X11 Input Extension Porting Document

X Version 11, Release 6.4

Geor ge Sachs Hewlett-Packard



Copyright © 1989, 1990, 1991 by Hewlett-Packard Company

Permission to use, cgpmodify, and distribute this documentation forygourpose and without fee is
hereby granted, provided that the edaopyright notice and this permission notice appear in all copies.
Hewlett-Packard makes no representations about the suitabilityyfpugsose of the information in this
document. lis provided "as is" without express or implied warrarititis document is only a draft stan-
dard of the X Consortium and is therefore subject to change.

Copyright © 1989, 1990, 1991 X Consortium

Permission is hereby granted, free of charge, yparson obtaining a cgpf this software and associated
documentation files (the “Software”), to deal in the Software without restriction, including without limita-
tion the rights to use, cgpmodify, merge, publish, distribute, sublicense, and/or sell copies of the Soft-

ware, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The abeoe mpyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PRVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENTN NO EVENT SHALL THE X
CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY WHETHER IN
AN ACTION OF CONTRACT TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNEC-
TION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or other-
wise to promote the sale, use or other dealings in this Software without prior written authorization from the
X Consortium.

X Window Systemis a trademark of X Consortium, Inc.



This document is intended to aid the process of integrating the X11 Input Extension into an X server.

Most of the functionality provided by the input extension is device- and implementation-independent, and
should require no changes. The functionality is implemented by routines that typically reside in the server
source tree directory extensions/sgfxinput. Thisextension includes functions to enable and disable

input extension devices, select input, grab and focus those device, query and elgandebktton map-

pings, and others. The only input extension requirements for the device-dependent part of X are that the
input devices be correctly initialized and inpué®s from those devices be correctly generated. Device-
dependent X is responsible for reading input data from the input device hardware and if neeésisary
matting it into X @ents.

The process of initializing input extension devices is similar to that used for the core devices, and is
described in the following sections. When multiple input devices are attached to X theredoice of

which devices to initially use as the core X pointer aggb&ard is left implementation-dependent. It is

also up to each implementation to decide whether all input devices will be opened by the server during its
initialization and kept open for the life of the serv&he alternatie is to gen only the X kyboard and X
pointer during server initialization, and open other input devices only when requested by a client to do so.
Either type of implementation is supported by the input extension.

Input extensionweents generated by the X server use the same 32-byte xEvenveriteae do core input
evants. Havever, additional information must be sent for input extension devices, requiring that multiple
XxEvents be generated each time data isveddiom an input extension diee. TheseEvents are com-
bined into a single client XEvent by the input extension libréryater section of this document describes
the format and generation of input extensioens.

1. Initializing Extension Devices

Extension input devices are initialized in the same manner as the core X wipasd®e®ice-Independent

X provides functions that can be called from DDX to initialize thes&ds. Whichfunctions are called

and when will vary by implementation, and will depend on whether the implementation opens all the input
devices gailable to X when X is initialized, or waits until a client requests that a device be opened. In the
simplest case, DDX will open all input devices as part of its initialization, when the Initinput routine is
called.

1.1. summary of Calling Sequence



X Input Extension Porting Document X11, Release 6.4

Device-Independent X | Device-Dependent X

Initinput -------------- > | -do device-specific initialization

| -call AddinputDerice (deviceProc,AutoStart)
AddInputDevice |
- creates DeicelntRec |
- records deiceProc |
- adds nev device to |
list of off_devices. |
sets dev->startup=AutoStart|
| -call one of:
| - RegisterPointerDevice (X pointer)
| -processinputProc = ProcessPointerEvents
| -RegisterkeyboardDevice (X kyboard)
| -processinputProc = ProcessKoardEvents
| -RegisterOtherDédce (extension device)
| -processinputProc = ProcessOtherEvents
I
I
InitAndStartDevices ----- > | calls deviceProc with parameters
| (DEVICE_INIT, AutoStart)
sets dev->inited = return |
value from de&iceProc |
I
| -in deviceProc, do one of:
| -call InitPointerDeviceStruct (X pointer)
| -call InitkeyboardDeviceStruct (Xdybd)
| -init extension device by calling some of:
| - InitkeyClassDeviceStruct
| - InitButtonClassDeviceStruct
| - InitValuatorClassDeviceStruct
| - InitValuatorAxisStruct
| - InitFocusClassDeviceStruct
| - InitProximityClassDeviceStruct
| - InitKkbdFeedbackClassDeviceStruct
| - InitPtrFeedbackClassDeviceStruct
| - InitLedFeedbackClassDeviceStruct
| - InitStringFeedbackClassDeviceStruct
| - InitintegerFeedbackClassDeviceStruct
| - InitBellFeedbackClassDeviceStruct
| -init device name and type by:
| -calling MakeAtom with one of the
| predefined names
| -calling AssignTypeAndName
I
I
for each device added |
by AddinputDeice, |

InitAndStartDevices |

calls EnableDevice if - EnableDevice calls deviceProc with
dev->startup & | (DEVICE_ON, AutoStart)

dev->inited |



X Input Extension Porting Document X11, Release 6.4

If deviceProc returns | - core devices are moenabled, extension
Success, EnableDiee | devices are ne available to be accessed
mave the device from| through the input extension protocol
inputinfo.off_devices | requests.
to inputinfo.deices |

1.2. Initialization Called From I nitlnput

Initinput is the first DDX input entry point called during X server startup. This routine is responsible for
device- and implementation- specific initialization, and for calling AddinputDevice to create and initialize
the DevicelntRec structure for each inpwtide. AddIinputDeice is passed the address of a procedure to
be called by the DIX routine InitAndStartDevices when input devices are enabled. This procedure is
expected to perform X initialization for the input device.

If the device is to be used as the X pointddX should then call RegisterPointerDevice, passing the Devi-
celntRec pointerto initialize the device as the X pointer.

If the device is to be used as the e{toard, DDX should instead call RegistegkoardDevice to initialize
the device as the Xeiyboard.

If the device is to be used as an extension device, DDX should instead call RegisterOtherDevice, passing
the DevicelntPtr returned by AddinputDevice.

A sample Initinput implementation is shown b&lo



X Input Extension Porting Document X11, Release 6.4

Initinput(argc,argv)
{
int i, numdevs, Readlnput();
DevicelntPtr dev;
LocalDevice localdevs[LOCAL_MAX_DEVS];
DeviceProc kbdproc, ptrproc, extproc;

/**************************************************************

* Open the appropriate input devices, determine which are
* available, and choose an X pointer and &foard device

* in some implementation-dependent manner.
***************************************************************/

open_input_devices (&numdevs, localdevs);

/**************************************************************

* Regster a WakeupHandler to handle input when it is generated.
***************************************************************/

RegisterBlockAndWakeupHandlers (NoopDDA, Readlnput, NULL);

/**************************************************************

* Regster the input devices with DIX.

***************************************************************/

for (i=0; i<numdevs; i++)

{
if (localdevs|i].use == IsXkEyboard)
{
dev = AddInputDevice (kbdproc, TRUE);
RegisterieyboardDevice (dev);
}

else if (localdevs[i].use == IsXPointer)
{
dev = AddInputDevice (ptrproc, TRUE);
RegisterPointerDevice (dev);

}

else
{
dev = AddInputDevice (extproc, FALSE);
RegisterOtherDevice (dev);
}
if (dev == NULL)
FatalError ("Too maw input devices.");
dev->devicePriate = (pointer) &localdevsli];

}

1.3. Initialization Called From InitAndStartDevices

After Initinput has returned, InitAndStartDevices is the DIX routine that is called to enable input devices.
It calls the device control routine that was passed to AddinputDevice, with a mode value of DEVICE_INIT.
The action taken by the device control routine dependswritteodevice is to be used. If the device is to

be the X pointerthe device control routine should call InitPointerDeviceStruct to initialize it. If the device

is to be the X &yboard, the device control routine should call legoardDeiceStruct. Sincénput

extension devices may support various combinationgy, outtons, valuators, and feedbacks, each class



X Input Extension Porting Document X11, Release 6.4

of input that it supports must be initialized. Entry points are defined by DIX to initialize each of the sup-
ported classes of input, and are described in the following sections.

A sample device control routine called from InitAndStartDevices is showmvbelo



X Input Extension Porting Document

Bool extproc (de, mode)
DevicelntPtr dev;
int mode;

{

LocalDevice *localde = (LocalDevice *) dev->deviceRréte;

switch (mode)
{
case DEVICE_INIT:
if (strcmp(localdev->name, XI_TABLET) == 0)

{

/****************************************************

* This device reports proximityas buttons,
* reports tvo axes of motion, and can be focused.
* |t also supports the same feedbacks as the X pointer

* (acceleration and threshold can be set).
****************************************************/

InitButtonClassDeviceStruct (debutton_count, button_map);
InitValuatorClassDeviceStruct (ddocaldev->n_axes,);
motionproc, MOTION_BUF_SIZE, Absolute);
for (i=0; i<localdev->n_axes; i++)
InitValuatorAxisStruct (de i, min_val, max_val,
resolution);
InitFocusClassDeviceStruct (dev);
InitProximityClassDeviceStruct (dev);
InitPtrFeedbackClassDeviceStruct\{dp_controlproc);

}
else if (strcmp(localdev->name, XI_BUTTONBOX) == 0)

{

/****************************************************

* This device hasdys and LEDs, and can be focused.
****************************************************/

Initk eyClassDeviceStruct (#esyms, modmap);
InitFocusClassDeviceStruct (dev);
InitLedFeedbackClassDeviceStruct\{diedcontrol);

}
else if (strcmp(localdev->name, XI_KNOBBOX) == 0)

{

/****************************************************

* T his device reports motion.

* |t can be focused.
****************************************************/

InitValuatorClassDeviceStruct (ddocaldev->n_axes,);
motionproc, MOTION_BUF_SIZE, Absolute);
for (i=0; i<localdev->n_axes; i++)
InitValuatorAxisStruct (de i, min_val, max_val,
resolution);
InitFocusClassDeviceStruct (dev);
}
localdev->atom =
MakeAtom(localdev->name, strlen(localdev->name), FALSE);

X11, Release 6.4



X Input Extension Porting Document X11, Release 6.4

AssignTypeAndName (delocaldev->atom, localdev->name);
break;

case DEVICE_ON:
AddEnabledDevice (localdev->file_ds);
dev->on = TRUE;
break;

case DEVICE_OFF:
dev->on = FALSE;
RemaweEnabledDevice (localdev->file_ds);
break;

case DEVICE_CLOSE:
break;

}
}

The device control routine is called with a mode value of DEVICE_ON by the DIX routine EnableDevice,
which is called from InitAndStartDeces. Whercalled with this mode, it should call AddEnabledDevice
to cause the server to begin checking f@ilable input from this device.

>From InitAndStartDevices, EnableDevice is called for all devices thvattha "inited" and "startup”
fields in the DevicelntRec set to UE. The"inited" field is set by InitAndStartDevices to the value
returned by the deviceproc when called with a mode value of DEVICE. [Ni& "startup” field is set by
AddInputDevice to value of the second parameter (autoStart).

When the server is first initialized, it should only be checking for input from the coegtddrd and

pointer One way to accomplish this is to call AddInputDevice for the coreybdard and pointer with an
autoStart value equal to TRUE, while calling AddinputDevice for input extension devices with an autoStart
value equal to ALSE. If this is done, EnableDevice will skip all input extension devices during server ini-
tialization. Inthis case, the OpeninputDevice routine should set the "startup" field to TRUE when called
for input extension deces. Thiswill cause ProcXOpeninputDevice to call EnableDevice for those devices
when a client first does an XOpenDevice request.

1.4. DIX Input ClassInitialization Routines
DIX routines are defined to initialize each of the defined input classes. The defined classes are:
- KeyClass - the device hasys.
- ButtonClass - the device has buttons.
- ValuatorClass - the device reports motion data or positional data.
- Proximitylass - the device reports proximity information.
- FocusClass - the device can be focused.
- FeedbackClass - the device supports some kind of feedback

DIX routines are provided to initialize the X pointer amyidoard, as in previous releases of X. During X
initialization, InitPointerDeviceStruct is called to initialize the X poingad InitkeyboardDeviceStruct is
called to initialize the X &board. Therés no corresponding routine for extension input devices, since
they do rot all support the same classes of input. Instead, DDX is responsible for the initialization of the
input classes supported by extensiovicks. Adescription of the routines provided by DIX to perform

that initialization follows.

1.4.1. InitKeyClassDeviceStruct

This function is provided to allocate and initialize eyKlassRec, and should be called for extension
devices that hae keys. Itis passed a pointer to the device, and pointers to arragyyfrks and modifiers
reported by the deéce. Itreturns FALSE if the KyClassRec could not be allocated, or if the maps for the
keysyms and and modifiers could not be allocated. Its parameters are:



X Input Extension Porting Document X11, Release 6.4

Bool

InitK eyClassDeviceStruct(depKeySyms, pModifiers)
DevicelntPtr dev;
KeySymsPtr pleySyms;
CARDS8 pMadifiers[];

The DIX entry point InitkeyboardDeviceStruct calls this routine for the coreeytloard. Itmust be called
explicitly for extension devices that Vma keys.

1.4.2. InitButtonClassDeviceStruct

This function is provided to allocate and initialize a ButtonClassRec, and should be called for extension
devices that hee tuttons. Itis passed a pointer to the device, the number of buttons supported, and a map
of the reported button codes. It returns FALSE if the ButtonClassRec could not be allocated. Its parame-
ters are:

Bool

InitButtonClassDeviceStruct(denumButtons, map)
register DevicelntPtr dev;
int numButtons;
CARDS8 *map;

The DIX entry point InitPointerDeviceStruct calls this routine for the core X poiftterust be called
explicitly for extension devices that \&a kuttons.

1.4.3. InitValuator ClassDeviceStruct

This function is provided to allocate and initialize a ValuatorClassRec, and should be called for extension
devices that hee valuators. lis passed the number of axes of motion reported by the device, the address of
the motion history procedure for the device, the size of the motion history, laaffahe mode (Absolute

or Relatve) of the deice. Itreturns FALSE if the ValuatorClassRec could not be allocated. Its parameters
are:

Bool
InitValuatorClassDeviceStruct(denumAxes, motionProc, numMotionEvents, mode)
DevicelntPtr dev;
int (*motionProc)();
int numAxes;
int numMotionEvents;
int mode;

The DIX entry point InitPointerDeviceStruct calls this routine for the core X poiftterust be called
explicitly for extension devices that report motion.

1.4.4. InitValuator AxisStruct

This function is provided to initialize an XAxisInfoRec, and should be called for core and extension devices
that hae wvaluators. Thepace for the XAxisIinfoRec is allocated by the InitValuatorClassDeviceStruct
function, but is not initialized.

InitValuatorAxisStruct should be called once for each axis of motion reported byibe.dEachnvoca-

tion should be passed the axis number (starting with 0), the minimum value for that axis, the maximum
value for that axis, and the resolution of the device in counts per.niktee device reports relag

motion, 0 should be reported as the minimum and maximalaes. Init\AluatorAxisStruct has the follow-
ing parameters:



X Input Extension Porting Document X11, Release 6.4

InitValuatorAxisStruct(de, axnum, mirval, maxval, resolution)
DevicelntPtr dev;
int axnum;
int minval;
int maxval,
int resolution;

This routine is not called by InitPointerDeviceStruct for the core X poiftenust be called explicitly for
core and extension devices that report motion.

1.4.5. InitFocusClassDeviceStruct

This function is provided to allocate and initialize a FocusClassRec, and should be called for extension
devices that can be focused. It is passed a pointer to the device, and returns FALSE if the allocation fails.
It has the following parameter:

Bool
InitFocusClassDeviceStruct(dev)
DevicelntPtr dev;

The DIX entry point InitkeyboardDeviceStruct calls this routine for the coreeytloard. Itmust be called
explicitly for extension devices that can be focused. Whether or not a particular device can be focused is
left implementation-dependent.

1.4.6. InitProximityClassDeviceStruct

This function is provided to allocate and initialize a ProximityClassRec, and should be called for extension
absolute pointing devices that report proximitlis passed a pointer to the device, and returns FALSE if
the allocationdils. Ithas the following parameter:

Bool
InitProximityClassDeviceStruct(dev)
DevicelntPtr dev;

1.4.7. Initializing Feedbacks

1.4.7.1. InitKbdFeedbackClassDeviceStruct

This function is provided to allocate and initialize a KbdFeedbackClassRec, and may be called for exten-
sion devices that support some or all of the feedbacks that theegybmakd supports. It is passed a pointer

to the device, a pointer to the procedure that sounds the bell, and a pointer to the device control procedure.
It returns FALSE if the allocation fails, and has the following parameters:

Bool

InitKbdFeedbackClassDeviceStructydbellProc, controlProc)
DevicelntPtr dev;
void (*bellProc)();
void (*controlProc)();

The DIX entry point InitkeyboardDeviceStruct calls this routine for the coreeytloard. Itmust be called

explicitly for extension devices that \mathe same feedbacks aseythoard. Soméeedbacks, such as

LEDs and bell, can be supported either with a KbdFeedbackClass or with BellFeedbackClass and LedFeed-
backClass feedbacks.

1.4.7.2. InitPtr Feedback ClassDeviceStruct

This function is provided to allocate and initialize a PtrFeedbackClassRec, and should be called for exten-
sion devices that alothe setting of acceleration and threshold. It is passed a pointer to the device, and a
pointer to the device control procedure. It returns FALSE if the allocation fails, and has the following



X Input Extension Porting Document X11, Release 6.4

parameters:

Bool
InitPtrFeedbackClassDeviceStruct¢deontrolProc)
DevicelntPtr dev;
void (*controlProc)();

The DIX entry point InitPointerDeviceStruct calls this routine for the core X poiftterust be called
explicitly for extension devices that support the setting of acceleration and threshold.

1.4.7.3. InitL edFeedback ClassDeviceStruct

This function is provided to allocate and initialize a LedFeedbackClassRec, and should be called for exten-
sion devices that e LEDs. Itis passed a pointer to the device, and a pointer to the device control proce-
dure. ltreturns FALSE if the allocation fails, and has the following parameters:

Bool
InitLedFeedbackClassDeviceStruct¢deontrolProc)
DevicelntPtr dev;
void (*controlProc)();

Up to 32 LEDs per feedback can be supported, and a device neyhitiple feedbacks of the same type.

1.4.7.4. InitBellFeedback ClassDeviceStruct

This function is provided to allocate and initialize a BellFeedbackClassRec, and should be called for exten-
sion devices that e a lell. Itis passed a pointer to the device, and a pointer to the device control proce-
dure. ltreturns FALSE if the allocation fails, and has the following parameters:

Bool

InitBellFeedbackClassDeviceStruct{geellProc, controlProc)
DevicelntPtr dev;
void (*bellProc)();
void (*controlProc)();

1.4.7.5. InitStringFeedback ClassDeviceStruct

This function is provided to allocate and initialize a StringFeedbackClassRec, and should be called for
extension devices that ¥ a dsplay upon which a string can be displayed. It is passed a pointer to the
device, and a pointer to the device control procedure. It returns FALSE if the allocation fails, and has the
following parameters:

Bool
InitStringFeedbackClassDeviceStruct{deontrolProc, max_symbols,
num_symbols_supported, symbols)
DevicelntPtr dev;
void (*controlProc)();
int max_symbols:
int num_symbols_supported,;
KeySym *symbols;

1.4.7.6. Initlnteger Feedback ClassDeviceStruct

This function is provided to allocate and initialize an IntegerFeedbackClassRec, and should be called for
extension devices that ¥ a dsplay upon which an integer can be displayed. It is passed a pointer to the
device, and a pointer to the device control procedure. It returns FALSE if the allocation fails, and has the
following parameters:

10



X Input Extension Porting Document X11, Release 6.4

Bool
InitintegerFeedbackClassDeviceStruct(dmntrolProc)
DevicelntPtr dev;
void (*controlProc)();

1.5. Initializing The Device Name And Type

The device name and type can be initialized by calling AssignTypeAndName with the following parame-
ters:

void

AssignTypeAndName(detype, name)
DevicelntPtr dev;
Atom type;
char *name;

This will allocate space for the device name and/¢bp hame that was passed. The device type can be
obtained by calling MakeAtom with one of the names defined for inpitede MalkeAtom has the fol-
lowing parameters:

Atom

MakeAtom(name, len, makeit)
char *name;
int len;
Bool makeit;

Since the atom was already made when the input extension was initialized, the value of makeit should be
FALSE;

2. Closing Extension Devices

The DisableDevice entry point is provided by DIX to disable inpuices. Itcalls the device control rou-
tine for the specified device with a mode value of DEVICE_.OHR#e device control routine should call
RemaweEnabledDevice to stop the server from checking for input from that device.

DisableDevice is not called by yamput extension routines. It can be called from the CloselnputDevice
routine, which is called by ProcXCloseDevice when a client makes an XCloseDevice request. If Dis-
ableDevice is called, it should only be called when the last client using the extension device has terminated
or called XCloseDevice.

3. Implementation-Dependent Routines

Several input extension protocol requesty@amplementation-dependent entry points. &#f routines

are defined for these entry points and contained in the source file extensiensisgut/xstubs.c. Some
implementations may be able to use the default routines without change. The following sections describe
each of these routines.

3.1. AddOtherInputDevices

AddOtherinputDevice is called from ProcXListinputDevices as a result of an XListinputDevices protocol
request. lmay be needed by implementations that do not open extension input devices until requested to
do so by some client. These implementations may not initialize all devices when the X server starts up,
because some of those devices may be in use. Since the XListinputDevices function only lists those
devices that hee teen initialized, AddOtherInputDevices is called teegDDX a chance to initialize any
previously ungailable input devices.

A sample AddOtherInputDevices routine might loolelike following:

11



X Input Extension Porting Document X11, Release 6.4

void
AddOtherinputDevices ()
{

DevicelntPtr dev;
inti;

for (i=0; i<MAX_DEVICES; i++)

{

if (local_devli].initialized && available(local_deV[i]))
{
dev = (DevicelntPtr) AddinputDevice (local_dev[i].deviceProc, TRUE);
dev->public.devicePvete = local_devfi];
RegisterOtherDevice (dev);
dev->inited = ((*dev->deviceProc)(deDEVICE_INIT) == Success);
}

}

}

The default AddOtherlnputDevices routine in xstubs.c does nothing. If all input extension devices are ini-
tialized when the server starts up, it can be left as a null routine.

3.2. OpenlnputDevice

Some X server implementations open all input devices when the server is initializedardose them.

Other implementations may open only the X pointer abdard devices during server initialization, and

open other input devices only when some client makes an XOpenDevice request. This entry point is for the
latter type of implementation.

If the physical device is not already open, it can be done in this routine. In this case, the server must keep
track of the fact that one or more clientsd#ne device open, and physically close it when the last client
that has it open makes an XCloseDevice request.

The default implementation is to do nothing (assume all input devices are opened during X server initializa-
tion and kept open).

3.3. Closel nputDevice

Some implementations may close an input device when the last client using that device requests that it be
closed, or terminates. CloselnputDevice is called from ProcXCloseDevice when a client makes an
XCloseDevice protocol request.

The default implementation is to do nothing (assume all input devices are opened during X server initializa-
tion and kept open).

3.4. SetDeviceM ode

Some implementations support input devices that can report either absolute positional dataeor relati
motion. TheXSetDeviceMode protocol request is provided tovall@DX to change the current mode of
such a device.

The default implementation is tonadys return a BadMatch errolf the implementation does not support
ary input devices that are capable of reporting both velatbtion and absolute position information, the
default implementation may be left unchanged.

3.5. SetDeviceValuators

Some implementations support input devices thatvaheir valuators to be set to an initialue. The
XSetDeviceValuators protocol request is provided toralldX to set the valuators of such a device.

The default implementation is tonadys return a BadMatch errolf the implementation does not support
ary input devices that are alitheir valuators to be set, the default implementation may be left unchanged.

12



X Input Extension Porting Document X11, Release 6.4

3.6. ChangePointer Device

The XChangePointerDevice protocol request is provided to change which device is used as the X pointer.
Some implementations may maintain information specific to the X pointer in tlaeptata structure

pointed to by the DéacelntRec. ChangePointeridee is called to alle such implementations to e

that information to the mepointer deice. Thecurrent location of the X cursor is an example of the type

of information that might be affected.

The DevicelntRec structure that describes the X pointer device does not cordausBéc. Ithe device
that has been made into thewné pointer was previously a device that could be focused, ProcXChange-
PointerDevice will free the FocusRec associated with that device.

If the server implementation desires to alidients to focus the old pointer device (which iswszcessi-
ble through the input extension), it should call InitFocusClassDeviceStruct for the old pointer device.

The XChangePointerDevice protocol request also allows the client to choose which axeswfbiatee
device are used to me the X cursor in the X- and-irections. Ifthe axes are different than the default
ones, the server implementation should record that fact.

If the server implementation supports input devices with valuators that are not allowed to be used as the X
pointer they should be screened out by this routine and a BadDevice error returned.

The default implementation is to do nothing.

3.7. ChangeKeyboardDevice

The XChangekyboardDevice protocol request is provided to change which device is used as the X
keyboard. Somémplementations may maintain information specific to theejbkard in the priate data
structure pointed to by the BieelntRec. Change#§boardDevice is called to allosuch implementations
to move that information to the mekeyboard device.

The X keyboard device can be focused, and the DevicelntRec that describes that devicedusRad- If
the device that has been made into the Xi&keyboard did not previously ke a FeusRec, ProcX-
ChangelkeyboardDevice will allocate one for it.

If the implementation does not want clients to be able to focus the agtydrd (which has mobecome
awailable as an input extension device) it should call DeleteFocusClassDeviceStruct to free the FocusRec.

If the implementation supports input devices widlykthat are not allowed to be used as thesjbbkard,
they should be checked for here, and a BadDevice error returned.

The default implementation is to do nothing.

4. Input Extension Events

Events accessed through the input extension are analogous to the coreemtsubat hae dfferent event
types. Thg are of typedDeviceK eyPress, DeviceK eyRelease, DeviceButtonPress, DeviceButtonRe-
lease, DeviceDeviceM otionNotify, DeviceProximityln, DeviceProximityOut, and DeviceValuator.
These gent types are not constants. Insteadyifre external integers defined by the input extension.
Their actual values will depend on which extensions are supported by a agahide order in which they
are initialized.

The data structures that define thegmts are defined in the fiextensiong/include/X1proto.h. Other
input extension constants needed by DDX are defined in trextidesions/include/XI.h.

Some gents defined by the input extension contain more information than can be contained in the 32-byte
xEvent data structurelo snd this information to clients, DDX must generate twnmore 32-byte wire
evants. Thefollowing sections describe the contents of thesats.

4.1. Device Key Events

DeviceK eyPresss evants contain all the information that is contained in a &mgPress event, and also the
following additional information:

13



X Input Extension Porting Document X11, Release 6.4

- deviceid - the identifier of the device that generated tieate

- device_state - the state ofyamodifiers on the device that generated thene
- num_valuators - the number of valuators reported in théste

- first_valuator - the first valuator reported in thisrg.

- valuatorO through valuator5 - the values of the valuators.

In order to pass this information to the input extension libtexy 32-byte wire gents must be generated
by DDX. The first has anvent type ofDeviceK eyPress, and the second has awveat type ofDeviceValu-

ator.
The following code fragment showsviathe two wire events could be initialized:

extern int DeviceleyPress;

DevicelntPtr dev;

xEvent xXE[2];

CARDS id, num_valuators;

INT16 X, y, pointerx, pointery;

Time timestamp;

devicekeyButtonPointer *ev = (devicekeyButtonPointer *) xE;
deviceValuator *xv;

xev->type = DeviceleyPress; /*defined by input extension */
xev->detail = leycode; [*key pressed on this device */
xev->time = timestamp; [* same as for coners */
Xev->rootX = pointerx; /* x location of core pointer */
xev->rootY = pointery; /*y location of core pointer */

/******************************************************************/

I* */

[* The following field does not exist for core inpweats.  */

[* It contains the device id for the device that generated the */

[* event, and also indicates whether more than one 32-byte wire */
[* event is being sent. */

I* */

/******************************************************************/

xev->deviceid = dev->id | MORE_EVENTS; /* sending more than 1*/

/******************************************************************/

/* Fields in the second 32-byte wireeat: */
/******************************************************************/

xv = (deviceValuator *) ++av;,

xv->type = Device¥luator; [*event type of secondvent */
xv->deviceid = de->id; /* id of this deice *
xv->num_valuators = 0; /* no valuators being sent */
xv->device_state 9; /* will be filled in by DIX */

4.2. Device Button Events

DeviceButton events contain all the information that is contained in a core buttemt,eand also the same

additional information that BeviceKey event contains.

14



X Input Extension Porting Document X11, Release 6.4

4.3. Device Motion Events

DeviceMation events contain all the information that is contained in a core motiemt,eand also addi-
tional valuator information. At least twire events are required to contain this information. The follow-
ing code fragment shows Wwdhe two wire events could be initialized:

extern int DeviceMotionNotify;

DevicelntPtr dev;

xEvent xXE[2];

CARDS id, num_valuators;

INT16 X, y, pointerx, pointery;

Time timestamp;

devicekeyButtonPointer *ev = (devicekeyButtonPointer *) xE;
deviceValuator *xv;

xev->type = D@iceMotionNotify; /* defined by input extension */

xev->detail = leycode; [*key pressed on this device */
xev->time = timestamp; [* same as for conets */

Xev->rootX = pointerx; /* x location of core pointer */
xev->rootY = pointery; /*y location of core pointer */

/******************************************************************/

I* */

[* The following field does not exist for core inpweats.  */

[* It contains the device id for the device that generated the */

[* event, and also indicates whether more than one 32-byte wire */
[* event is being sent. */

I* */

/******************************************************************/

xev->deviceid = dev->id | MORE_EVENTS; /* sending more than 1*/

/******************************************************************/

/* Fields in the second 32-byte wireeat: */
/******************************************************************/

xv = (deviceValuator *) ++av;,

xv->type = Device¥luator; [*event type of secondvent */
xv->deviceid = de->id; /* id of this deice *
Xv->num_valuators = 2; [* 2 valuators being sent  */
xv->first_valuator = 0O; [* first valuator being sent */
xv->device_state 9; /* will be filled in by DIX */
xv->valuator0O = x; [* first axis of this dece */
xv->valuatorl =v; [* second axis of this device */

Up to six axes can be reported in the deviceValuatarte If the device is reporting more than 6 axes,
additional pairs of DeviceMotionNotify and DeviceValuatoergs should be sent, with the first_valuator
field set correctly.

4.4. Device Proximity Events

Some input devices that report absolute positional information, such as graphics tablets and touchscreens,
may report proximity eents. Proximityln events are generated when a pointing device éiléylus, or in

the case of a touchscreen, the wsstimger comes into close proximity with the surface of the input device.
ProximityOut events are generated when the stylus or fingerekethe proximity of the input devices sur-

face.

15



X Input Extension Porting Document X11, Release 6.4

Proximity events contain almost the same information as butients. Theevent type isProximityln or
ProximityOut, and there is no detail information.

16



X Input Extension Porting Document X11, Release 6.4

17



