Extending X for Double-Buffering, Multi-Buffering, and Stereo

Jeffrey Friedberg
Larry Seiler
Jeff Vroom

Version 3.3
January 11, 1990

TheMulti-Buffering exension described hemas a draft standaf of the
X Consortium prior to Release 6.1. It has been superseded by the Double Buffer
Extension (DBE). DBE is an X Consortium Stamdas of Rlease 6.1.

Introduction

Several proposals ha been written that address some of the issues surrounding the support of double-
buffered, multi-buffered, and stereo windows in the X Win@ystem:

. Extending X for Double-Bufferingeffrey Friedberg, Larry SeileiRandi Rost.

. (Proposal for) Double-Buffering Extensiqrieff Vroom.

. An Extension to X.11 for Displays with Multiple Bufféayid S.H. Rosenthal.
. A Multiple Buffering/Stereo Proposdlark Patrick.

The authors of this proposalveatied to unify the abee documents to yield a proposal that incorporates
support for double-buffering, multi-buffering, and stereo in a way that is acceptable to all concerned.

Goals
Clients should be able to:
. Associate multiple buffers with a windo

Copyright © 1989 Digital Equipment Corporation.

Permission to use, cppmodify, and distribute this documentation forygourpose and without fee is hereby
granted, provided that the almpyright notice and this permission notice appear in all copies. Digital Equip-
ment Corporation makes no representations about the suitabilityyfpugrose of the information in this docu-
ment. Thisdocumentation is provided "as is" without express or implied warrdititis document is subject to
change.

Copyright © 1989, 1994 X Consortium

Permission is hereby granted, free of charge, ygparson obtaining a cgmf this software and associated doc-
umentation files (the “Software”), to deal in the Software without restriction, including without limitation the
rights to use, caop modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to per-
mit persons to whom the Software is furnished to do so, subject to the following conditions:

The abee mpyright notice and this permission notice shall be included in all copies or substantial portions of
the Software.

THE SOFTWARE IS PRVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-

NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENTN NO EVENT SHALL THE X
CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY WHETHER IN AN
ACTION OF CONTRACT TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION

WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to
promote the sale, use or other dealings in this Software without prior written authorization from the X Consor-
tium.

X Window Systers a trademark of X Consortium, Inc.

. Paint in aty buffer associated with a windo

. Display ary buffer associated with a windo

. Display a series of buffers in a winddn rapid succession to acki@asmoothanimation.
. Request simultaneous display of different buffers in different windows.

In addition, the extension should:
. Allow existing X applications to run unchanged.
. Support a range of implementation methods that can capitalize on existing hardware features.

Image Buffers
Normal windows are created using the stan@xshteWindow request:

CreateWindow
parent WINDOW
w_id :WINDOW
depth ‘CARDS8
visual :VISUALID or CopyFromParent
X,y 1INT16

width, height : INT16
border_width INT16
vaue_mask BITMASK
value list :LISTofVALUE

This request allocates a set of windaitributes and a buffer into which an image can bedraThecon-
tents of thismage tuffer will be displayed when the windois mapped to the screen.

To upport double-buffering and multi-buffering, we introduce the notion that additional image buffers can
be created and bound together to form groups. The following rules will apply:

. All image buffers in a group will va the same visual type, depth, and geometry (ie: width and

height).
. Only one image buffer per group can be displayed at a time.
. Draw operations can occur toyaimage buffer at gntime.

. Window management requestglapWindow, DestroyWindow, ConfigureWindow, etc...) afect
all image buffers associated with a wimdo

. Appropriate resize and exposuker@s will be generated fovery image buffer that is affected by a
window management operation.

By allowing drav operations to occur on gimage buffer at antime, a client could, on a multi-threaded
multi-processor servesimultaneously build up images for displajo support this, each buffer mustiea

its own resource ID. Since buffers are different than windows and pixmaps (buffers are not hierarchical and
pixmaps cannot be displayed) ausourceBuffer, is introduced. FurthermoraBuffer is also a

Drawable, thus drav operations may also be performed on buffers simply by passing a buffer ID to the
existing pixmap/windw interface.

To dlow existing X applications to work unchanged, we assume a winBgassed in a dvarequest, for
a multi-buffered windav, will be analiasfor the ID of the currently displayed image buffémy draw
requests (egGetimage) on the windav will be relative o the displayed image buffer.

In window management requests, only a wind® will be accepted. Requests likgieryTree, will con-
tinue to return only winde ID’s. Mostevents will return just the winde ID. Somenew events, described
in a subsequent section, will return a buffer ID.

When a windw has backing store the contents of the win@doe saed off-screen. Likewise, when the
contents of an image buffer of a multi-buffer wimdis saved off-screen, it is said to kia backing store.
This applies to all image buffers, whether or noytire selected for display.

In some multi-buffer implementations, undisplayed buffers might be implemented using pixmaps. Since
the contents of pixmaps exist off-screen and are not affected by occlusion, these image buffers in effect
have backing store.

On the other hand, both the displayed and undisplayed image buffers might be implemented using a subset
of the on-screen pets. Inthis case, unless the contents of an image buffer eed efi-screen, these
image buffers in effect do notVebacking store.

Output to ag image buffer of an unmapped multi-buffered wiwdbat does not ha backing store is dis-
carded. Outpuip ary image buffer of a mapped multi-buffer wivdavill be performed; howeer, portions
of an image buffer may be occluded or clipped.

When an unmapped multi-buffered windbecomes mapped, the contents of Bnage buffer buffer that

did not hae backing store is tiled with the background and zero or more exposants are generated. If

no background is defined for the wingdhen the screen contents are not altered and the contents of any
undisplayed image buffers are undefined. If backing store was maintained for an imagé¢hlbufien
exposure eents are generated.

New Requests

The nev requestCreatelmageBuffers creates a group of image buffers and associates them with a normal
X window:

CreatelmageBuffers
w_id :WINDOW
buffers :LISTofBUFFER
update_action {Undefined,Background,Untouched,Copied}
update_hint {Frequent,Intermittent,Static}
=>
number_buffers : CARD16

(Errors: Windav, IDChoice, Value)

One image buffer will be associated with each ID passbdffers The first buffer of the list is referred to
as buffer[0], the next buffer[1], and so on. Each buffer willehthe same visual type and geometry as the
window. Buffer[0] will refer to the image buffer already associated with the winidband its contents

will not be modified. The displayed image buffer attribute is set to buffer[0].

Image buffers for the remaining ID{uffer[1],...) are allocated. If the windaois mapped, or if these
image buffers hae backing store, their contents will be tiled with the windsackground (if no back-
ground is defined, the buffer contents are undefined), and zero or more esgots&viél be generated for
each of these bigrs. Thecontents of an image buffer is undefined when the wiridanmapped and the
buffer does not hee backing store.

If the window already has a group of image buffers associated with it (ie: from a pr&vieatelmage-
Buffers request) the actions described BstroylmageBuffersare performed first (this will delete the
association of the previous buffer H£¥nd their buffers as well as de-allocate all buffers except for the one
already associated with the wivddD).

To dlow a erver implementation to efficiently allocate the buffers, the total number of buffers required and
the update action (mothey will behare during an update) is specified "up front" in the request. If the

server cannot allocate all the buffers requested, the total number of buffers actually allocated will be
returned. NaAlloc errors will be generated — buffer[0] camvays be associated with the existing dis-

played image buffer.

For example, an application that wants to animate a short movie loop may request 64 irffexge bk

server may only be able to support 16 image buffers of this type, size, and depth. The application can then
decide 16 buffers is sufficient and may truncate the movie loop, or it may decide it really needs 64 and will
free the buffers and complain to the user.

One might be tempted to provide a request that inquires whebh#fiers of a particular type, size, and
depthcouldbe allocated. But if the query is decoupled from the actual allocation, another client could
snheak in and takthe buffers before the original client has allocated them.

While ary buffer of a group can be selected for dispkmyne applications may display buffers in a pre-
dictable order (ie: the movie loop application). Tiseorder (buffer[0], buffer[1], ...) will be used as a hint
by the server as to which buffer will be displayestné client displaying buffers in this order may see a
performance impnement.

update_actionndicates what should happen to a previously displayed buffer when a different buffer
becomes displayed. Possible actions are:

Undefined The contents of the buffer that was last displayed will become undefined after the update.
This is the most efficient action since it allows the implementation to trash the contents

of the buffer if it needs to.

Background The contents of the buffer that was last displayed will be set to the background of the
window after the update. The background action allows devices to use a fast clear capa-
bility during an update.

Untouched The contents of the buffer that was last displayed will be untouched after the update.
Used primarily when cycling through images thatehdready been drawn.

Copied The contents of the buffer that was last displayed will become the same as those that are
being displayed after the update. This is useful when incrementally adding to an image.

update_hinindicates hw often the client will request a different buffer to be displayed. This hint will

allow smart server implementations to choose the most efficient means to support a multi-buffered window
based on the current need of the application (dumb implementations may choose to ignore this hint). Possi-
ble hints are:

Frequent An animation or movie loop is being attempted and the fastest, most efficient means for
multi-buffering should be employed.

Intermittent The displayed image will be changeary so often. This is common for images that
are displayed at a rate slower than a secéiodexample, a clock that is updated only
once a minute.

Static The displayed image buffer will not be changed tame soon. Typically set by an
application wheneer there is a pause in the animation.

To dsplay an image buffer the following request can be used:

DisplaylmageBuffers
buffers :LISTofBUFFER
min_delay @ :CARD16
max_delay CARD16

(Errors: Buffer Match)

The image buffers listed will become displayed as simultaneously as possible and the update action, bound
at CreatelmageBufferstime, will be performed.

A list of buffers is specified to allothe server to efficiently change the display of more than one wiatlo
a time (ie: when a global screen swap method is used). Attempting to simultaneously display multiple
image buffers from the same windds an eror (Match) since it violates the rule that only one image
buffer per group can be displayed at a time.

If a specified buffer is already displayedy @elays and update action will still be performed for that
buffer. In this instance, only the update actiorBafckgroundand possiblyjndefined will have any #ect
on the contents of the displayed bufféhese semantics alloan animation application to successfully
execute &en when there is only a single bufferadable for a windav.

When aDisplaylmageBuffersrequest is made to an unmapped multi-buffered wintiee effect of the
update action depends on whether the image buffeslvéd have backing store. When the target of the
update action is an image buffer that does nee lhacking store, output is discarded. When the target
image buffer does ka backing store, the update is performed; hestenvhen the source of the update is
an image buffer does notvyelbacking store (as in the case of update ac@iopied, the contents of target
image buffer will become undefined.

min_delayandmax_delayut a bound on helong the server should wait before processing the display
request. Br each of the windows to be updated by this request, andastielaymilli-seconds should
elapse since the last timeyaof the windows were updated; a@nsely, no window should hae © wait

more tharmmax_delaymilli-seconds before being updated.

min_delayallows an application telow dowran animation or movie loop so that it appears synchronized
at a rate the server can suppovegithe current loadFor example, amin_delayof 100 indicates the server
should wait at least 1/10 of a second since the last tignefahe windows were updated. rAin_delayof
zero indicates no waiting is necessary.

max_delaycan be thought of as an additional delay beyoird delaythe server is allowed to wait to facili-
tate such things as efficient update of multiple wimsloIf max_delaywvould require an update before
min_delayis satisfied, then the server should process the display request as soaniasdbi&yrequire-
ment is met.A typical value formax_delays zero.

To implement the ah@ functionality the time since the last update biaplaylmageBuffersrequest for

each multi-buffered winde needs to be sad as $ate by the servelThe server may delayecution of the
DisplaylmageBuffersrequest until the appropriate time (e.g. by requeuing the request after computing the
timeout); howeer, the entire request must be processed in one operation. Rexpoeston indivisibility

must be maintained. When a server is implemented with internal conguittenextension must adhere to

the same concurrepsemantics as those defined for the core protocol.

To explicitly clear a rectangular area of an image buffer to the wirthckground, the following request
can be used:

ClearimageBufferArea

buffer :BUFFER
X,y 1INT16
w, h : CARD16

exposures BOOL

(Errors: Buffer Value)

Like the X ClearArea requestx andy are relatie o the windows aigin and specify the upper-left corner

of the rectangle. Ividthis zero, it is replaced with the current wimdeidth minusx. If heightis zero it

is replaced with the current winddeight minusy. If the windav has a defined background tile, the rec-
tangle is tiled with a plane mask of all ones, a functioBayy, and a subwindow-mode @lipByChildren

If the windaw has backgroundlone the contents of the buffer are not changed. In either caaspa$ures

is true, then one or more exposuvergs are generated for regions of the rectangle that are either visible or
are being retained in backing store.

The group of image buffers allocated b@@atelmageBuffersrequest can be destroyed with the follow-
ing request:

DestroylmageBuffers
w_id :WINDOW

(Error: Window)

The association between the bufferd@d their corresponding image buffers are deletedy iArage
buffers not selected for display are de-allocated. If the wiridamot multi-buffered, the request is ignored.

Attributes
The following attributes will be associated with each wimdoat is multi-buffered:

displayed_buffer : CARD16

update_action {Undefined,Background,Untouched,Copied}
update_hint {Frequent,Intermittent,Static}

windovn_mode {Mono,Stereo}

buffers 'LISTofBUFFER

displayed_buffers set to théendexof the currently displayed image buffer (for stereo windows, this will be
the inde of the left buffer — the indeof the right buffer is simplyndex+1). window_modeéndicates

whether this winde is Monoor Stereo The ID for each buffer associated with the wiwds recorded in
thebufferslist. Theabove dtributes can be queried with the following request:

GetMultiBufferAttributes
w_id :WINDOW
=>
displayed_buffer : CARD16
update_action {Undefined,Background,Untouched,Copied}
update_hint {Frequent,Intermittent,Static}
windovn_mode {Mono,Stereo}
buffers 'LISTofBUFFER

(Errors: Windav, Access, Value)

If the windaw is not multi-buffered, aAccesserror will be generated. The only multi-buffer attribute that
can be explicitly set ispdate_hint Rather than hae a pecific request to set this attribute, a generic set
request is provided to allofor future expansion:

SetMultiBufferAttributes
w_id :WINDOW
vaue_mask BITMASK
value list :LISTofVALUE

(Errors: Windav, Match, Value)

If the windaw is not multi-buffered, aMatch error will be generated. The following attributes are main-
tained for each buffer of a multi-buffered window:

window : WINDOW
event_mask SETofEVENT
index : CARD16

side :{Mono,Left,Right}

windowindicates the winda this buffer is associated witlevent_maslspecifies whichents, releant to
buffers, will be sent back to the client via the associated buffer ID (initiallyerdseare selectedjndexis
the list position (0, 1, ...) of the buffesideindicates whether this buffer is associated with the left side or
right side of a stereo windo For non-stereo windows, this attribute will be sebono. These attributes
can be queried with the following request:

GetBufferAttributes
buffer :BUFFER
=
window : WINDOW
event_mask SETofEVENT
index : CARD16
side :{Mono,Left,Right}

(Errors: Buffer Value)

The only buffer attribute that can be explicitly set\ent_mask The only @ents that are valid afeéxpose
and the nevClobberNotify andUpdateNotify event (see Events section belp A Value error will be
generated if anvent not selectable for a buffer is specified in eenemask. Rather than ¥ a pecific
request to set this attribute, a generic set request is providedwd@ilfuture expansion:

SetBufferAttributes
buffer :BUFFER
vaue_mask BITMASK
value list :LISTofVALUE

(Errors: Buffer Value)

Clients may want to query the server about basic multi-buffer and stereo capability on a per screen basis.
The following request returns a large list of information that would most likely be read once by Xlib for
each screen, and used as a data base for other Xlib queries:

GetBufferInfo

root :WINDOW
=>
info : LISTOfSCREEN_INFO

WhereSCREEN_INFO andBUFFER_INFO are defined as:

SCREEN_INFO [normal_info : LISTofBUFFER_INFO,
stereo_info : LISTOfBUFFER_INFO]

BUFFER_INFO f[visual :VISUALID,
max_buffers : CARD16,
depth ‘CARDS]

Information rgarding multi-buffering of normal (mono) windows is returned intloemal_infolist. The
stereo_infdist contains information about stereo wimdo If thestereo_infdist is empty sereo windows
are not supported on the screenmHx_bufferss zero, the maximum number of buffers for the depth and
visual is a function of the size of the created wim@nd current memory limitations.

The following request returns the major and minor version numbers of this extension:

GetBufferVersion
=>
major_number CARDS8
minor_number CARDS8

The version numbers are an escape hatch in case future revisions of the protocol are.nbtgsaaral,

the major version would increment for incompatible changes, and the minor version would increment for
small upward compatible changes. Barring changes, the major version will be 1, and the minor version will
be 1.

Events

All events normally generated for single-buffered windows are also generated for multi-buffered windows.
Most of theseeents (ie:ConfigureNotify) will only be generated for the windoand not for each buffer.
These eents will return a windw ID.

Exposeevents will be generated for both the windand ary buffer afected. Wherthis esent is generated
for a buffer the same\eent structure will be used but a buffer ID is returned instead of a wihbo
Clients, when processing theses, will knav whether an ID returned in ameat structure is for a win-
dow or a huffer by comparing the returned ID to the ones returned when thewierdbbuffer were cre-
ated.

GraphicsExposureandNoExposureare generated using whegeID is specified in the graphics opera-
tion. If awindow ID is specified, the eent will contain the winder ID. If a kuffer ID is specified, the
event will contain the buffer ID.

In some implementations, moving a wimdover a multi-buffered windev may cause one or more of its
buffers to get werwritten or become unwritablelo dlow a dient drawing into one of these buffers the
opportunity to stop drawing until some portion of the buffer is writable, the followief & added:

ClobberNotify
buffer : BUFFER
state {Unclobbered,PartiallyClobbered,FullyClobbered}

The ClobberNotify event is reported to clients selecti@obberNotifyon a buffer When a buffer that was
fully or partially clobbered becomes unclobbered, amiewith Unclobbereds generated. When a buffer
that was unclobbered becomes partially clobberedyent with PartiallyClobberedis generated. When a
buffer that was unclobbered or partially clobbered becomes fully clobbereggramvéh FullyClobbered

is generated.

ClobberNotify events on a gien buffer are generated before aByposeevents on that bufferut it is not
required that alClobberNotify events on all buffers be generated beforeEaiboseevents on all buffers.

The ordering oClobberNotify events with respect t¥isibilityNotify events is not constrained.

If multiple buffers were used as an image FIFO between an image server and the X displaheertrer
FIFO manager would léto know when a buffer that was previously displayed, has been undisplayed and
updated, as the side effect dDasplaylmageBuffersrequest. Thisllows the FIFO manager to load up a
future frame as soon as a buffer beconvaBadble. To support this, the followingent is added:

UpdateNotify
buffer : BUFFER

The UpdateNotify event is reported to clients selectikipdateNotifyon a buffer Whenever a buffer
becomesipdated(e.qg. its update action is performed as part DisplaylmageBuffersrequest), an
UpdateNotify event is generated.

Errors
The following error type has been added to support this extension:
Buffer A value for a BUFFER argument does not name a defined BUFFER.

-10-

Double-Buffering Normal Windows
The following pseudo-code fragment illustratesvhio create and display a double-buffered image:

/*

* Create a normal window
*/

CreateWindow(W...)

/*

* Create tvo image buers. Assumaefter displaybuffer

* contents become "undefined". Assume we will "frequently”
* update the displayAbort if we dont get two buffers,

*/

n = CreatelmageBuffers(WBO0,B1], Undefined, Frequent)

if (n I= 2) <abort>

/*

* M ap windav to the screen
*/

MapWindow(W)

/*

* Draw images using alternate buffers, displagre
*1/10 of a second. Note we ava1 first so it will
*"pop" on the screen

*/

while animating

{
<draw picture using B1>
DisplaylmageBuffers([B1], 100, 0)
<draw picture using BO>
DisplaylmageBuffers([B0], 100, 0)

}

/*

* Strip image buffers and lga window with
* contents of last displayed image buffer.
*/

DestroylmageBuffers(W)

-11-

Multi-Buffering Normal Windows

Multi-buffered images are also supported by these requests. The following pseudo-code fragment illus-
trates hw to create a a multi-buffered image and cycle through the images to simulate a movie loop:

/*

* Create a normal window
*/

CreateWindow(W...)

/*

* Create 'N’ image buérs. Assumafter displaybuffer

* contents are "untouched". Assume we will "frequently"

* update the displayAbort if we dont get all the buffers.

*/

n = CreatelmageBuffers(WBO0,B1,...,B(N-1)], Untouched, Frequent)
if (n I= N) <abort>

/*

* M ap windav to screen
*/

MapWindow(W)

/*
* Draw each frame of movie one per buffer
*/
foreach frame
<draw frame using B(i)>

/*
* Cycle through frames, one frameegy 1/10 of a second.
*/
while animating
{
foreach frame
DisplaylmageBuffers([B(i)], 100, 0)

-12-

Stereo Windows

How stereo windows are supported on a server is implementation depeAdsmnter may contain special-

ized hardware that allows left and right images to be toggled at field or frame rates. The stereo affect may
only be perceied with the aid of special viewing glasses. Tdigplayof a stereo picture should be inde-
pendent of he often the contents of the picture aggdatedby an application. Double and multi-buffering

of images should be possiblgjeadless of whether the image is displayed normally or in stereo.

To achieve tis goal, a simple extension to normal windows is suggested. Stereo windows are just lik
mal windows except the displayed image is made up of a left image buffer and a right imagelbufier
ate a stereo windg a dient makes the following request:

CreateStereoWindow
parent WINDOW
w_id :WINDOW
left, right : BUFFER
depth ‘CARDS8
visual :VISUALID or CopyFromParent
X,y 1INT16

width, height : INT16
border_width INT16
vaue_mask BITMASK
value list :LISTofVALUE

(Errors: Alloc, Color Cursot Match,
Pixmap, Value, Window)

This request, modeled after tBeeateWindow request, adds just twnew parametersleft andright. For
stereo, it is essential that one can distinguish whethemaaperation is to occur on the left image or right
image. Whilean internal mode could ta been added to achie tis, using tw buffer ID’s dlows clients

to simultaneously build up the left and right components of a stereo image. Thedeéys refer to (are
an alias for) the left and right image buffers that are curreigplayed

Like normal windows, the winde ID is used wheneer a window management operation is to be per-
formed. Window queries would also return this winddD (eg QueryTree) as would most gents. Like
the windav ID, the left and right buffer I3’ each hae their own @ent mask. Thg can be set and queried
using theSet/GetBufferAttributes requests.

Using the winda ID of a gereo winda in a daw request (egGetimage) results in pixels that arende-

fined Possible semantics are that both left and right images get drawn, or just a single side is operated on
(existing applications will hae o be e-written to explicitly use the left and right buffer $h arder to
successfully create, fetch, and store stereo images).

Having an expliciCreateStereoWindowrequest is helpful in that a server implementation willvkifimm
the onset whether a stereo windis desired and can return appropriate status to the client if it cannot sup-
port this functionality.

Some hardware may support separate stereo and non-stereo modes, perhaps with different vertical resolu-
tions. For example, the vertical resolution in stereo mode may be half that of non-stereo mode. Selecting
one mode or the other must be done through some means outside of this extension (eg: by providing a sepa-
rate screen for each hardware display mode). The screen attributes (ie: x/y resolution) for a screen that sup-
ports normal windows, may differ from a screen that supports stereo windowsehaevindows,

regardless of type, displayed on the same screen mustthe same screen attributes (ie: pixel aspect

ratio).

If a screen that supports stereo windows also supports normal windows, then the images presented to the
left and right eyes for normal windows should be the same (re:rimegtereo offset).

-13-

Single-Buffered Stereo Windows
The following shows he to create and display a single-buffered stereo image:
/*
* Create the stereo windp map it the screen,
* and drav the left and right images
*/
CreateStereoWindow(W, R, ...)

MapWindow(W)

<draw picture using L,R>

-14-

Double-Buffering Stereo Windows

Additional image buffers may be added to a stereo wirtdalow double or multi-buffering of stereo
images. Simplyse the th€reatelmageBuffersrequest. Egn numbered buffers (0,2,...) will be left
buffers. Odchumbered buffers (1,3,...) will be right ferfs. Displayabletereo images are formed by con-
secutve left/right pairs of image btdrs. For example, (buffer[0],buffer[1]) form the first displayable
stereo image; (buffer[2],buffer[3]) the next; and so on.

The CreatelmageBuffersrequest will only create pairs of left and right image buffers for stereo windows.
By always pairing left and right image buffers togetheplementations might be able to perform some
type of optimization. If an odd number of buffers is specifiddalae error is generated. All the rules
mentioned at the start of this proposal still apply to the image buffers supported by a sterao windo

To dsplay a image buffer pair of a multi-buffered stereo image, either the left buffer ID or right buffer ID
may be specified in BisplaylmageBuffersrequest, but not both.

To double-buffer a stereo window:
/*
* Create stereo windoand map it to the screen
*/
CreateStereoWindow(W, R, ...)

/*

* Create tvo pairs of image bdérs. Assumaifter display,

* buffer contents become "undefined". Assume we will "frequently
* update the displayAbort if we did get all the buffers.

*/

n = CreatelmageBuffers(WLO,R0,L1,R1], Undefined, Frequently)
if (n I= 4) <abort>

/*

* M ap windav to the screen
*/

MapWindow(W)

/*

* Draw images using alternate buffers,

* display every 1/10 of a second.

*/

while animating

{
<draw picture using L1,R1>
DisplaylmageBuffers([L1], 100, 0)

<draw picture using LO,R0>
DisplaylmageBuffers([LO], 100, 0)

-15-

Multi-Buffering Stereo Windows
To ¢ycle throughN stereo images:

/*

* Create stereo window

*/

CreateStereoWindow(W, R, ...)

/*

* Create N pairs of image efs. Assumafter display,

* buffer contents are "untouched”. Assume we will "frequently
* update the displayAbort if we dont get all the buffers.

*/

n = CreatelmageBuffers(WLO,RO,...,L(N-1),R(N-1)], Untouched, Frequently)
if (n I= N*2) <abort>

/*

* M ap windav to screen
*/

MapWindow(W)

/*
* Draw the left and right halves of each image
*/
foreach stereo image
<draw picture using L(i),R(i)>

/*
* Cycle through imagesvery 1/10 of a second
*/
while animating
{
foreach stereo image
DisplaylmageBuffers([L(i)], 100, 0)

-16-

Protocol Encoding

The official name of this extension is "Multi-Befing". Whenthis string passed QueryExtensionthe
information returned should be interpreted as follows:

major-opcode Specifies the major opcode of thidension. Thdirst byte of each extension request

should specify this value.
first-event Specifies the code that will be returned wkdobberNotify events are generated.
first-error Specifies the code that will be returned wBeiffer errors are generated.

The following sections describe the protocol encoding for this extension.

TYPES
BUFFER_INFO
4 VISUALID visual
2 CARD16 max-luffers
1 CARDS8 depth
1 unused
SETofBUFFER_EVENT
#x00008000 Exposure
#x02000000 ClobberNotify
#x04000000 UpdateNotify
EVENTS
ClobberNotify
1 xefirst-event code
1 unused
2 CARD16 sequencaumber
4 BUFFER luffer
1 date
0 Unclobbered
1 PartiallyClobbered
2 RullyClobbered
23 unused
UpdateNotify
1 first-event1 code
1 unused
2 CARD16 sequencaumber
4 BUFFER luffer
24 unused
ERRORS
Buffer
1 0 Bror
1 sefirst-error code
2 CARD16 sequencaumber
4 CARD32 badresource id
2 CARD16 minoropcode
1 CARDS8 majoropcode

21

unused

-17-

REQUESTS
GetBufferVersion
*emajor-opcode

0
1

| MNP P

1

CARD16
0
CARD8
CARD8

NFE R ANR R

2

CreatelmageBuffers

*emajor-opcode
1

3+n

WINDOW

P ANRE R

0 Undefined
1 Background
2 Untouched
3 Copied

0 Frequent
1 Intermittent
2 Satic

BN
>

LISTofBUFFER

!

1

CARD16
0
CARD16

NNPANREP PR

2

DestroylmageBuffers

1 femajor-opcode
1 2

2 2

4 WINDOW

DisplaylmageBuffers

sfemajor-opcode
3
2+n
CARD16
CARD16

n LISTofBUFFER

ANNNPEFP PP

-18-

major-opcode
ninor-opcode
request length

Reply

unused
sequencaumber
reply length
majorversion number
minorversion number
unused

major-opcode
ninor-opcode
requestength
wid

update-action

update-hint

unused
luffer-list

Reply

unused
sequencaumber
reply length
numbeibuffers
unused

major-opcode
ninor-opcode
request length
wid

major-opcode
ninor-opcode
requestength
min-delay
max-delay
luffer-list

SetMultiBufferAttributes

1 femajor-opcode
1 4

2 3+n

4 WINDOW

4 BITMASK

#x00000001 update-hint

4n LISTofVALUE
VALUEs
1
0 Frequent
1 Intermittent
2 Satic
GetMultiBufferAttributes
1 *emajor-opcode
1 5
2 2
4 WINDOW
1 1
1
2 CARD16
4 n
2 CARD16
1
0 Undefined

1 Background
2 Untouched

3 Copied
1
0 Frequent
1 Intermittent
2 Satic
1
0 Mono
1 Sereo
19

4n LISTofBUFFER

-19-

major-opcode
mnor-opcode
requestength
wid

value-mask (has n bits set to 1)

value-list

update-hint

major-opcode
ninor-opcode
request length
wid

Reply

unused
sequencaumber
reply length
displayed-bffer
update-action

update-hint

window-mode

unused
luffer list

SetBufferAttributes

1
1
2
4
4
4n

VALUEs
4

femajor-opcode
6

3+n

BUFFER

BITMASK
#x00000001 eent-mask

LISTofVALUE

SETofBUFFER_EVENT

GetBufferAttributes

I—\l\)-b-b-bl\)l—\l—\l AN PR B

13

*emajor-opcode
7

2

BUFFER

1

CARD16

0

WINDOW
SETofBUFFER_EVENT
CARD16

0 Mono
1 Left
2 Right

GetBufferinfo

NNRARNRR | RNRP

sfemajor-opcode
8

2

WINDOW

1

CARD16
2(n+m)

n

m

LISTofBUFFER_INFO
LISTofBUFFER_INFO

-20-

major-opcode
mnor-opcode
requestength
luffer

value-mask (has n bits set to 1)

value-list

gent-mask

major-opcode
ninor-opcode
request length
lwffer

Reply
unused
sequencaumber
reply length
wid
gent-mask
index
dde

unused

major-opcode
ninor-opcode
request length
root

Reply

unused
sequencaumber
replylength

rumber BUFFER_INFO in normal-info
rumber BUFFER_INFO in stereo-info

unused
normal-info
stereo-info

CreateStereoWindow

*emajor-opcode
9
11+n

CARD8
WINDOW
WINDOW
BUFFER
BUFFER
INT16
INT16
CARD16
CARD16
CARD16

NNMNNNNMNNARARMIMNRPWNPR PR

0 CopyFromParent
1 InputOutput
2 InputOnly

4 VISUALID
0 CopyFromParent

4 BITMASK

encodings a the same

as for CreateWindow

4n LISTofVALUE

encodings a the same

as for CreateWindow

ClearimageBufferArea

*emajor-opcode
10

5

WINDOW

INT16

INT16

CARD16
CARD16

P WMNNNNBAEANRE PP

BOOL

-21-

major-opcode
ninor-opcode
requeskength
unused
depth
wid

parent

left

right

X

y

width

height
bordeiwidth
dass

visual

value-mask (has n bits set to 1)

value-list

major-opcode
minor-opcode
request length
buffer

X

y

width

height

unused
exposures

