeviceButton.
The specified device must have previously been opened using theXOpenDevicefunction, or the
request will fail with aBadDeviceerror. If the specified device does not support input classBut-
tons, the request will fail with aBadMatch error.

10

X I nput Extension Library X11, Release 6.4

int XGrabDeviceButton(display, device, button, modifiers, modifier_device, grab_window,
owner_events, event_count, event_list, this_device_mode, other_device_mode)

Display *display;
XDevice *device;
unsigned intbutton;
unsigned intmodifiers;
XDevice *modifier_device;
Windowgrab_window;
Bool owner_events;
int event_count;
XEventClass *event_list;
int this_device_mode;
int other_device_mode;

display Specifies the connection to the X server.

device Specifies the desired device.

button Specifies the code of the button that is to be grabbed.You can pass either the
button orAnyButton .

modifiers Specifies the set of keymasks. Thismask is the bitwise inclusive OR of these
keymask bits:ShiftMask , LockMask , ControlMask , Mod1Mask,
Mod2Mask, Mod3Mask, Mod4Mask, and Mod5Mask.

You can also passAnyModifier , which is equivalent to issuing the grab request
for all possible modifier combinations (including the combination of no modi-
fiers).

modifier_device
Specifies the device whose modifiers are to be used. If NULL is specified, the
core X keyboard is used as the modifier_device.

grab_window Specifies the ID of a window associated with the device specified above.

owner_events Specifies a boolean value of eitherTr ue or False.

event_count Specifies the number of elements in the event_list array.

event_list Specifies a list of event classes that indicates which device events are to be
reported to the client.

this_device_mode
Controls further processing of events from this device. You can pass one of these
constants:GrabModeSync or GrabModeAsync.

other_device_mode
Controls further processing of events from all other devices. You can pass one of
these constants:GrabModeSync or GrabModeAsync.

XGrabDeviceButton is analogous to the coreXGrabButton function. Itcreates an explicit
passive grab for a button on an extension input device. Becausethe server does not track exten-
sion devices, no cursor is specified with this request.For the same reason, there is no confine_to
parameter. The device must have previously been opened using theXOpenDevicefunction.

The XGrabDeviceButton function establishes a passive grab on a device. Consequently, in the
future,

11

X I nput Extension Library X11, Release 6.4

• IF the device is not grabbed and the specified button is logically pressed when the specified
modifier keys logically are down (and no other buttons or modifier keys are down),

• AND EITHER the grab window is an ancestor of (or is) the focus window OR the grab
window is a descendent of the focus window and contains the pointer,

• AND a passive grab on the same device and button/key combination does not exist on any
ancestor of the grab window,

• THEN the device is actively grabbed, as forXGrabDevice, the last-grab time is set to the
time at which the button was pressed (as transmitted in theDeviceButtonPressev ent), and
the DeviceButtonPressev ent is reported.

The interpretation of the remaining arguments is as forXGrabDevice. The active grab is termi-
nated automatically when logical state of the device has all buttons released (independent of the
logical state of the modifier keys).

Note that the logical state of a device (as seen by means of the X protocol) may lag the physical
state if device event processing is frozen.

A modifier of AnyModifier is equivalent to issuing the request for all possible modifier combina-
tions (including the combination of no modifiers). It is not required that all modifiers specified
have currently assigned keycodes. Abutton of AnyButton is equivalent to issuing the request for
all possible buttons. Otherwise,it is not required that the specified button be assigned to a physi-
cal button.

XGrabDeviceButton generates aBadAccesserror if some other client has issued aXGrabDe-
viceButton with the same device and button combination on the same window. When using
AnyModifier or AnyButton , the request fails completely and the X server generates aBadAc-
cesserror and no grabs are established if there is a conflicting grab for any combination.

XGrabDeviceButton can generateBadAccess, BadClass, BadDevice, BadMatch, BadValue,
andBadWindow errors.

To release a passive grab of a button on an extension device, useXUngrabDeviceButton.

12

X I nput Extension Library X11, Release 6.4

int XUngrabDeviceButton(display, device, button, modifiers, modifier_device, ungrab_window)
Display *display;
XDevice *device;
unsigned intbutton;
unsigned intmodifiers;
XDevice *modifier_device;
Windowungrab_window;

display Specifies the connection to the X server.

device Specifies the desired device.

button Specifies the code of the button that is to be ungrabbed.You can pass either a
button orAnyButton .

modifiers Specifies the set of keymasks. Thismask is the bitwise inclusive OR of these
keymask bits:ShiftMask , LockMask , ControlMask , Mod1Mask,
Mod2Mask, Mod3Mask, Mod4Mask, and Mod5Mask.

You can also passAnyModifier , which is equivalent to issuing the ungrab key
request for all possible modifier combinations (including the combination of no
modifiers).

modifier_device
Specifies the device whose modifiers are to be used. If NULL is specified, the
core X keyboard is used as the modifier_device.

ungrab_window
Specifies the ID of a window associated with the device specified above.

XUngrabDeviceButton is analogous to the coreXUngrabButton function. Itreleases an
explicit passive grab for a button on an extension device. Thatdevice must have previously been
opened using theXOpenDevicefunction, or aBadDeviceerror will result.

A modifier of AnyModifier is equivalent to issuing the request for all possible modifier combina-
tions (including the combination of no modifiers).

XUngrabDeviceButton can generateBadAlloc, BadDevice, BadMatch, BadValue, and Bad-
Window errors.

2.1.6. Thawinga Device

To allow further events to be processed when a device has been frozen, useXAllowDe-
viceEvents.

13

X I nput Extension Library X11, Release 6.4

int XAllowDeviceEvents(display, device, event_mode, time)
Display *display;
XDevice *device;
int event_mode;
Timetime;

display Specifies the connection to the X server.

device Specifies the desired device.

event_mode Specifies the event mode.You can pass one of these constants:AsyncThisDe-
vice, SyncThisDevice, AsyncOtherDevices, ReplayThisDevice, AsyncAll , or
SyncAll.

time Specifies the time. This may be either a timestamp expressed in milliseconds, or
CurrentTime .

XAllowDeviceEvents releases some queued events if the client has caused a device to freeze. It
has no effect if the specified time is earlier than the last-grab time of the most recent active grab
for the client and device, or if the specified time is later than the current X server time. The fol-
lowing describes the processing that occurs depending on what constant you pass to the
ev ent_mode argument:

• AsyncThisDevice

If the specified device is frozen by the client, event processing for that continues as usual.
If the device is frozen multiple times by the client on behalf of multiple separate grabs,
AsyncThisDevicethaws for all. AsyncThisDevicehas no effect if the specified device is
not frozen by the client, but the device need not be grabbed by the client.

• SyncThisDevice

If the specified device is frozen and actively grabbed by the client, event processing for that
device continues normally until the next key or button event is reported to the client. At
this time, the specified device again appears to freeze. However, if the reported event
causes the grab to be released, the specified device does not freeze.SyncThisDevicehas
no effect if the specified device is not frozen by the client or is not grabbed by the client.

• ReplayThisDevice

If the specified device is actively grabbed by the client and is frozen as the result of an
ev ent having been sent to the client (either from the activation of aGrabDeviceButton or
from a previousAllowDeviceEventswith modeSyncThisDevice, but not from aGrab),
the grab is released and that event is completely reprocessed. This time, however, the
request ignores any passive grabs at or above (toward the root) the grab-window of the grab
just released. The request has no effect if the specified device is not grabbed by the client
or if it is not frozen as the result of an event.

• AsyncOtherDevices

If the remaining devices are frozen by the client, event processing for them continues as
usual. Ifthe other devices are frozen multiple times by the client on behalf of multiple
separate grabs,AsyncOtherDevices‘‘ thaws’’ f or all. AsyncOtherDeviceshas no effect if
the devices are not frozen by the client, but those devices need not be grabbed by the client.

• SyncAll

If all devices are frozen by the client, event processing (for all devices) continues normally
until the next button or key event is reported to the client for a grabbed device, at which

14

X I nput Extension Library X11, Release 6.4

time the devices again appear to freeze. However, if the reported event causes the grab to
be released, then the devices do not freeze (but if any device is still grabbed, then a subse-
quent event for it will still cause all devices to freeze).SyncAll has no effect unless all
devices are frozen by the client. If any device is frozen twice by the client on behalf of two
separate grabs,SyncAll "thaws" for both (but a subsequent freeze forSyncAll will freeze
each device only once).

• AsyncAll

If all devices are frozen by the client, event processing (for all devices) continues normally.
If any device is frozen multiple times by the client on behalf of multiple separate grabs,
AsyncAll ‘‘ thaws ’’for all. If any device is frozen twice by the client on behalf of two sep-
arate grabs,AsyncAll ‘‘ thaws’’ f or both. AsyncAll has no effect unless all devices are
frozen by the client.

AsyncThisDevice, SyncThisDevice, and ReplayThisDevicehave no effect on the processing of
ev ents from the remaining devices.AsyncOtherDeviceshas no effect on the processing of
ev ents from the specified device. Whenthe event_mode isSyncAll or AsyncAll , the device
parameter is ignored.

It is possible for several grabs of different devices (by the same or different clients) to be active
simultaneously. If a device is frozen on behalf of any grab, no event processing is performed for
the device. It is possible for a single device to be frozen because of several grabs. In this case,
the freeze must be released on behalf of each grab before events can again be processed.

XAllowDeviceEventscan generateBadDeviceandBadValue errors.

2.1.7. Controlling Device Focus

The current focus window for an extension input device can be determined using theXGetDe-
viceFocusfunction. Extensiondevices are focused using theXSetDeviceFocusfunction in the
same way that the keyboard is focused using the coreXSetInputFocus function, except that a
device ID is passed as a function parameter. One additional focus state,FollowKeyboard , is
provided for extension devices.

To get the current focus state, revert state, and focus time of an extension device, useXGetDe-
viceFocus.

15

X I nput Extension Library X11, Release 6.4

int XGetDeviceFocus(display, device, focus_return, re vert_to_return, focus_time_return)
Display *display;
XDevice *device;
Window * focus_return;
int *re vert_to_return;
Time *focus_time_return;

display Specifies the connection to the X server.

device Specifies the desired device.

focus_return Specifies the address of a variable into which the server can return the ID of the
window that contains the device focus or one of the constantsNone, Pointer-
Root, or FollowKeyboard .

re vert_to_return
Specifies the address of a variable into which the server can return the current
revert_to status for the device.

focus_time_return
Specifies the address of a variable into which the server can return the focus time
last set for the device.

XGetDeviceFocusreturns the focus state, the revert-to state, and the last-focus-time for an exten-
sion input device.

XGetDeviceFocuscan generateBadDeviceandBadMatch errors.

To set the focus of an extension device, useXSetDeviceFocus.

int XSetDeviceFocus(display, device, focus, re vert_to, time)
Display *display;
XDevice *device;
Windowfocus;
int re vert_to;
Timetime;

display Specifies the connection to the X server.

device Specifies the desired device.

focus Specifies the ID of the window to which the device’s focus should be set. This
may be a window ID, or PointerRoot , FollowKeyboard , or None.

re vert_to Specifies to which window the focus of the device should revert if the focus win-
dow becomes not viewable. Oneof the following constants may be passed:
RevertToParent , RevertToPointerRoot , RevertToNone, or RevertToFol-
lowKeyboard.

time Specifies the time.You can pass either a timestamp, expressed in milliseconds,
or CurrentTime .

XSetDeviceFocuschanges the focus for an extension input device and the last-focus-change-
time. It has no effect if the specified time is earlier than the last-focus-change-time or is later than
the current X server time. Otherwise, the last-focus-change-time is set to the specified time. This
function causes the X server to generateDeviceFocusInandDeviceFocusOutev ents.

16

X I nput Extension Library X11, Release 6.4

The action taken by the server when this function is requested depends on the value of the focus
argument:

• If the focus argument isNone, all input events from this device will be discarded until a
new focus window is set. Inthis case, the revert_to argument is ignored.

• If the focus argument is a window ID, it becomes the focus window of the device. If an
input event from the device would normally be reported to this window or to one of its infe-
riors, the event is reported normally. Otherwise, the event is reported relative to the focus
window.

• If the focus argument isPointerRoot , the focus window is dynamically taken to be the root
window of whatever screen the pointer is on at each input event. In this case, the revert_to
argument is ignored.

• If the focus argument isFollowKeyboard , the focus window is dynamically taken to be
the same as the focus of the X keyboard at each input event.

The specified focus window must be viewable at the timeXSetDeviceFocusis called. Other-
wise, it generates aBadMatch error. If the focus window later becomes not viewable, the X
server evaluates the revert_to argument to determine the new focus window.

• If the revert_to argument isRevertToParent , the focus reverts to the parent (or the closest
viewable ancestor), and the new rev ert_to value is taken to beRevertToNone.

• If the revert_to argument isRevertToPointerRoot , RevertToFollowKeyboard , or
RevertToNone, the focus reverts to that value.

When the focus reverts, the X server generatesDeviceFocusInandDeviceFocusOutev ents, but
the last-focus-change time is not affected.

XSetDeviceFocuscan generateBadDevice, BadMatch, BadValue, and BadWindow errors.

2.1.8. Controlling Device Feedback

To determine the current feedback settings of an extension input device, useXGetFeedbackCon-
trol .

XFeedbackState * XGetFeedbackControl(display, device, num_feedbacks_return)
Display *display;
XDevice *device;
int *num_feedbacks_return;

display Specifies the connection to the X server.

device Specifies the desired device.

num_feedbacks_return
Returns the number of feedbacks supported by the device.

XGetFeedbackControl returns a list ofFeedbackStatestructures that describe the feedbacks
supported by the specified device. Thereis anXFeedbackStatestructure for each class of feed-
back. Theseare of variable length, but the first three members are common to all.

17

X I nput Extension Library X11, Release 6.4

typedef struct {
XID class;
int length;
XID id;

} X FeedbackState;

The common members are as follows:

• The class member identifies the class of feedback. It may be compared to constants defined
in the file <X11/extensions/XI.h>. Currentlydefined feedback constants include:Kbd-
FeedbackClass, PtrFeedbackClass, StringFeedbackClass, IntegerFeedbackClass,
LedFeedbackClass, and BellFeedbackClass.

• The length member specifies the length of theFeedbackStatestructure and can be used by
clients to traverse the list.

• The id member uniquely identifies a feedback for a given device and class. This allows a
device to support more than one feedback of the same class. Other feedbacks of other
classes or devices may have the same ID.

Those feedbacks equivalent to those supported by the core keyboard are reported in classKbd-
Feedback using theXKbdFeedbackStatestructure, which is defined as follows:

typedef struct {
XID class;
int length;
XID id;
int click;
int percent;
int pitch;
int duration;
int led_mask;
int global_auto_repeat;
char auto_repeats[32];

} X KbdFeedbackState;

The additional members of theXKbdFeedbackStatestructure report the current state of the
feedback:

• The click member specifies the key-click volume and has a value in the range 0 (off) to 100
(loud).

• The percent member specifies the bell volume and has a value in the range 0 (off) to 100
(loud).

• The pitch member specifies the bell pitch in Hz. The range of the value is implementation-
dependent.

• The duration member specifies the duration in milliseconds of the bell.

• The led_mask member is a bit mask that describes the current state of up to 32 LEDs. A
value of 1 in a bit indicates that the corresponding LED is on.

18

X I nput Extension Library X11, Release 6.4

• The global_auto_repeat member has a value ofAutoRepeatModeOnor AutoRepeat-
ModeOff .

• The auto_repeats member is a bit vector. Each bit set to 1 indicates that auto-repeat is
enabled for the corresponding key. The vector is represented as 32 bytes. Byte N (from 0)
contains the bits for keys 8N to 8N + 7, with the least significant bit in the byte representing
key 8N.

Those feedbacks equivalent to those supported by the core pointer are reported in classPtrFeed-
back using theXPtrFeedbackStatestructure, which is defined as follows:

typedef struct {
XID class;
int length;
XID id;
int accelNum;
int accelDenom;
int threshold;

} X PtrFeedbackState;

The additional members of theXPtrFeedbackStatestructure report the current state of the feed-
back:

• The accelNum member returns the numerator for the acceleration multiplier.

• The accelDenom member returns the denominator for the acceleration multiplier.

• The accelDenom member returns the threshold for the acceleration.

Integer feedbacks are those capable of displaying integer numbers and reported via theXInte-
gerFeedbackStatestructure. Theminimum and maximum values that they can display are
reported.

typedef struct {
XID class;
int length;
XID id;
int resolution;
int minVal;
int maxVal;

} X IntegerFeedbackState;

The additional members of theXIntegerFeedbackStatestructure report the capabilities of the
feedback:

• The resolution member specifies the number of digits that the feedback can display.

• The minVal member specifies the minimum value that the feedback can display.

• The maxVal specifies the maximum value that the feedback can display.

19

X I nput Extension Library X11, Release 6.4

String feedbacks are those that can display character information and are reported via the
XStringFeedbackStatestructure. Clientsset these feedbacks by passing a list ofKeySyms to
be displayed. TheXGetFeedbackControl function returns the set of key symbols that the feed-
back can display, as well as the maximum number of symbols that can be displayed. The
XStringFeedbackStatestructure is defined as follows:

typedef struct {
XID class;
int length;
XID id;
int max_symbols;
int num_syms_supported;
Ke ySym *syms_supported;

} X StringFeedbackState;

The additional members of theXStringFeedbackStatestructure report the capabilities of the
feedback:

• The max_symbols member specifies the maximum number of symbols that can be dis-
played.

• The syms_supported member is a pointer to the list of supported symbols.

• The num_syms_supported member specifies the length of the list of supported symbols.

Bell feedbacks are those that can generate a sound and are reported via theXBellFeedbackState
structure. Someimplementations may support a bell as part of aKbdFeedback feedback. Class
BellFeedbackis provided for implementations that do not choose to do so and for devices that
support multiple feedbacks that can produce sound. The meaning of the members is the same as
that of the corresponding fields in theXKbdFeedbackStatestructure.

typedef struct {
XID class;
int length;
XID id;
int percent;
int pitch;
int duration;

} X BellFeedbackState;

Led feedbacks are those that can generate a light and are reported via theXLedFeedbackState
structure. Upto 32 lights per feedback are supported. Each bit in led_mask corresponds to one
supported light, and the corresponding bit in led_values indicates whether that light is currently
on (1) or off (0). Someimplementations may support leds as part of aKbdFeedback feedback.
ClassLedFeedbackis provided for implementations that do not choose to do so and for devices
that support multiple led feedbacks.

20

X I nput Extension Library X11, Release 6.4

typedef struct {
XID class;
int length;
XID id;
Mask led_values;
Mask led_mask;

} X LedFeedbackState;

XGetFeedbackControl can generateBadDeviceandBadMatch errors.

To free the information returned by theXGetFeedbackControl function, useXFreeFeedback-
List .

void XFreeFeedbackList(list)
XFeedbackState *list ;

list Specifies the pointer to theXFeedbackStatestructure returned by a previous call
to XGetFeedbackControl.

XFreeFeedbackList frees the list of feedback control information.

To change the settings of a feedback on an extension device, useXChangeFeedbackControl.
This function modifies the current control values of the specified feedback using information
passed in the appropriateXFeedbackControl structure for the feedback. Which values are mod-
ified depends on the valuemask passed.

int XChangeFeedbackControl(display, device, valuemask, value)
Display *display;
XDevice *device;
unsigned longvaluemask;
XFeedbackControl *value;

display Specifies the connection to the X server.

device Specifies the desired device.

valuemask Specifies one value for each bit in the mask (least to most significant bit). The
values are associated with the feedbacks for the specified device.

value Specifies a pointer to theXFeedbackControl structure.

XChangeFeedbackControlcontrols the device characteristics described by theXFeedback-
Control structure. Thereis anXFeedbackControl structure for each class of feedback. These
are of variable length, but the first three members are common to all and are as follows:

21

X I nput Extension Library X11, Release 6.4

typedef struct {
XID class;
int length;
XID id;

} X FeedbackControl;

Feedback classKbdFeedback controls feedbacks equivalent to those provided by the core
keyboard using theKbdFeedbackControl structure, which is defined as follows:.

typedef struct {
XID class;
int length;
XID id;
int click;
int percent;
int pitch;
int duration;
int led_mask;
int led_value;
int key;
int auto_repeat_mode;

} X KbdFeedbackControl;

This class controls the device characteristics described by theXKbdFeedbackControl structure.
These include the key_click_percent, global_auto_repeat, and individual key auto-repeat. Valid
modes areAutoRepeatModeOn, AutoRepeatModeOff, and AutoRepeatModeDefault.

Valid masks are as follows:

#define DvKeyClickPercent (1L << 0)
#define DvPercent (1L << 1)
#define DvPitch (1L << 2)
#define DvDuration (1L << 3)
#define DvLed (1L << 4)
#define DvLedMode (1L << 5)
#define DvKey (1L << 6)
#define DvAutoRepeatMode (1L << 7)

Feedback classPtrFeedback controls feedbacks equivalent to those provided by the core pointer
using thePtrFeedbackControl structure, which is defined as follows:

22

X I nput Extension Library X11, Release 6.4

typedef struct {
XID class;
int length;
XID id;
int accelNum;
int accelDenom;
int threshold;

} X PtrFeedbackControl;

Which values are modified depends on the valuemask passed.

Valid masks are as follows:

#define DvAccelnum (1L << 0)
#define DvAccelDenom (1L << 1)
#define DvThreshold (1L << 2)

The acceleration, expressed as a fraction, is a multiplier for movement. For example, specifying
3/1 means that the device moves three times as fast as normal. The fraction may be rounded arbi-
trarily by the X server. Acceleration takes effect only if the device moves more than threshold
pixels at once and applies only to the amount beyond the value in the threshold argument. Setting
a value to -1 restores the default. Thevalues of the accelNumerator and threshold fields must be
nonzero for the pointer values to be set. Otherwise, the parameters will be unchanged. Negative
values generate aBadValue error, as does a zero value for the accelDenominator field.

This request fails with aBadMatch error if the specified device is not currently reporting relative
motion. If a device that is capable of reporting both relative and absolute motion has its mode
changed fromRelative to Absolute by anXSetDeviceModerequest, valuator control values
will be ignored by the server while the device is in that mode.

Feedback classIntegerFeedbackcontrols integer feedbacks displayed on input devices and are
reported via theIntegerFeedbackControl structure, which is defined as follows:

typedef struct {
XID class;
int length;
XID id;
int int_to_display;

} X IntegerFeedbackControl;

Valid masks are as follows:

#define DvInteger (1L << 0)

Feedback classStringFeedbackcontrols string feedbacks displayed on input devices and
reported via theStringFeedbackControl structure, which is defined as follows:

23

X I nput Extension Library X11, Release 6.4

typedef struct {
XID class;
int length;
XID id;
int num_keysyms;
Ke ySym *syms_to_display;

} X StringFeedbackControl;

Valid masks are as follows:

#define DvString (1L << 0)

Feedback classBellFeedbackcontrols a bell on an input device and is reported via theBellFeed-
backControl structure, which is defined as follows:

typedef struct {
XID class;
int length;
XID id;
int percent;
int pitch;
int duration;

} X BellFeedbackControl;

Valid masks are as follows:

#define DvPercent (1L << 1)
#define DvPitch (1L << 2)
#define DvDuration (1L << 3)

Feedback classLedFeedbackcontrols lights on an input device and are reported via theLed-
FeedbackControl structure, which is defined as follows:

typedef struct {
XID class;
int length;
XID id;
int led_mask;
int led_values;

} X LedFeedbackControl;

Valid masks are as follows:

24

X I nput Extension Library X11, Release 6.4

#define DvLed (1L << 4)
#define DvLedMode (1L << 5)

XChangeFeedbackControlcan generateBadDevice, BadFeedBack, BadMatch, and Bad-
Value errors.

2.1.9. Ringinga Bell on an Input Device

To ring a bell on an extension input device, useXDeviceBell.

int XDeviceBell(display, device, feedbackclass, feedbackid, percent)
Display *display;
XDevice *device;
XID feedbackclass, feedbackid;
int percent;

display Specifies the connection to the X server.

device Specifies the desired device.

feedbackclass Specifies the feedbackclass.Valid values areKbdFeedbackClassandBellFeed-
backClass.

feedbackid Specifies the ID of the feedback that has the bell.

percent Specifies the volume in the range -100 (quiet) to 100 percent (loud).

XDeviceBell is analogous to the coreXBell function. Itrings the specified bell on the specified
input device feedback, using the specified volume. Thespecified volume is relative to the base
volume for the feedback. If the value for the percent argument is not in the range -100 to 100
inclusive, a BadValue error results. The volume at which the bell rings when the percent argu-
ment is nonnegative is:

base - [(base * percent) / 100] + percent

The volume at which the bell rings when the percent argument is negative is:

base + [(base * percent) / 100]

To change the base volume of the bell, useXChangeFeedbackControl.

XDeviceBell can generateBadDeviceandBadValue errors.

2.1.10. Controlling Device Encoding

To get the key mapping of an extension device that supports input classKeys, useXGetDe-
viceKeyMapping.

25

X I nput Extension Library X11, Release 6.4

Ke ySym * XGetDeviceKeyMapping(display, device, first_keycode_wanted, keycode_count,
keysyms_per_keycode_return)

Display *display;
XDevice *device;
Ke yCodefirst_keycode_wanted;
int keycode_count;
int *keysyms_per_keycode_return;

display Specifies the connection to the X server.

device Specifies the desired device.

first_keycode_wanted
Specifies the first keycode that is to be returned.

keycode_countSpecifies the number of keycodes that are to be returned.

keysyms_per_keycode_return
Returns the number of keysyms per keycode.

XGetDeviceKeyMapping is analogous to the coreXGetKeyboardMapping function. It
returns the symbols for the specified number of keycodes for the specified extension device.

XGetDeviceKeyMapping returns the symbols for the specified number of keycodes for the spec-
ified extension device, starting with the specified keycode. Thefirst_keycode_wanted must be
greater than or equal to min-keycode as returned by theXListInputDevices request (else aBad-
Value error results). The following value:

first_keycode_wanted + keycode_count − 1

must be less than or equal to max-keycode as returned by theXListInputDevices request (else a
BadValue error results).

The number of elements in the keysyms list is as follows:

keycode_count * keysyms_per_keycode_return

And KEYSYM number N (counting from zero) for keycode K has an index (counting from zero),
in keysyms, of the following:

(K − first_keycode_wanted) * keysyms_per_keycode_return + N

The keysyms_per_keycode_return value is chosen arbitrarily by the server to be large enough to
report all requested symbols.A special KEYSYM value ofNoSymbol is used to fill in unused
elements for individual keycodes.

To free the data returned by this function, useXFree.

If the specified device has not first been opened by this client viaXOpenDevice, this request will
fail with a BadDeviceerror. If that device does not support input classKeys, this request will
fail with a BadMatch error.

XGetDeviceKeyMapping can generateBadDevice, BadMatch, and BadValue errors.

To change the keyboard mapping of an extension device that supports input classKeys, use
XChangeDeviceKeyMapping.

26

X I nput Extension Library X11, Release 6.4

int
XChangeDeviceKeyMapping(display, device, first_keycode, keysyms_per_keycode, keysyms,

num_codes)
Display *display;
XDevice *device;
int first_keycode;
int keysyms_per_keycode;
Ke ySym *keysyms;
int num_codes;

display Specifies the connection to the X server.

device Specifies the desired device.

first_keycode Specifies the first keycode that is to be changed.

keysyms_per_keycode
Specifies the keysyms that are to be used.

keysyms Specifies a pointer to an array of keysyms.

num_codes Specifies the number of keycodes that are to be changed.

XChangeDeviceKeyMappingis analogous to the coreXChangeKeyboardMapping function.
It defines the symbols for the specified number of keycodes for the specified extension keyboard
device.

If the specified device has not first been opened by this client viaXOpenDevice, this request will
fail with a BadDeviceerror. If the specified device does not support input classKeys, this
request will fail with aBadMatch error.

The number of elements in the keysyms list must be a multiple of keysyms_per_keycode. Other-
wise,XChangeDeviceKeyMappinggenerates aBadLength error. The specified first_keycode
must be greater than or equal to the min_keycode value returned by theListInputDevices
request, or this request will fail with aBadValue error. In addition, if the following expression is
not less than the max_keycode value returned by theListInputDevices request, the request will
fail with a BadValue error:

first_keycode + (num_codes / keysyms_per_keycode) - 1

XChangeDeviceKeyMappingcan generateBadAlloc, BadDevice, BadMatch, and BadValue
errors.

To obtain the keycodes that are used as modifiers on an extension device that supports input class
Keys, useXGetDeviceModifierMapping.

XModifierKeymap * XGetDeviceModifierMapping(display, device)
Display *display;
XDevice *device;

display Specifies the connection to the X server.

device Specifies the desired device.

XGetDeviceModifierMapping is analogous to the coreXGetModifierMapping function. The
XGetDeviceModifierMapping function returns a newly createdXModifierKeymap structure

27

X I nput Extension Library X11, Release 6.4

that contains the keys being used as modifiers for the specified device. Thestructure should be
freed after use withXFreeModifierMapping . If only zero values appear in the set for any modi-
fier, that modifier is disabled.

XGetDeviceModifierMapping can generateBadDeviceandBadMatch errors.

To set which keycodes are to be used as modifiers for an extension device, useXSetDeviceModi-
fierMapping .

int XSetDeviceModifierMapping(display, device, modmap)
Display *display;
XDevice *device;
XModifierKeymap *modmap;

display Specifies the connection to the X server.

device Specifies the desired device.

modmap Specifies a pointer to theXModifierKeymap structure.

XSetDeviceModifierMapping is analogous to the coreXSetModifierMapping function. The
XSetDeviceModifierMapping function specifies the keycodes of the keys, if any, that are to be
used as modifiers.A zero value means that no key should be used. No two arguments can have
the same nonzero keycode value. Otherwise,XSetDeviceModifierMapping generates aBad-
Value error. There are eight modifiers, and the modifiermap member of theXModifierKeymap
structure contains eight sets of max_keypermod keycodes, one for each modifier in the order
Shift , Lock , Control , Mod1, Mod2, Mod3, Mod4, and Mod5. Only nonzero keycodes have
meaning in each set, and zero keycodes are ignored. In addition, all of the nonzero keycodes
must be in the range specified by min_keycode and max_keycode reported by theXListInputDe-
vices function. Otherwise,XSetModifierMapping generates aBadValue error. No keycode
may appear twice in the entire map. Otherwise, it generates aBadValue error.

A X server can impose restrictions on how modifiers can be changed, for example, if certain keys
do not generate up transitions in hardware or if multiple modifier keys are not supported. If some
such restriction is violated, the status reply isMappingFailed, and none of the modifiers are
changed. Ifthe new keycodes specified for a modifier differ from those currently defined and any
(current or new) keys for that modifier are in the logically down state, the status reply isMap-
pingBusy, and none of the modifiers are changed.XSetModifierMapping generates a
DeviceMappingNotify ev ent on aMappingSuccessstatus.

XSetDeviceModifierMapping can generateBadAlloc, BadDevice, BadMatch, and BadValue
errors.

2.1.11. Controlling Button Mapping

To set the mapping of the buttons on an extension device, useXSetDeviceButtonMapping.

28

X I nput Extension Library X11, Release 6.4

int XSetDeviceButtonMapping(display, device, map, nmap)
Display *display;
XDevice *device;
unsigned charmap[];
int nmap;

display Specifies the connection to the X server.

device Specifies the desired device.

map Specifies the mapping list.

nmap Specifies the number of items in the mapping list.

XSetDeviceButtonMappingsets the mapping of the buttons on an extension device. If it suc-
ceeds, the X server generates aDeviceMappingNotify ev ent, andXSetDeviceButtonMapping
returnsMappingSuccess. Elements of the list are indexed starting from one. The length of the
list must be the same asXGetDeviceButtonMapping would return, or aBadValue error results.
The index is a button number, and the element of the list defines the effective number. A zero ele-
ment disables a button, and elements are not restricted in value by the number of physical buttons.
However, no two elements can have the same nonzero value, or aBadValue error results. If any
of the buttons to be altered are logically in the down state,XSetDeviceButtonMapping returns
MappingBusy, and the mapping is not changed.

XSetDeviceButtonMappingcan generateBadDevice, BadMatch, and BadValue errors.

To get the button mapping, useXGetDeviceButtonMapping.

int XGetDeviceButtonMapping(display, device, map_return, nmap)
Display *display;
XDevice *device;
unsigned charmap_return[];
int nmap;

display Specifies the connection to the X server.

device Specifies the desired device.

map_return Specifies the mapping list.

nmap Specifies the number of items in the mapping list.

XGetDeviceButtonMapping returns the current mapping of the specified extension device. Ele-
ments of the list are indexed starting from one.XGetDeviceButtonMapping returns the number
of physical buttons actually on the pointer. The nominal mapping for the buttons is the identity
mapping: map[i]=i. The nmap argument specifies the length of the array where the button map-
ping is returned, and only the first nmap elements are returned in map_return.

XGetDeviceButtonMapping can generateBadDeviceandBadMatch errors.

2.1.12. Obtainingthe State of a Device

To obtain information that describes the state of the keys, buttons, and valuators of an extension
device, useXQueryDeviceState.

29

X I nput Extension Library X11, Release 6.4

XDeviceState * XQueryDeviceState(display, device)
Display *display;
XDevice *device;

display Specifies the connection to the X server.

device Specifies the desired device.

XQueryDeviceStatereturns a pointer to anXDeviceStatestructure, which points to a list of
structures that describe the state of the keys, buttons, and valuators on the device:

typedef struct {
XID device_id;
int num_classes;
XInputClass *data;

} X DeviceState;

The structures are of variable length, but the first two members are common to all and are as fol-
lows:

typedef struct {
unsigned char class;
unsigned char length;

} X InputClass;

The class member contains a class identifier. This identifier can be compared with constants
defined in the file <X11/extensions/XI.h>. Currentlydefined constants are:KeyClass, Button-
Class, and ValuatorClass.

The length member contains the length of the structure and can be used by clients to traverse the
list.

The XValuatorState structure describes the current state of the valuators on the device. The
num_valuators member contains the number of valuators on the device. Themode member is a
mask whose bits report the data mode and other state information for the device. Thefollowing
bits are currently defined:

DeviceMode 1<< 0 Relative = 0, Absolute = 1
ProximityState 1<< 1 InProximity = 0, OutOfProximity = 1

The valuators member contains a pointer to an array of integers that describe the current value of
the valuators. Ifthe mode isRelative, these values are undefined.

30

X I nput Extension Library X11, Release 6.4

typedef struct {
unsigned char class;
unsigned char length;
unsigned char num_valuators;
unsigned char mode;
int *valuators;

} X ValuatorState;

The XKeyState structure describes the current state of the keys on the device. ByteN (from 0)
contains the bits for key 8N to 8N + 7 with the least significant bit in the byte representing key
8N.

typedef struct {
unsigned char class;
unsigned char length;
short num_keys;
char keys[32];

} X Ke yState;

The XButtonState structure describes the current state of the buttons on the device. ByteN
(from 0) contains the bits for button 8N to 8N + 7 with the least significant bit in the byte repre-
senting button 8N.

typedef struct {
unsigned char class;
unsigned char length;
short num_buttons;
char buttons[32];

} X ButtonState;

XQueryDeviceStatecan generateBadDeviceerrors.

To free the data returned by this function, useXFreeDeviceState.

void XFreeDeviceState(state)
XDeviceState *state;

state Specifies the pointer to theXDeviceStatedata returned by a previous call to
XQueryDeviceState.

XFreeDeviceStatefrees the device state data.

2.2. Events

The input extension creates input events analogous to the core input events. Theseextension
input events are generated by manipulating one of the extension input devices. Theremainder of

31

X I nput Extension Library X11, Release 6.4

this section discusses the following X Input Extension event topics:

• Event types

• Event classes

• Event structures

2.2.1. Event Types

Event types are integer numbers that a client can use to determine what kind of event it has
received. Theclient compares the type field of the event structure with known event types to
make this determination.

The core input event types are constants and are defined in the header file <X11/X.h>. Extension
ev ent types are not constants. Instead, they are dynamically allocated by the extension’s request
to the X server when the extension is initialized. Because of this, extension event types must be
obtained by the client from the server.

The client program determines the event type for an extension event by using the information
returned by theXOpenDevicerequest. Thistype can then be used for comparison with the type
field of events received by the client.

Extension events propagate up the window hierarchy in the same manner as core events. If a win-
dow is not interested in an extension event, it usually propagates to the closest ancestor that is
interested, unless the dont_propagate list prohibits it. Grabs of extension devices may alter the set
of windows that receive a particular extension event.

The following table lists the event category and its associated event type or types.

Event Category Event Type

Device key DeviceKeyPress
DeviceKeyRelease

Device motion DeviceButtonPress
DeviceButtonRelease
DeviceMotionNotify

Device input focus DeviceFocusIn
DeviceFocusOut

Device state notification DeviceStateNotify

Device proximity ProximityIn
ProximityOut

Device mapping DeviceMappingNotify

Device change ChangeDeviceNotify

2.2.2. Event Classes

Event classes are integer numbers that are used in the same way as the core event masks. They
are used by a client program to indicate to the server which events that client program wishes to
receive.

The core input event masks are constants and are defined in the header file <X11/X.h>. Exten-
sion event classes are not constants. Instead, they are dynamically allocated by the extension’s
request to the X server when the extension is initialized. Because of this, extension event classes
must be obtained by the client from the server.

32

X I nput Extension Library X11, Release 6.4

The event class for an extension event and device is obtained from information returned by the
XOpenDevicefunction. Thisclass can then be used in anXSelectExtensionEventrequest to
ask that events of that type from that device be sent to the client program.

For DeviceButtonPressev ents, the client may specify whether or not an implicit passive grab
should be done when the button is pressed. If the client wants to guarantee that it will receive a
DeviceButtonReleaseev ent for eachDeviceButtonPressev ent it receives, it should specify the
DeviceButtonPressGrabclass in addition to theDeviceButtonPressclass. Thisrestricts the
client in that only one client at a time may requestDeviceButtonPressev ents from the same
device and window if any client specifies this class.

If any client has specified theDeviceButtonPressGrabclass, any requests by any other client
that specify the same device and window and specify eitherDeviceButtonPressor DeviceBut-
tonPressGrabwill cause anAccesserror to be generated.

If only the DeviceButtonPressclass is specified, no implicit passive grab will be done when a
button is pressed on the device. Multipleclients may use this class to specify the same device and
window combination.

The client may also selectDeviceMotion ev ents only when a button is down. It does this by
specifying the event classesDeviceButton1Motion throughDeviceButton5Motion. An input
device will support only as many button motion classes as it has buttons.

2.2.3. Event Structures

Each extension event type has a corresponding structure declared in <X11/extensions/XIn-
put.h>. All ev ent structures have the following common members:

type Setto the event type number that uniquely identifies it.For example, when the X
server reports aDeviceKeyPressev ent to a client application, it sends anXDe-
viceKeyPressEventstructure.

serial Setfrom the serial number reported in the protocol but expanded from the 16-bit
least significant bits to a full 32-bit value.

send_event Setto Tr ue if the event came from anXSendEvent request.

display Setto a pointer to a structure that defines the display on which the event was
read.

Extension event structures report the current position of the X pointer. In addition, if the device
reports motion data and is reporting absolute data, the current value of any valuators the device
contains is also reported.

2.2.3.1. Device Key Events

Ke y ev ents from extension devices contain all the information that is contained in a key event
from the X keyboard. Inaddition, they contain a device ID and report the current value of any
valuators on the device, if that device is reporting absolute data. If data for more than six valua-
tors is being reported, more than one key event will be sent. The axes_count member contains the
number of axes that are being reported. The server sends as many of these events as are needed to
report the device data. Each event contains the total number of axes reported in the axes_count
member and the first axis reported in the current event in the first_axis member. If the device sup-
ports input classValuators, but is not reporting absolute mode data, the axes_count member
contains zero (0).

The location reported in the x, y and x_root, y_root members is the location of the core X pointer.

33

X I nput Extension Library X11, Release 6.4

The XDeviceKeyEventstructure is defined as follows:

typedef struct {
int type; /* of event */
unsigned long serial; /* # of last request processed */
Bool send_event; /* true if from SendEvent request */
Display *display; /* Display the event was read from */
Window window; /* "event" window reported relative to */
XID deviceid;
Window root; /* root window event occurred on */
Window subwindow; /* child window */
Time time; /* milliseconds */
int x, y; /* x, y coordinates in event window */
int x_root; /* coordinates relative to root */
int y_root; /* coordinates relative to root */
unsigned int state; /* key or button mask */
unsigned int keycode; /*detail */
Bool same_screen; /* same screen flag */
unsigned int device_state; /*device key or button mask */
unsigned char axes_count;
unsigned char first_axis;
int axis_data[6];

} X DeviceKeyEvent;

typedef XDeviceKeyEvent XDeviceKeyPressedEvent;
typedef XDeviceKeyEvent XDeviceKeyReleasedEvent;

2.2.3.2. Device Button Events

Button events from extension devices contain all the information that is contained in a button
ev ent from the X pointer. In addition, they contain a device ID and report the current value of any
valuators on the device if that device is reporting absolute data. If data for more than six valua-
tors is being reported, more than one button event may be sent. The axes_count member contains
the number of axes that are being reported. The server sends as many of these events as are
needed to report the device data. Each event contains the total number of axes reported in the
axes_count member and the first axis reported in the current event in the first_axis member. If the
device supports input classValuators, but is not reporting absolute mode data, the axes_count
member contains zero (0).

The location reported in the x, y and x_root, y_root members is the location of the core X pointer.

34

X I nput Extension Library X11, Release 6.4

typedef struct {
int type; /* of event */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if from a SendEvent request */
Display *display; /* Display the event was read from */
Window window; /* "event" window reported relative to */
XID deviceid;
Window root; /* root window that the event occurred on */
Window subwindow; /* child window */
Time time; /* milliseconds */
int x, y; /* x, y coordinates in event window */
int x_root; /* coordinates relative to root */
int y_root; /* coordinates relative to root */
unsigned int state; /* key or button mask */
unsigned int button; /* detail */
Bool same_screen; /* same screen flag */
unsigned int device_state; /*device key or button mask */
unsigned char axes_count;
unsigned char first_axis;
int axis_data[6];

} X DeviceButtonEvent;

typedef XDeviceButtonEvent XDeviceButtonPressedEvent;
typedef XDeviceButtonEvent XDeviceButtonReleasedEvent;

2.2.3.3. Device Motion Events

Motion events from extension devices contain all the information that is contained in a motion
ev ent from the X pointer. In addition, they contain a device ID and report the current value of any
valuators on the device.

The location reported in the x, y and x_root, y_root members is the location of the core X pointer,
and so is 2-dimensional.

Extension motion devices may report motion data for a variable number of axes. Theaxes_count
member contains the number of axes that are being reported. The server sends as many of these
ev ents as are needed to report the device data. Each event contains the total number of axes
reported in the axes_count member and the first axis reported in the current event in the first_axis
member.

35

X I nput Extension Library X11, Release 6.4

typedef struct {
int type; /* of event */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if from a SendEvent request */
Display *display; /* Display the event was read from */
Window window; /* "event" window reported relative to */
XID deviceid;
Window root; /* root window that the event occurred on */
Window subwindow; /* child window */
Time time; /* milliseconds */
int x, y; /* x, y coordinates in event window */
int x_root; /* coordinates relative to root */
int y_root; /* coordinates relative to root */
unsigned int state; /* key or button mask */
char is_hint; /* detail */
Bool same_screen; /* same screen flag */
unsigned int device_state; /*device key or button mask */
unsigned char axes_count;
unsigned char first_axis;
int axis_data[6];

} X DeviceMotionEvent;

2.2.3.4. Device Focus Events

These events are equivalent to the core focus events. They contain the same information, with the
addition of a device ID to identify which device has had a focus change, and a timestamp.

DeviceFocusInandDeviceFocusOutev ents are generated for focus changes of extension
devices in the same manner as core focus events are generated.

36

X I nput Extension Library X11, Release 6.4

typedef struct {
int type; /* of event */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window window; /* "event" window it is reported relative to */
XID deviceid;
int mode; /* NotifyNormal, NotifyGrab, NotifyUngrab */
int detail;

/*
* NotifyAncestor, NotifyVirtual, NotifyInferior,
* NotifyNonLinear,NotifyNonLinearVirtual, NotifyPointer,
* NotifyPointerRoot, NotifyDetailNone
*/

Time time;
} X DeviceFocusChangeEvent;

typedef XDeviceFocusChangeEvent XDeviceFocusInEvent;
typedef XDeviceFocusChangeEvent XDeviceFocusOutEvent;

2.2.3.5. Device StateNotify Event

This event is analogous to the core keymap event but reports the current state of the device for
each input class that it supports. It is generated after every DeviceFocusInev ent andEnter-
Notify ev ent and is delivered to clients who have selectedXDeviceStateNotifyev ents.

If the device supports input classValuators, the mode member in theXValuatorStatus structure
is a bitmask that reports the device mode, proximity state, and other state information. The fol-
lowing bits are currently defined:

0x01 Relative = 0, Absolute = 1
0x02 InProximity= 0, OutOfProximity = 1

If the device supports more valuators than can be reported in a singleXEvent, multiple XDe-
viceStateNotify ev ents will be generated.

37

X I nput Extension Library X11, Release 6.4

typedef struct {
unsigned char class;
unsigned char length;

} X InputClass;

typedef struct {
int type;
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window window;
XID deviceid;
Time time;
int num_classes;
char data[64];

} X DeviceStateNotifyEvent;

typedef struct {
unsigned char class;
unsigned char length;
unsigned char num_valuators;
unsigned char mode;
int valuators[6];

} X ValuatorStatus;

typedef struct {
unsigned char class;
unsigned char length;
short num_keys;
char keys[32];

} X Ke yStatus;

typedef struct {
unsigned char class;
unsigned char length;
short num_buttons;
char buttons[32];

} X ButtonStatus;

2.2.3.6. Device Mapping Event

This event is equivalent to the coreMappingNotify ev ent. It notifies client programs when the
mapping of keys, modifiers, or buttons on an extension device has changed.

38

X I nput Extension Library X11, Release 6.4

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
XID deviceid;
Time time;
int request;
int first_keycode;
int count;

} X DeviceMappingEvent;

2.2.3.7. ChangeDeviceNotify Event

This event has no equivalent in the core protocol. It notifies client programs when one of the core
devices has been changed.

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
XID deviceid;
Time time;
int request;

} X ChangeDeviceNotifyEvent;

2.2.3.8. Proximity Events

These events have no equivalent in the core protocol. Some input devices such as graphics tablets
or touchscreens may send these events to indicate that a stylus has moved into or out of contact
with a positional sensing surface.

The event contains the current value of any valuators on the device if that device is reporting
absolute data. If data for more than six valuators is being reported, more than one proximity
ev ent may be sent. The axes_count member contains the number of axes that are being reported.
The server sends as many of these events as are needed to report the device data. Each event con-
tains the total number of axes reported in the axes_count member and the first axis reported in the
current event in the first_axis member. If the device supports input classValuators, but is not
reporting absolute mode data, the axes_count member contains zero (0).

39

X I nput Extension Library X11, Release 6.4

typedef struct {
int type; /* ProximityIn or ProximityOut */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window window;
XID deviceid;
Window root;
Window subwindow;
Time time;
int x, y;
int x_root, y_root;
unsigned int state;
Bool same_screen;
unsigned int device_state; /*device key or button mask */
unsigned char axes_count;
unsigned char first_axis;
int axis_data[6];

} X ProximityNotifyEvent;

typedef XProximityNotifyEvent XProximityInEvent;
typedef XProximityNotifyEvent XProximityOutEvent;

2.3. Event Handling Functions

This section discusses the X Input Extension event handling functions that allow you to:

• Determine the extension version

• List the available devices

• Enable and disable extension devices

• Change the mode of a device

• Initialize valuators on an input device

• Get input device controls

• Change input device controls

• Select extension device events

• Determine selected device events

• Control event propogation

• Send an event

• Get motion history

2.3.1. Determiningthe Extension Version

40

X I nput Extension Library X11, Release 6.4

XExtensionVersion * XGetExtensionVersion(display, name)
Display *display;
char *name;

display Specifies the connection to the X server.

name Specifies the name of the desired extension.

XGetExtensionVersionallows a client to determine whether a server supports the desired ver-
sion of the input extension.

The XExtensionVersion structure returns information about the version of the extension sup-
ported by the server and is defined as follows:

typedef struct {
Bool present;
short major_version;
short minor_version;

} X ExtensionVersion;

The major and minor versions can be compared with constants defined in the header file
<X11/extensions/XI.h>. Eachversion is a superset of the previous versions.

You should useXFree to free the data returned by this function.

2.3.2. ListingAv ailable Devices

A client program that wishes to access a specific device must first determine whether that device
is connected to the X server. This is done through theXListInputDevices function, which will
return a list of all devices that can be opened by the X server. The client program can use one of
the names defined in the <X11/extensions/XI.h> header file in anXInternAtom request to
determine the device type of the desired device. Thistype can then be compared with the device
types returned by theXListInputDevices request.

XDeviceInfo * XListInputDevices(display, ndevices)
Display *display;
int *ndevices; /* RETURN */

display Specifies the connection to the X server.

ndevices Specifies the address of a variable into which the server can return the number of
input devices available to the X server.

XListInputDevices allows a client to determine which devices are available for X input and
information about those devices. Anarray ofXDeviceInfo structures is returned, with one ele-
ment in the array for each device. Thenumber of devices is returned in the ndevices argument.

The X pointer device and X keyboard device are reported, as well as all available extension input
devices. Theuse member of theXDeviceInfo structure specifies the current use of the device. If
the value of this member isIsXPointer , the device is the X pointer device. If the value is
IsXKeyboard , the device is the X keyboard device. If the value isIsXExtensionDevice, the
device is available for use as an extension input device.

41

X I nput Extension Library X11, Release 6.4

EachXDeviceInfo entry contains a pointer to a list of structures that describe the characteristics
of each class of input supported by that device. Thenum_classes member contains the number of
entries in that list.

If the device supports input classValuators, one of the structures pointed to by theXDeviceInfo
structure will be anXValuatorInfo structure. Theaxes member of that structure contains the
address of an array ofXAxisInfo structures. Thereis one element in this array for each axis of
motion reported by the device. Thenumber of elements in this array is contained in the
num_axes element of theXValuatorInfo structure. Thesize of the motion buffer for the device
is reported in the motion_buffer member of theXValuatorInfo structure.

The XDeviceInfo structure is defined as follows:

typedef struct _XDeviceInfo {
XID id;
Atom type;
char *name;
int num_classes;
int use;
XAnyClassPtr inputclassinfo;

} X DeviceInfo;

The structures pointed to by theXDeviceInfo structure are defined as follows:

typedef struct _XKeyInfo {
XID class;
int length;
unsigned short min_keycode;
unsigned short max_keycode;
unsigned short num_keys;

} X Ke yInfo;

typedef struct _XButtonInfo {
XID class;
int length;
short num_buttons;

} X ButtonInfo;

typedef struct _XValuatorInfo {
XID class;
int length;
unsigned char num_axes;
unsigned char mode;
unsigned long motion_buffer;
XAxisInfoPtr axes;

} X ValuatorInfo;

The XAxisInfo structure pointed to by theXValuatorInfo structure is defined as follows:

42

X I nput Extension Library X11, Release 6.4

typedef struct _XAxisInfo {
int resolution;
int min_value;
int max_value;

} X AxisInfo;

The following atom names are defined in the <X11/extensions/XI.h> header file.

MOUSE QUADRATURE
TABLET SPACEBALL
KEYBOARD DAT AGLOVE
TOUCHSCREEN EYETRACKER
TOUCHPAD CURSORKEYS
BUTTONBOX FOOTMOUSE
BARCODE ID_MODULE
KNOB_BOX ONE_KNOB
TRACKBALL NINE_KNOB

These names can be used in anXInternAtom request to return an atom that can be used for com-
parison with the type member of theXDeviceInfo structure.

XListInputDevices returns NULL if there are no input devices to list.

To free the data returned byXListInputDevices, useXFreeDeviceList.

void XFreeDeviceList(list)
XDeviceInfo *list ;

list Specifies the pointer to theXDeviceInfo array returned by a previous call to
XListInputDevices.

XFreeDeviceList frees the list of input device information.

2.3.3. Enablingand Disabling Extension Devices

Each client program that wishes to access an extension device must request that the server open
that device by calling theXOpenDevicefunction.

XDevice * XOpenDevice(display, device_id)
Display *display;
XID device_id;

display Specifies the connection to the X server.

device_id Specifies the ID that uniquely identifies the device to be opened. This ID is
obtained from theXListInputDevices request.

XOpenDeviceopens the device for the requesting client and, on success, returns anXDevice
structure, which is defined as follows:

43

X I nput Extension Library X11, Release 6.4

typedef struct {
XID device_id;
int num_classes;
XInputClassInfo *classes;

} X Device;

The XDevice structure contains a pointer to an array ofXInputClassInfo structures. Eachele-
ment in that array contains information about events of a particular input class supported by the
input device.

The XInputClassInfo structure is defined as follows:

typedef struct {
unsigned char input_class;
unsigned char event_type_base;

} X InputClassInfo;

A client program can determine the event type and event class for a given event by using macros
defined by the input extension. Thename of the macro corresponds to the desired event, and the
macro is passed the structure that describes the device from which input is desired, for example:

DeviceKeyPress(XDevice *device, event_type, event_class)

The macro will fill in the values of the event class to be used in anXSelectExtensionEvent
request to select the event and the event type to be used in comparing with the event types of
ev ents received via XNextEvent.

XOpenDevicecan generateBadDeviceerrors.

Before terminating, the client program should request that the server close the device by calling
the XCloseDevicefunction.

int XCloseDevice(display, device)
Display *display;
XDevice *device;

display Specifies the connection to the X server.

device Specifies the device to be closed.

XCloseDevicecloses the device for the requesting client and frees the associatedXDevice struc-
ture.

A client may open the same extension device more than once. Requests after the first successful
one return an additionalXDevice structure with the same information as the first, but otherwise
have no effect. AsingleXCloseDevicerequest will terminate that client’s access to the device.

Closing a device releases any active or passive grabs the requesting client has established. If the
device is frozen only by an active grab of the requesting client, any queued events are released.

If a client program terminates without closing a device, the server will automatically close that
device on behalf of the client. This does not affect any other clients that may be accessing that

44

X I nput Extension Library X11, Release 6.4

device.

XCloseDevicecan generateBadDeviceerrors.

2.3.4. Changingthe Mode of a Device

Some devices are capable of reporting either relative or absolute motion data.To change the
mode of a device from relative to absolute, useXSetDeviceMode.

int XSetDeviceMode(display, device, mode)
Display *display;
XDevice *device;
int mode;

display Specifies the connection to the X server.

device Specifies the device whose mode should be changed.

mode Specifies the mode.You can passAbsolute or Relative.

XSetDeviceModeallows a client to request the server to change the mode of a device that is
capable of reporting either absolute positional data or relative motion data. If the device is invalid
or if the client has not previously requested that the server open the device via anXOpenDevice
request, this request will fail with aBadDeviceerror. If the device does not support input class
Valuators or if it is not capable of reporting the specified mode, the request will fail with aBad-
Match error.

This request will fail and returnDeviceBusyif another client has already opened the device and
requested a different mode.

XSetDeviceModecan generateBadDevice, BadMatch, BadMode, and DeviceBusyerrors.

2.3.5. Initializing Valuators on an Input Device

Some devices that report absolute positional data can be initialized to a starting value. Devices
that are capable of reporting relative motion or absolute positional data may require that their val-
uators be initialized to a starting value after the mode of the device is changed toAbsolute.

To initialize the valuators on such a device, useXSetDeviceValuators.

Status XSetDeviceValuators(display, device, valuators, first_valuator, num_valuators)
Display *display;
XDevice *device;
int *valuators, first_valuator, num_valuators;

display Specifies the connection to the X server.

device Specifies the device whose valuators should be initialized.

valuators Specifies the values to which each valuator should be set.

first_valuator Specifies the first valuator to be set.

num_valuatorsSpecifies the number of valuators to be set.

XSetDeviceValuatorsinitializes the specified valuators on the specified extension input device.
Valuators are numbered beginning with zero. Only the valuators in the range specified by

45

X I nput Extension Library X11, Release 6.4

first_valuator and num_valuators are set. ABadValue error results if the number of valuators
supported by the device is less than the following expression:

first_valuator + num_valuators

If the request succeeds,Successis returned. If the specified device is grabbed by some other
client, the request will fail and a status ofAlreadyGrabbed will be returned.

XSetDeviceValuatorscan generateBadDevice, BadLength, BadMatch, and BadValue
errors.

2.3.6. GettingInput Device Controls

Some input devices support various configuration controls that can be queried or changed by
clients. Theset of supported controls will vary from one input device to another. Requests to
manipulate these controls will fail if either the target X server or the target input device does not
support the requested device control.

Each device control has a unique identifier. Information passed with each device control varies in
length and is mapped by data structures unique to that device control.

To query a device control, useXGetDeviceControl.

XDeviceControl * XGetDeviceControl(display, device, control)
Display *display;
XDevice *device;
int control;

display Specifies the connection to the X server.

device Specifies the device whose configuration control status is to be returned.

control Identifies the specific device control to be queried.

XGetDeviceControl returns the current state of the specified device control. If the target X
server does not support that device control, aBadValue error is returned. If the specified device
does not support that device control, aBadMatch error is returned.

If the request is successful, a pointer to a genericXDeviceStatestructure is returned. The infor-
mation returned varies according to the specified control and is mapped by a structure appropriate
for that control. The first two members are common to all device controls and are defined as fol-
lows:

typedef struct {
XID control;
int length;

} X DeviceState;

The control may be compared to constants defined in the file <X11/extensions/XI.h>. Currently
defined device controls include DEVICE_RESOLUTION.

The information returned for the DEVICE_RESOLUTION control is defined in theXDeviceRes-
olutionState structure, which is defined as follows:

46

X I nput Extension Library X11, Release 6.4

typedef struct {
XID control;
int length;
int num_valuators;
int *resolutions;
int *min_resolutions;
int *max_resolutions;

} X DeviceResolutionState;

This device control returns a list of valuators and the range of valid resolutions allowed for each.
Valuators are numbered beginning with zero (0). Resolutions for all valuators on the device are
returned. For each valuator i on the device, resolutions[i] returns the current setting of the resolu-
tion, min_resolutions[i] returns the minimum valid setting, and max_resolutions[i] returns the
maximum valid setting.

When this control is specified,XGetDeviceControl fails with a BadMatch error if the specified
device has no valuators.

XGetDeviceControl can generateBadMatch andBadValue errors.

2.3.7. ChangingInput Device Controls

Some input devices support various configuration controls that can be changed by clients.Typi-
cally, this would be done to initialize the device to a known state or configuration. The set of sup-
ported controls will vary from one input device to another. Requests to manipulate these controls
will fail if either the target X server or the target input device does not support the requested
device control. Setting the device control will also fail if the target input device is grabbed by
another client or is open by another client and has been set to a conflicting state.

Each device control has a unique identifier. Information passed with each device control varies in
length and is mapped by data structures unique to that device control.

To change a device control, useXChangeDeviceControl.

Status XChangeDeviceControl(display, device, control, value)
Display *display;
XDevice *device;
int control;
XDeviceControl *value;

display Specifies the connection to the X server.

device Specifies the device whose configuration control status is to be modified.

control Identifies the specific device control to be changed.

value Specifies a pointer to anXDeviceControl structure that describes which control
is to be changed and how it is to be changed.

XChangeDeviceControlchanges the current state of the specified device control. If the target X
server does not support that device control, aBadValue error is returned. If the specified device
does not support that device control, aBadMatch error is returned. If another client has the tar-
get device grabbed, a status ofAlreadyGrabbed is returned. If another client has the device

47

X I nput Extension Library X11, Release 6.4

open and has set it to a conflicting state, a status ofDeviceBusyis returned. If the request fails
for any reason, the device control will not be changed.

If the request is successful, the device control will be changed and a status ofSuccessis returned.
The information passed varies according to the specified control and is mapped by a structure
appropriate for that control. The first two members are common to all device controls:

typedef struct {
XID control;
int length;

} X DeviceControl;

The control may be set using constants defined in the <X11/extensions/XI.h> header file. Cur-
rently defined device controls include DEVICE_RESOLUTION.

The information that can be changed by the DEVICE_RESOLUTION control is defined in the
XDeviceResolutionControlstructure, which is defined as follows:

typedef struct {
XID control;
int length;
int first_valuator;
int num_valuators;
int *resolutions;

} X DeviceResolutionControl;

This device control changes the resolution of the specified valuators on the specified extension
input device. Valuators are numbered beginning with zero. Only the valuators in the range speci-
fied by first_valuator and num_valuators are set.A value of -1 in the resolutions list indicates that
the resolution for this valuator is not to be changed. The num_valuators member specifies the
number of valuators in the resolutions list.

When this control is specified,XChangeDeviceControlfails with a BadMatch error if the spec-
ified device has no valuators. Ifa resolution is specified that is not within the range of valid val-
ues (as returned byXGetDeviceControl), XChangeDeviceControlfails with a BadValue error.
A BadValue error results if the number of valuators supported by the device is less than the fol-
lowing expression:

first_valuator + num_valuators,

XChangeDeviceControlcan generateBadMatch andBadValue errors.

2.3.8. SelectingExtension Device Events

To select device input events, useXSelectExtensionEvent. The parameters passed are a pointer
to a list of classes that define the desired event types and devices, a count of the number of ele-
ments in the list, and the ID of the window from which events are desired.

48

X I nput Extension Library X11, Release 6.4

int XSelectExtensionEvent(display, window, event_list, event_count)
Display *display;
Windowwindow;
XEventClass *event_list;
int event_count;

display Specifies the connection to the X server.

window Specifies the ID of the window from which the client wishes to receive events.

event_list Specifies a pointer to an array of event classes that specify which events are
desired.

event_count Specifies the number of elements in the event_list.

XSelectExtensionEventrequests the server to send events that match the events and devices
described by the event list and that come from the requested window. The elements of the
XEventClassarray are the event_class values obtained by invoking a macro with the pointer to
an XDevice structure returned by theXOpenDevicerequest. For example, theDeviceKeyPress
macro would return theXEventClass for DeviceKeyPressev ents from the specified device if it
were invoked in the following form:

DeviceKeyPress (XDevice *device, event_type, event_class)

Macros are defined for the following event classes:

DeviceKeyPress
DeviceKeyRelease
DeviceButtonPress
DeviceButtonRelease
DeviceMotionNotify
DeviceFocusIn
DeviceFocusOut
ProximityIn
ProximityOut
DeviceStateNotify
DeviceMappingNotify
ChangeDeviceNotify
DevicePointerMotionHint
DeviceButton1Motion
DeviceButton2Motion
DeviceButton3Motion,
DeviceButton4Motion
DeviceButton5Motion
DeviceButtonMotion,
DeviceOwnerGrabButton
DeviceButtonPressGrab

To get the next available event from within a client program, use the coreXNextEvent function.
This returns the next event whether it came from a core device or an extension device.

SucceedingXSelectExtensionEventrequests using event classes for the same device as was
specified on a previous request will replace the previous set of selected events from that device
with the new set.

49

X I nput Extension Library X11, Release 6.4

XSelectExtensionEventcan generateBadAccess, BadClass, BadLength, and BadWindow
errors.

2.3.9. DeterminingSelected Device Events

To determine which extension events are currently selected from a given window, useXGetSe-
lectedExtensionEvents.

int XGetSelectedExtensionEvents(display, window, this_client_count, this_client,
all_clients_count, all_clients)

Display *display;
Windowwindow;
int *this_client_count; /* RETURN */
XEventClass **this_client; /* RETURN */
int *all_clients_count; /* RETURN */
XEventClass **all_clients; /* RETURN */

display Specifies the connection to the X server.

window Specifies the ID of the window from which the client wishes to receive events.

this_client_count
Returns the number of elements in the this_client list.

this_client Returns a list ofXEventClassesthat specify which events are selected by this
client.

all_clients_count
Returns the number of elements in the all_clients list.

all_clients Returns a list ofXEventClassesthat specify which events are selected by all
clients.

XGetSelectedExtensionEventsreturns pointers to two event class arrays. One lists the exten-
sion events selected by this client from the specified window. The other lists the extension events
selected by all clients from the specified window. This information is analogous to that returned
in your_event_mask and all_event_masks of theXWindowAttributes structure when an
XGetWindowAttributes request is made.To free the two arrays returned by this function, use
XFree.

XGetSelectedExtensionEventscan generateBadWindow errors.

2.3.10. Controlling Event Propagation

Extension events propagate up the window hierarchy in the same manner as core events. If a win-
dow is not interested in an extension event, it usually propagates to the closest ancestor that is
interested, unless the dont_propagate list prohibits it. Grabs of extension devices may alter the set
of windows that receive a particular extension event.

Client programs may control event propagation through the use of the following two functions:
XChangeDeviceDontPropagateListandXGetDeviceDontPropagateList.

50

X I nput Extension Library X11, Release 6.4

int XChangeDeviceDontPropagateList(display, window, event_count, events, mode)
Display *display;
Windowwindow;
int event_count;
XEventClass *events;
int mode;

display Specifies the connection to the X server.

window Specifies the desired window.

event_count Specifies the number of elements in the events list.

events Specifies a pointer to the list of XEventClasses.

mode Specifies the mode.You can passAddToList or DeleteFromList.

XChangeDeviceDontPropagateListadds an event to or deletes an event from the do_not_prop-
agate list of extension events for the specified window. There is one list per window, and the list
remains for the life of the window. The list is not altered if a client that changed the list termi-
nates.

Suppression of event propagation is not allowed for all events. If a specifiedXEventClass is
invalid because suppression of that event is not allowed, aBadClasserror results.

XChangeDeviceDontPropagateListcan generateBadClass, BadMode, and BadWindow
errors.

XEventClass * XGetDeviceDontPropagateList(display, window, event_count)
Display *display;
Windowwindow;
int *event_count; /*RETURN */

display Specifies the connection to the X server.

window Specifies the desired window.

event_count Returns the number of elements in the array returned by this function.

XGetDeviceDontPropagateListallows a client to determine the do_not_propagate list of exten-
sion events for the specified window. It returns an array ofXEventClass, eachXEventClass
representing a device/event type pair. To free the data returned by this function, useXFree.

XGetDeviceDontPropagateListcan generateBadWindow errors.

2.3.11. Sendingan Event

To send an extension event to another client, useXSendExtensionEvent.

51

X I nput Extension Library X11, Release 6.4

int XSendExtensionEvent(display, device, window, propagate, event_count, event_list, event)
Display *display;
XDevice *device;
Windowwindow;
Bool propagate;
int event_count;
XEventClass *event_list;
XEvent *event;

display Specifies the connection to the X server.

device Specifies the device whose ID is recorded in the event.

window Specifies the destination window ID. You can pass a window ID, PointerWin-
dow or InputFocus.

propagate Specifies a boolean value that is eitherTr ue or False.

event_count Specifies the number of elements in the event_list array.

event_list Specifies a pointer to an array ofXEventClass.

event Specifies a pointer to the event that is to be sent.

XSendExtensionEventidentifies the destination window, determines which clients should
receive the specified event, and ignores any active grabs. Itrequires a list ofXEventClass to be
specified. Theseare obtained by opening an input device with theXOpenDevicerequest.

XSendExtensionEventuses the window argument to identify the destination window as follows:

• If you passPointerWindow , the destination window is the window that contains the
pointer.

• If you passInputFocus and if the focus window contains the pointer, the destination win-
dow is the window that contains the pointer. If the focus window does not contain the
pointer, the destination window is the focus window.

To determine which clients should receive the specified events,XSendExtensionEventuses the
propagate argument as follows:

• If propagate isFalse, the event is sent to every client selecting from the destination window
any of the events specified in the event_list array.

• If propagate isTr ue and no clients have selected from the destination window any of the
ev ents specified in the event_list array, the destination is replaced with the closest ancestor
of destination for which some client has selected one of the specified events and for which
no intervening window has that event in its do_not_propagate mask. If no such window
exists, or if the window is an ancestor of the focus window, and InputFocus was originally
specified as the destination, the event is not sent to any clients. Otherwise,the event is
reported to every client selecting on the final destination any of the events specified in
ev ent_list.

The event in theXEvent structure must be one of the events defined by the input extension, so
that the X server can correctly byte swap the contents as necessary. The contents of the event are
otherwise unaltered and unchecked by the X server except to force send_event to Tr ue in the for-
warded event and to set the sequence number in the event correctly.

XSendExtensionEventreturns zero if the conversion-to-wire protocol failed; otherwise, it
returns nonzero.

52

X I nput Extension Library X11, Release 6.4

XSendExtensionEventcan generateBadClass, BadDevice, BadValue, and BadWindow
errors.

2.3.12. GettingMotion History

XDeviceTimeCoord * XGetDeviceMotionEvents(display, device, start, stop, nevents_return, mode_return,
axis_count_return);

Display *display;
XDevice *device;
Timestart, stop;
int *nevents_return;
int *mode_return;
int *axis_count_return;

display Specifies the connection to the X server.

device Specifies the desired device.

start Specifies the start time.

stop Specifies the stop time.

nevents_returnReturns the number of positions in the motion buffer returned for this request.

mode_return Returns the mode of the nevents information. The mode will be one of the fol-
lowing: Absolute or Relative.

axis_count_return
Returns the number of axes reported in each of the positions returned.

XGetDeviceMotionEventsreturns all positions in the device’s motion history buffer that fall
between the specified start and stop times inclusive. If the start time is in the future or is later
than the stop time, no positions are returned.

The return type for this function is anXDeviceTimeCoord structure, which is defined as follows:

typedef struct {
Time time;
unsigned int *data;

} X DeviceTimeCoord;

The data member is a pointer to an array of data items. Each item is of type int, and there is one
data item per axis of motion reported by the device. Thenumber of axes reported by the device is
returned in the axis_count variable.

The value of the data items depends on the mode of the device. Themode is returned in the mode
variable. If the mode isAbsolute, the data items are the raw values generated by the device.
These may be scaled by the client program using the maximum values that the device can gener-
ate for each axis of motion that it reports. The maximum value for each axis is reported in the
max_val member of theXAxisInfo structure, which is part of the information returned by the
XListInputDevices request.

If the mode isRelative, the data items are the relative values generated by the device. Theclient
program must choose an initial position for the device and maintain a current position by accumu-
lating these relative values.

53

X I nput Extension Library X11, Release 6.4

Consecutive calls toXGetDeviceMotionEventscan return data of different modes, that is, if
some client program has changed the mode of the device via anXSetDeviceModerequest.

XGetDeviceMotionEventscan generateBadDeviceandBadMatch errors.

To free the data returned byXGetDeviceMotionEvents, useXFreeDeviceMotionEvents.

void XFreeDeviceMotionEvents(events)
XDeviceTimeCoord *events;

events Specifies the pointer to theXDeviceTimeCoord array returned by a previous
call to XGetDeviceMotionEvents.

XFreeDeviceMotionEventsfrees the specified array of motion information.

54

X I nput Extension Library X11, Release 6.4

Appendix A
The following information is contained in the<X11/extensions/XInput.h>and<X11/exten-
sions/XI.h> header files:

55

X I nput Extension Library X11, Release 6.4

/**

Copyright 1989, 1998 The Open Group

Permission to use, copy, modify, distribute, and sell this software and its

documentation for any purpose is hereby granted without fee, provided that

the above copyright notice appear in all copies and that both that

copyright notice and this permission notice appear in supporting

documentation.

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

OPEN GROUP BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN

AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN

CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of The Open Group shall not be

used in advertising or otherwise to promote the sale, use or other dealings

in this Software without prior written authorization from The Open Group.

Copyright 1989 by Hewlett-Packard Company, Palo Alto, California.

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its

documentation for any purpose and without fee is hereby granted,

provided that the above copyright notice appear in all copies and that

both that copyright notice and this permission notice appear in

supporting documentation, and that the name of Hewlett-Packard not be

used in advertising or publicity pertaining to distribution of the

software without specific, written prior permission.

HEWLETT-PACKARD DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING

ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL

HEWLETT-PACKARD BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR

ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,

WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,

ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS

SOFTWARE.

**/

/* $XFree86: xc/doc/specs/Xi/library.ms,v 1.3 2006/01/09 14:56:34 dawes Exp $ */

/* Definitions used by the library and client */

#ifndef _XINPUT_H_

56

X I nput Extension Library X11, Release 6.4

#define _XINPUT_H_

#include <X11/Xlib.h>

#include <X11/extensions/XI.h>

#define _deviceKeyPress 0

#define _deviceKeyRelease 1

#define _deviceButtonPress 0

#define _deviceButtonRelease 1

#define _deviceMotionNotify 0

#define _deviceFocusIn 0

#define _deviceFocusOut 1

#define _proximityIn 0

#define _proximityOut 1

#define _deviceStateNotify 0

#define _deviceMappingNotify 1

#define _changeDeviceNotify 2

#define FindTypeAndClass(d,type,_class,classid,offset) { int _i; XInputClassInfo *_ip; type = 0; _class = 0; for (_i=0, _ip= ((XDevice *) d)->classes;

#define DeviceKeyPress(d,type,_class) FindTypeAndClass(d, type, _class, KeyClass, _deviceKeyPress)

#define DeviceKeyRelease(d,type,_class) FindTypeAndClass(d, type, _class, KeyClass, _deviceKeyRelease)

#define DeviceButtonPress(d,type,_class) FindTypeAndClass(d, type, _class, ButtonClass, _deviceButtonPress)

#define DeviceButtonRelease(d,type,_class) FindTypeAndClass(d, type, _class, ButtonClass, _deviceButtonRelease)

#define DeviceMotionNotify(d,type,_class) FindTypeAndClass(d, type, _class, ValuatorClass, _deviceMotionNotify)

#define DeviceFocusIn(d,type,_class) FindTypeAndClass(d, type, _class, FocusClass, _deviceFocusIn)

#define DeviceFocusOut(d,type,_class) FindTypeAndClass(d, type, _class, FocusClass, _deviceFocusOut)

#define ProximityIn(d,type,_class) FindTypeAndClass(d, type, _class, ProximityClass, _proximityIn)

#define ProximityOut(d,type,_class) FindTypeAndClass(d, type, _class, ProximityClass, _proximityOut)

#define DeviceStateNotify(d,type,_class) FindTypeAndClass(d, type, _class, OtherClass, _deviceStateNotify)

#define DeviceMappingNotify(d,type,_class) FindTypeAndClass(d, type, _class, OtherClass, _deviceMappingNotify)

#define ChangeDeviceNotify(d,type,_class) FindTypeAndClass(d, type, _class, OtherClass, _changeDeviceNotify)

#define DevicePointerMotionHint(d,type,_class) { _class = ((XDevice *) d)->device_id << 8 | _devicePointerMotionHint;}

57

X I nput Extension Library X11, Release 6.4

#define DeviceButton1Motion(d,type,_class) { _class = ((XDevice *) d)->device_id << 8 | _deviceButton1Motion;}

#define DeviceButton2Motion(d,type,_class) { _class = ((XDevice *) d)->device_id << 8 | _deviceButton2Motion;}

#define DeviceButton3Motion(d,type,_class) { _class = ((XDevice *) d)->device_id << 8 | _deviceButton3Motion;}

#define DeviceButton4Motion(d,type, _class) { _class = ((XDevice *) d)->device_id << 8 | _deviceButton4Motion;}

#define DeviceButton5Motion(d,type,_class) { _class = ((XDevice *) d)->device_id << 8 | _deviceButton5Motion;}

#define DeviceButtonMotion(d,type, _class) { _class = ((XDevice *) d)->device_id << 8 | _deviceButtonMotion;}

#define DeviceOwnerGrabButton(d,type,_class) { _class = ((XDevice *) d)->device_id << 8 | _deviceOwnerGrabButton;}

#define DeviceButtonPressGrab(d,type,_class) { _class = ((XDevice *) d)->device_id << 8 | _deviceButtonGrab;}

#define NoExtensionEvent(d,type,_class) { _class = ((XDevice *) d)->device_id << 8 | _noExtensionEvent;}

#define BadDevice(dpy,error) _xibaddevice(dpy, &error)

#define BadClass(dpy,error) _xibadclass(dpy, &error)

#define BadEvent(dpy,error) _xibadevent(dpy, &error)

#define BadMode(dpy,error) _xibadmode(dpy, &error)

#define DeviceBusy(dpy,error) _xidevicebusy(dpy, &error)

/***

*

* DeviceKey events. These events are sent by input devices that

* support input class Keys.

* The location of the X pointer is reported in the coordinate

* fields of the x,y and x_root,y_root fields.

*

*/

typedef struct

{

int type; /* of event */

unsigned long serial; /* # of last request processed */

Bool send_event; /* true if from SendEvent request */

Display *display; /* Display the event was read from */

Window window; /* "event" window reported relative to */

XID deviceid;

Window root; /* root window event occured on */

Window subwindow; /* child window */

Time time; /* milliseconds */

int x, y; /* x, y coordinates in event window */

int x_root; /* coordinates relative to root */

58

X I nput Extension Library X11, Release 6.4

int y_root; /* coordinates relative to root */

unsigned int state; /* key or button mask */

unsigned int keycode; /* detail */

Bool same_screen; /* same screen flag */

unsigned int device_state; /* device key or button mask */

unsigned char axes_count;

unsigned char first_axis;

int axis_data[6];

} XDeviceKeyEvent;

typedef XDeviceKeyEvent XDeviceKeyPressedEvent;

typedef XDeviceKeyEvent XDeviceKeyReleasedEvent;

/***

*

* DeviceButton events. These events are sent by extension devices

* that support input class Buttons.

*

*/

typedef struct {

int type; /* of event */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if from a SendEvent request */

Display *display; /* Display the event was read from */

Window window; /* "event" window reported relative to */

XID deviceid;

Window root; /* root window that the event occured on */

Window subwindow; /* child window */

Time time; /* milliseconds */

int x, y; /* x, y coordinates in event window */

int x_root; /* coordinates relative to root */

int y_root; /* coordinates relative to root */

unsigned int state; /* key or button mask */

unsigned int button; /* detail */

Bool same_screen; /* same screen flag */

unsigned int device_state; /* device key or button mask */

unsigned char axes_count;

unsigned char first_axis;

int axis_data[6];

} XDeviceButtonEvent;

typedef XDeviceButtonEvent XDeviceButtonPressedEvent;

typedef XDeviceButtonEvent XDeviceButtonReleasedEvent;

/***

*

* DeviceMotionNotify event. These events are sent by extension devices

* that support input class Valuators.

*

59

X I nput Extension Library X11, Release 6.4

*/

typedef struct

{

int type; /* of event */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if from a SendEvent request */

Display *display; /* Display the event was read from */

Window window; /* "event" window reported relative to */

XID deviceid;

Window root; /* root window that the event occured on */

Window subwindow; /* child window */

Time time; /* milliseconds */

int x, y; /* x, y coordinates in event window */

int x_root; /* coordinates relative to root */

int y_root; /* coordinates relative to root */

unsigned int state; /* key or button mask */

char is_hint; /* detail */

Bool same_screen; /* same screen flag */

unsigned int device_state; /* device key or button mask */

unsigned char axes_count;

unsigned char first_axis;

int axis_data[6];

} XDeviceMotionEvent;

/***

*

* DeviceFocusChange events. These events are sent when the focus

* of an extension device that can be focused is changed.

*

*/

typedef struct

{

int type; /* of event */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if from a SendEvent request */

Display *display; /* Display the event was read from */

Window window; /* "event" window reported relative to */

XID deviceid;

int mode; /* NotifyNormal, NotifyGrab, NotifyUngrab */

int detail;

/*

* NotifyAncestor, NotifyVirtual, NotifyInferior,

* NotifyNonLinear,NotifyNonLinearVirtual, NotifyPointer,

* NotifyPointerRoot, NotifyDetailNone

*/

Time time;

} XDeviceFocusChangeEvent;

60

X I nput Extension Library X11, Release 6.4

typedef XDeviceFocusChangeEvent XDeviceFocusInEvent;

typedef XDeviceFocusChangeEvent XDeviceFocusOutEvent;

/***

*

* ProximityNotify events. These events are sent by those absolute

* positioning devices that are capable of generating proximity information.

*

*/

typedef struct

{

int type; /* ProximityIn or ProximityOut */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */

Display *display; /* Display the event was read from */

Window window;

XID deviceid;

Window root;

Window subwindow;

Time time;

int x, y;

int x_root, y_root;

unsigned int state;

Bool same_screen;

unsigned int device_state; /* device key or button mask */

unsigned char axes_count;

unsigned char first_axis;

int axis_data[6];

} XProximityNotifyEvent;

typedef XProximityNotifyEvent XProximityInEvent;

typedef XProximityNotifyEvent XProximityOutEvent;

/***

*

* DeviceStateNotify events are generated on EnterWindow and FocusIn

* for those clients who have selected DeviceState.

*

*/

typedef struct

{

#if defined(__cplusplus) || defined(c_plusplus)

unsigned char c_class;

#else

unsigned char class;

#endif

unsigned char length;

} XInputClass;

61

X I nput Extension Library X11, Release 6.4

typedef struct {

int type;

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */

Display *display; /* Display the event was read from */

Window window;

XID deviceid;

Time time;

int num_classes;

char data[64];

} XDeviceStateNotifyEvent;

typedef struct {

#if defined(__cplusplus) || defined(c_plusplus)

unsigned char c_class;

#else

unsigned char class;

#endif

unsigned char length;

unsigned char num_valuators;

unsigned char mode;

int valuators[6];

} XValuatorStatus;

typedef struct {

#if defined(__cplusplus) || defined(c_plusplus)

unsigned char c_class;

#else

unsigned char class;

#endif

unsigned char length;

short num_keys;

char keys[32];

} XKeyStatus;

typedef struct {

#if defined(__cplusplus) || defined(c_plusplus)

unsigned char c_class;

#else

unsigned char class;

#endif

unsigned char length;

short num_buttons;

char buttons[32];

} XButtonStatus;

/***

*

* DeviceMappingNotify event. This event is sent when the key mapping,

* modifier mapping, or button mapping of an extension device is changed.

62

X I nput Extension Library X11, Release 6.4

*

*/

typedef struct {

int type;

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */

Display *display; /* Display the event was read from */

Window window; /* unused */

XID deviceid;

Time time;

int request; /* one of MappingModifier, MappingKeyboard,

MappingPointer */

int first_keycode;/* first keycode */

int count; /* defines range of change w. first_keycode*/

} XDeviceMappingEvent;

/***

*

* ChangeDeviceNotify event. This event is sent when an

* XChangeKeyboard or XChangePointer request is made.

*

*/

typedef struct {

int type;

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */

Display *display; /* Display the event was read from */

Window window; /* unused */

XID deviceid;

Time time;

int request; /* NewPointer or NewKeyboard */

} XChangeDeviceNotifyEvent;

/***

*

* Control structures for input devices that support input class

* Feedback. These are used by the XGetFeedbackControl and

* XChangeFeedbackControl functions.

*

*/

typedef struct {

#if defined(__cplusplus) || defined(c_plusplus)

XID c_class;

#else

XID class;

#endif

int length;

63

X I nput Extension Library X11, Release 6.4

XID id;

} XFeedbackState;

typedef struct {

#if defined(__cplusplus) || defined(c_plusplus)

XID c_class;

#else

XID class;

#endif

int length;

XID id;

int click;

int percent;

int pitch;

int duration;

int led_mask;

int global_auto_repeat;

char auto_repeats[32];

} XKbdFeedbackState;

typedef struct {

#if defined(__cplusplus) || defined(c_plusplus)

XID c_class;

#else

XID class;

#endif

int length;

XID id;

int accelNum;

int accelDenom;

int threshold;

} XPtrFeedbackState;

typedef struct {

#if defined(__cplusplus) || defined(c_plusplus)

XID c_class;

#else

XID class;

#endif

int length;

XID id;

int resolution;

int minVal;

int maxVal;

} XIntegerFeedbackState;

typedef struct {

#if defined(__cplusplus) || defined(c_plusplus)

XID c_class;

#else

64

X I nput Extension Library X11, Release 6.4

XID class;

#endif

int length;

XID id;

int max_symbols;

int num_syms_supported;

KeySym *syms_supported;

} XStringFeedbackState;

typedef struct {

#if defined(__cplusplus) || defined(c_plusplus)

XID c_class;

#else

XID class;

#endif

int length;

XID id;

int percent;

int pitch;

int duration;

} XBellFeedbackState;

typedef struct {

#if defined(__cplusplus) || defined(c_plusplus)

XID c_class;

#else

XID class;

#endif

int length;

XID id;

int led_values;

int led_mask;

} XLedFeedbackState;

typedef struct {

#if defined(__cplusplus) || defined(c_plusplus)

XID c_class;

#else

XID class;

#endif

int length;

XID id;

} XFeedbackControl;

typedef struct {

#if defined(__cplusplus) || defined(c_plusplus)

XID c_class;

#else

XID class;

#endif

65

X I nput Extension Library X11, Release 6.4

int length;

XID id;

int accelNum;

int accelDenom;

int threshold;

} XPtrFeedbackControl;

typedef struct {

#if defined(__cplusplus) || defined(c_plusplus)

XID c_class;

#else

XID class;

#endif

int length;

XID id;

int click;

int percent;

int pitch;

int duration;

int led_mask;

int led_value;

int key;

int auto_repeat_mode;

} XKbdFeedbackControl;

typedef struct {

#if defined(__cplusplus) || defined(c_plusplus)

XID c_class;

#else

XID class;

#endif

int length;

XID id;

int num_keysyms;

KeySym *syms_to_display;

} XStringFeedbackControl;

typedef struct {

#if defined(__cplusplus) || defined(c_plusplus)

XID c_class;

#else

XID class;

#endif

int length;

XID id;

int int_to_display;

} XIntegerFeedbackControl;

typedef struct {

#if defined(__cplusplus) || defined(c_plusplus)

66

X I nput Extension Library X11, Release 6.4

XID c_class;

#else

XID class;

#endif

int length;

XID id;

int percent;

int pitch;

int duration;

} XBellFeedbackControl;

typedef struct {

#if defined(__cplusplus) || defined(c_plusplus)

XID c_class;

#else

XID class;

#endif

int length;

XID id;

int led_mask;

int led_values;

} XLedFeedbackControl;

/***

*

* Device control structures.

*

*/

typedef struct {

XID control;

int length;

} XDeviceControl;

typedef struct {

XID control;

int length;

int first_valuator;

int num_valuators;

int *resolutions;

} XDeviceResolutionControl;

typedef struct {

XID control;

int length;

int num_valuators;

int *resolutions;

int *min_resolutions;

int *max_resolutions;

} XDeviceResolutionState;

67

X I nput Extension Library X11, Release 6.4

/***

*

* An array of XDeviceList structures is returned by the

* XListInputDevices function. Each entry contains information

* about one input device. Among that information is an array of

* pointers to structures that describe the characteristics of

* the input device.

*

*/

typedef struct _XAnyClassinfo *XAnyClassPtr;

typedef struct _XAnyClassinfo {

#if defined(__cplusplus) || defined(c_plusplus)

XID c_class;

#else

XID class;

#endif

int length;

} XAnyClassInfo;

typedef struct _XDeviceInfo *XDeviceInfoPtr;

typedef struct _XDeviceInfo

{

XID id;

Atom type;

char *name;

int num_classes;

int use;

XAnyClassPtr inputclassinfo;

} XDeviceInfo;

typedef struct _XKeyInfo *XKeyInfoPtr;

typedef struct _XKeyInfo

{

#if defined(__cplusplus) || defined(c_plusplus)

XID c_class;

#else

XID class;

#endif

int length;

unsigned short min_keycode;

unsigned short max_keycode;

unsigned short num_keys;

} XKeyInfo;

typedef struct _XButtonInfo *XButtonInfoPtr;

68

X I nput Extension Library X11, Release 6.4

typedef struct _XButtonInfo {

#if defined(__cplusplus) || defined(c_plusplus)

XID c_class;

#else

XID class;

#endif

int length;

short num_buttons;

} XButtonInfo;

typedef struct _XAxisInfo *XAxisInfoPtr;

typedef struct _XAxisInfo {

int resolution;

int min_value;

int max_value;

} XAxisInfo;

typedef struct _XValuatorInfo *XValuatorInfoPtr;

typedef struct _XValuatorInfo

{

#if defined(__cplusplus) || defined(c_plusplus)

XID c_class;

#else

XID class;

#endif

int length;

unsigned char num_axes;

unsigned char mode;

unsigned long motion_buffer;

XAxisInfoPtr axes;

} XValuatorInfo;

/***

*

* An XDevice structure is returned by the XOpenDevice function.

* It contains an array of pointers to XInputClassInfo structures.

* Each contains information about a class of input supported by the

* device, including a pointer to an array of data for each type of event

* the device reports.

*

*/

typedef struct {

unsigned char input_class;

unsigned char event_type_base;

} XInputClassInfo;

69

X I nput Extension Library X11, Release 6.4

typedef struct {

XID device_id;

int num_classes;

XInputClassInfo *classes;

} XDevice;

/***

*

* The following structure is used to return information for the

* XGetSelectedExtensionEvents function.

*

*/

typedef struct {

XEventClass event_type;

XID device;

} XEventList;

/***

*

* The following structure is used to return motion history data from

* an input device that supports the input class Valuators.

* This information is returned by the XGetDeviceMotionEvents function.

*

*/

typedef struct {

Time time;

int *data;

} XDeviceTimeCoord;

/***

*

* Device state structure.

* This is returned by the XQueryDeviceState request.

*

*/

typedef struct {

XID device_id;

int num_classes;

XInputClass *data;

} XDeviceState;

/***

*

* Note that the mode field is a bitfield that reports the Proximity

* status of the device as well as the mode. The mode field should

70

X I nput Extension Library X11, Release 6.4

* be OR’d with the mask DeviceMode and compared with the values

* Absolute and Relative to determine the mode, and should be OR’d

* with the mask ProximityState and compared with the values InProximity

* and OutOfProximity to determine the proximity state.

*

*/

typedef struct {

#if defined(__cplusplus) || defined(c_plusplus)

unsigned char c_class;

#else

unsigned char class;

#endif

unsigned char length;

unsigned char num_valuators;

unsigned char mode;

int *valuators;

} XValuatorState;

typedef struct {

#if defined(__cplusplus) || defined(c_plusplus)

unsigned char c_class;

#else

unsigned char class;

#endif

unsigned char length;

short num_keys;

char keys[32];

} XKeyState;

typedef struct {

#if defined(__cplusplus) || defined(c_plusplus)

unsigned char c_class;

#else

unsigned char class;

#endif

unsigned char length;

short num_buttons;

char buttons[32];

} XButtonState;

/***

*

* Function definitions.

*

*/

_XFUNCPROTOBEGIN

extern int XChangeKeyboardDevice(

71

X I nput Extension Library X11, Release 6.4

Display* /* display */,

XDevice* /* device */

);

extern int XChangePointerDevice(

Display* /* display */,

XDevice* /* device */,

int /* xaxis */,

int /* yaxis */

);

extern int XGrabDevice(

Display* /* display */,

XDevice* /* device */,

Window /* grab_window */,

Bool /* ownerEvents */,

int /* event count */,

XEventClass* /* event_list */,

int /* this_device_mode */,

int /* other_devices_mode */,

Time /* time */

);

extern int XUngrabDevice(

Display* /* display */,

XDevice* /* device */,

Time /* time */

);

extern int XGrabDeviceKey(

Display* /* display */,

XDevice* /* device */,

unsigned int /* key */,

unsigned int /* modifiers */,

XDevice* /* modifier_device */,

Window /* grab_window */,

Bool /* owner_events */,

unsigned int /* event_count */,

XEventClass* /* event_list */,

int /* this_device_mode */,

int /* other_devices_mode */

);

extern int XUngrabDeviceKey(

Display* /* display */,

XDevice* /* device */,

unsigned int /* key */,

unsigned int /* modifiers */,

XDevice* /* modifier_dev */,

Window /* grab_window */

72

X I nput Extension Library X11, Release 6.4

);

extern int XGrabDeviceButton(

Display* /* display */,

XDevice* /* device */,

unsigned int /* button */,

unsigned int /* modifiers */,

XDevice* /* modifier_device */,

Window /* grab_window */,

Bool /* owner_events */,

unsigned int /* event_count */,

XEventClass* /* event_list */,

int /* this_device_mode */,

int /* other_devices_mode */

);

extern int XUngrabDeviceButton(

Display* /* display */,

XDevice* /* device */,

unsigned int /* button */,

unsigned int /* modifiers */,

XDevice* /* modifier_dev */,

Window /* grab_window */

);

extern int XAllowDeviceEvents(

Display* /* display */,

XDevice* /* device */,

int /* event_mode */,

Time /* time */

);

extern int XGetDeviceFocus(

Display* /* display */,

XDevice* /* device */,

Window* /* focus */,

int* /* revert_to */,

Time* /* time */

);

extern int XSetDeviceFocus(

Display* /* display */,

XDevice* /* device */,

Window /* focus */,

int /* revert_to */,

Time /* time */

);

extern XFeedbackState *XGetFeedbackControl(

Display* /* display */,

73

X I nput Extension Library X11, Release 6.4

XDevice* /* device */,

int* /* num_feedbacks */

);

extern void XFreeFeedbackList(

XFeedbackState* /* list */

);

extern int XChangeFeedbackControl(

Display* /* display */,

XDevice* /* device */,

unsigned long /* mask */,

XFeedbackControl* /* f */

);

extern int XDeviceBell(

Display* /* display */,

XDevice* /* device */,

XID /* feedbackclass */,

XID /* feedbackid */,

int /* percent */

);

extern KeySym *XGetDeviceKeyMapping(

Display* /* display */,

XDevice* /* device */,

#if NeedWidePrototypes

unsigned int /* first */,

#else

KeyCode /* first */,

#endif

int /* keycount */,

int* /* syms_per_code */

);

extern int XChangeDeviceKeyMapping(

Display* /* display */,

XDevice* /* device */,

int /* first */,

int /* syms_per_code */,

KeySym* /* keysyms */,

int /* count */

);

extern XModifierKeymap *XGetDeviceModifierMapping(

Display* /* display */,

XDevice* /* device */

);

extern int XSetDeviceModifierMapping(

74

X I nput Extension Library X11, Release 6.4

Display* /* display */,

XDevice* /* device */,

XModifierKeymap* /* modmap */

);

extern int XSetDeviceButtonMapping(

Display* /* display */,

XDevice* /* device */,

unsigned char* /* map[] */,

int /* nmap */

);

extern int XGetDeviceButtonMapping(

Display* /* display */,

XDevice* /* device */,

unsigned char* /* map[] */,

unsigned int /* nmap */

);

extern XDeviceState *XQueryDeviceState(

Display* /* display */,

XDevice* /* device */

);

extern void XFreeDeviceState(

XDeviceState* /* list */

);

extern XExtensionVersion *XGetExtensionVersion(

Display* /* display */,

_Xconst char* /* name */

);

extern XDeviceInfo *XListInputDevices(

Display* /* display */,

int* /* ndevices */

);

extern void XFreeDeviceList(

XDeviceInfo* /* list */

);

extern XDevice *XOpenDevice(

Display* /* display */,

XID /* id */

);

extern int XCloseDevice(

Display* /* display */,

XDevice* /* device */

75

X I nput Extension Library X11, Release 6.4

);

extern int XSetDeviceMode(

Display* /* display */,

XDevice* /* device */,

int /* mode */

);

extern int XSetDeviceValuators(

Display* /* display */,

XDevice* /* device */,

int* /* valuators */,

int /* first_valuator */,

int /* num_valuators */

);

extern XDeviceControl *XGetDeviceControl(

Display* /* display */,

XDevice* /* device */,

int /* control */

);

extern int XChangeDeviceControl(

Display* /* display */,

XDevice* /* device */,

int /* control */,

XDeviceControl* /* d */

);

extern int XSelectExtensionEvent(

Display* /* display */,

Window /* w */,

XEventClass* /* event_list */,

int /* count */

);

extern int XGetSelectedExtensionEvents(

Display* /* display */,

Window /* w */,

int* /* this_client_count */,

XEventClass** /* this_client_list */,

int* /* all_clients_count */,

XEventClass** /* all_clients_list */

);

extern int XChangeDeviceDontPropagateList(

Display* /* display */,

Window /* window */,

int /* count */,

XEventClass* /* events */,

76

X I nput Extension Library X11, Release 6.4

int /* mode */

);

extern XEventClass *XGetDeviceDontPropagateList(

Display* /* display */,

Window /* window */,

int* /* count */

);

extern Status XSendExtensionEvent(

Display* /* display */,

XDevice* /* device */,

Window /* dest */,

Bool /* prop */,

int /* count */,

XEventClass* /* list */,

XEvent* /* event */

);

extern XDeviceTimeCoord *XGetDeviceMotionEvents(

Display* /* display */,

XDevice* /* device */,

Time /* start */,

Time /* stop */,

int* /* nEvents */,

int* /* mode */,

int* /* axis_count */

);

extern void XFreeDeviceMotionEvents(

XDeviceTimeCoord* /* events */

);

extern void XFreeDeviceControl(

XDeviceControl* /* control */

);

extern void _xibaddevice(Display *dpy, int *error);

extern void _xibadclass(Display *dpy, int *error);

extern void _xibadevent(Display *dpy, int *error);

extern void _xibadmode(Display *dpy, int *error);

extern void _xidevicebusy(Display *dpy, int *error);

_XFUNCPROTOEND

#endif /* _XINPUT_H_ */

/**

77

X I nput Extension Library X11, Release 6.4

Copyright 1989, 1998 The Open Group

Permission to use, copy, modify, distribute, and sell this software and its

documentation for any purpose is hereby granted without fee, provided that

the above copyright notice appear in all copies and that both that

copyright notice and this permission notice appear in supporting

documentation.

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

OPEN GROUP BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN

AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN

CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of The Open Group shall not be

used in advertising or otherwise to promote the sale, use or other dealings

in this Software without prior written authorization from The Open Group.

Copyright 1989 by Hewlett-Packard Company, Palo Alto, California.

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its

documentation for any purpose and without fee is hereby granted,

provided that the above copyright notice appear in all copies and that

both that copyright notice and this permission notice appear in

supporting documentation, and that the name of Hewlett-Packard not be

used in advertising or publicity pertaining to distribution of the

software without specific, written prior permission.

HEWLETT-PACKARD DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING

ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL

HEWLETT-PACKARD BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR

ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,

WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,

ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS

SOFTWARE.

**/

/* $XFree86: xc/doc/specs/Xi/library.ms,v 1.3 2006/01/09 14:56:34 dawes Exp $ */

/* Definitions used by the server, library and client */

#ifndef _XI_H_

#define _XI_H_

78

X I nput Extension Library X11, Release 6.4

#define sz_xGetExtensionVersionReq 8

#define sz_xGetExtensionVersionReply 32

#define sz_xListInputDevicesReq 4

#define sz_xListInputDevicesReply 32

#define sz_xOpenDeviceReq 8

#define sz_xOpenDeviceReply 32

#define sz_xCloseDeviceReq 8

#define sz_xSetDeviceModeReq 8

#define sz_xSetDeviceModeReply 32

#define sz_xSelectExtensionEventReq 12

#define sz_xGetSelectedExtensionEventsReq 8

#define sz_xGetSelectedExtensionEventsReply32

#define sz_xChangeDeviceDontPropagateListReq 12

#define sz_xGetDeviceDontPropagateListReq 8

#define sz_xGetDeviceDontPropagateListReply32

#define sz_xGetDeviceMotionEventsReq 16

#define sz_xGetDeviceMotionEventsReply 32

#define sz_xChangeKeyboardDeviceReq 8

#define sz_xChangeKeyboardDeviceReply 32

#define sz_xChangePointerDeviceReq 8

#define sz_xChangePointerDeviceReply 32

#define sz_xGrabDeviceReq 20

#define sz_xGrabDeviceReply 32

#define sz_xUngrabDeviceReq 12

#define sz_xGrabDeviceKeyReq 20

#define sz_xGrabDeviceKeyReply 32

#define sz_xUngrabDeviceKeyReq 16

#define sz_xGrabDeviceButtonReq 20

#define sz_xGrabDeviceButtonReply 32

#define sz_xUngrabDeviceButtonReq 16

#define sz_xAllowDeviceEventsReq 12

#define sz_xGetDeviceFocusReq 8

#define sz_xGetDeviceFocusReply 32

#define sz_xSetDeviceFocusReq 16

#define sz_xGetFeedbackControlReq 8

#define sz_xGetFeedbackControlReply 32

#define sz_xChangeFeedbackControlReq 12

#define sz_xGetDeviceKeyMappingReq 8

#define sz_xGetDeviceKeyMappingReply 32

#define sz_xChangeDeviceKeyMappingReq 8

#define sz_xGetDeviceModifierMappingReq 8

#define sz_xSetDeviceModifierMappingReq 8

#define sz_xSetDeviceModifierMappingReply 32

#define sz_xGetDeviceButtonMappingReq 8

#define sz_xGetDeviceButtonMappingReply 32

#define sz_xSetDeviceButtonMappingReq 8

#define sz_xSetDeviceButtonMappingReply 32

#define sz_xQueryDeviceStateReq 8

#define sz_xQueryDeviceStateReply 32

#define sz_xSendExtensionEventReq 16

79

X I nput Extension Library X11, Release 6.4

#define sz_xDeviceBellReq 8

#define sz_xSetDeviceValuatorsReq 8

#define sz_xSetDeviceValuatorsReply 32

#define sz_xGetDeviceControlReq 8

#define sz_xGetDeviceControlReply 32

#define sz_xChangeDeviceControlReq 8

#define sz_xChangeDeviceControlReply 32

#define INAME "XInputExtension"

#define XI_KEYBOARD "KEYBOARD"

#define XI_MOUSE "MOUSE"

#define XI_TABLET "TABLET"

#define XI_TOUCHSCREEN "TOUCHSCREEN"

#define XI_TOUCHPAD "TOUCHPAD"

#define XI_BARCODE "BARCODE"

#define XI_BUTTONBOX "BUTTONBOX"

#define XI_KNOB_BOX "KNOB_BOX"

#define XI_ONE_KNOB "ONE_KNOB"

#define XI_NINE_KNOB "NINE_KNOB"

#define XI_TRACKBALL "TRACKBALL"

#define XI_QUADRATURE "QUADRATURE"

#define XI_ID_MODULE "ID_MODULE"

#define XI_SPACEBALL "SPACEBALL"

#define XI_DATAGLOVE "DATAGLOVE"

#define XI_EYETRACKER "EYETRACKER"

#define XI_CURSORKEYS "CURSORKEYS"

#define XI_FOOTMOUSE "FOOTMOUSE"

#define Dont_Check 0

#define XInput_Initial_Release 1

#define XInput_Add_XDeviceBell 2

#define XInput_Add_XSetDeviceValuators 3

#define XInput_Add_XChangeDeviceControl 4

#define XI_Absent 0

#define XI_Present 1

#define XI_Initial_Release_Major 1

#define XI_Initial_Release_Minor 0

#define XI_Add_XDeviceBell_Major 1

#define XI_Add_XDeviceBell_Minor 1

#define XI_Add_XSetDeviceValuators_Major 1

#define XI_Add_XSetDeviceValuators_Minor 2

#define XI_Add_XChangeDeviceControl_Major 1

#define XI_Add_XChangeDeviceControl_Minor 3

80

X I nput Extension Library X11, Release 6.4

#define DEVICE_RESOLUTION 1

#define NoSuchExtension 1

#define COUNT 0

#define CREATE 1

#define NewPointer 0

#define NewKeyboard 1

#define XPOINTER 0

#define XKEYBOARD 1

#define UseXKeyboard 0xFF

#define IsXPointer 0

#define IsXKeyboard 1

#define IsXExtensionDevice 2

#define AsyncThisDevice 0

#define SyncThisDevice 1

#define ReplayThisDevice 2

#define AsyncOtherDevices 3

#define AsyncAll 4

#define SyncAll 5

#define FollowKeyboard 3

#ifndef RevertToFollowKeyboard

#define RevertToFollowKeyboard 3

#endif

#define DvAccelNum (1L << 0)

#define DvAccelDenom (1L << 1)

#define DvThreshold (1L << 2)

#define DvKeyClickPercent (1L<<0)

#define DvPercent (1L<<1)

#define DvPitch (1L<<2)

#define DvDuration (1L<<3)

#define DvLed (1L<<4)

#define DvLedMode (1L<<5)

#define DvKey (1L<<6)

#define DvAutoRepeatMode (1L<<7)

#define DvString (1L << 0)

#define DvInteger (1L << 0)

#define DeviceMode (1L << 0)

#define Relative 0

81

X I nput Extension Library X11, Release 6.4

#define Absolute 1

/* Merged from Metrolink tree for XINPUT stuff */

#define TS_Raw 57

#define TS_Scaled 58

#define SendCoreEvents 59

#define DontSendCoreEvents 60

/* End of merged section */

#define ProximityState (1L << 1)

#define InProximity (0L << 1)

#define OutOfProximity (1L << 1)

#define AddToList 0

#define DeleteFromList 1

#define KeyClass 0

#define ButtonClass 1

#define ValuatorClass 2

#define FeedbackClass 3

#define ProximityClass 4

#define FocusClass 5

#define OtherClass 6

#define KbdFeedbackClass 0

#define PtrFeedbackClass 1

#define StringFeedbackClass 2

#define IntegerFeedbackClass 3

#define LedFeedbackClass 4

#define BellFeedbackClass 5

#define _devicePointerMotionHint 0

#define _deviceButton1Motion 1

#define _deviceButton2Motion 2

#define _deviceButton3Motion 3

#define _deviceButton4Motion 4

#define _deviceButton5Motion 5

#define _deviceButtonMotion 6

#define _deviceButtonGrab 7

#define _deviceOwnerGrabButton 8

#define _noExtensionEvent 9

#define XI_BadDevice 0

#define XI_BadEvent 1

#define XI_BadMode 2

#define XI_DeviceBusy 3

#define XI_BadClass 4

/* Make XEventClass be a CARD32 for 64 bit servers. Don’t affect client

* definition of XEventClass since that would be a library interface change.

* See the top of X.h for more _XSERVER64 magic.

82

X I nput Extension Library X11, Release 6.4

*/

#ifdef _XSERVER64

typedef CARD32 XEventClass;

#else

typedef unsigned long XEventClass;

#endif

/***

*

* Extension version structure.

*

*/

typedef struct {

int present;

short major_version;

short minor_version;

} XExtensionVersion;

#endif /* _XI_H_ */

83

X I nput Extension Library X11, Release 6.4

84

Table of Contents

1. Input Extension Overview . 1
1.1. Design Approach . 1
1.2. Core Input Devices . 1
1.3. Extension Input Devices . 1
1.3.1. Input Device Classes. 2
1.4. Using Extension Input Devices 2
2. Library Extension Requests. 3
2.1. Window Manager Functions. 3
2.1.1. Changing the Core Devices 3
2.1.2. Event Synchronization and Core Grabs. 5
2.1.3. Extension Active Grabs . 5
2.1.4. Passively Grabbing a Key 8
2.1.5. Passively Grabbing a Button 10
2.1.6. Thawing a Device . 13
2.1.7. Controlling Device Focus 15
2.1.8. Controlling Device Feedback. 17
2.1.9. Ringing a Bell on an Input Device 25
2.1.10. Controlling Device Encoding. 25
2.1.11. Controlling Button Mapping. 28
2.1.12. Obtaining the State of a Device 29
2.2. Events . 31
2.2.1. Event Types . 32
2.2.2. Event Classes. 32
2.2.3. Event Structures . 33
2.2.3.1. Device Key Events . 33
2.2.3.2. Device Button Events . 34
2.2.3.3. Device Motion Events . 35
2.2.3.4. Device Focus Events . 36
2.2.3.5. Device StateNotify Event 37
2.2.3.6. Device Mapping Event . 38
2.2.3.7. ChangeDeviceNotify Event 39
2.2.3.8. Proximity Events . 39
2.3. Event Handling Functions. 40
2.3.1. Determining the Extension Version 40
2.3.2. Listing Available Devices 41
2.3.3. Enabling and Disabling Extension Devices 43
2.3.4. Changing the Mode of a Device 45
2.3.5. Initializing Valuators on an Input Device 45
2.3.6. Getting Input Device Controls. 46
2.3.7. Changing Input Device Controls. 47
2.3.8. Selecting Extension Device Events 48
2.3.9. Determining Selected Device Events 50
2.3.10. Controlling Event Propagation 50
2.3.11. Sending an Event . 51
2.3.12. Getting Motion History. 53
2.3.12. Appendix A . 55

i

X I nput Extension Library X11, Release 6.4

ii

