Definition of the Porting Layer for the X v11 Sample Serer

Susan Angebranndt

Raymond Dewry
Philip Karlton
Todd Newman

Digital Equipment Corporation
minor revisions by

Bob Scheifler

Massachusetts Institute of Technology
Revised for Release 4 and Release 5 by

Keith Packard
MIT X Consortium

Revised for Release 6 by

David P Wggins

X Consortium

Porting Layer Definition -1- April 8, 1994

Copyright © 1994 X Consortium

Permission is hereby granted, free of charge, yparson obtaining a cgpf this software and associated
documentation files (the “Software”), to deal in the Software without restriction, including without limita-
tion the rights to use, cgpmodify, merge, publish, distribute, sublicense, and/or sell copies of the Soft-

ware, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The abeoe mpyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PRVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENTN NO EVENT SHALL THE X
CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY WHETHER IN
AN ACTION OF CONTRACT TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNEC-
TION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Porting Layer Definition -2- April 8, 1994

The following document explains the structure of the X Wim@gstem display server and the interfaces

among the larger pieces. It is intended as a reference for programmers who are implementing an X Display
Server on their workstation hardve. Itis included with the X Winde System source tape, along with the
document "Strategies for Porting the X v11 Sample Sérdgreorder in which you should read these doc-
uments is:

1) Readhe first section of the "Strategies for Porting" document (Owsrefdorting Process).
2) Skimove this document (the Definition document).
3) Skimove the remainder of the Strategies document.

4) Startplanning and working, referring to the Strategies and Definition documents.

You may also want to look at the following documents:

. "The X Windav System" for an gerview of X.

. "Xlib - C Language X Interface" for a wieof what the client programmer sees.

. "X Window System Protocol” for a terse description of the byte stream protocol between the client
and server.

LK201 and DEC are trademarks of Digital Equipment Corporation. Macintosh and Apple are trademarks
of Apple Computerinc. PostScripis a trademark of Adobe Systems, Inc. Ethernet is a trademark of
Xerox Corporation.X Window System is a trademark of X Consortium, Inc. Cray is a trademark of Cray
Research, Inc.

To understand this document and the accompanying source code, you sheutd@languageYou

should be familiar with 2D graphics and windowing concepts such as clipping, bitmaps, fonteuetc.
should hae a gneral knowledge of the X WindoSystem. B implement the server code on your hard-
ware, you need to kmoa lot about your hardware, its graphic display device(s), and (possibly) its network-
ing and multitasking facilities.

This document depends a lot on the source code, so you sheeld Iséing of the code handy.

Some source on the distribution tape is directly compilable on your machine. Some of it will require modi-
fication. Otheparts may heae © be @mpletely written from scratch.

The tape also includes source for a sample implementation of a display server which runs on a variety of
color and monochrome displays which you will find useful for implementigdygoe of X server.

1. TheX Window System

The X Windav System, or simply "X," is a windowing system that provides high-performance, high-le
device-independent graphics.

X is a windowing system designed for bitmapped graphic displays. The display\aa Baple, mono-
chrome display or it can i@ a olor display with up to 32 bits per pixel with a special graphics processor
doing the vaork. (Inthis document, monochrome means a black and white display with one bit per pixel.
Even though the usual meaning of monochrome is more general, this special case is so common that we
decided to reseevthe word for this purpose.)

X is designed for a networking environment where users can run applications on machines other than their

own workstations. Sometime#)e connection isw@ an Bhernet network with a protocol such as TCP/IP;
but, ary "reliable" byte stream is alleeble. A high-bandwidth byte stream is preferable; RS-232 at 9600

Porting Layer Definition -3- April 8, 1994

baud would be si@ without compression techniques.

X by itself allows great freedom of desigRor instance, it does not includeyauser interface standard. Its
intent is to "provide mechanism, not pglic By making it general, it can be the foundation for a wide vari-
ety of interactre oftware.

For a nore detailed eerview, see the document "The X WinddSystem." for details on the byte stream
protocol, see "X Winde System protocol."”

2. OVERVIEW OF THE SERVER

The display server manages windows and simple graphics requests for the user on behalf of different client
applications. Thelient applications can be running oryanachine on the netwvk. Theserver mainly
does three things:

. Responds to protocol requests from existing clients (mostly graphic and text drawing commands)
. Sends device input @ystrokes and mouse actions) and otlvents to existing clients
. Maintains client connections

The server code is @mized into four major pieces:

. Device Independent (DIX) layer - code shared among all implementations

. Operating System (OS) layer - code that is different for each operating system but is shared among
all graphic devices for this operating system

. Device Dependent (DDX) layer - code that is (potentially) different for each combination of operat-
ing system and graphic device

. Extension Interface - a standard way to add features to the X server

The "porting layer" consists of the OS and DDX layers; these are actually parallel and neither one is on top
of the other The DIX layer is intended to be portable without change to target systems and is not detailed
here, although seral routines in DIX that are called by DDX are documented. Extensions incorporate

new functionality into the server; and require additional functionalisr @ Smple DDX.

The following sections outline the functions of the layers. Section 3 briefly tells what you need to know
about the DIX layer The OS layer is explained in Section 4. Sectiornvésghe theory of operation and
procedural interface for the DDX laye®ection 6 describes the functions which exist for the extension
writer.

2.1. NotesOn Resources and Large Structs

X resources are C structs inside the ser@ient applications create and manipulate these objects accord-
ing to the rules of the X byte stream protocol. Client applications refer to resources with resource IDs,
which are 32-bit integers that are sevdrdhe netvork. Within the serverof course, thg are just C

structs, and we refer to them by pointers.

The DDX layer has seral kinds of resources:

. Window
. Pixmap
. Screen
. Device

Porting Layer Definition -4- April 8, 1994

. Colormap

. Font
. Cursor
. Graphics Contexts

The type names of the more important server structs usually end in "Rec," such as "DeviceRec;" the pointer
types usually end in "Ptr," such as "DevicePtr."

The structs and important defined constants are declared in .h filesvéhahimes that suggest the name of

the object.For instance, there are dwh files for windows, winde.h and windowstih. windawv.h defines

only what needs to be defined in order to use windows without peeking inside of them; windowstr.h defines
the structs with all of their components in great detail for those who need it.

Three kinds of fields are in these structs:
. Attribute fields - struct fields that contain valueg likrmal structs
. Pointers to procedures, or structures of procedures, that operate on the object

. A private field (or two) used by your DDX code to keepvge data (probably a pointer to another
data structure), or an array ofyate fields, which is sized as the server initializes.

DIX calls through the strud’procedure pointers to do its tasks. These procedures are set either directly or
indirectly by DDX procedures. Most of the procedures described in the remainder of this document are
accessed through one of these struets.example, the procedure to create a pixmap is attached to a
ScreenRec and might be called by using the expression

(* pScreen->CreatePixmap)(pScreen, width, height, depth).

All procedure pointers must be set to some routine unless noted otherwise; a null pointeeviifdru-
nate consequences.

Procedure routines will be indicated in the documentation by thiscton:
void pScreen->MyScreenRoutine(arg, arg, -..)
as opposed to a free routine, not in a data structure:

void MyFreeRoutine(arg, arg, ...)

The attribute fields are mostly set by DIX; DDX should not modify them unless noted otherwise.

3. DIX LAYER

The DIX layer is the machine and device independent part of X. The source should be common to all oper-
ating systems and diees. Theport process should not include changes to this part, therefore internal inter-
faces to DIX modules are not discussed, except for public interfaces to the DDX and the OS layers.

In the process of getting your server to work, if you think that DIX must be modified for purposes other
than bug fixes, you may be doing something wrafeep looking for a more compatible solution. When
the next release of the X server codevalable, you should be able to just drop in thevidX code and
compile it. If you change DIX, you will he 1o remember what changes you made and wileha change
the nev sources before you can update to the mersion.

The heart of the DIX code is a loop called the dispatch loop. Each time the processor goes around the loop,
it sends dfaccumulated inputwents from the input devices to the clients, and it processes requests from

Porting Layer Definition -5- April 8, 1994

the clients. This loop is the mosenized way for the server to process the asynchronous requests that it
needs to process. Most of these operations are performed by OS and DDX routines that you must supply.

4. OSLAYER

This part of the source consists of & f@utines that you ha& © rewrite for each operating system. These
OS functions maintain the client connections and schedule work to be done for clieytsls®pgovide
an interface to font files, font name to file hame translation, anteled memory management.

void Oslnit()
Osilnit initializes your OS code, performing whagetasks need to be done. Frequently there is not much
to be done. The sample server implementation is in Xserver/os/osinit.c.

4.1. Schedulingand Request Deliery

The main dispatch loop in DIX creates the illusion of multitasking between different windows, while the
server is itself but a single process. The dispatch loop breaks up the work for each client into small
digestible parts. Some parts are requests from a client, such as individual graphic commands. Some parts
are @ents delvered to the client, such agystrokes from the useiThe processing ofvents and requests

for different clients can be interbeatl with one another so true multitasking is not needed in the server.

You must supply some of the pieces for proper scheduling between clients.

int WaitForSomething(pClientReady)
int *pClientReady;

WaitForSomething is the scheduler procedure you must write that will suspend your server process until
something needs to be done. This call shouldenttzk server suspend until one or more of the following
occurs:

. There is an inputvent from the user or hardware (see SetlnputCheck())

. There are requests waiting from known clients, in which case you should return a count of clients
stored in pClientReady

. A new client tries to connect, in which case you should create the client and then continue waiting

Before WaitForSomething() computes the masks to pass to select, it needs to see if there is anything to do
on the work queue; if so, it must call a DIX routine called ProcessWorkQueue.
extern WorkQueuePtr wrkQueue;

if (workQueue)
ProcessWorkQueue ();

If WaitForSomething() decides it is about to do something that might block (in the sample befors it
calls select()) it must call a DIX routine called BlockHandler().

void BlockHandler(pTimeout, pReadmask)
pointer pTimeout;
pointer pReadmask;
The types of the arguments are for agreement between the OS and DDX implemeriatithespTime-
out is a pointer to the information determininghiong the block is allowed to last, and the pReadmask is
a pointer to the information describing the descriptors that will be waited on.

In the sample servepTimeout is a struct tinval **, andpReadmask is the address of the select() mask
for reading.

The DIX BlockHandler() iterates through the Screens, for each one calling its BlockHahdirck-
Handler is declared thus:

Porting Layer Definition -6- April 8, 1994

void xxxBlockHandler(nscreen, pbdata, pgtReadmask)
int nscreen;
pointer pbdata;
struct timeval ** p ptv;
pointer pReadmask;
The arguments are the indef the Screen, the blockData field of the Screen, and the arguments to the
DIX BlockHandler().

Immediately after WaitForSomething returns from the blosken if it didn’t actually block, it must call
the DIX routine WakeupHandler().

void WakeupHandler(result, pReadmask)
int result;
pointer pReadmask;

Once agin, thetypes are not specified by DIX. The result is the success indicator for the thing that (may
have) blocked, and the pReadmask is a mask of the descriptors that caree lacthe sample server,
result is the result from select(), and pReadmask is the address of the select() mask for reading.

The DIX WakeupHandler() calls each ScreahakeupHandler A WakeupHandler is declared thus:

void xxxWakeupHandler(nscreen, pbdata, pReadmask)
int nscreen;
pointer pbdata;
unsigned long result;
pointer pReadmask;
The arguments are the indef the Screen, the blockData field of the Screen, and the arguments to the
DIX WakeupHandler().

In addition to the per-screen BlockHandlers; amdule may register block and wakeup handlers (only
together) using:

Bool RegisterBlockAndWakeupHandlers (blockHandieakeupHandlelockData)
BlockHandlerProcPtr blockHandler;
WakeupHandlerProcPtr akeupHandler;
pointer blockData;
A FALSE return code indicates that the registration failed for lack of menforyemove a egstered
Block handler at other than server reset time (whenateeall remeed automatically), use:

RemaoreBlockAndWakeupHandlers (blockHandlerakeupHandleblockData)
BlockHandlerProcPtr blockHandler;
WakeupHandlerProcPtr akeupHandler;
pointer blockData;
All three arguments must match the values passed to RegisterBlockAndWakeupHandlers.

These registered block handlers are called after the per-screen handlers:

void (*BlockHandler) (blockData, pptypReadmask)

pointer blockData;
OSTimePtr pptv;
pointer pReadmask;

Any wakeup handlers registered with RegisterBlockAndWakeupHandlers will be called before the Screen
handlers:

void (*WakeupHandler) (blockData, epReadmask)
pointer blockData;
int err;
pointer pReadmask;

Porting Layer Definition -7- April 8, 1994

The WaitForSomething on the sample server also has a built in scveethaadarkens the screen if no
input happens for a period of time. The sample server implementation is in Xserver/os/WaitFor.c.

Note that WaitForSomething() may be called when you alreads daseal outstanding things ¥ents,
requests, or neclients) queued upFor instance, your server mayvegust done a large graphics request,
and it may hee keen a long time since WaitForSomething() was last called. Ijclemts hae lots of
requests queued up, DIX will only service some of them fovenglient before going on to the next client
(see isltTimeToYield, belw). ThereforeWaitForSomething() will hae © report that these same clients
still have requests queued up the next time around.

An implementation should return information on as ynautstanding things as it camor instance, if your
implementation alays checks for client data first and does not repgorimout e/ents until there is no

client data left, your mouse andyboard might get locked out by an application that constantly barrages
the server with graphics drawing requests.

A list of indexes (client->index) for clients with data ready to be read or processed should be returned in
pClientReadyand the count of indees returned as the result value of the call. These are not clients that
have full requests readyut ary clients who hae any @ta ready to be read or processed. The DIX dis-
patcher will process requests from each client in turn by calling ReadRequestFromClient(), belo

WaitForSomething() must createwmelients as thg are requested (by whater mechanism at the transport
level). A new client is created by calling the DIX routine:

ClientPtr NextAvailableClient(ospriv)
pointer ospriv;
This routine returns NULL if a meclient cannot be allocated (e.g. maximum number of clients reached).
The ospn argument will be stored into the OS yaie field (pClient->osPvate), to store OS préte infor-
mation about the client. In the sample sertrex osPrate field contains the number of the socket for this
client. See also "Ne Client Connections." NextailableClient() will call InsertFakeRequest(), so you
must be prepared for this.

If there are outstanding inputents, you should makaure that the tw SetinputCheck() locations are
unequal. Thd®IX dispatcher will call your implementation of ProcessinputEvents() until the Set-
InputCheck() locations are equal.

The sample server contains an implementation of Wetbmething(). Théollowing two routines indi-
cate to WaitForSomething() what devices should be waitedffbrs an OS dpendent type; in the sample
server it is an open file descriptor.

int AddEnabledDevice(fd)
int fd;

int RemaeEnabledDevice(fd)
int fd;
These tw routines are usually called by DDX from the initialize cases of the Input Procedures that are
stored in the DeviceRec (the routine passed to AddinpitB@). Thesample server implementation of
AddEnabledDevice and ReweEnabledDevice are in Xserver/os/connection.c.

4.2. NewClient Connections

The process whereby amelient-server connection starts up is very dependent upon what your byte
stream mechanism. This section describes byte stream initiation using examples from the TCP/IP imple-
mentation on the sample server.

The first thing that happens is a client initiates a connection with the.sklwera dient knows to do this
depends upon your network facilities and the Xlib implementation. In a typical scenario, a user named
Fred on his X workstation is logged onto a Cray supercomputer running a command shell in armX windo
Fred can type shell commands andéhtie Cray respond as though the X server were a dumb terminal.
Fred types in a command to run an X client application that was linked with Xlito looks at the shell
environment variable DISPDA which has the value "fredsbittube:0.0." The host name of Fred’s

Porting Layer Definition -8- April 8, 1994

workstation is "fredsbittube," and the Os are for multiple screens and multiple X server processes. (Pre-
cisely what happens on your system depends uperkremd Xlib are implemented.)

The client application calls a TCP routine on the Cray to open a TCP connection for X to communicate
with the network node "fredsbittube." The TCP software on the Cray does this by looking up the TCP
address of "fredsbittube” and sending an open request to TCP port 6000 on fredsbittube.

All X servers on TCP listen for meclients on port 6000 by default; this is known as a "well-known port" in
IP terminology.

The server receés this request from its port 6000 and checks where it came from to see if it is on the
servers list of "trustworthy" hosts to talk to. Then, it opens another port for communications with the
client. Thisis the byte stream that all X communications will gero

Actually, it is a it more complicated than that. Each X server process running on the host machine is
called a "display Eachdisplay can he nore than one screen that it manages. "corporatehydra:3.2" rep-
resents screen 2 on display 3 on the multi-screened network node cosgbeatdfheopen request would

be sent on well-known port number 6003.

Once the byte stream is set up, what goes on does not depend very much upon whether or not it is TCP.
The client sends an xConnClientPrefix struct (see Xproto.h) that has the version numbers for the version of
Xlib it is running, some byte-ordering information, andtgharacter strings used for authorization. If the
server does not likthe authorization strings or the version numbers do not match within the rules, or if
anything else is wrong, it sends a failure response with a reason string.

If the information neer comes, or comes much too slowtlye connection should be broket. ofou must
implement the connection timeout. The sample server implements this by keeping a timestamp for each
still-connecting client and, each time just before it attempts to acoggiomaections, it closes gron-

nection that are too old. The connection timeout can be set from the command line.

You must implement whater authorization schemes you want to support. The sample server on the distri-
bution tape supports a simple authorization scheme. The only interface seen by DIX is:

char *
ClientAuthorized(client, proto_n, auth_proto, string_n, auth_string)
ClientPtr client;
unsigned int proto_n;
char *auth_proto;
unsigned int string_n;
char *auth_string;

DIX will only call this once per client, once it has read the full initial connection data from the client. If the
connection should be accepted ClientAuthorized() should return NULL, and otherwise should return an
error message string.

Accepting ne connections happens internally to WaitEomething(). \&itForSomething() must call the
DIX routine NextAvailableClient() to create a client object. Processing of the initial connection data will
be handled by DIX.Your OS layer must be able to map from a client to wieai@formation your OS

code needs to communicate on thesgibyte stream to the client. DIX uses this ClientPtr to refer to the
client from nav on. Thesample server uses the osBt field in the ClientPtr to store the file descriptor
for the socket, the input and output buffers, and authorization information.

To initialize the methods you choose to wlldients to connect to your seryenain() calls the routine

void CreateWellKnownSockets()

This routine is called only once, and not called when the server is Teseicreate ansockets during
server resets, the following routine is called from the main loop:

void ResetWellKnownSockets()
Sample implementations of both of these routines are found in Xserver/os/connection.c.

Porting Layer Definition -9- April 8, 1994

For more details, see the section called "Connection Setup" in the X protocol specification.

4.3. ReadingData from Clients

Requests from the client are read in as a byte stream by the QSTlgemay be in the form of seral

blocks of bytes deliered in sequence; requests may be brokenvaphbiock boundaries or there may be

mary requests per block. Each request carries with it length information. It is the responsibility of the fol-
lowing routine to break it up into request blocks.

int ReadRequestFromClient(who)
ClientPtr who;

You must write the routine ReadRequestFromClient() to get one request from the byte stream belonging to
client "who." You must swap the third and fourth bytes (the second 16-bit word) according to the byte-
swap rules of the protocol to determine the length of the request. This length is measured in 32-bit words,
not in bytes. Therefore, the theoretical maximum request is 256K. {tégvitee maximum length allowed

is dependent upon the sengariput buffer This size is sent to the client upon connection. The maximum
size is the constant MAX_REQUEST_SIZE in Xserver/include/os.h) The rest of the request you return is
assumed NDto be @rrectly swapped for internal use, because that is the responsibility of DIX.

The 'who’ argument is the ClientPtr returned from Waitomething. Theeturn value indicating status
should be set to the (pos#) byte count if the read is successful, 0 if the read was blocked, getvee
error code if an error happened.

You must then store a pointer to the bytes of the request in the client request buffer field; who->request-
Buffer. This can simply be a pointer into your buffer; DIX may modify it in place but will not otherwise
cause damage. Of course, the request must be contiguous; you must shuffle it around in your buffers if not.

The sample server implementation is in Xserver/os/io.c.

DIX can insert data into the client stream, and can cause a "replay"” of the current request.

Bool InsertFakeRequest(client, data, count)
ClientPtr client;
char *data;
int count;

int ResetCurrentRequest(client)
ClientPtr client;

InsertFakeRequest() must insert the specified number of bytes of data into the head of the input buffer for
the client. This may be a complete request, or it might be a partial reéfoeskample, NextAailable-

Cient() will insert a partial request in order to read the initial connection data sent by the client. The routine
returns FALSE if memory could not be allocated. ResetCurrentRequest() should "back up" the input buffer
so that the currentlyxecuting request will be reecuted. DIXmay hae dtered some values (e.g. the

overall request length), so you must recheck to see if you st habmplete request. ResetCurrentRe-

guest() should alays cause a yield (isltTimeToYield).

4.4. Sendingevents, Errors And Replies D Clients

int WriteToClient(who, n, buf)
ClientPtr who;
int n;
char *buf;
WriteToClient should write n bytes starting at buf to the ClientPtr "who". It returns the number of bytes

Porting Layer Definition -10 - April 8, 1994

written, but for simplicitythe number returned must be either the same value as the number requested, or
-1, signaling an errorThe sample server implementation is in Xserver/os/io.c.

void SendErrorToClient(client, majorCode, minorCode, resld, errorCode)

ClientPtr client;

unsigned int majorCode;

unsigned int minorCode;

XID resld;

int errorCode;
SendErrorToClient can be used to send errors back to clients, although in most cases your request function
should simply return the error code, having set client->errorValue to the appropriate error value to return to
the client, and DIX will call this function with the correct opcodes for you.

void FlushAllOutput()
void FlushlfCriticalOutputPending()

void SetCriticalOutputPending()
These three routines may be implemented to support buffered or delayed writes to clients, but at the very
least, the stubs mustist. FlushAllOutput(Junconditionally flushes all output to clients; FlushlfCrit-
icalOutputPending() flushes output only if SetCriticalOutputPending() has be called since the last time out-
put was flushed. The sample server implementation is in Xserver/os/io.c and actually ignores requests to
flush output on a per-client basis if it knows that there are requests in thas aipat'queue.

4.5. Font Support

In the sample serveionts are encoded in disk files or fetched from the font seFeerdisk fonts, there is

one file per font, with a file name éKfixed.pcf". Font server fonts are reagen the network using the X

Font Server Protocol. The disk directories containing disk fonts and the names of the font servers are listed
together in the current "font path.”

In principle, you can put all your fonts in ROM or in RAM in your servéu can put them all in one
library file on disk. You could generate them on the fly from seakescriptions. Byplacing the appropri-
ate code in the Font Libraryou will automatically export fonts in that format both through the X server
and the Font server.

With the incorporation of font-server based fonts and the Speedo donation from Bitstream, the font inter-
faces hae been meed into a separate librgrgow called the Font Library (../fonts/lib). These routines are
shared between the X server and the Font seswarstead of this document specifying what you must
implement, simply refer to the font library interface specification for the details. All of the interface code to
the Font library is contained in dix/dixfonts.c

4.6. Memory Management

Memory management is based on functions in the C runtime libxajoc(), Xrealloc(), and Xfree()

work just like malloc(), realloc(), and free(), except that you can pass a null pointer to Xrealloc¢etid ha
allocate an& or pass a null pointer to Xfree() and nothing will happen. The versions in the sample server
also do some checking that is useful forugding. Consula C muntime library reference manual for more
details.

The macros ALLOCATE_LOCAL and DEALLOCATE_LOCAL are provided in Xserver/include/os.h.
These are useful if your compiler supports alloca() (or some method of allocating memory from the stack);
and are defined appropriately on systems which support it.

Treat memory allocation carefully in your implementation. Memory leaks can be very hard to find and are
frustrating to a userAn X server could be running for days or weeks without being reset, jest lgular

Porting Layer Definition -11 - April 8, 1994

terminal. Ifyou leak a fes dozen k per daythat will add up and will cause problems for users thatlea
their workstations on.

4.7. ClientScheduling

The X server has the ability to schedule clients muehdik gerating system would, suspending and
restarting them without gerd for the state of their input iefs. Thisfunctionality allows the X server to
suspend one client and continue processing requests from other clients while waiting for a long-term net-
work activity (like loading a font) before continuing with the first client.

Bool isltTimeToYield;

isltTimeToYield is a global variable you can set if you want to tell DIX to end the cli#miie slice" and
start paying attention to the next client. After the current request is finished, DIX wal imthe next
client.

In the sample serveReadRequestFromClient() sets isltTimeToYield after 10 requests packetsnira ro
read from the same client.

This scheduling algorithm canvea &rious effect upon performance whertdients are drawing into

their windows simultaneoushif it allows one client to run until its request queue is empty by ignoring
isltTimeToYield, the cliens queue may in fact mer empty and other clients will be blocked out. On the
other hand, if it switchs between different clients too quijgdyformance may suffer due to too much
switching between contés. For example, if a graphics processor needs to be set up with drawing modes
before drawing, and twdifferent clients are drawing with different modes int@tiifferent windows, you
may switch your graphics processor modes so often that performance is impacted.

See the Strategies document for heuristics on setting isltTimeToYield.

The following functions provide the ability to suspend request processing on a particular client, resuming it
at some later time:

int IgnoreClient (who)
ClientPtr who;

int AttendClient (who)
ClientPtr who;
Ignore client is responsible for pretending that tivergdient doesrt exist. WaitForSomething should not
return this client as ready for reading and should not return if only this client is retiegdClient undoes
whatever IgnoreClient did, setting it up for input again.

Three functions support "process control” for X clients:

Bool ClientSleep (client, function, closure)
ClientPtr client;
Bool (*function)();
pointer closure;

This suspends the current client (the calling routine is responsible for making its way back to Dispatch()).
No more X requests will be processed for this client until ClientWakeup is called.

Bool ClientSignal (client)
ClientPtr client;

This function causes a call to the (*function) parameter passed to ClientSleep to be queued on the work
gueue. Thigloes not automatically "wakeup" the client, but the function called is free to do so by calling:

ClientWakeup (client)
ClientPtr client;

Porting Layer Definition -12 - April 8, 1994

This re-enables X request processing for the specified client.

4.8. OtherOS Functions
void
ErrorF(char *f, ...)

void
FaalError(char *f, ...)

void
Error(str)
char *str;

You should write these three routines to provide for diagnostic output from the dix and ddx layers, although
implementing them to produce no output will not affect the correctness of your. d&meef() and

FatalError() take a pintf() type of format specification in the first argument and an implementation-depen-
dent number of arguments following that. Normathe formats passed to ErrorF() and FatalError() should

be terminated with a mdine. Error()provides an os interface for printing out the string passed as an argu-
ment followed by a meaningful explanation of the last system. edmmally the string does not contain a
newline, and it is only called by the ddx layén the sample implementation, Error() uses the perror()
function.

After printing the message arguments, FatalError() must be implemented such that the server will call
AbortDDX() to give the ddx layer a chance to reset the hardware, and then terminate the server; it must not
return.

The sample server implementation for these routines is in Xserver/os/util.c.

4.9. Idiom Support

The DBE specification introduces the notion of idioms, which are groups of X requests which can be
executed more efficiently when taken as a whole compared to being performed individually and sequen-
tially. This following server internal support to allows DBE implementations, as well as other parts of the
serverto do diom processing.

xRegPtr PeekNextRequest(xReqgPtr req, ClientPtr client, Bool readmore)

If req is NULL, the return value will be a pointer to the start of the complete request that follows the one
currently being vecuted for the client. If req is not NULL, the function assumes that req is a pointer to a
request in the clierg’request bufferand the return value will be a pointer to the the start of the complete
request that follows req. If the complete request is valadble, the function returns NULL; pointers to
partial requests will ner be returned. If(and only if) readmore is TRUE, PeekNextRequest should try to
read an additional request from the client if one is not alreaable in the client request buffer If
PeekNextRequest reads more data into the request, litgferuld not mee a change the existing data.

void SkipRequests(xReqPtr req, ClientPtr client, int numskipped)

The requests for the client up to and including the one specified by req will be skipped. numskipped must
be the number of requests being skipped. Normal request processing will resume with the request that fol-
lows req. The caller must notveanodified the contents of the request buffer iy aay (e.g., by doing

byte swapping in place).

Additionally, two macros in 0s.h operate on the xReq pointer returned by PeekNextRequest:

int ReqLen(xReqPtr req, ClientPtr client)
The value of ReqgLen is the request length in bytes of tlea gReq.

otherReqTypePtr CastxReq(xReq *req, otherReqTypePtr)

Porting Layer Definition -13- April 8, 1994

The value of CastxReq is the eersion of the gren request pointer to an otherReqTypePtr (which should
be a pointer to a protocol structure type). Only those fields which come after the length field of otherReq-
Type may be accessed via the returned pointer.

Thus the first tw fields of a request, reqType and data, can be accessed directly using the xReq * returned
by PeekNgtRequest. Theext field, the length, can be accessed with RegLen. Fields beyond that can be
accessed with CastxReq. This complexity was necessary because of the reencoding of core protocol that
can happen due to the BigRequests extension.

5. DDXLAYER

This section describes the interface between DIX and DDX. While there may be an OS-deperalent dri
interface between DDX and the physical device, that interface is left to the DDX implementor and is not
specified here.

The DDX layer does most of its work through procedures that are pointed to by different structs. As previ-
ously described, the behavior of these resources is largely determined by these procedure pointers. Most of
these routines are for graphic display on the screen or support functions thereof. The rest are for user input
from input devices.

5.1. INPUT

In this document "input"” refers to input from the ysach as mouse gyboard, and bar code readers. X

input devices are of geral types: keyboard, pointing device, and maathers. Thecore server has support

for extension devices as described by the X Input Extension document; the interfaces used by that extension
are described eledere. Thecore devices are actually implemented as ¢allections of devices, the

mouse is a ButtonDevice, a ValuatorDevice and a PtrFeedbackDevice whisttbarkl is a kyDevice, a
FocusDevice and a KbdFeedbackide. Eaclpart implements a portion of the functionality of the device.

This abstraction is hidden from weor core devices by DIX.

You, the DDX programmeere responsible for some of the routines in this section. Others are DIX rou-
tines that you should call to do the things you need to do in these DDX rouR@eattention to which is
which.

5.1.1. InputDevice Data Structures

DIX keeps a global directory of devices in a central data structure called Inputmfeach device there is
a cevice structure called a DeeRec. DIXcan locate anDeviceRec through Inputinfo. In addition, it
has a special pointer to identify the main pointing device and a special pointer to identify the main
keyboard.

The DeviceRec (Xserver/include/input.h) is a device-independent structure that contains the state of an
input device. A DevicePtr is simply a pointer to a DeviceRec.

An xEvent describes awvent the server reports to a client. Defined in Xproto.h, it is a huge struct of union
of structs that hze fields for all kinds of eents. All of the variants werlap, so that the struct is actually
very small in memory.

5.1.2. Piocessing Events
The main DDX input interface is the following routine:

void ProcessinputEvents()
You must write this routine to de#r input events from the userDIX calls it when input is pending (see
next section), and possiblyan when it is not. You should write it to geteents from each device and
deliver the events to DIX. To deliver the events to DIX, DDX should call the following routine:

Porting Layer Definition -14 - April 8, 1994

void DevicePtr->processinputProc(pEvent, device, count)

XEventPtr gents;

DevicelntPtr device;

int count;
This is the "input proc" for the device, a DIX procedure. DIX will fill in this procedure pointer to one of its
own routines by the time ProcessinputEvents() is called the first time. Call this input proc routine as many
times as needed to dedi as mary events as should be dedired. DIXwill buffer them up and send them
out as needed. Count is set to the numbevafteecords which makup me atomic devicevent and is
always 1 for the core devices (see the X Input Extension for descriptions of devices which may use count >
1).

For example, your ProcessinputEvents() routine might check the mouse arefoarkl. Ifthe leyboard
had sgeral keystrokes queued up, it could just call tlegtboards processinputProc as matimes as

needed to flush its internal queue.

evant is an xEvent struct you pass to the input proc. When the input proc returns, it is finished with the
evant rec, and you can fill in mevalues and call the input proc again with it.

You should deliver the events in the same order that yheere generated.

For keyboard and pointing devices the xEvent variant shouldegButonPointer Fill in the following
fields in the xEvent record:

type isone of the following: KyPress, €yRelease, ButtonPress,
ButtonRelease, or MotionNotify
detail forKeyPress or l€yRelease fields, this should be the
key number (not the ASCII code); otherwise unused
time isthe time that thevent happened (32-bits, in milliseconds, arbitrary origin)
rootX isthe x coordinate of cursor
rootY isthe y coordinate of cursor

The rest of the fields are filled in by DIX.

The time stamp is maintained by your code in the DDX |ay®f it is your responsibility to stamp all
evants correctly.

The x and y coordinates of the pointing device and the time must be filled in fegrdltypes including
keyboard &ents.

The pointing device must report all button press and releaatse Inaddition, it should report a Motion-
Notify event every time it gets called if the pointing device hasvatbgnce the last notify Intermediate
pointing device mees ae stored in a special GetMotionEvents byffiecause most client programs are
not interested in them.

There are quite a collection of sample implementations of this routine, one for each supported device.

5.1.3. elling DIX When Input is Pending

In the serves dspatch loop, DIX checks to see if there iy davice input pending whewer WaitFor-
Something() returns. If the check says that input is pending, DIX calls the DDX routine ProcessIn-
putEvents().

This check for pending input must be very quick; a procedure call is wwo $le code that does the check
is a hardwired IF statement in DIX code that simply compares the values pointed togoytters. Ifthe
values are different, then it assumes that input is pending and ProcessinputEvents() is called by DIX.

You must pass pointers to DIX to tell it what values to compare. The following procedure is used to set
these pointers:

Porting Layer Definition -15- April 8, 1994

void SetlnputCheck(pl, p2)
long *p1, *p2;
You should call it sometime during initialization to indicate to DIX the correct locations to chfeek.

should pay special attention to the size of what Hetually point to, because the locations are assumed to
be longs.

These tw pointers are initialized by DIX to point to arbitrary values that afferdint. Inother words, if
you forget to call this routine during initialization, the worst thing that will happen is that ProcessiIn-
putEvents will be called when there are mengs to process.

pl and p2 might point at the head and tail of some shared memory queue. Another use wouleebe to ha
one point at a constant 0, with the other pointing at some mask containing 1s for each input device that has
something pending.

The DDX layer of the sample server calls SetinputCheck() once when thesgiveté internal queue is
initialized. Itpasses pointers to the quesledad and tail. See Xserver/mi/mieg.c.

int TimeSinceLastinputEvent()
DDX must time stamp all hardware inpweats. ButDIX sometimes needs to kwahe time and the OS
layer needs to knothe time since the last hardware inpugre in order for the screensai to work.
TimeSinceLastinputEvent() returns the this time in milliseconds.

5.1.4. Contolling Input Devices

You must write four routines to do various device-specific things with élgedard and pointing device.
They can hae any mme you wish because you pass the procedure pointers to DIX routines.

int pinternalDevice->valuator->GetMotionProc(pdevice, coords, start, stop, pScreen)

DevicelntPtr pdevice;

xTimecoord * coords;

unsigned long start;

unsigned long stop;

ScreenPtr pScreen;
You write this DDX routine to fill in coords with all the motiomeats that hae imes (32-bit count of mil-
liseconds) between time start and time stop. It should return the number of metitsreturned. If there
iS no motion gents support, this routine should do nothing and return zero. The maximum number of
coords to return is set in InitPointerDeviceStruct(), Wwelo

When the user drags the pointing device, the cursor position theoretically sweeps through an infinite num-
ber of points. Normallya dient that is concerned with points other than the starting and ending points will
receve a pinter-mae event only as often as the server generates themvgMents do not queue up;

each n& one replaces the last in the queud.yerver if desired, can implement a scheme teeshese
intermediate wents in a motion bufferA client application, lik a @int program, may then request that

these gents be deliered to it through the GetMotionProc routine.

void pinternalDevice->bell->BellProc(percent, pDevice, ctrl, unknown)
int percent;
DevicelntPtr pDevice;
pointer ctrl;
int class;
You need to write this routine to ring the bell on tlestboard. louds a number from 0 to 100, with 100
being the loudest. Class is either BellFeedbackClass or KbdFeedbackClass (from XI.h).

Porting Layer Definition -16 - April 8, 1994

void pinternalDevice->somedevice->CtrlProc(device, ctrl)
DevicePtr device;
SomethingCtrl *ctrl;

You write two versions of this procedure, one for tlethoard and one for the pointinguilee. DIX calls it
to inform DDX when a client has requested changes in the current settings for the partiocdar fee a
keyboard, this might be the repeat threshold and fatea pointing device, this might be a scaling factor
(coarse or fine) for position reporting. See input.h for the ctrl structures.

5.1.5. Inputlnitialization

Input initialization is a bit complicated. It all starts with Initinput(), a routine that you write to call Addin-
putDevice() twice (once for pointing device and once &ybkard.) Yu also want to call Regis-
terKeyboardDevice() and RegisterPointerDevice() on them.

When you Add the devices, a routine you supply for each device gets called to initializerthermdi-
vidual initialize routines must call Inig{boardDeviceStruct() or InitPointerDeviceStruct(), depending
upon which it is. In other words, you indicate twice that thgbkard is the &board and the pointer is the
pointer.

void Initinput(argc, argv)
int argc;
char **argv;
Initinput is a DDX routine you must write to initialize the input subsystem in DDX. It must call AddInput-
Device() for each device that might generatents. Inaddition, you must register the maieykoard and
pointing devices by calling RegisterPointerDevice() and RegistéidardDevice().

DevicePtr AddInputDevice(deviceProc, autoStart)
DeviceProc deviceProc;
Bool autoStart;

AddInputDevice is a DIX routine you call to create a device object. deviceProc is a DDX routine that is
called by DIX to do various operations. AutoStart should be TRUE for devices that need to be turned on at
initialization time with a special call, as opposed to waiting for some client application to turn them on.

This routine returns NULL if sufficient memory cannot be allocated to install the device.

Note also that except for the maieykoard and pointing device, an extension is needed to provide for a
client interface to a device.

void RegisterPointerDevice(device)
DevicePtr device;

RegisterPointerDevice is a DIX routine that your DDX code calls that makes that device the main pointing
device. Thisroutine is called once upon initialization and cannot be called again.

void RegisterkeyboardDevice(device)
DevicePtr device;

RegisterieyboardDevice makes thevgh device the main &yboard. Thigoutine is called once upon ini-
tialization and cannot be called again.

The following DIX procedures return the specified DeviceRtey may or may not be useful to DDX
implementors.

DevicePtr LookupleyboardDevice()

Porting Layer Definition -17 - April 8, 1994

LookupKeyboardDevice returns pointer for current ma@yidoard device.

DevicePtr LookupPointerDevice()
LookupPointerDevice returns pointer for current main pointing device.

A DeviceProc (the kind passed to AddinputDevice()) in the following form:

Bool pinternalDevice->DeviceProc(device, action);
DevicelntPtr device;
int action;

You must write a DeviceProc for eachvilee. deice points to the device record. action tells what action
to take; it will be one of these defined constants (defined in input.h):

. DEVICE_INIT - At DEVICE_INIT time, the device should initialize itself by calling InitPointerDe-
viceStruct(), InitkeyboardDeviceStruct(), or a similar routine (see below) and "opening" the device if
necessarylf you return a non-zero (i.e., = Success) value from the DEVICE_INIT call, that device
will be considered unailable. If either the maindyboard or main pointing device cannot be initial-
ized, the DIX code will refuse to continue booting up.

. DEVICE_ON - If the DeviceProc is called with DEVICE_ON, then it is allowed to start putting
evants into the client stream by calling through the ProcessinputProc in the device.

. DEVICE_OFF - If the DeviceProc is called with DEVICE_QRB further eents from that device
should be gien to the DIX layer The device will appear to be dead to the user.

. DEVICE_CLOSE - At DEVICE_CLOSE (terminate or reset) time, the device should be totally
closed down.

void InitPointerDeviceStruct(device, map, mapLength,
GetMotionEvents, ControlProc, numMotionEvents)

DevicePtr device;

CARDS8 *map;

int mapLength;

ValuatorMotionProcPtr ControlProc;

PtrCtrIProcPtr GetMotionEvents;

int numMotionEvents;
InitPointerDeviceStruct is a DIX routine you call at DEVICE_INIT time to declare some operating
routines and data structures for a pointingce2 mapand mapLength are as described in the X
Windaw System protocol specification. ControlProc and GetMotionEvents are DDX routines, see
above.

numMotionEvents is for the motion-buffer-size for the GetMotionEvents regAdgpical length
for a motion buffer would be 10&ents. Aserver that does not implement this capability should set
numMotionEvents to zero.

void InitkeyboardDeviceStruct(device, pfSyms, pModifiers, Bell, ControlProc)
DevicePtr device;
KeySymsPtr pleySyms;
CARDS8 *pMadifiers;
BellProcPtr Bell;
KbdCtrlProcPtr ControlProc;

You call this DIX routine when adyboard device is initialized and its device procedure is called
with DEVICE_INIT. The formats of thedysyms and modifier maps are defined in

Xsener/include/input.h. Thedescribe the layout ofdys on he keyboards, and the glyphs associ-
ated with them.(See the next section for information on setting up the modifier map andysark

Porting Layer Definition -18 - April 8, 1994

map.) ControlProand Bell are DDX routines, see aeo

5.1.6. Keyboard Mapping and Keycodes

When you send agiyboard @ent, you send a report that avg key has either been pressed or has been
released. Themmust be a &code for eachdy that identifies the éy; the lkeycode-to-ley mapping can be
ary mapping you desire, because you specify the mapping in a table you set up for DIX&eklgawe are

restricted by the protocol specification ®y&ode values in the range 8 to 255 inclasi

The keycode mapping information that you set up consists of the following:
. A minimum and maximumeycode number

. An aray of sets of &ysyms for eachdy, that is of length maxdycode - minkeycode + 1. Each ele-
ment of this array is a list of codes for symbols that are on dyafTihere is no limit to the number
of symbols that can be on ayk

Once the map is set up, DIX keeps and maintains the sligmathges to it.

The X protocol defines standard names to indicate the symbol(s) printed orey=agh kKSee
X11/keysym.h)

Legd modifier keys must generate both up and down transitions. When a client tries to change a modifier
key (for instance, to mak"A" the "Control" key), DIX calls the following routine, which should retuurn
TRUE if the ley an be used as a modifier on theegidevice:

Bool LegdModifier(key, pDev)
unsigned int ky;
DevicePtr pDev;

5.2. Sceens

Different computer graphics displaysveadfferent capabilities. Some are simple monochrome frame
buffers that are just lying there in memomgiting to be written into. Others are color displays with many
bits per pixel using some color lookup table. Still othergehigh-speed graphic processors that prefer to
do all of the work themselves, including maintaining their own hig#slgraphic data structures.

5.2.1. Sceen Hardware Requirements

The only requirement on screens is that you be able to both read and write locations in the frame buffer.
All screens must hee a epth of 32 or less (unless you use an X extension t aligeater depth). All
screens must fit into one of the classes listed in the section in this document on Visuals and Depths.

X uses the pixel as its fundamental unit of distance on the screen. Therefore, most programs will measure
evaything in pixels.

The sample server assumes squarelpixSerioudWYSIWYG (what you see is what you get) applications

for publishing and drawing programs will adjust for different screen resolutions automat@atisider-

able work is imolved in compensating for non-square pixels (a bit in the DDX code for the sample server
but quite a bit in the client applications).

5.2.2. DataStructures

X supports multiple screens that are connected to the same sEneeefore, all the per-screen information
is bundled into one data structure of attributes and procedures, which is the ScreenRec (see
Xserver/include/scrnintstr). Theprocedure entry points in a ScreenRec operate on regions, colormaps,
cursors, and fonts, because these resources can differ in format from one screen to another.

Porting Layer Definition -19- April 8, 1994

Windows are areas on the screen that can be drawn into by graphic routines. "Pixmaps" are off-screen
graphic areas that can be drawn into. yrére both considered drables and are described in the section
on Drawables. Allgraphic operations work on dvables, and operations aresédable to coy patches

from one dravable to another.

The pixel image data in all deables is in a format that is pete to DDX. In fact, each instance of a draw-
able is associated with avgh screen. Presumablthe pixel image data for pixmaps is chosen to be con-
veniently understood by the hardve. Allscreens in a single server must be able to handle all pixmaps
depths declared in the connection setup information.

Pixmap images are transferred to the server in onecfviys: XYPixmap or ZPimap. XYPixmaps are a
series of bitmaps, one for each bit plane of the image, using the bitmap padding rules from the connection
setup. ZPixmapare a series of bits, nibbles, bytes or words, one for each pixel, using the format rules
(padding and so on) for the appropriate depth.

All screens in a gien srver must agree on a set of pixmap image formats (PixmapFormat) to support
(depth, number of bits per pixel, etc.).

There is no color interpretation of bits in the pixmap. Pixmaps do not contain gieby Thenterpreta-
tion is made only when the bits are transferred onto the screen.

The screenlinfo structure (in scrnintstr.h) is a global data structure that has a pointer to an array of Screen-
Recs, one for each screen on the ser{fnese constitute the one and only description of each screen in the
server) Eachscreen has an identifying ind€0, 1, 2, ...). In addition, the screenlinfo struct contains global
server-wide details, such as the bit- and byte- order in all bit images, and the list of pixmap image formats
that are supported. The X protocol insists that these must be the same for all screens on the server.

5.2.3. Outputlnitialization

InitOutput(pScreeninfo, argc, argv)

Screenlinfo *pScreeninfo;

int argc;

char **argv;
Upon initialization, your DDX routine InitOutput() is called by DIX. It is passed a pointer to screeninfo to
initialize. Itis also passed the argc and argv from main() for your server for the command-line arguments.
These arguments may indicate what avmeary screen device(s) to use or in what way to use thEan.
instance, your server command line mayvaléo"-D" flag followed by the name of the screen device to use.

Your InitOutput() routine should initialize each screen you wish to use by calling AddScreen(), and then it
should initialize the pixmap formats that you support by storing values directly into the screeninfo data
structure. %u should also set certain implementation-dependent numbers and procedures in your screen-
Info, which determines the pixmap and scanline padding rules for all screens in the server.

int AddScreen(scrinitProc, argc, argv)

Bool (*scrinitProc)();

int argc;

char **argv;
You should call AddScreen(), a DIX procedure, in InitOutput() once for each screen to add it to the screen-
Info database. The first argument is an initialization procedure for the screen that you $hppgcond
and third are the argc and argv from main(). It returns the screen number of the screen installed, or -1 if
there is either insufficient memory to add the screen, or (*scrinitProc) returned FALSE.

The scrinitProc should be of the following form:

Bool scrinitProc(iScreen, pScreen, argc, argv)
int iScreen;

Porting Layer Definition -20- April 8, 1994

ScreenPtr pScreen;
int argc;
char **argv;
iScreen is the indefor this screen; 0 for the first one initialized, 1 for the second, etc. pScreen is the
pointer to the screemiew SreenRec. @c and argv are as befor¥our screen initialize procedure should
return TRUE upon success or FALSE if the screen cannot be initialized (for instance, if the screen hardware
does not exist on this machine).

This procedure must determine what actual device it is supposed to initialize. Ifwgoa tiferent proce-

dure for each screen, then it is no problem. If yoteHae same procedure for multiple screens, it may

have trouble figuring out which screen to initialize each time around, especially if InitOutput() does not ini-
tialize all of the screens. It is probably easiest teelee procedure for each screen.

The initialization procedure should fill in all the screen procedures for that screen (windowing functions,
region functions, etc.) and certain screen attributes for that screen.

5.2.4. RegiorRoutines in the ScreenRec

Aregon is a dynamically allocated data structure that describes an irregularly shaped piece of real estate in
XY pixel space.You can think of it as a set of pixels on the screen to be operated upon with set operations
such as AND and OR.

Aregon is frequently implemented as a list of rectangles or bitmaps that enclose the selected pixels.
Region operators control the "clipping pglicor the operations that work ongiens. (Thesample server

uses YX-banded rectangles. Unless yovelamething already implemented for your graphics system,

you should keep that implementation.) The procedure pointers to the region operators are located in the
ScreenRec data structure. The definition of a region can be found in the file Xserver/include/regionstr.h.
The region code is found in Xserver/mi/ngien.c. DDXimplementations using other region formats will
need to supply different versions of the region operators.

Since the list of rectangles is unbounded in size, part of the region data structure is usually a large, dynami-
cally allocated chunk of memaryAs your region operators calculate logical combinations of regions, these
blocks may need to be reallocated by your region soéwfer instance, in the sample seneRegonRec

has some header information and a pointer to a dynamically allocated rectangle list. Peritidiaaity

tangle list needs to be expanded with Xrealloc(), whereupon theaister is remembered in the Region-

Rec.

Most of the region operations come irotferms: a function pointer in the Screen structure, and a macro.
The server can be compiled so that the macro®medct calls to the appropriate functions (instead of
indirecting through a screen function pointer), or it can be compiled so that the macros are identical to the
function pointer forms. Making direct calls is faster on ynanchitectures.

RegionPtr pScreen->RegionCreate(rect, size)
BoxPtr rect;
int size;

macro: RegionPtr REGION_CREATE(pScreen, rect, size)

RegionCreate creates a region that describes ONE rectangle. The call@midamaecessary reallocation

and copying by declaring the probable maximum number of rectangles that this region will need to describe
itself. Your region routines, though, cannot fail just because the region grows beyond this size. The caller
of this routine can pass almost anything as the size; the value is merely a good guess as to the maximum
size until it is preen wrong by subsequent us&¥our region procedures are then on their own in estimating
how big the region will get.Your implementation might ignore size, if applicable.

Porting Layer Definition -21- April 8, 1994

void pScreen->RegionlInit (pRegion, rect, size)
RegionPtr pRegion;
BoxPtr rect;
int size;
macro: REGION_INIT(pScreen, pRegion, rect, size)
Given an «isting rav regon structure (such as an local variable), this routine fills in the appropriate fields
to male this region as usable as one returned frogide&Create. Thisvadds the additional dynamic mem-
ory allocation @erhead for the region structure itself.

Bool pScreen->RegionCopy(dstrgn, srcrgn)
RegionPtr dstrgn, srcrgn;

macro: Bool REGION_COPY(pScreen, dstrgn, srcrgn)

RegionCop copies the description of one region, srcrgn, to another already-created region, dstrgn; return-
ing TRUE if the cog succeeded, and FALSE otherwise.

void pScreen->RegionDestroy(pRegion)
RegionPtr pRegion;

macro: REGION_DESTRY (pScreen, pRegion)
RegionDestrg destroys a region and frees all allocated memory.

void pScreen->RegionUninit (pRegion)
RegionPtr pRegion;

macro: REGION_UNINIT(pScreen, pRegion)
Frees werything except the region structure itself, useful when the region was originally passed to Region-
Init instead of receied from RejionCreate. Whethis call returns, pRegion must not be reused until it has

been Regionlnit'ed again.

Bool pScreen->Intersect(newReg, regl, reg2)
RegionPtr newReg, regl, reg2;

macro: Bool REGION_INTERSECT(pScreen, newReg, regl, reg2)

Bool pScreen->Union(weReg, regl, reg2)
RegionPtr newReg, regl, reg2;

macro: Bool REGION_UNION(pScreen, newReg, regl, reg?2)

Bool pScreen->Subtractw®eg, regMinuend, regSubtrahend)
RegionPtr newReg, regMinuend, regSubtrahend;

macro: Bool REGION_UNION(pScreen, newReg, regMinuend, regSubtrahend)
Bool pScreen->lverse(newReg, pRg pBox)

RegionPtr newReg, pReg;
BoxPtr pBox;

Porting Layer Definition -22- April 8, 1994

macro: Bool REGION_INVERSE(pScreen, newReg, ggReBox)

The abee four calls all do basic logical operations ogioms. Thg set the ne regon (which already
exists) to describe the logical intersection, union, set differenceyasaof the region(s) that were passed
in. Your routines must be able to handle a situation where the igg@Re same region as one of the
other region arguments.

The subtract function remes the Subtrahend from the Minuend and puts the result in newReg.

The inverse function returns a region that is the pBox minus the region passed in. (Avaise'invould

malke a egon that extends to infinity in all directions but has holes in the middle.) It is undefined for situa-
tions where the region extends beyond the box.

Each routine must return the value TRUE for success.

void pScreen->RegionReset(pRegion, pBox)
RegionPtr pRegion;
BoxPtr pBox;

macro: REGION_RESET(pScreen, pRegion, pBox)

RegionReset sets the region to describe one rectangle and reallocates it to a size of one rectangle, if applica-
ble.

void pScreen->fanslateRegion(pRegion, X, y)
RegionPtr pRegion;
intx,y;

macro: REGION_TRANSLATE(pScreen, pRegion, X, y)
TranslateRegion simply mes a egon +x in the x direction and +y in the y direction.
int pScreen->Rectin(pR&n, pBox)
RegionPtr pRegion;
BoxPtr pBox;
macro: int RECT_IN_REGION(pScreen, pRegion, pBox)
RectIn returns one of the defined constants rgnIN, rgn@U@GNPART, depending upon whether the box
is entirely inside the region, entirely outside of the region, or partly in and partly out ofjitve. r&hese
constants are defined in Xserver/include/region.h.
Bool pScreen->PointinRegion(pRegion, xpBox)
RegionPtr pRegion;
intx,y;
BoxPtr pBox;
macro: Bool POINT_IN_REGION(pScreen, pRegion, xpBox)
PointinRegion returns true if the point X, y is in thgioa. Inaddition, it fills the rectangle pBox with
coordinates of a rectangle that is entirely inside of pRegion and encloses the point. In the mi implementa-

tion, it is the largest such rectangle. (Due to the sample server implementation, this comes cheaply.)

This routine used by DIX when tracking the pointing device and deciding whether to report nentise e

Porting Layer Definition -23- April 8, 1994

or change the cursoFor instance, DIX needs to change the cursor whenvesioom one windw to
another Due to werlapping windows, the shape to check may be irreg#idPointinRegion() call for

evay pointing device meement may be too expensi The pBox is a kind of wake-up box; DIX need not
call PointinRegion() again until the cursor wanders outside of the returned box.

Bool pScreen->RegionNotEmpty(pRegion)
RegionPtr pRegion;

macro: Bool REGION_NOTEMPTY (pScreen, pRegion)

RegionNotEmpty is a boolean function that returns true or false depending upon whether the region
encloses anpixels.

void pScreen->RegionEmpty(pRegion)
RegionPtr pRegion;

macro: REGION_EMPTY (pScreen, pRegion)
RegionEmpty sets the region to be empty.

BoxPtr pScreen->RegionExtents(pRegion)
RegionPtr pRegion;

macro: REGION_EXTENTS(pScreen, pRegion)

RegionExtents returns a rectangle that is the smallest possible superset of theg@mireTreecaller will
not modify this rectangle, so it can be the one in your region struct.

Bool pScreen->RegionAppend (pDstRgn, pRegion)
RegionPtr pDstRgn;
RegionPtr pRegion;

macro: Bool REGION_APPEND(pScreen, pDstRgn, pRegion)
Bool pScreen->RegionValidate (pRegion, pOverlap)
RegionPtr pRegion;
Bool *pOverlap;
macro: Bool REGION_VALIIATE(pScreen, pRegion, pOverlap)
These functions provide an optimization for clip list generation and must be used in conjunction. The com-
bined effect is to produce the union of a collection of regions, by using RegionApperal smes, and
finally calling RegionValidate which takes the intermediate representation (which tieednalid region)

and produces the desired union. pOverlap is set to TRURK iffahe original regionswerlap; FALSE
otherwise.

RegionPtr pScreen->BitmapToRegion (pPixmap)
PixmapPtr pPixmap;

macro: RegionPtr BITMAP_TO_REGION(pScreen, pPixmap)

Given a cepth-1 pixmap, this routine must create a valid region which includes all the areas of the pixmap
filled with 1's and excludes the areas filled witls0'Thisroutine returns NULL if out of memory.

Porting Layer Definition -24 - April 8, 1994

RegionPtr pScreen->RectsToRegion (nrects, pRects, ordering)
int nrects;
xRectangle *pRects;
int ordering;

macro: RegionPtr RECTS_TO_REGION(pScreen, nrects, pRects, ordering)

Given a dient-supplied list of rectangles, produces a region which includes the union of all the rectangles.
Ordering may be used as a hint which describesthe rectangles are sorted. As the hint is provided by a
client, it must not be required to be correct, but the results when it is not correct are not defined (core dump
is not an option here).

void pScreen->SendGraphicsExpose(client,pRegiowabig, major,minor)
ClientPtr client;
RegionPtr pRegion;
XID drawable;
int major;
int minor;

SendGraphicsExpose dispatches a list of GraphicsExposans vhich span the region to the specified
client. Ifthe region is empfyor a NULL pointer, a NoExpose eent is sent instead.

5.2.5. CursorRoutines for a Screen

A cursor is the visual form tied to the pointingribe. Thedefault cursor is an "X" shape, but the cursor
can hae any bape. Wher dient creates a windg it declares what shape the cursor will be when it
strays into that winde on the screen.

For each possible shape the cursor assumes, there is a CursorRec data structure. This data structure con-
tains a pointer to a CursorBits data structure which contains a bitmap for the image of the cursor and a bit-
map for a mask behind the cursioraddition, the CursorRec data structure contains foreground and back-
ground colors for the cursoithe CursorBits data structure is shared among multiple CursorRec structures
which use the same font and glyph to describe both source and mask. The cursor image is applied to the
screen by applying the mask first, clearing 1 bits in its form to the backgroundanditinen @erwriting

on the source image, in the foreground col{@ne bits of the source image that fall on top of zero bits of

the mask image are undefined.) This ywaagursor can hee fransparent parts, and opaque parts mdw-

ors. Xallows aly cursor size, but some hardware cursor schemes alloaximum of N pixels by M pix-

els. Thereforeyou are allowed to transform the cursor to a smaller size, but be sure to include the hot-spot.

CursorBits in Xserver/include/cursorstr.h is a device-independent structure containing a device-independent
representation of the bits for the source and mask. (This is possible because the bitmap representation is
the same for all screens.)

When a cursor is created, it is "realized" for each screen. At realization time, each screen has the chance to
corvert the bits into some other representation that may be movergent (for instance, putting the cursor

into off-screen memory) and set up its devicegpe area in either the CursorRec data structure or Cursor-

Bits data structure as appropriate to possibly point to wératdata structures are needed. It is more mem-
ory-conservatie 10 share realizations by using the CursorBitvaie field, but this makes the assumption

that the realization is independent of the colors used (which is typically #aenstance, the following

are the device préate entries for a particular screen and cursor:

pCursor->devPriv[pScreen->myNum]
pCursor->bits->devPriv[pScreen->myNum]

This is done because the change from one cursor shape to another must be fast anceréspoossor

Porting Layer Definition -25- April 8, 1994

image should be able to flutter as fast as the useeiiecross the screen.
You must implement the following routines for your hardware:

Bool pScreen->RealizeCursor(pSoCurs)
ScreenPtr pScr;
CursorPtr pCurs;

Bool pScreen->UnrealizeCursor(pSaCurs)
ScreenPtr pScr;
CursorPtr pCurs;

RealizeCursor and UnrealizeCursor should realize (allocate and calculate all data needed) and unrealize
(free the dynamically allocated data) segi cursor when DIX needs them. Thare called whener a
device-independent cursor is created or dgstto Thesource and mask bits pointed to by fields in pCurs
are undefined for bits beyond the right edge of the cuf@as is so because the bits are in Bitmap format,
which may hge pad bits on the right edgeXou should inhibit UnrealizeCursor() if the cursor is currently

in use; this happens when the system is reset.

Bool pScreen->DisplayCursor(pSpcurs)
ScreenPtr pScr;
CursorPtr pCurs;

DisplayCursor should change the cursor on tliengicreen to the one passed in. Itis called by DIX when
the user mees the pointing device into a different windavith a different cursorThe hotspot in the cur-
sor should be aligned with the current cursor position.

void pScreen->RecolorCursor(pSp€urs, displayed)
ScreenPtr pScr;
CursorPtr pCurs;
Bool displayed;

RecolorCursor notifies DDX that the colors in pCurgehdnanged and indicates whether this is the cursor
currently being displayed. If it is, the cursor hardware state maythde pdated. Whethetisplayed or
not, state created at RealizeCursor time mag tmbe pdated. Ageneric version, miRecolorCursonay

be used that does an unrealize, a realize, and possibly a display (in micursor.ed tiogseonstrains
UnrealizeCursor and RealizeCursor toals return TRUE as no error indication is returned here.

void pScreen->ConstrainCursor(pSaBox)
ScreenPtr pScr;
BoxPtr pBox;

ConstrainCursor should cause the cursor to restrict its motion to the rectangle pBox. DIX code is capable
of enforcing this constraint by forcefully moving the cursor if it strays out of the rectangle, but Constrain-
Cursor offers a way to send a hint to theveror hardware if such support isalable. Thiscan preent

the cursor from wandering out of the box, then jumping back, as DIX forces it back.

void pScreen->PointerNonInterestBox(pSaox)
ScreenPtr pScr;
BoxPtr pBox;

PointerNonInterestBox is DIX'way of telling the pointing device code not to report motigents while

the cursor is inside agn rectangle on the gén screen. Itis optional and, if not implemented, it should
do nothing. This routine is called only when the client has declared that it is not interested in weot®n e
in a gven window. The rectangle you get may be a subset of that windibsaves DIX code the time

Porting Layer Definition -26 - April 8, 1994

required to discard uninteresting mouse motigents. Thisis only a hint, which may speed performance.
Nothing in DIX currently calls PointerNonInterestBox.

void pScreen->CursorLimits(pSgCurs, pHotBox, pTopLeftBox)
ScreenPtr pScr;
CursorPtr pCurs;
BoxPtr pHotBox;
BoxPtr pTopLeftBox; /*return value */

CursorLimits should calculate the box that the cursor hot spot is physically capable of moving within, as a
function of the screen pSdhe device-independent cursor pCurs, and a box that DIX hypothetically would
want the hot spot confined within, pHotBox. This routine is for informing DIX only; it alters no state

within DDX.

Bool pScreen->SetCursorPosition(pS&wx, newy generateEvent)
ScreenPtr pScr;
int newx;
int newy;
Bool generateEvent;

SetCursorPosition should artificially m@te cursor as though the user had jerked the pointing device very
quickly. This is called in response to the WarpPointer request from the client, and at other times. If genera-
teEvent is True, the device should decide whether or not to call ProcessinputEvents() and then it must call
DevicePtr>processinputProc. leffects are, of course, limited in value for absolute pointing devices such

as a tablet.

void NewCurrentScreen(newScreen, X, Y)
ScreenPtr newScreen;
int x,y;

If your ddx provides some mechanism for the user to magicalxe the pointer between multiple screens,
you need to inform DIX when this occurgou should call NewCurrentScreen to accomplish this, specify-
ing the nev screen and the mex and y coordinates of the pointer on that screen.

5.2.6. Visuals, Depths and Pixmap Formats for Screens
The "depth" of a image is the number of bits that are used per pixel to display it.

The "bits per pixel" of a pixmap image that is sergrohe client byte stream is a number that is either 4, 8,
16, 24 or 32. It is the number of bits used per pixel in Z forrRat.instance, a pixmap image that has a
depth of six is best sent in Z format as 8 bits per pixel.

A "pixmap image format" or a "pixmap format" is a description of the format of a pixmap image as it is
sent @er the byte streamFor each depthilable on a servethere is one and only one pixmap format.
This pixmap image formatgs the bits per pixel and the scanline padding unit. (For instance, are pixel
rows padded to bytes, 16-bit words, or 32-bit words?)

For each screen, you must decide upon what depth(s) it suppfanisshould only count the number of bits
used for the actual image. Some displays store additional bits to indicate whainthigdpixel is in, how
close this object is to a viewdranspareng and other data; do not count these bits.

A "display class" tells whether the display is monochrome or,asl@ther there is a lookup table, and
how the lookup table works.

Porting Layer Definition -27 - April 8, 1994

A "visual" is a combination of depth, display class, and a descriptiomothieopixel values result in a

color on the screen. Each visual has a set of masks and offsets that are used to separate a pixel value into
its red, green, and blue components and a count of the number of colormap entries. Some of these fields
are only meaningful when the class dictates so. Each visual also has a screen ID telling which screen it is
usable on. Note that the depth does not imply the number of map_entries; for instance, a display&an ha
bits per pixel but only 254 colormap entries for use by applications (the othéeitvg reserved by hard-

ware for the cursor).

Each visual is identified by a 32-bit visual ID which the client uses to choose what visual is desired on a
given window. Clients can be using more than one visual on the same screen at the same time.

The class of a display describeswihis translation takes place. There are three ways to do the translation.

. Pseudo - The pixel value, as a whole, is looked up in a table of length map_entries to determine the
color to display.

. True - The pixel value is broken up into red, green, and blue fields, each of which are looked up in
separate red, green, and blue lookup tables, each of length map_entries.
. Gray - The pixel value is looked up in a table of length map_entries to determine argrary des-
play.
In addition, the lookup table can be static (resulting colors are fixed for each pixel value) or dynamic
(lookup entries are under control of the client program). This leads to a total of six classes:

. Static Gray - The pixel value (of hower mary bits) determines directly thevd of gray that the
pixel assumes.

. Gray Scale - The pixel value is fed through a lookup table teeaatrthe level of gray to display for
the gven pixel.

. Static Color - The pixel value is fed through a fixed lookup table that yields the color to display for
that pixel.
. PseudoColor - The whole pixel value is fed through a programmable lookup table that has one color

(including red, green, and blue intensities) for each possible pixel value, and that color is displayed.

. True Color - Each pixel value consists of one or more bits that directly determine each primary color
intensity after being fed through a fixed table.

. Direct Color - Each pixel value consists of one or more bits for each primary Ealcn primary
color value is individually looked up in a table for that primary ¢gl@iding an intensity for that
primary color For each pixel, the red value is looked up in the red table, the green value in the green
table, and the blue value in the blue table.

Here are some examples:
A simple monochrome 1 bit per pixel display is Static Gray.

A display that has 2 bits per pixel for a choice between the colors of black, white, green and violet is
Static Color.

A display that has three bits per pixel, where each bit turns orfi @n@bf the red, green or blue
guns, is in the True Color class.

If you take the last example and scramble the correspondence between pixel values and colors it
becomes a Static Color display.

A display has 8 bits per pgk The8 hits select one entry out of 256 entries in a lookup table, each
entry consisting of 24 bits (8bits each for red, green, and blue). The display vaangts6 of 16
million colors on the screen at once. This is a pseudocolor disphayclient application gets to fill
the lookup table in this class of display.

Porting Layer Definition -28- April 8, 1994

Imagine the same hardware from the lasineple. Your server software allows the usaem the com-

mand line that starts up the server program, to fill the lookup table to his liking once and for all.
From then on, the server software would not change the lookup table uxitd.itfor instance, the
default might be a lookup table with a reasonable sample of colors from throughout the color space.
But the user could specify that the table be filled with 256 steps of gray scale because delde

of time he would be manipulating a lot of black-and-white scanned photographs and not very many
color things. Clients would be presented with this unchangeable lookup table. Although the hard-
ware qualifies as a PseudoColor disptag facade presented to the X client is that this is a Static
Color display.

You haveto decide what kind of display youveaa want to pretend you kke. When you initialize
the screen(s), this class value must be set in the VisualRec data structure along with other display
characteristics li& the depth and other numbers.

The allavable DepthRes and VisualRecs ae pointed to by fields in the ScreenRec. These are set
up when InitOutput() is called; you should Xalloc() appropriate blocks or use static variables initial-
ized to the correct values.

5.2.7. Colormapsfor Screens
A colormap is a device-independent mapping between pixel values and colors displayed on the screen.

Different windows on the same screen cavehdfferent colormaps at the same time. Ayaiven time,

the most recently installed colormap(s) will be in use in the server so that its (their) windows’ colors will be
guaranteed to be correct. Other windows may be off-céltthough this may seem to be chaotic, in prac-

tice most clients use the default colormap for the screen.

The default colormap for a screen is initialized when the screen is initializegiaysalemains in exis-
tence and is not owned byyaregular client. It is owned by client 0 (the server itself). Mahents will
simply use this default colormap for theirdiag. Dependingipon the class of the screen, the entries in
this colormap may be modifiable by client applications.

5.2.7.1. ColormapRoutines

You need to implement the following routines to handle the device-dependent aspects of coloYeunaps.

will end up placing pointers to these procedures in your ScreenRec data structure(s). The sample server
implementations of marof these routines are in both cfbcmap.c and mfbcmap.c; since mfb does not do
very much with coloythe cfb versions are typically more useful prototypes.

Bool pScreen->CreateColormap(pColormap)
ColormapPtr pColormap;

This routine is called by the DIX CreateColormap routine after it has allocated all the data fov toé ne

ormap and just before it returns to the dispatchéas the DDX layers chance to initialize the colormap,
particularly if it is a static map. See the following section for more details on initializing colormaps. The
routine returns FALSE if creation failed, such as due to memory limitations. Notice that the colormap has a
devPrv field from which you can hangyanolormap specific storage you need. Since each colormap

might need special information, we attached the field to the colormap and not the visual.

void pScreen->DestroyColormap(pColormap)
ColormapPtr pColormap;

Porting Layer Definition -29- April 8, 1994

This routine is called by the DIX FreeColormap routine after it has uninstalled the colormap and notified all
interested parties, and before it has fregdadnhe colormap storage. It is the DDX layedhance to free
ary data it added to the colormap.

void pScreen->InstallColormap(pColormap)
ColormapPtr pColormap;

InstallColormap should fill a lookup table on the screen with which the colormap is associated with the col-
ors in pColormap. If there is only one hardware lookup table for the screen, then all colors on the screen
may change simultaneously.

In the more general case of multiple hardware lookup tables, this may cause some other colormap to be
uninstalled, meaning that windows that subscribed to the colormap that was uninstalled may end up being
off-color. See the note, belg about uninstalling maps.

void pScreen->UninstallColormap(pColormap)
ColormapPtr pColormap;

UninstallColormap should reme pColormap from screen pColormap->pScreen. Some other map, such as
the default map if possible, should be installed in place of pColormap if applicable. If pColormap is the
default map, do nothing. If grclient has requested ColormapNotifyeats, the DDX layer must notify the
client. (Theroutine WalkTree() is be used to find such wiwdo TheDIX routines TellNoMap(), Tell-
NewMap() andTellGainedMap() are provided to be used as the procedure parameter tod¥alkhese
procedures are in Xserver/dix/colormap.c.)

int pScreen->ListinstalledColormaps(pScreen, pCmapList)
ScreenPtr pScreen;
XID *pCmaplList;

ListInstalledColormaps fills the pCMapList in with the resource ids of the installed maps and returns a
count of installed maps. pCmapList will point to an array of size MaxInstalledMaps that was allocated by
the caller.

void pScreen->StoreColors (pmap, ndef, pdefs)
ColormapPtr pmap;
int ndef;
xColorltem *pdefs;

StoreColors changes some of the entries in the colormap pmap. The number of entries to change are ndef,
and pdefs points to the information describing what to change. Note that partial changes of entries in the
colormap are allwed. Onlythe colors indicated in the flags field of each xColorltem need to be changed.
However, dl three color fields will be sent with the proper value for the benefit of screens that may not be
able to set part of a colormagplue. Ifthe screen is a static class, this routine does nothing. The structure

of colormap entries is nontrivial; see colormapst.h and the definition of xColorltem in Xproto.h for more
details.

void pScreen->ResolveColor(pRed, pGreen, pBlue, pVisual)

unsigned short *pRed, *pGreen, *pBlue;
VisualPtr pVisual,

Porting Layer Definition -30- April 8, 1994

Given a requested colpResolveColor returns the nearest color that this hardware is capable of displaying
on this visual. In other words, this round$§esdch value, in place, to the number of bits per primary color
that your screen can use. Remember that each screen has one of these routined. of heuledoff

should be what you would expect from the value you put in the bits_per_rgb field of the pVisual.

Each value is an unsigned value ranging from 0 to 65535. The bits least likely to be used are the lowest
ones.

For example, if you had a pseudocolor display witly anmber of bits per pixel that had a lookup table
supplying 6 bits for each color gun (a total of 256K different colors), you would rotiedabf value to 6
bits. Please&lon’t simply truncate these values to the upper 6 bits, scale the result so that the maximum
value seen by the client will be 65535 for each primdnyis makes color values more portable between
different depth displays (a 6-bit truncated white will not look white on an 8-bit display).

5.2.7.2. Initializing a Colormap

When a client requests ameolormap and when the server creates the default colormap, the procedure
CreateColormap in the DIX layer isvisked. Thatprocedure allocates memory for the colormap and

related storage such as the lists of which client owns whidispixtthen sets a bit, BeingCreated, in the
flags field of the ColormapRec and calls the DDX lag/€kateColormap routine. This is your chance to
initialize the colormap. If the colormap is static, which you can tell by looking at the class field, you will
want to fill in each color cell to match the hardwares notion of the color for thelt pfxhe colormap is

the default for the screen, which you can tell by looking at the IsDefault bit in the flags field, you should
allocate BlackPixel and WhitePixel to match the values you set in the pScreen structure. (Of course, you
picked those values to begin with.)

You can also wait and use AllocColor() to allocate blackPixel and whitePixel after the default colormap has
been created. If the default colormap is static and you initialized it in pScreen->CreateColormap, then use
can use AllocColor afterwards to choose pixel values with the closest rgb values to those desired for black-
Pixel and whitePigl. If the default colormap is dynamic and uninitialized, then the rgb values you request
will be obeyed, and AllocColor will again choose pixel values for you. These pixel values can then be
stored into the screen.

There are tw ways to fill in the colormap. The simplest way is to use the DIX function AllocColor.

int AllocColor (pmap, pred, pgreen, pblue, pPix, client)
ColormapPtr pmap;
unsigned short *pred, *pgreen, *pblue;
Pixel *pPix;
int client;

This takes three pointers to 16 bit color values and a pointer to a suggestedlpeeMhepixel value is

either an inde into one colormap or a combination of three indices depending on the type of pmap. If your
colormap starts out emptsnd you dort deliberately pick the same value twice, you wilvays get your
suggested ped. Thetruly nervous could check that the value returned in *pPix is the one AllocColor was
called with. If you dort care which pixel is used, or would élkhem sequentially allocated from entry O,

set *pPix to 0. This will find the first free pixel and use that.

AllocColor will take care of all the book#eping and wiltall StoreColors to get the colormap rgb values
initialized. Thehardware colormap will be changed whesrehis colormap is installed.

If for some reason AllocColor doesiio what you want, you can do your own bookkeeping and call Store-
Colors yourself. This is much more difficult and should® recessary for most devices.

5.2.8. Fonts for Screens

A font is a set of bitmaps that depict the symbols in a character set. Each font is for only one typeface in a
given dze, in other words, just one bitmap for each chara®arallel fonts may bevailable in a variety of

Porting Layer Definition -31- April 8, 1994

sizes and variations, including "bold" and "italicX'supports fonts for 8-bit and 16-bit character codes (for
oriental languages thatVenore than 256 characters in the font). Glyphs are bitmaps for individual char-
acters.

The source comes with some useful font files in an ASCII, plain-text format that should be comprehensible
on a wide variety of operating systems. The text format, referred to gaBdsight extension of the cur-
rent Adobe 2.1 Bitmap Distribution Format (Adobe Systems, Inc.).

A short paper in PostScript format is included with the sample server that definedtB@ffudes helpful
pictures, which is wiit is done in PostScript and is not included in this document.

Your implementation should include some sort of font compiler to read these files and generate binary files
that are directly usable by your server implementation. The sample server comes with the source for a font
compiler.

It is important the font properties contained in the BDF files are preserved agrésatasompilation. In
particular copyright information cannot be casually tossed aside withgdtramifications. Other proper-
ties will be important to some sophisticated applications.

All clients get font information from the serveFherefore, your server can suppory &onts it wants to. It
should probably support at least the fonts supplied with the X11 tape. In principle, you wahfooits
from other sources or dream up your own fonts for use on your server.

5.2.8.1. Prtable Compiled Format

A font compiler is supplied with the sample seniéhas compile-time switches to ot the BDF files

into a portable binary form, called Portable Compiled Format or HGIS allows for an arbitrary data for-
mat inside the file, and by describing the details of the format in the header of the/fR€Fafile can be
read by ayp PCF reading client. By selecting the format which matches the required internal format for
your rendererthe PCF reader cawvad reformatting the data each time it is read in. The font compiler
should be quite portable.

The fonts included with the tape are stored in fonts/bdf. The font compiler is found in fonts/tools/bdftopcf.

5.2.8.2. Bnt Realization

Each screen configured into the server has an opportunity at font-load time to "realize" a font into some
internal format if necessaryrhis happenswery time the font is loaded into memory.

A font (FontRec in Xserver/include/dixfontstr.h) is a device-independent structure containing a device-inde-
pendent representation of the font. When a font is created, it is "realized" for each screen. At this point,
the screen has the chance tovannthe font into some other format. The DDX layer can also put informa-
tion in the devPriate storage.

Bool pScreen->RealizeFont(p$SpFont)
ScreenPtr pScr;
FontPtr pFont;

Bool pScreen->UnrealizeFont(pSpFont)
ScreenPtr pScr;
FontPtr pFont;

RealizeFont and UnrealizeFont should calculate and allocate these extra data structures and dispose of them

when no longer needed. These are called in response to OpenFont and CloseFont requests from the client.
The sample server implementation is in mfbfont.c (which does very little).

Porting Layer Definition -32- April 8, 1994

5.2.9. OtherScreen Routines

You must supply seeral other screen-specific routines for your X server implementation. Some of these
are described in other sections:

. Getlmage() is described in the Drawing Prines sction.

. GetSpans() is described in the Pixblit routine section.
. Seveal windov and pixmap manipulation procedures are described in the Wiselction under
Drawables.

. The CreateGC() routine is described under Graphics Contexts.

void pScreen->QueryBestSize(kind, pWidth, pHeight)
int kind,;
unsigned short *pWidth, *pHeight;
ScreenPtr pScreen;

QueryBestSize() returns the best sizes for cursors, tiles, and stipples in response to client requests. kind is
one of the defined constants CursorShape, TileShape, or StippleShape (definedkorChjsorShape,

return the maximum width and height for cursors that you can haRdidlileShape and StippleShape,

start with the suggested values in pWidth and pHeight and modify them in place to be optimal values that
are greater than or equal to the suggesthaeg. Thesample server implementation is in
Xserver/mfb/mfbmisc.c.

pScreen->SourceValidate(pvable, x, y width, height)
DrawablePtr pDravable;
int x, y, width, height;

SourceValidate should be called by CopyArea/CopyPlane pramitihen the source drable is not the
same as the destination, and the SourceValidate function pointer in the screen is non-null. lfwitnakno
you will never need SourceValidate, you cavoa this check. CurrentySourceValidate is used by the mi
software cursor code to rer®the cursor from the screen when the source rectamgiiaps the cursor
position. x,ywidth,height describe the source rectangle (sourcevelitat is) for the copoperation.

Bool pScreen->S&Screen(pScreen, on)
ScreenPtr pScreen;
int on;

SaveScreen() is used for ScreervBasupport (see WaitbrSomething()). pScreds the screen to sa

Bool pScreen->CloseScreen(pScreen)
ScreenPtr pScreen;

When the server is reset, it calls this routine for each screen.

Bool pScreen->CreateScreenResources(pScreen)
ScreenPtr pScreen;

If this routine is not NULL, it will be called once per screen per server initialization/reset after all modules
have had a chance to register their devaies on all structures that support them (see the section on devPri-
vates belav). If you need to create ymesources that kka dynamic devPriates as part of your screen ini-
tialization, you should do so in this function instead of in the screen init function passed to AddScreen to
guarantee that the resourceséha omplete set of devRadtes. Thisroutine returns TRUE if successful.

Porting Layer Definition -33- April 8, 1994

5.3. Drawables

A drawable is a descriptor of a surface that graphics are drawn into, either awondoe screen or a
pixmap in memory.

Each dravable has a type, class, ScreenPtr for the screen it is associated with, depth, position, size, and
serial number The type is one of the defined constants RRBLE_PIXMAP, DRAWABLE_WINDOW

and UNDRANABLE_WINDOW. (An undravable windaw is used for winda class InputOnly The

serial number is guaranteed to be unique acrosglles, and is used in determining the validity of the
clipping information in a GC. The screen selects the set of procedures used to manipulate arid thie
drawable. Positioris used (currently) only by windows; pixmaps must set these fields to 0,0 as this reduces
the amount of conditional codaeeuted throughout the mi code. Size indicates the actual client-specified
size of the draable. Thereare, in fact, no other fields that a winddrawable and pixmap dwable have

in common besides those mentioned here.

Both PixmapRecs and WindowRecs are structs that start witlwaldlesand continue on with more fields.
Pixmaps hee devPrivate pointers which usually point to the pixmap data but could cealatgibe used for
anything that DDX wvants. Bothwindows and pixmaps ke an aray of devPriates unions, one entry of

which will probably be used for DDX specific data. Entries in this array are allocated using Allocate{Win-
dow|Pixmap}Pnatelndex() (see Wrappers and devEtes belw). Thisis done because different graphics
hardware has different requirements for management; if the graphiasys &landled by a processor with

an independent address space, there is no point having a pointer to the bit image itself.

The definition of a draable and a pixmap can be found in the file Xserver/include/pixmiap&thedefini-
tion of a windav can be found in the file Xserver/include/windowstr.h.

5.3.1. Pixmaps

A pixmap is a three-dimensional array of bits stored somewhere offscreen, rather than in the visible portion
of the screers dsplay frame buffer It can be used as a source or destination in graphics operations. There

is no implied interpretation of the pixel values in a pixmap, because it has no associated visual or colormap.
There is only a depth that indicates the number of significant bits dr pilso,there is no implied physi-

cal size for each pixel; all graphic units are in numbers @qixThereforea pxmap alone does not con-

stitute a complete image; it represents only a rectangular array of pixel values.

Note that the pixmap data structure is reference-counted.

The server implementation is free to put the pixmap data anywhere it sees fit, according to its graphics
hardware setup. Marimplementations will simply he the data dynamically allocated in the server’s
address space. More sophisticated implementations may put the data in undisplayed framebuffer storage.

In addition to dynamic devRudtes (see the section on dewlrés below), the pixmap data structure has
two fields that are prate to the deice. Althoughyou can use them for anything you wantythave
intended purposes. devKind is intended to be a device specific indication of the pixmap location (host
memory off-screen, etc.). In the sample sepgarce all pixmaps are in memgigevKind stores the width

of the pixmap in bitmap scanline units. devBte is probably a pointer to the bits in the pixmap.

A bitmap is a pixmap that is one bit deep.
PixmapPtr pScreen->CreatePixmap(pScreen, width, height, depth)
ScreenPtr pScreen;

int width, height, depth;

This ScreenRec procedure must create a pixmap of the size requested. It must allocate a PixmapRec and
fill in all of the fields. The reference count field must be set to 1. If width or height are zero, no space

Porting Layer Definition -34- April 8, 1994

should be allocated for the pixmap data, and if the implementation is using thevateViigrid as a pointer
to the pixmap data, it should be set to NULL. If successful, it returns a pointer tontipexrmeap; if not, it
returns NULL. See Xserver/mfb/mfbpixmap.c for the sample server implementation.

Bool pScreen->DestroyPixmap(pPixmap)
PixmapPtr pPixmap;

This ScreenRec procedure must "destroy” a pixmap. It should decrement the reference count and, if zero, it
must deallocate the PixmapRec and all attached detétilocks. If successful, it returns UE. See
Xserver/mfb/mfbpixmap.c for the sample server implementation.

Bool
pScreen->ModifyPixmapHeader(pPixmap, width, height, depth, bitsPerPixel, devKind, pPixData)
PixmapPtr pPixmap;

int width;

int height;

int depth;

int bitsPerPirl;
int devKind;

pointer pPixData;

This routine takes a pixmap header (the PixmapRec plus all the dynamioadegPand initializes the

fields of the PixmapRec to the parameters of the same name. pPixmap veustmacreated via
pScreen->CreatePixmap with a zero width or heighvt¢adaallocating space for the pixmap data. pPix-
Data is assumed to be the pixmap data; it will be stored in an implementation-dependent place (usually
pPixmap->devPvate.ptr). Thisroutine returns TRUE if successful. See Xserver/mi/miscrinit.c for the
sample server implementation.

PixmapPtr
GetScratchPixmapHeader(pScreen, width, height, depth, bitsPerPixel, devKind, pPixData)
ScreenPtr pScreen;

int width;

int height;

int depth;

int bitsPerPirl;
int devKind;

pointer pPixData;

void FreeScratchPixmapHeader(pPixmap)
PixmapPtr pPixmap;

DDX should use these tDIX routines when it has a buffer ofwamage data that it wants to manipulate

as a pixmap temporarjlysually so that some other part of the server canveealged to perform some

operation on the data. The data should be passed in pPixData, and will be stored in an implementation-
dependent place (usually pPixmap->dev&e.ptr). The other fields go into the corresponding PixmapRec
fields. Ifsuccessful, GetScratchPixmapHeader returns a valid PixmapPtr which can be used anywhere the
server expects a pixmap, else it returns NULL. The pixmap should be released when no longer needed
(usually within the same function that allocated it) with FreeScratchPixmapHeader.

5.3.2. Windows

A window is a \isible, or potentially visible, rectangle on the screen. DIX windowing functions maintain
an internal n-ary tree data structure, which represents the current relationships of the mapped windows.
Windows that are contained in another windme children of that winde and are clipped to the bound-
aries of the parent. The root winglin the tree is the windefor the entire screen. Sibling windows

Porting Layer Definition -35- April 8, 1994

constitute a doubly-linked list; the parent wimdbas a pointer to the head and tail of this list. Each child
also has a pointer to its parent.

The border of a winde is drawn by a DDX procedure when DIX requests that it bevdraThecontents
of the windav is drawn by the client through requests to the server.

Window painting is orchestrated through an expogmesystem. When a region is exposed, DIX gener-
ates an exposevent, telling the client to repaint the windand passing the region that is the minimal area
needed to be repainted.

As a fva to dients, the server may retain the output to the hidden parts of windows in off-screen memory;
this is called "backing store”. When a part of such a winbecomes exposed, it can quickly veqixels

into place instead of triggering an exposeng and waiting for a client on the other end of the network to
respond. Een if the network response is insignificant, the time to intelligently paint a section of a window
is usually more than the time to just g@iready-painted sections. At best, the repaintivglires blank-

ing out the area to a background cplanich will take eout the same amount of time. In this wagck-

ing store can dramatically increase the performance of wimamves.

On the other hand, backing store can be quite complex, because all graphics drawn to hidden areas must be
intercepted and redirected to the off-screen wingections. Nobnly can this be complicated for the

server programmebut it can also impact windopainting performance. The backing store implementa-

tion can choose, at gime, to forget pieces of backing that are written into, relying instead upon expose
evants to repaint for simplicity.

In X, the decision to use the backing-store scheme is made by you, the server impleXhpriwides

hooks for implementing backing store, therefore the decision to use this strategy can be made on the fly.
For example, you may use backing store only for certain windows that the user requests or you may use
backing store until memory runs out, at which time you start dropping pieces of backing as needed to make
more room.

When a windw operation is requested by the client, such as a wiriging created or nwed, a n&v state

is computed. During this transition, DIX informs DDX what rectangles in what windows are about to
become obscured and what rectangles in what windovesbleaome gposed. Thiprovides a hook for

the implementation of backing store. If DDX is unable to restore exposed regions, DIX generates expose
evants to the client. It is then the cliemtesponsibility to paint the windoparts that were exposed but not
restored.

If a window is resized, pixels sometimes need to bevedpdepending upon the application. The client can
request "Gravity" so that certain blocks of the windine moved as a esult of a resizeFor instance, if the
window has controls or other items thatval/s hang on the edge of the wing@nd that edge is nved as

a result of the resize, then those pixels should beethto avoid having the client repaint it. If the client
needs to repaint it anywaguch an operation takes time, so it is desirable for the server to approximate the
appearance of the windaas test it can while waiting for the client to do it perfect{yravity is used for

that, also.

The windav has sgeral fields used in drawing operations:

. clipList - This region, in conjunction with the client clip region in the gc, is used to clip output. cli-
pList has the window children subtracted from it, in addition to pieces of sibling windows that o
lap this windav. To get the list with the children included (subwindow-mode is Includelnferiors), the
routine NotClippedByChildren(pWin) returns the unclipped region.

. borderClip is the region used by CopyWimdand includes the area of the windats children, and
the borderbut with the @erlapping areas of sibling children reweo.

Most of the other fields are for DIX use only.

Porting Layer Definition -36 - April 8, 1994

5.3.2.1. Window Procedures in the ScreenRec
You should implement all of the following procedures and store pointers to them in the screen record.

The device-independent portion of the server "owns" the wiricee. Havever, dever hardware might

want to knav the relationship of mapped wings. Thereare pointers to procedures in the ScreenRec data
structure that are called tovgithe hardware a chance to update its internal state. These are helpers and
hints to DDX only; thg do mot change the windwtree, which is only changed by DIX.

Bool pScreen->CreateWindow(pWin)
WindowPtr pWin;

This routine is a hook for when DIX creates a wiwddt should fill in the "Windav Procedures in the
WindowRec" belar and also allocate the devi?aie block for it.

See Xserver/mfb/mfbwindac for the sample server implementation.

Bool pScreen->DestroyWindow(pWin);
WindowPtr pWin;

This routine is a hook for when DIX destroys a wiwddt should deallocate the devikaie block for it and
ary other blocks that need to be freed, besides doing other cleanup actions.

See Xserver/mfb/mfbwindac for the sample server implementation.

Bool pScreen->PositionWindow(pWin, X, y);
WindowPtr pWin;
intx,y;

This routine is a hook for when DIX mes or resizes a windwe. It should do whateer private operations
need to be done when a winds moved or resized. Br instance, if DDX keeps a pixmap tile used for
drawing the background or bor¢gand it keeps the tile rotated such that it is longword aligned to longword
locations in the frame buffethen you should rotate your tiles here. The actual graphiolvéd in mov-

ing the pixels on the screen and drawing the border are handled by CopyWindowy), belo

See Xserver/mfb/mfbwindac for the sample server implementation.

Bool pScreen->RealizeWindow(pWin);
WindowPtr pWin;

Bool pScreen->UnrealizeMtow(pWin);
WindowPtr pWin;

These routines are hooks for when DIX maps (makes visible) and unmaps (makes invisibleja Windo
should do whateer private operations need to be done when these happen, such as allocating or deallocat-
ing structures that are only needed for visible winsloRealizeWhdow does NO draw the windav bor-

der, background or contents; UnrealizeWinddoes NO erase the winde or generate exposureents

for underlying windows; this is taken care of by DIX. DIX does, haneall PaintWindowBackground()

and PaintWindowBorder() to perform some of these.

Bool pScreen->ChangeWindowAttributes(pWin, vmask)
WindowPtr pWin;
unsigned long vmask;

ChangeWindowAttributes is called wheeeDIX changes windw attributes, such as the size, front-to-
back ordering, title, or anything of lessevedy that affects the winde itself. Thesample server

Porting Layer Definition -37- April 8, 1994

implements this routine. It computes accelerators for quickly putting up background and border tiles. (See
description of the set of routines stored in the WindowRec.)

int pScreen->ValidateTree(pRent, pChildkind)
WindowPtr pParent, pChild,;
VTKind kind;

ValidateTree calculates the clipping region for the parent wiraha all of its children. This routine must
be provided. The sample server has a machine-independent version in Xservegltmaéra. Thiss a
very difficult routine to replace.

void pScreen->PostValidateTree@®nt, pChildkind)
WindowPtr pParent, pChild,;
VTKind kind;

If this routine is not NULL, DIX calls it shortly after calling ValidateTree, passing it the same arguments.
This is useful for managing multi-layered framdbus. Thesample server sets this to NULL.

void pScreen->WindowExposures(pWin, pRegion, pBSRegion)
WindowPtr pWin;
RegionPtr pRegion;
RegionPtr pBSRegion;

The WindowExposures() routine paints the border and generates expesiisd@ the winde. pRegion

is an unoccluded region of the winvdand pBSRegion is an occluded region that has backing store. Since
exposure eents include a rectangle describing what was exposed, this routine weap lsand back a

series of exposurevents, one for each rectangle of thgios. Thecount field in the exposevent is a hint

to the client as to the number of regions that are after this one. This routine must be provided. The sample
server has a machine-independent version in Xserver/mi/miexpose.c.

void pScreen->ClipNotify (pWin, dx, dy)
WindowPtr pWin;
int dx, dy;

Whenever the cliplist for a windw is changed, this function is called to perform wkatdhardware manip-
ulations might be necessarywhen called, the clip list and border clip regions in the winde set to the
new values. dx,dyare the distance that the wivdbas been meed (if at all).

5.3.2.2. Window Painting Procedures

In addition to the procedures listed abahere are four routines which manipulate the actual window
image directly In the sample servemi implementations will work for most purposes and mfb/cfb routines
speed up situations, such as solid backgrounds/borders or tiles that are 8, 16 or 32 pixels square.

These three routines are used for systems that implement a backing-store scheme fow itvizekrio
stash way areas of pixels and to restore or reposition them.

void pScreen->ClearToBackground(pWin, xwy h, generateExposures);
WindowPtr pWin;
intx,y, w, h;
Bool generateExposures;

This routine is called on a windain response to a ClearToBackground request from the client. This
request has tavdfferent but related functions, depending upon generateExposures.

Porting Layer Definition -38- April 8, 1994

If generateExposures is true, the client is declaring that ¥lee gictangle on the windois incorrectly

painted and needs to be repainted. The sample server implementation calculates the exposure region and
hands it to the DIX procedure HandleExposures(), which calls the WindowExposures() routinefdrelo

the windav and all of its child windows.

If generateExposures is false, the client is trying to simply erase part of thewtnte background fill

style. CleardBackground should write the background color or tile to the rectangle in question (probably
using PaintWindaBackground). Ifw or h is zro, it clears all the way to the right or lower edge of the
window.

The sample server implementation is in Xserver/mi/miwwmdo

void pScreen->PaintWindowBackground(pWin, region, kind)
WindowPtr pWin;
RegionPtr region;
intkind; /* must be PW_BCKGROUND */

void pScreen->PaintWindowBorder(pWin, region, kind)
WindowPtr pWin;
RegionPtr region;
intkind; /* must be PW_BORDER */

These tw routines are for painting pieces of the windsackground or borderThey both actually paint

the area designated bygien. Thekind parameter is a defined constant thatviegd PW_BA\CK-

GROUND or PW_BORDER, as slva. Thereforeyou can use the same routine for both. The defined
constant tells the routine whether to use the winddarder fill style or its background fill style to paint

the given regon. Bothfill styles consist of a union which holds a tile pointer and a pixel value, along with
a eparate variable which indicates which entryabd: For PW_BORDER, borderlsPixel != 0 indicates
that the border PixUnion contains a pixel value, else afibe P"W_BACKGROUND there are four values,
contained in backgroundState; None, ParentReldiackgroundPixmap and BackgroundélixNone
indicates that the region should be left unfilled, while ParentReliatlicates that the background of the
parent is inherited (see the Protocol document for the exact semantics).

void pScreen->CopyWindow(pWin, oldpt, oldRegion);
WindowPtr pWin;
DDXPointRec oldpt;
RegionPtr oldRegion;

CopyWindawv is called when a winde is moved, and graphically mees to pixels of a windav on the
screen. Ishould not change grother state within DDX (see PositionWindow(), abp

oldpt is the old location of the upper-left corneldRegion is the old region it is coming from. The new
location and ne& regon is stored in the WindeRec. oldRgion might modified in place by this routine
(the sample implementation does this).

CopyArea could be used, except that this operation has more complications. First of all, you do not want to
copy a rectangle onto a rectangle. The original wiwdoay be obscured by other windows, and the new
window location may be similarly obscured. Second, some hardware supports multiple windows with mul-
tiple depths, and your routine needs teetedre of that.

The pixels in oldRegion (with reference point oldpt) are copied to the wisdew' regon (pWin->border-
Clip). pwin->borderClip is gotten directly from the wingprather than passing it as a parameter.

The sample server implementation is in Xserver/mfb/mfbwinclo

Porting Layer Definition -39- April 8, 1994

5.3.2.3. Sceen Operations for Backing Store

Each ScreenRec has six functions which provide the backing storadetefr screens not supporting
backing store, these pointers may be nul. Servers that implement some backing store scheme must fill in
the procedure pointers for the proceduresviaedod must maintain the backStorage field in each window
struct. Thesample implementation is in mi/mibstore.c.

void pScreen->Sa&DoomedAreas(pWin, pRegion, dx, dy)
WindowPtr pWin;
RegionPtr pRegion;
int dx, dy;

This routine sees the newly obscured region, pRegion, in backing store. dx, dy indicatéainahe win-
dow is being maved, useful as the obscured region is re&id the windav as it will appear in the new
location, rather then rela# o the bits as the are on the screen when the functioudketh

RegionPtr pScreen->RestoreAreas(pWin, pRegion)
WindowPtr pWin;
RegionPtr pRegion;

This looks at the exposed region of the wiwdpRegion, and tries to restore to the screen the parts that
have teen seed. Itremoves the restored parts from the backing storage (becaugertheav on the
screen) and subtracts the areas from the expogishreThereturned region is the area of the window
which should hee expose gents generated for and can be eithera regjon, pWin->exposed, or NULL.
The region left in pRegion is set to the area of the winghich should be painted with the winddack-
ground.

RegionPtr pScreen->TranslateBackingStore(pWin, dxoldZlip, oldx, oldy)
WindowPtr pWin;
int dx, dy;
RegionPtr oldClip;
int oldx, oldy;

This is called when the windois moved or resized so that the backing store can be translated if necessary.
oldClip is the old cliplist for the windeg, which is used to s& doomed areas if the windois moved

underneath its parent as a result of bitgravitige returned region represents occluded areas of the window
for which the backing store contents anesiial.

void pScreen->ExposeCopy(pSrc, pDst, pGC, prgnExposed, srgxdsig dsty plane)
WindowPtr pSrc;
DrawablePtr pDst;
GCPtr pGC;
RegionPtr prgnExposed,;
int srcx;
int srcy;
int dstx;
int dsty;
unsigned long plane;

Copies a region from the backing store of pSrc to pDst.
RegionPtr pScreen->ClearBackingStore(pWingdg y, w, h, generateExposures)
WindowPtr pWindow;

int X;
inty;

Porting Layer Definition - 40 - April 8, 1994

int w;
int h;
Bool generateExposures;

Clear the gien area of the backing pixmap with the background of the windd generateExposures is
TRUE, generate exposureeats for the area. Note that if the area haspamt outside the sad portions of
the windav, we do rot allov the count in the exposeents to be 0, since there will be more exposmes
to come.

void pScreen->DrawGuarantee(pWingd@GC, guarantee)
WindowPtr pWindow;
GCPtr pGC;
int guarantee;

This informs the backing store layer that you are about to validate a gc with awénddhat subsequent
output to the windw is (or is not) guaranteed to be already clipped to the visible regions of thenwindo

5.3.2.4. Sceen Operations for Multi-Layered Framebuffers

The following screen functions are useful if yowda famebuffer with multiple sets of independent bit
planes, e.g.\@rlays or underlays in addition to the "main" planes. If yoveha $mple single-layer frame-
buffer, you should probably use the mi versions of these routines in mi/miwindd hiscan be easily
accomplished by calling miScreenlinit.

void pScreen->MarkWindow(pWin)
WindowPtr pWin;

This formerly dix function MarkWinde has maed to ddx and is accessed via this screen function. This
function should store something, usually a pointer to a device-dependent structure, in pWin->valdata so that
ValidateTree has the information it needs to validate the windo

Bool pScreen->MarkOverlappedWindows(parent, firstChild, ppLayerWin)
WindowPtr parent;
WindowPtr firstChild,;
WindowPtr * ppLayerWin;

This formerly dix function MarkWinde has maed to ddx and is accessed via this screen function. In the
process, it has grown another parameter: ppLayerWin, which is filled in with a pointer to the/atindo
which sae uinder marking and ValidateTree shouldjime Inthe single-layered framebuffer case, pLayer-

Win == pWin.

Bool pScreen->Change@#nder(pLayerWin, firstChild)
WindowPtr pLayerWin;
WindowPtr firstChild,;

The dix functions Change@nder and CheckSaUnder hae noved to ddx and are accessed via this
screen function. pLayerWin should be the wiwdeturned in the ppLayerWin parameter of MarkOver-
lappedWindws. Thefunction may turn on backing store for windows that might hvereal, and may par-
tially turn off backing store for windes. Itreturns TRUE if PostChange&inder needs to be called to
finish turning of backing store.

void pScreen->PostChange@dinder(pLayerWin, firstChild)

WindowPtr pLayerWin;
WindowPtr firstChild,;

Porting Layer Definition -41 - April 8, 1994

The dix function DoChange®eUnder has meed to ddx and is accessed via this screen function. This
function completes the job of turningf bfacking store that was started by ChangeSader.

void pScreen->MeeWindow(pWin, x, y pSib, kind)
WindowPtr pWin;
int x;
inty;
WindowPtr pSib;
VTKind kind;

The formerly dix function MeeWindow has mwed to didx and is accessed via this screen function. The
new position of the windw is given by xy. kind is VTMove if the windav is only moving, or VTOther if
the border is also changing.

void pScreen->ResizeWindow(pWin, x,w, h, pSib)
WindowPtr pWin;
int x;
inty;
unsigned int w;
unsigned int h;
WindowPtr pSib;

The formerly dix function SlideAndSizeWindohas mwed to didx and is accessed via this screen function.
The nev position is gven by xy. The nev size is given by wh.

WindowPtr pScreen->GetLayerWindow(pWin)
WindowPtr pWin

This is a ne function which returns a child of the layer parent of pWin.

void pScreen->HandleExposures(pWin)
WindowPtr pWin;

The formerly dix function HandleExposures has/etbto ddx and is accessed via this screen function.
This function is called after ValidateTree and uses the information contained in valdata to send exposures to
windows.

void pScreen->ReparentWindow(pWin, pPriorParent)
WindowPtr pWin;
WindowPtr pPriorParent;

This function will be called when a windds reparented. Athe time of the call, pwin will already be
spliced into its n& position in the windw tree, and pPriorParent is its previous parent. This function can
be NULL.

void pScreen->SetShape(pWin)
WindowPtr pWin;

The formerly dix function SetShape hasvembto dix and is accessed via this screen function. The win-
dow’s rew shape will hae dready been stored in the wingdavhen this function is called.

void pScreen->ChangeBorderWidth(pWin, width)

WindowPtr pWin;
unsigned int width;

Porting Layer Definition -42 - April 8, 1994

The formerly dix function ChangeBorderWidth hasuetbto ddx and is accessed via this screen function.
The nev border width is gien by width.

void pScreen->MarkUnrealizedWindow(pChild, pwin, fromConfigure)
WindowPtr pChild;
WindowPtr pWin;
Bool fromConfigure;

This function is called for windows that are being unrealized as part of an UnresdizgChilds the
window being unrealized, pWin is an ancestrd the fromConfigure value is simply propogated from
UnrealizeTree.

5.4. GraphicsContexts and Validation

This graphics context (GC) contains state variables such as foreground and background pixel value (color),
the current line style and width, the current tile or stipple for pattern generation, the current font for text
generation, and other similar attributes.

In mary graphics systems, the egdent of the graphics context and thewiable are combined as one

entity. The main distinction between thedwinds of status is that a dvable describes a writing surface

and the writings that may @ dready been done on it, whereas a graphics context describes the drawing
process. Adrawable is like a dhalkboard. AGC is like a pece of chalk.

Unlike mary similar systems, there is no "current pen location." Every graphic operation is accompanied
by the coordinates where it is to happen.

The GC also includes twwectors of procedure pointers, the first operate on the GC itself and are called GC
funcs. Thesecond, called GC ops, contains the functions that carry out the fundamental graphic operations
such as drawing lines, polygons, arcs, text, and copying bitmaps. The DDX graphic software can, if it

wants to be smart, change these wectors of procedure pointers to ¢skivantage of hardware/firmware

in the server machine, which can do a better job under certain circumstdoceduce the amount of

memory consumed by each GC, it is wise to createsdbieilerplate” GC ops vectors which can be shared

by every GC which matches the constraints for that set. Also, it is usually reasonable tdmg GC cre-

ated by a particular module to share a common set of GC funcs. Samples of this sort of sharing can be seen
in cfb/cfbgc.c and mfb/mfbgc.c.

The DDX software is notified grtime the client (or DIX) uses a changed G&x instance, if the hard-

ware has special support for drawing fixed-width fonts, DDX can intercept changes to the current font in a
GC just before drawing is done. It can plug into either a fixed-width procedure that makes the hardware
draw characters, or a variable-width procedure that carefully lays out glyphs by hand in software, depend-
ing upon the ne font that is selected.

A definition of these structures can be found in the file Xserver/include/gcstruct.h.

Also included in each GC is an array of dev&gs which portions of the DDX can use foyaaason.
Entries in this array are allocated with AllocateG&&elndex() (see Wrappers andvates below).

The DIX routines wailable for manipulating GCs are CreateGC, ChangeGC, CopyGC, SetClipRects, Set-
Dashes, and FreeGC.

GCPtr CreateGC(pDweeble, mask, pval, pStatus)
DrawablePtr pDravable;
BITS32 mask;
XID *pval;
int *pStatus;

Porting Layer Definition -43 - April 8, 1994

int ChangeGC(pGC, mask, pval)
GCPtr pGC;
BITS32 mask;
XID *pval;

int CopyGC(pgcSrc, pgeDst, mask)
GCPtr pgcSrc;
GCPtr pgcDst;
BITS32 mask;

int SetClipRects(pGC, xOrigin, yOrigin, nrects, prects, ordering)
GCPtr pGC;
int xOrigin, yOrigin;
int nrects;
xRectangle *prects;
int ordering;

SetDashes(pGC, offset, ndash, pdash)
GCPtr pGC;
unsigned offset;
unsigned ndash;
unsigned char *pdash;

int FreeGC(pGC, gid)
GCPtr pGC;
GContext gid;

As a corenience, each Screen structure contains an array of GCs that are preallocated, one at each depth
the screen supports. These are particularly useful in the mi dadeDIX routines must be used to get
these GCs:

GCPtr GetScratchGC(depth, pScreen)
int depth;
ScreenPtr pScreen;

FreeScratchGC(pGC)
GCPtr pGC;

Always use these tvroutines, dort’'try to extract the scratch GC yourself -- someone else might be using
it, SO a n& one must be created on the fly.

If you need a GC for a very long time, say until the server is restarted, you shoulceraietétom the

pool used by GetScratchGC, but should get your own using CreateGC or CreateScratchGCvesliielea
ones in the pool free for routines that only need it for a little while and dant to pay a heavy cost to get
it.

GCPtr CreateScratchGC(pScreen, depth)
ScreenPtr pScreen;
int depth;

NULL is returned if the GC cannot be created. The GC returned can be freed with FreeScratchGC.

Porting Layer Definition -44 - April 8, 1994

5.4.1. Detailsof operation

At screen initialization, a screen must supply a GC creation procedure. At GC creation, the screen must fill
in GC funcs and GC ops vectors (Xsnfinclude/gcstruct.h). df ary particular GC, the func vector must
remain constant, while the op vector may varkis invariant is to ensure that Wrappers work correctly.

When a client request is processed that results in a change to the GC, the device-independent state of the
GC is updated. This includes a record of the state that changed. Then the ChangeGC GC func is called.
This is useful for graphics subsystems that are able to process state changes in parallel with the server CPU.
DDX may opt not to tad& any action at GC-modify time. This is more efficient if multiple GC-modify

requests occur between draws usingvargGC.

Validation occurs at the first dreoperation that specifies the GC after that GC was modified. DIX calls
then the ValidateGC GC func. DDX should then update its internal state. DDX internal state may be
stored as one or more of the feliog: 1)device pvate block on the GC; 2) hardware state; 3) changes to
the GC ops.

The GC contains a serial numpehich is loaded with a number fetched from the wimdoat was drawn
into the last time the GC was used. The serial number in thaldleis changed when the drable’s di-
pList or absCorner changes. Thus, by comparing the GC serial number withvwiakldrserial number,
DIX can force a validate if the drable has been changed since the last time it was used with this GC.

In addition, the dnaable serial number iswhys guaranteed to tia the most significant bit set to 0. Thus,

the DDX layer can set the most significant bit of the serial number to 1 in a GC to force a validate the next
time the GC is used. DIX also uses this technique to indicate that a change has been made to the GC by
way of a SetGC, a SetDashes or a SetClip request.

5.4.2. GCHandling Routines
The ScreenRec data structure has a pointer for CreateGC().

Bool pScreen->CreateGC(pGC)
GCPtr pGC;
This routine must fill in the fields of a dynamically allocated GC that is passed in. It ddedlbiate the
GC record itself or fill in the defaults; DIX does that.

This must fill in both the GC funcs and ops; none of the drawing functions will be called before the GC has
been validated, but the others (dealing with allocating of clip regions, changing and destroying the GC, etc.)
might be.
The GC funcs vector contains pointers to 7 routines and a daeHfield:
pGC->funcs->ChangeGC(pGC, changes)
GCPtr pGC;

unsigned long changes;

This GC func is called immediately after a field in the GC is changed. changes is a bit mask indicating the
changed fields of the GC in this request.

The ChangeGC routine is useful if yowba gstem where state-changes to the GC can be swallowed
immediately by your graphics system, and a validate is not necessary.

pGC->funcs->ValidateGC(pGC, changes, pDraw)
GCPtr pGC;

Porting Layer Definition -45 - April 8, 1994

unsigned long changes;
DrawablePtr pDraw;

ValidateGC is called by DIX just before the GC will be used when one of passible changes to the GC

or the graphics system has happened. It can modify a gaeRrfield of the GC or its contents, change the

op vectoror change hardware according to the values in the GC. It may not change the device-independent
portion of the GC itself.

In almost all cases, your ValidateGC() procedure shouklttekregions that drawing needs to be clipped
to and combine them into a composite clip region, which you keep a pointer to irnvite jpairt of the GC.

In this way your drawing primitve routines (and whater is below them) can easily determine what to clip
and where.You should combine the regions clientClip (the region that the client desires to clip output to)
and the region returned by NotClippedByChildren(), in DIX. An example is in Xserver/mfb/mfbgc.c.

Some kinds of extension software may cause this routine to be called more than originally intended; you
should not rely on algorithms that will break under such circumstances.

See the Strategies document for more information on eeBatising this routine.

pGC->funcs->CopyGC(pGCSrc, mask, pGCDst)
GCPtr pGCSrec;
unsigned long mask;
GCPtr pGCDst;

This routine is called by DIX when a GC is being copied to another GC. This is for situations where
dynamically allocated chunks of memory are hangifig @C cevPrivates field which need to be trans-
ferred to the destination GC.

pGC->funcs->DestroyGC(pGC)
GCPtr pGC;

This routine is called before the GC is destroyed for the entity interested in this GC to clean up after itself.
This routine is responsible for freeingyaauxiliary storage allocated.

5.4.3. GCClip Region Routines

The GC clientClip field requires three procedures to manage it. These procedures are in the GC funcs vec-
tor. The underlying principle is that dix knows nothing about the internals of the clipping information,
(except when it has come from the client), and so calls ddX wheiheeeds to cop set, or destrg such
information. Itcould hae been possible for dix not to alloddX to touch the field in the GC, and require

it to keep its own copin devPriv, but since clip masks can be very large, this seerasalitad idea. Thus,

the server allows ddX to do whaee it wants to the clientClip field of the GC, but requires it to do all
manipulation itself.

void pGC->funcs->ChangeClip(pGC, type, pValue, nrects)
GCPtr pGC;
int type;
char *pValue;
int nrects;

This routine is called whewer the client changes the client cligien. ThepGC points to the GC

involved, the type tells what form the region has been sent in. If type is CT_NONE, then there is no client
clip. If type is CT_UNSORTED, CT_YBANDED or CT_YXBANDED, then pValue pointer to a list of

Porting Layer Definition - 46 - April 8, 1994

rectangles, nrects long. If type is CT_REGION, then pValue pointer to a RegionRec from the mi region
code. Iftype is CT_PIXMAP pValue is a pointer to a pixmap. (The defines for CT_NONE, etc. are in
Xsener/include/gc.h.) Thisoutine is responsible for incrementingyarecessary reference counts (e.g. for

a pxmap clip mask) for the meclipmask and freeing anything that used to be in thes@@Mask field.

The lists of rectangles passed in can be freed with Xfree(), the regions can be destroyed with the RegionDe-
stroy field in the screen, and pixmaps can be destroyed by calling the sddestmbyPixmap function.

DIX and MI code expect what theass in to this to be freed or otherwise inaccessible, and wéi heok

inside whats been put in the GC. This is a good place to be wary of storage leaks.

In the sample servghis routine transforms either the bitmap or the rectangle list into a region, so that
future routines will hee a nore predictable starting point to work from. (The validate routine must take
this client clip region and merge it with other regions tovard a composite clip region before wraw-

ing is done.)

void pGC->funcs->DestroyClip(pGC)
GCPtr pGC;

This routine is called whewer the client clip region must be desteal. ThepGC points to the GC

involved. Thiscall should set the clipType field of the GC to CT_NONE. In the sample sérggrointer

to the client clip region is set to NULL by this routine after destroying the region, so that other software
(including ChangeClip() alve) will recognize that there is no client clip region.

void pGC->funcs->CopyClip(pgcDst, pgcSrc)
GCPtr pgcDst, pgcSrc;

This routine makes a cgpf the clipMask and clipType from pgcSrc into pgeDst. It is responsible for
destroying awy previous clipMask in pgcDst. The clip mask in the source can be the same as the clip mask
in the dst (clients do the strangest things), so care must be taken when destroying things. This call is
required because dix does not wniwow to copy the clip mask from pgcSrc.

5.5. Drawing Primiti ves

The X protocol (rules for the byte stream that goes between client and server) does all graphics using primi-
tive gperations, which are called Drawing Priwvés. Thesenclude line drawing, area filling, arcs, and text
drawing. Your implementation must supply 16 routines to perform these on yourdrard{l henumber

16 is arbitrary.)

More specifically16 procedure pointers are in each GC op veckdrany gven time, ALL of them MUST

point to a valid procedure that attempts to do the operation assigned, although the procedure pointers may
change and may point to different procedures to carry out the same opefasiorple server will leae

them all pointing to the same 16 routines, while a more optimized implementation will switch each from
one procedure to anothelepending upon what is most optimal for the current GC arwiabife.

The sample server contains a considerable chunk of code called the mi (machine independent) routines,
which sere as dawing primitive routines. Mag server implementations will be able to use these as-is,
because thework for arbitrary depths. Tlyemake no asumptions about the formats of pixmaps and

frame buffers, since tlgecall a set of routines known as the "Pixblit Routines” (see next sectiony.ddhe
assume that the way to @ras through these low-iel routines that apply pixel values rows at a time. If

your hardware or firmware\gs more performance when things are done differegtiy will want to take

this fact into account and rewrite some or all of the drawing pviesito fit your needs.

5.5.1. GCComponents

This section describes the fields in the GC that affect each drawing yeinditie only primitve tat is not
affected is Getlmage, which does not use a GC because its destination is a protocol-style bit image. Since

Porting Layer Definition - 47 - April 8, 1994

each drawing primitie mrrors exactly the X protocol request of the same name, you should refer to the X
protocol specification document for more details.

ALL of these routines MUST CLIP to the appropriate regions in thealda. Sincehere are many

regions to clip to simultaneouslyour ValidateGC routine should combine these into a unified clip region
to which your drawing routines can quickly refd@ihis is exactly what the cfb and mfb routines supplied
with the sample server do. The mi implementation passes responsibility for clipping while drawing down
to the Pixblit routines.

Also, all of them must adhere to the current plane mask. The plane mask has one/éniy tait plane in
the dravable; only planes with 1 bits in the mask are affected lgydeswing operation.

All functions except for Imageskt calls must obg the alu function. This is usually Cgpout could be any
of the allavable 16 raster-ops.

All of the functions, except for CopyArea, might use the current foreground and background pixel values.
Each pixel value is 32 bits. These correspond to foreground and background colors, bueyouuma

them through the colormap to find out what color the pixel values represent. Do not worry about the color,
just apply the pixel value.

The routines that dvalines (PolyLine, PolySegment, PolyRect, and PolyArc) use the line width, line style,
cap style, and join style. Line width is in pig. Theline style specifies whether it is solid or dashed, and
what kind of dash. The cap style specifies whether Rounded, Butt, etc. The join style specifies whether
joins between joined lines are Mit&ound or Beeled. Wherlines cross as part of the same polyline, they
are assumed to be drawn once. (See the X protocol specification for more details.)

Zero-width lines are NDmeant to be really zero width; this is the clisay of telling you that you can
optimize line drawing with little rgerd to the end caps and joins. Vteee called "thin" lines and are

meant to be one pixel wide. These are frequently done in hardware or in a streamlined assembly language
routine.

Lines with widths greater than zero, though, must all be drawn with the same algorithm, because client
software assumes thategy jag on @ery line at an angle will come at the same plateo lines that

should hae me pixel in the space between them (because of their distance apart and their widths) should
have sich a one-pixel line of space between them if dravggdéess of angle.

The solid area fill routines (FillPolygon, PolyFillRect, PolyFillArc) all use the fill rule, which specifies sub-
tle interpretations of what points are inside and what are outside \wrapglygon. ThePolyFillArc rou-
tine also uses the arc mode, which specifies whether to fill pie segments or single-edge slices of an ellipse.

The line drawing, area fill, and PolgX routines must all apply the correct "fill style." This can be either a
solid foreground colgma transparent stipple, an opaque stipple, or a tile. Stipples are bitmaps where the 1
bits represent that the foreground color is written, and 0 bits represent that either the pixel is left alone
(transparent) or that the background color is written (opagiée is a pixmap of the full depth of the

GC that is applied in its full glory to all areas. The stipple and tile patterns cay kectamgular size,

although some implementations will be faster for certain sizes such as 8x8 or 32x32. The mi implementa-
tion passes this responsibility down to the Pixblit routines.

See the X protocol document for full details. The description of the CreateGC request has a very good,
detailed description of these attributes.

Porting Layer Definition - 48 - April 8, 1994

5.5.2. ThePrimiti ves
The Drawing Primities ae as follows:

RegionPtr pGC->ops->CopyArea(src, dst, pGC, srcy, sich, dstx, dsty)
DrawablePtr dst, src;
GCPtr pGC;
int srcx, srg, w, h dstx, dsty;

CopyArea copies a rectangle of pixels from onevdide to another of the same depife dfect scrolling,
this must be able to cggrom ary drawable to itself, erlapped. Nosqueezing or stretching is done
because the source and destination are the same sizevafawerything is still clipped to the clip
regions of the destination dvable.

If pGC->graphicsExposures is Trueygortions of the destination which were not valid in the source

(either occluded by e@ring windows, or outside the bounds of theweiiale) should be collected together

and returned as a region (if this resultant region is emiati L can be returned instead). Furthermore, the
invalid bits of the source are not copied to the destination and (when the destination is a window) are filled
with the background tile. The sample routine miHandleExposures generates the appropriate return value
and fills the inalid area using pScreen->PaintWindowBackground.

For instance, imagine a windathat is partially obscured by other windows in front of it. As text is
scrolled on your winde, the pixels that are scrolled out from under obscuring windows will notdile a
able on the screen to gofo the right places, and so an exposwenemust be sent for the client to cor-
rectly repaint them. Of course, if you implement some sort of backing store, you could do this without
resorting to exposurevents.

An example implementation is mfbCopyArea() in Xserver/mfb/mfbbitblt.c.

RegionPtr pGC->ops->CopyPlane(src, dst, pGC, srcy, atd, dstx, dsty plane)
DrawablePtr dst, src;
GCPtr pGC;
int srcx, srg, w, h dstx, dsty;
unsigned long plane;

CopyPlane must cgmone plane of a rectangle from the sourcevdide onto the destination dwable.

Because this routine only copies one bit out of each pixel, it canbetyween dravables of different

depths. Thiss the only way of copying between diables of different depths, except for copying bitmaps
to pixmaps and applying foreground and background colors to it. All other conditions of CopyArea apply
to CopyPlane too.

An example implementation is mfbCopyPlane() in Xserver/mfb/mfbbitblt.c.

void pGC->ops->PolyPoint(dst, pGC, mode, n, pPoint)
DrawablePtr dst;
GCPtr pGC;
int mode;
int n;
DDXPointPtr pPoint;

PolyPoint draws a set of one-pixel dots (foreground color) at the locatiemsigithe array mode is one

of the defined constants Origin (absolute coordinates) or Previous (each coordinateesoifegilast).
Note that this does not use the background colortfilas or stipples.

Porting Layer Definition - 49 - April 8, 1994

Example implementations are mfbPolyPoint() in Xserver/mfb/mfbpolypnt.c and miPolyPoint in
Xserver/mi/mipolypnt.c.

void pGC->ops->Polylines(dst, pGC, mode, n, pPoint)
DrawablePtr dst;
GCPtr pGC;
int mode;
int n;
DDXPointPtr pPoint;

Similar to PolyPoint, Polylines draws lines between the locatiaes gi the array Zero-width lines are

NOT meant to be really zero width; this is the clisnay of telling you that you can maximally optimize

line drawing with little rgard to the end caps and joins. mode is one of the defined constants Previous or
Origin, depending upon whether the points are eachwelatthe last or are absolute.

Example implementations are miWideLine() and miWideDash() in mi/miwideline.c and miZeroLine() in
mi/mizerline.c.

void pGC->ops->PolySegment(dst, pGC, n, pPoint)
DrawablePtr dst;
GCPtr pGC;
int n;
xSegment *pSegments;

PolySegments draws unconnected lines between pairs of points in the array; the array mushtszef e
no interconnecting lines are drawn.

An example implementation is miPolySegment() in mipolyseg.c.

void pGC->ops->PolyRectangle(dst, pGC, n, pRect)
DrawablePtr dst;
GCPtr pGC;
int n;
xRectangle *pRect;

PolyRectangle draws outlines of rectangles for each rectangle in the array.
An example implementation is miPolyRectangle() in Xserver/mi/mipolyrect.c.

void pGC->ops->PolyArc(dst, pGC, n, pArc)
DrawablePtr dst;
GCPtr pGC;
int n;
XArc*pArc;

PolyArc draws connected conic arcs according to the descriptions in the $eeathe protocol specifica-
tion for more details.

Example implementations are miZeroPolyArc in Xserver/mi/mizerarc. and miPolyArc() in
Xserver/mi/miarc.c.

void pGC->ops->FillPolygon(dst, pGC, shape, mode, count, pPoint)

DrawablePtr dst;
GCPtr pGC;

Porting Layer Definition -50 - April 8, 1994

int shape;
int mode;
int count;
DDXPointPtr pPoint;

FillPolygon fills a polygon specified by the points in the array with the appropriate fill style. If necessary,

an extra border line is assumed between the starting and ending lines. The shape can be used as a hint to
optimize filling; it indicates whether it is ceex @ll interior angles less than 180), noneex (some inte-

rior angles greater than 180 but border does not cross itself), or edippider crosses itself)Y¥ou can

choose appropriate algorithms or hardware based upon mode. mode is one of the defined constants Previ-
ous or Origin, depending upon whether the points are eaclvedtathe last or are absolute.

An example implementation is miFillPolygon() in Xserver/mi/mipoly.c.

void pGC->ops->PolyFillRect(dst, pGC, n, pRect)
DrawablePtr dst;
GCPtr pGC;
int n;
xRectangle *pRect;

PolyFillRect fills multiple rectangles.

Example implementations are mfbPolyFillRect() in Xserver/mfb/mfbfillrct.c and miPolyFillRect() in
Xserver/mi/mifillrct.c.

void pGC->ops->PolyFillArc(dst, pGC, n, pArc)
DrawablePtr dst;
GCPtr pGC;
int n;
XArc *pArc;

PolyFillArc fills a shape for each arc in the list that is bounded by the arc and oreelimetaegments with
the current fill style.

An example implementation is miPolyFillArc() in Xserver/mi/mifillarc.c.

void pGC->ops->Putimage(dst, pGC, depth, xwyh, leftPad, format, pBinimage)
DrawablePtr dst;
GCPtr pGC;
intx,y,w, h;
int format;
char *pBinlmage;

Putimage copies a pixmap image into themdide. Thepixmap image must be in X protocol format

(either Bitmap, XYPixmap, or ZPixmap), and format tells the format. (See the X protocol specification for
details on these formatsYou must be able to accept all three formats, because the client gets to decide
which format to send. Either the drable and the pixmap imageveate same depth, or the source

pixmap image must be a Bitmap. If a Bitmap, the foreground and background colors will be applied to the
destination.

An example implementation is miPutimage() in Xserver/mfb/mibitblt.c.

void pScreen->Getlmage(src, x,w, h, format, planeMask, pBinimage)
DrawablePtr src;

Porting Layer Definition -51- April 8, 1994

intx,y,w,h

unsigned int format;
unsigned long planeMask;
char *pBinlmage;

Getlmage copies the bits from the sourcevdlde into the destination pointefhe bits are written into the
buffer according to the server-defined pixmap padding rules. pBinlmage is guaranteed to be big enough to
hold all the bits that must be written.

This routine does not correspond exactly to the X protocol Getlmage request, since DIX has to break the
reply up into buffers of a size requested by the transport l#fyarmat is ZPixmap, the bits are written in

the ZFormat for the depth of the diable; if there is a 0 bit in the planeMask for a particular plane, all pix-
els must hee the bit in that plane equal to 0. If format is XYPixmap, planemask is guaranteacta ha

single bit set; the bits should be written in Bitmap format, which is the format for a single plane of an XYP-
ixmap.

An example implementation is miGetimage() in Xserver/mi/mibitblt.c.

void pGC->ops->Imagedxt8(pDrav, pGC, X, y count, chars)
DrawablePtr pDraw;
GCPtr pGC;
int x,y;
int count;
char *chars;

Image®xt8 draws t&t. Thetext is drawn in the foreground color; the background color fills the remainder
of the character rectangles. The coordinates specify the baseline and start of the text.

An example implementation is milmaged8() in Xserver/mi/mipolytext.c.

int pGC->ops->Poly&xt8(pDraw, pGC, X, y count, chars)
DrawablePtr pDraw;
GCPtr pGC;
intx,y;
int count;
char *chars;

PolyText8 works like Image®xt8, except it draws with the current fill style for special effects such as
shaded tet. Seethe X protocol specification for more details.

An example implementation is miPolg®8() in Xserver/mi/mipolytext.c.

int pGC->ops->Poly&xt16(pDrav, pGC, X, ¥ count, chars)
DrawablePtr pDraw;
GCPtr pGC;
intx,y;
int count;
unsigned short *chars;

void pGC->ops->Imagedxt16(pDrav, pGC, X, y count, chars)
DrawablePtr pDraw;
GCPtr pGC;
intx,y;
int count;

Porting Layer Definition -52 - April 8, 1994

unsigned short *chars;

These tw routines are the same as the "8" versions, except thyadrtinéor 16-bit character codes (useful
for oriental writing systems).

The primary difference is in the way the character information is looked up. The 8-bit and the 16-bit ver-
sions obviously hee dfferent kinds of character values to look up; the main goal of the lookup is to pro-
vide a pointer to the CharlInfo structs for the characters o @hd to pass these pointers to the Glyph rou-
tines. Gven a Charlnfo struct, lower-teel software can dna the glyph desired with little concern for other
characteristics of the font.

16-bit character fonts ke a pw-and-column scheme, where the 2bytes of the character code constitute the
row and column in a square matrix of Charinfo structs. Each font aarrd column minimum and maxi-
mum values; the Charlnfo structures form a two-dimensional matrix.

Example implementations are miPobxi16() and milmaged@xt16() in Xserver/mi/mipolytext.c.

See the X protocol specification for more details on these graphic operations.

There is a hook in the GC ops, called LineHelffeat used to be used in the sample implementation by the
code for wide lines. It no longer servery airpose in the sample servers, but still exists, #ifdef’ed by
NEED_ LINEHELPER, in case someone needs it.

5.6. Pixblit Procedures

The Drawing Primitre functions must be defined for your serv@ne possible way to do this is to use the
mi routines from the sample servéf you choose to use the mi routinegetepart of them!) you must
implement these Pixblit routines. These routines read and write pixel values and deal directly with the
image data.

The Pixblit routines for the sample server are part of the "mfb" routines (for Monochrome Frame Buffer),
and "cfb" routines (for Color Frame Baf). Aswith the mi routines, the mfb and cfb routines are portable
but are not as portable as the mi routines.

The mfb routines only work for monochrome frame buffers, the simplest type of dispidlgermore, they
only work for screens thatganize their bits in rows of pixels on the screen. (See the Strategies document
for more details on porting mfpb Thecfb routines work for packed-pixel displays from 2 to 32 bits in

depth, although thehavea hbit of code which has been tuned to run on 8-bit (1 pixel per byte) displays.

In other words, if you hae a ‘hormal” frame buffer type displayou can probably use either the mfb or cfb
code, and the mi code. If youvea sranger hardware, you will kia © supply your own Pixblit routines,
but you can use the mi routines on top of them. If youeHatter ways of doing some of the Drawing
Primitive functions, then you may want to supply some of your own Drawing Rrgnmitiitines. (Een
people who write their own Drawing Prinvigs saveat least some of the mi code for certain special cases
that their hardware or library or fanelgorithm does not handle.)

The client, DIX, and the machine-independent routines do not carry the final responsibility of clipping.
They al depend upon the Pixblit routines to do their clipping for them. The rule is, if you touch the frame
buffer, you clip.

(The higher legel routines may decide to clip at a highkdk but this is only for increased performance and
cannot substitute for bottomwvid clipping. For instance, the mi routines, DIX, or the client may decide to
check all character strings to be drawn and chballatharacters that would not be displayed. If so, it
must retain the character on the edge that is partly displayed so that the Pixblit routines chprelip of
cisely at the right place.)

Porting Layer Definition -53- April 8, 1994

To make this easierdl of the reasons to clip can be combined into one region in your ValidateGC proce-
dure. You tale this composite clip region with you into the Pixblit routines. (The sample server does this.)

Also, FillSpans() has to apply tile and stipple patterns. The patterns are all aligned to ttve evigohoso
that when tw people write patches that are contiguousy thil merge nicely (Really, they are aligned to
the patOg point in the GC. This defaults to (0, 0) but can be set by the client to anything.)

However, the mi routines can translate (relocate) the points from windowwelatscreen-relatie if

desired. Ifyou set the miTranslate field in the GC (set it in the CreateGC or ValidateGC routine), then the
mi output routines will translate all coordinates. If it is false, then the coordinates will be passed window-
relative. Screens with no hardware translation will probably set miTranslate to TRUE, so that geometry
(e.g. polygons, rectangles) can be translated, rather than having the resulting list of scanlines translated; this
is good because the list vertices in a drawing request will generally be much smaller than the list of scan-
lines it produces. Similarjjhardware that does translation can set miTranslate to FALSEyeiadtlae

extra addition per vertex, which can be (but is natagk) important for getting the highest possible perfor-
mance. (Contrashe behavior of GetSpans, which is not expected to be called as often, and so has differ-
ent constraints.) The miTranslate field is settable in each GC, if , for example, you are nvistiagkseds

of destinations (offscreen pixmaps, main memory pixmaps, backing store, and windows), all of wdich ha
different requirements, on one screen.

As with other drawing routines, there are fields in the GC to direct higher code to the correct routine to
execute for each function. In this wayou can optimize for special cases, for example, drawing solids ver-
sus drawing stipples.

The Pixblit routines are broken up into three sets. The Span routines simply fill in rowslsf dike
Glyph routines fill in character glyphs. The PushPixels routine is a three-input bitblt for more sophisticated
image creation.

It turns out that the Glyph and PushPixels routines actually Aaachine-independent implementation
that depends upon the Span routines. If you are really pressed for time, you can use these versions,
although thg are quite slov.

5.6.1. SparRoutines

For these routines, all graphic operationsénkeen reduced to "spansA span is a horizontal v of pix-
els. Ifyou can design these routines which write into and read from rows of pixels at a time, you can use
the mi routines.

Each routine takes a destinationwdahle to drav into, a GC to use while drawing, the number of spans to
do, and tw pointers to arrays that indicate the list of starting points and the list of widths of spans.

void pGC->ops->FillSpans(dst, pGC, nSpans, pPoints, pWidths, sorted)
DrawablePtr dst;
GCPtr pGC;
int nSpans;
DDXPointPtr pPoints;
int *pWidths;
int sorted;

FillSpans should fill horizontal rows of pixels with the appropriate patterns, stipples, etc., based on the val-
ues in the GC. The starting points are in the array at pPoints; the widths arelihgp\Wif sorted is true,

the scan lines are in increasing y ord@emwhich case you may be able to maksumptions and optimiza-

tions.

Porting Layer Definition -54 - April 8, 1994

GC components: alu, clipOrg, clientClip, and fillStyle.

GC mode-dependent components: fgPixel (for fillStyle Solid); tile, gafOr fillStyle Tile); stipple,
patOrg, fgPixel (for fillStyle Stipple); and stipple, patOrg, fgPixel and bgPixel (for fillStyle OpaqueStipple).

void pGC->ops->SetSpans(pbvable, pGC, pSrc, ppt, pWidths, nSpans, sorted)
DrawablePtr pDravable;
GCPtr pGC;
char *pSrc;
DDXPointPtr pPoints;
int *pWidths;
int nSpans;
int sorted;

For each span, this routine should ggpVidths bits from pSrc to pDnaeble at pPoints using the raster-op
from the GC. If sorted is true, the scan lines are in increasing y. ofberpixels in pSrc are padded
according to the screenpadding rules. These can be used to support interesting extension libraries, for
example, shaded primites. Itdoes not use the tile and stipple.

GC components: alu, clipOrg, and clientClip

The abee functions are expected to handle all modifiers in the current GC. Therefore, it is expedient to
have dfferent routines to quickly handle common special cases and reload the procedure pointers at vali-
date time, as with the other output functions.

void pScreen->GetSpans(prable, wMax, pPoints, pWidths, nSpans)
DrawablePtr pDravable;
int wMax;
DDXPointPtr pPoints;
int *pWidths;
int nSpans;
char *pDst;

For each span, GetSpans gets bits from thevdoée starting at pPoints and continuing for pWidths bits.
Each scanline returned will be server-scanline padded. The routine can return NULL if memory cannot be
allocated to hold the result.

GetSpans ner translates -- for a windg the coordinates are already screen-nedatConsider the case of
hardware that doedrdo translation: the mi code that calls ddX will translate each shape (rectangle, poly-
gon,. etc.) before scan-ocanting it, which requires manfewer additions that having GetSpans translate

each span does. Cgansely, consider hardware that does translate: it can set its translation point to (0, 0)
and get each span, and the only penalty is the small number of additions required to translate each shape
being scan-corerted by the calling code. Contrast the behavior of FillSpans and SetSpans (discussed
above uinder miTranslate), which are expected to be used more often.

Thus, the penalty to hardware that does hardware translation is negligible, and code that wants to call

GetSpans() is greatly simplified, both for extensions and the machine-independent core implementation.

5.6.1.1. GlyphRoutines
The Glyph routines draindividual character glyphs for text drawing requests.

You havea dhoice in implementing these routin€gou can use the mi versions; thdepend ultimately
upon the span routines. Although text drawing will work, it will be verwslo

Porting Layer Definition -55- April 8, 1994

void pGC->ops->PolyGlyphBlt(pDraable, pGC, x, ynglyph, ppci, pglyphBase)
DrawablePtr pDravable;
GCPtr pGC;
intx,y;
unsigned int nglyph;
CharlinfoRec **ppci; [* array of character info */
pointer unused,; /* unused since R5 */

GC components: alu, clipOrg, clientClip, font, and fillStyle.

GC mode-dependent components: fgPixel (for fillStyle Solid); tile, gafOr fillStyle Tile); stipple,
patOrg, fgPixel (for fillStyle Stipple); and stipple, patOrg, fgPixel and bgPixel (for fillStyle OpaqueStipple).

void pGC->ops->ImageGlyphBlt(pDvable, pGC, x, ynglyph, ppci, pglyphBase)
DrawablePtr pDravable;
GCPtr pGC;
intx,y;
unsigned int nglyph;
CharinfoRec **ppci; /* array of character info */
pointer unused,; /* unused since R5 */

GC components: clipOrg, clientClip, font, fgPixel, bgPixel

These routines must cpghe glyphs defined by the bitmaps in pglyphBase and the font metrics in ppci to
the DravablePtr pDrawable. Thepoly routine follows all fill, stipple, and tile rules. The image routine
simply blasts the glyph onto the glyph&ctangle, in foreground and background colors.

More preciselythe Image routine fills the character rectangle with the background awdathen the
glyph is applied in the foreground caldrhe glyph can extend outside of the character rectangle. ImageG-
lyph() is used for terminal emulators and informal text purposes such as button labels.

The exact specification for the Poly routine is that the glyph is painted with the current fill style. The char-
acter rectangle is irrelant for this operation. Polydit, at a higher leel, includes facilities for font
changes within strings and such; it is to be used for WYSIWYG word processing and similar systems.

Both of these routines must clip themselves to theeadi clipping region.

Example implementations in mi are miPolyGlyphBIt() and milmageGlyphBIt() in Xserver/mi/miglblt.c.

5.6.1.2. PushPixelsoutine

The PushPixels routine writes the current fill style onto thevabie in a certain shape defined by a bitmap.
PushPixels is equélent to using a second stippl¥ou can thing of it as pushing the fillStyle through a
stencil. PushPgis is not used by grof the mi rendering code, but is used by the mi software cursor code.

Suppose the stencil is: 00111100
and the stipple is: 10101010
PushPixels result: 00101000

You havea choice in implementing this routiné/ou can use the mi version which depends ultimately upon
FillSpans(). Althought will work, it will be slow.

void pGC->ops->PushPixels(pGC, pBitMap, pideble, dx, dy xOrg, yOrg)
GCPtr pGC;
PixmapPtr pBitMap;
DrawablePtr pDravable;

Porting Layer Definition - 56 - April 8, 1994

int dx, dy xOrg, yOrg;

GC components: alu, clipOrg, clientClip, and fillStyle.

GC mode-dependent components: fgPixel (for fillStyle Solid); tile, gafOr fillStyle Tile); stipple,
patOrg, fgPixel (for fillStyle Stipple); and stipple, patOrg, fgPixel and bgPixel (for fillStyle OpaqueStipple).

PushPixels applys the foreground cotibe, or stipple from the pGC through a stencil onto pitze.
pBitMap points to a stencil (of which we use an area dx wide by dy high), which is origatékdeodraw-
able at xOrg, yQy. Wherethere is a 1 bit in the bitmap, the destination is set according to the current fill
style. Wherdhere is a 0 bit in the bitmap, the destination is left the way it is.

This routine must clip to theverall clipping region.

An Example implementation is miPushPixels() in Xserver/mi/mipushpxl.c.

5.7. Shutdavn Procedures

void AbortDDX()
void ddxGiveUp()

Some hardware may require special work to be done before the server exits so that it is not left in an inter-
mediate state. As explained in the OS lafatalError() will call AbortDDX() just before terminating the
server In addition, ddxGveUp() will be called just before terminating the server on a "clean" death. What
AbortDDX() and ddxGreUP do is left unspecified, only that stubs must exist in the ddx |&yisrup b

local implementors as to what thehould accomplish before termination.

5.7.1. CommandLine Procedures

int ddxProcessArgument(argc, argv
int argc;
char *argv([];
int i;

void
ddxUseMsg()

You should write these routines to deal with device-dependent commanddimaemts. Theoutine ddx-
ProcessArgument() is called with the command line, and the currertiimdeargv; you should return zero

if the argument is not a device-dependent one, and otherwise return a count of the number of elements of
argv that are part of this oneggament. [er a typical option (e.qg., "-realtime"), you should return the value

one. Thisroutine gets called before checks are made against device-independent arguments, so it is possi-
ble to peek at all arguments or teeride device-independent argument processi¥au can document the
device-dependent arguments in ddxUseMsg(), which will be called from UseMsg() after printing out the
device-independent arguments.

Porting Layer Definition -57 - April 8, 1994

5.8. Wrappersand devPrivates

Two new extensibility concepts hee keen deeloped for release 4, Wrappers and dexddeis. These
replace the R3 GClinterest queues, which were not a general enough mechanisny atenaions and
only provided hooks into a single data structure.

5.8.1. dePrivates

devPrivates are arrays of values attached to various data structures (Screens, GCs, Windows, and Pixmaps
currently). Thesarrays are sized dynamically at server startup (and reset) time as various modules allocate
portions of them. Thecan be used for grpurpose; each array entry is actually a union, DevUnion, of
common useful types (pointéong and unsigned long). dewviaties must be allocated on startup and

wheneer the server resetslo make this easierthe global variable "serverGeneration" is incremented each
time devPwates should be allocated, but before the initialization process begins, typical usage would be:
static int prvateGeneration = 0;

if (privateGeneration != serverGeneration)

{

allocate devPviates here.

privateGeneration = serverGeneration;

}

5.8.1.1. Sceen devPrvates

An index into every screen devPrates array is allocated with

int AllocateScreenPvatelndex()
This call can occur at griime, each existing devRetes array is resized to accommodate thve arery.
This routine returns -1 indicating an allocatiafidre. Otherwisethe return value can be used to xtlee
array of devPriates on ay screen:

private = (PrvatePointer) pScreen->deviPates[screenPvatelndex].ptr;
The pointer in each screen is not initialized by AllocateScreeai®mdex().

5.8.1.2. Window devPrivates

An index into every window devPrivates array is allocated with
int AllocateWindowPnatelndex ()
AllocateWindowPrvatelndex() nger returns an errorThis call must be associated with a call which
causes a chunk of memory to be automatically allocated and attached to theatteeRtiy on eery
screen which the module will need to use the index:
Bool AllocateWindowPriate (pScreen, index, amount)
ScreenPtr pScreen;
int index;
unsigned amount;
If this space is not alays needed fornery object, use 0 as the amount. In this case, the pointer field of the
entry in the devPvites array is initialized to NULL. This call exists so that DIX may preallocate all of the
space required for an object with one call; this reduces memory fragmentation considéitabiteWin-
dowPrvate returns FALSE on allocatioaifure. Bothof these calls must occur beforeyamindow struc-
tures are allocated; the server is carefuMmdawindow creation until all modules are initialized, but do
not call this after initialization A typical allocation sequence for Windowtrites would be:
privatelnitialize (pScreen)
ScreenPtr pScreen;

{

if (privateGeneration != serverGeneration)

{

windowPrivatelnde = AllocateWindowPratelndex();
privateGeneration = serverGeneration;

Porting Layer Definition -58 - April 8, 1994

}

return (AllocateWindowPvite(pScreen, windowR#@telndex,
sizeof(windowPrate Structure)));

}

5.8.1.3. GCand Pixmap devPrivates

The calls for GCs and Pixmaps mirror the Wiwdzlls exactly; thg havethe same requirements and limi-

tations:
int AllocateGCPwvatelnde ()

Bool AllocateGCPrate (pScreen, index, amount)
ScreenPtr pScreen;
int index;
unsigned amount;

int AllocatePixmapPruiatelnde ()

Bool AllocatePixmapPvite (pScreen, index, amount)
ScreenPtr pScreen;
int index;
unsigned amount;

5.8.2. Wrappers

Wrappers are not a body of code, nor an interface speg. aitna@nstead, a technique for hooking a new
module into an existing calling sequence. There are limitations on other portions of the server implementa-
tion which male using wrappers possible; limits on when specific fields of data structures may be modified.
They are intended as a replacement for GClnterest queues, which were not general enough to support exist-
ing modules; in particular software cursors and backing store both needed more wentha activity.
The general mechanism for using wrappers is:
privateWrapperFunction (object, ...)

ObjectPtr object;
{

pre-wrapped-function-stfif..

object->functionVector = (void *) object->devRates[privatelndex].ptr;
(*object->functionVector) (object, ...);

/*

* this next line is occasionally required by the rulegeguing

*wrapper functions. Abays using it will not cause problems.

* Not using it when necessary can causersetroubles.

*

object->devPriates[privatelndex].ptr = (pointer) object->functionVector;
object->functionVector = pveteWrapperFunction;

post-wrapped-function-stif..

}

privatelnitialize (object)
ObjectPtr object;
{

object->devPriates[prvatelndex].ptr = (pointer) object->functionVector;
object->functionVector = pveteWrapperFunction;

Porting Layer Definition -59 - April 8, 1994

Thus the puateWrapperFunction provides hooks for performing work both before and after the wrapped
function has been called; the process of resetting the functionVector is called "unwrapping" while the
process of fetching the wrapped function and replacing it with the wrapping function is called "wrapping".
It should be clear that GClinterest queues could be emulated using wrappers. In ggninattiam vec-

tors contained in objects can be wrapped, but only vectors in GCs and Screebeehaested.

Wrapping screen functions is quite easy; each vector is individually wrapped. Screen functions are not sup-
posed to change after initialization, so rewrapping is technically not necdsdarguses no problems.

Wrapping GC functions is a bit more complicated. &i@vetwo sts of function vectors, one hanging

from gc->ops and the other from gc->funcs. Wrappers should modify only those values, not the internal
values as thygmay be shared by more than one GC (and, in the case of funcs, are probably shared by all
gcs). D wrap the ops, wrap the funcs and, in each func wrapperap the ops and funcs, call down, and
re-wrap. Ineach op wrappeunwrap both the funcs and ops, call down and rewrap atdsy Theule is:

if you wrap funcs+ops, you mustaays unwrap both before down calling. If you wrap ops, you must
always pull the ops value out of the GC in the func wrapper avalisalf you wrap funcs, you needngull

the funcs value out of the GC to rewrap as the func values are required to be constant. In s way
wrapped validation routine can change the op vector and wetithast when your wrapper routine

rewraps the GC. This occurs when the wrapped wgidates the GC with ve entries (mag mi routines

do this for opaque stipples or double dashes). The corollary to this rulever ddange the func vector

after CreateGC.

5.9. Work Queue

To queue work for gecution when all clients are in a stable state (i.e. just before calling select() in Wait-
ForSomething), call:
Bool QueueWorkProc(function,client,closure)

Bool (*function)();
ClientPtr client;
pointer closure;

When the server is about to suspend itself, thengunction will be e&ecuted:
(*function) (client, closure)

Neither client nor closure are actually used inside the work queue routines.

6. Extensioninterfaces
This section describes the functions which exist in DDX for extension writers to use.

6.1. Extensioninitialization
This function should be called from your extensionlnitProc which should be called by InitExtensions.

ExtensionEntry *AddExtension(name, NumEvents,NumErrors,
MainProc, SwappedMainProc, CloseDownProc, MinorOpcodeProc)

char *name; /*Null terminate string; case matters*/

int NumEvents;

int NumErrors;

int (* MainProc)(ClientPtr);/*Called if client matches server order*/

int (* SwappedMainProc)(ClientPtr);/*Called if client differs from server*/
void (* CloseDownProc)(ExtensionEntry *);

unsigned short (*MinorOpcodeProc)(ClientPtr);

name is the name used by clients to refer toxtension. NumEents is the number ofent types used

by the extension, NumEtrrors is the number of error codes needed byethsien. MainProcs called
whenever a dient accesses the major opcode assigned taxtkaston. SwappedMainProc is identical,
except the client using the extension hagrged byte-se CloseDavnProc is called at server reset time to

Porting Layer Definition - 60 - April 8, 1994

deallocate anprivate storage used by thetension. MinorOpcodePras used by DIX to place the appro-
priate value into errors. The DIX routine StandardMinorOpcode can be used here which takes the minor
opcode from the normal place in the request (i.e. just after the major opcode).

6.2. Resouce type allocation.

These functions should also be called from your extensionInitProc to allocate all of the various resource
classes and types required for tleeasion. Eachime the server resets, these types must be reallocated as
the old allocations will hae keen discarded. Resource types are integer values starting at 1. Get a resource
type by calling

RESTYPE CreateNewResourceType(deleteFunc)
deleteFunc will be called to desyrdl resources with this type.

Resource classes are masks starting at 1 << 31 which can be or'edywitka@mce type to provide
attributes for the typeTo dlocate a ne class bit, call

RESTYPE CreateNewResourceClass()

There are tw ways of looking up resources, by type or by class. Classes are nonsexalibisiets of the
space of all resources, so you can lookup the union of multiple classes. (RC_ANY is the union of all
classes).

Note that the appropriate class bits must be or’ed into the value returned by CreateNewResourceType when
calling resource lookup functions.

If you need to create a “pate” resource ID for internal use, you can call FakeClientlID.

XID FakeClientID(client)
int client;

This allocates from ID space reserved for the server.
To associate a resource value with an ID, use AddResource.

Bool AddResource(id, type, value)
XID id;
RESTYPE type;
pointer value;

The type should be the full type of the resource, includiygkass bits. If AddResource fails to allocate
memory to store the resource, it will call the deleteFunc for the type, and then return False.

To free a resource, use one of the following.

void FreeResource(id, skipDeleteFuncType)
XID id;
RESTYPE skipDeleteFuncType;

void FreeResourceByType(id, type, skipFree)
XID id;
RESTYPE type,;
Bool skipFree;

FreeResource frees all resources matching trea @i, regardless of

type; the types celeteFunc will be called on each matching resource,
except that skipDeleteFuncType can be set to a single type for which

Porting Layer Definition -61- April 8, 1994

the deleteFunc should not be called (otherwise pass RT_NONE).
FreeResourceByType frees a specific resource matchingraigi
and type; if skipFree is true, then the deleteFunc is not called.

To look up a resource, use one of the following.

pointer LookupIDByType(id, rtype)
XID id;
RESTYPE rtype;

pointer LookuplDByClass(id, classes)
XID id;
RESTYPE classes;

LookupIDByType finds a resource with theg id and exact type. LookuplDByClass finds a resource
with the gien id whose type is included in amne of the specified classes.

6.3. Macros and Other Helpers

There are a number of macros in Xserver/include/dix.h which are useful to the extensionQmetenf

particular interest are: REQUESREQUEST_SIZE_MATCH, REQUEST_AT_LEAST_SIZE,
REQUEST_FIXED_SIZE, LEGAL_NEW_RESOURCE, LOOKUP_DWABLE, VERIFY_GC, and
VALIDATE_DRANABLE_AND_GC. Useful byte swapping macros can be found in

Xserver/include/misc.h: Iswapl, Iswaps, LengthRestB, LengthRestS, LengthRestL, SwapRestS, SwapRestL,
swapl, swaps, cpswapl, and cpswaps.

Porting Layer Definition -62 - April 8, 1994

7. Callback Manager

To stisfy a growing number of requests for the introduction of ad hoc notification style hooks in the server,
a generic callback manager was introduced in R&allback list object can be introduced for each new

hook that is desired, and other modules in the server can register interest im thélbeek list. The fol-

lowing functions support these operations.

Before getting bogged down in the interface details, an typical usage example should establish the frame-
work. Let's look at the ClientStateCallback in dix/dispatch.c. The purpose of this particular callback is to
notify intereseted parties when a clisrdate (initial, running, gone) changes. The callback is "created" in
this case by simply declaring a variable:

CallbackListPtr ClientStateCallback;

Wheneer the clients date changes, the following code appears, which notifies all intereseted parties of the
change:

if (ClientStateCallback) CallCallbacks(&ClientStateCallback, (pointer)client);

Interested parties subscribe to the ClientStateCallback list by saying:
AddCallback(&ClientStateCallback, func, data);

When CallCallbacks is Wioked on te list, func will be called thusly:
(*func)(&ClientStateCallback, data, client)

Now for the details.

Bool CreateCallbackList(pcbl, cbfuncs)
CallbackListPtr *pchbl;
CallbackFuncsPtr cbfuncs;

CreateCallbackList creates a callback Idte envision that this function will be rarely used because the
callback list is created automatically (if it doasatteady exist) when the first call to AddCallback is made
on the list. The only reason to explicitly create the callback list with this function is if you warertiole
the implementation of some of the other operations on the list by passing your own chfundso lose
something by explicit creation: you introduce an order depegadiming server startup because the list
must be created beforeyamodules subscribe to it. Returns TRUE if successful.

Bool AddCallback(pchbl, callback, subscriber_data)
CallbackListPtr *pcbl;
CallbackProcPtr callback;
pointer subscriber_data;

Adds the (callback, subscriber_data) pair to tiergeallback list. Creates the callback list if it doesn't
exist. ReturnsTRUE if successful.

Bool DeleteCallback(pcbl, callback, subscriber_data)
CallbackListPtr *pcbl;
CallbackProcPtr callback;
pointer subscriber_data;

Remawes the (callback, data) pair to thevgn callback list if present. Returns TRUE if (callback, data) was
found.

Porting Layer Definition -63- April 8, 1994

void CallCallbacks(pchl, call_data)
CallbackListPtr *pcbl;
pointer call_data;
For each callback currently registered on theegicallback list, call it as follows:
(*callback)(pcbl, subscriber_data, call_data);
void DeleteCallbackList(pcbl)
CallbackListPtr *pcbl;

Destroys the gien callback list.

Porting Layer Definition -64 - April 8, 1994

8. Summaryof Routines

This is a summary of the routines discussed in this document. The procedure names are in alphabetical
order The Struct is the structure it is attached to; if blank, this procedure is not attached to a struct and
must be named as sho. Thesample server provides implementations in the followingycaites. Notice

that mawy of the graphics routines @ both mi and mfb implementations.

dix portableto all systems; do not attempt to rewrite (Xserver/dix)
0s routineprovided in Xserver/os or Xserver/include/os.h

ddx framebuffer dependent (examples in Xserver/mfb,Xserver/cfb)
mi routineprovided in Xserver/mi

hd hardvare dependent (examples in matserver/hw directories)

none noimplemented in sample implementation

Procedure Port Struct
ALLOCATE_LOCAL 0s
AbortDDX hd
AddCallback dix
AddEnabledDeice 0s
AddInputDevice dix
AddScreen dix
Bell hd Device
ChangeClip mi GC func
ChangeGC GQunc
ChangeWindowAttribtes ddx Screen
ClearoBackground ddx Window
ClientAuthorized 0s
ClientSignal dix
ClientSleep dix
ClientWaleup dix
ClipNotify ddx Screen
CloseScreen hd
ConstrainCursor hd Screen
CopyArea mi GCop
CopyGCDest ddx GC func
CopyGCSource none GC func
CopyPlane mi GCop
CopyWindav ddx Window
CreateGC ddx Screen
CreateCallbackList dix
CreatePixmap ddx Screen
CreateScreenResources ddx Screen
CreateWellKnowSoakts 0s
CreateWindw ddx Screen
CursorLimits hd Screen
DEALLOCATE_LOCAL 0s
DeleteCallback dix
DeleteCallbackList dix
Destrg/Clip ddx GC func
DestroyGC ddx GC func
DestroyPixmap ddx Screen
DestroyWindev ddx Screen
DisplayCursor hd Screen
Error 0s
ErrorF 0s

Porting Layer Definition - 65 - April 8, 1994

Procedure Port Struct
FatalError 0s
FillPolygon mi GC op
FillSpans ddx GC op
FlushAllOutput os
FlushlIfCriticalOutputPending 0s
FreeScratchPixmapHeader dix
Getlmage mi Screen
GetMotionEents hd Device
GetScratchPixmapHeader dix
GetSpans ddx Screen
GetStaticColormap ddx Screen
ImageGlyphBIt mi GC op
Image®Ext16 mi GC op
Image®&xt8 mi GC op
Initinput hd
Initk eyboardDeiceStruct dix
InitOutput hd
InitPointerDe&viceStruct dix
InsertFaleRequest 0s
InstallColormap ddx Screen
Intersect mi Screen
Inverse mi Screen
LegdModifier hd
LineHelper mi GC op
ListinstalledColormaps ddx Screen
LookupKeyboardDeice dix
LookupPointerDeice dix
ModifyPixmapheader mi Screen
NextAvailableClient dix
Oslnit 0s
PantwindowBackground mi Window
PantwindowBorder mi Window
PointerNonInterestBox hd Screen
PointinReyion mi Screen
PolyArc mi GCop
PolyFillArc mi GC op
PolyFillRect mi GC op
PolyGlyphBIt mi GC op
Polylines mi GC op
PolyPoint mi GCop
PolyRectangle mi GCop
PolySgment mi GCop
PolyText16 mi GCop
PolyText8 mi GCop
PositionWindev ddx Screen
ProcessinputEants hd
PushPiels mi GCop
Putimage mi GCop
QueryBestSize hd Screen
ReadRequestFromClient 0s
RealizeCursor hd Screen
Porting Layer Definition - 66 - April 8, 1994

Procedure Port Struct
Realize®nt ddx Screen
RealizeWindav ddx Screen
RecolorCursor hd Screen
Rectin mi Screen
RegionCopy mi Screen
RegionCreate mi Screen
RegionDestrg mi Screen
RegionEmpty mi Screen
RegionExtents mi Screen
RegionNotEmpty mi Screen
RegionReset mi Screen
ResolheColor ddx Screen
RegisterkeyboardDeice dix
RegisterPointerDace dix
RemaweEnabledDegice 0s
ResetCurrentRequest os
RestoreAreas none BackingStore
SaveDoomedAreas none BackingStore
SaveScreen ddx Screen
SetCriticalOutputPending 0s
SetCursorPosition hd Screen
SetinputCheck dix
SetSpans ddx GCop
StoreColors ddx Screen
Subtract mi Screen
TimeSinceLastinputEnt hd
TranslateBackingStore none BackingStore
TranslateRgion mi Screen
UninstallColormap ddx Screen
Union mi Screen
UnrealizeCursor hd Screen
Unrealize®nt ddx Screen
UnrealizeWindav ddx Screen
ValidateGC ddx GC func
ValidateTree mi Screen
WaitForSomething 0s
WindowvExposures mi Window
WriteToClient 0s
Xalloc 0s
Xfree 0s
Xrealloc 0s
Porting Layer Definition - 67 - April 8, 1994

Table of Contents

The X Windav System

OVERVIEW OF THE SERER .
Notes On Resources and Large Structs .
DIX LAYER

OS LAYER .

Scheduling and Request D&ily

New Client Connections.

Reading Data from Clients.

Inserting Data for Clients . .
Sending Events, Errors And RephecsCIJlents .
Font Support .

Memory Management .

Client Scheduling .

Other OS Functions .

Idiom Support .

DDX LAYER

INPUT .

Input Device Data Structures

Processing Eants . . .

Telling DIX When Input is Pendlng
Controlling Input Deices

Input Initialization . .
Keyboard Mapping and da@codes -
Screens

Screen Hardware Requwements

Data Structures

Output Initialization .

Region Routines in the ScreenRec

Cursor Routines for a Screen. .
Visuals, Depths and Pixmap Formats for Screens
Colormaps for Screens .

Colormap Routines .

Initializing a Colormap .

Fonts for Screens.

Portable Compiled érmat

Font Realization

Other Screen Routines .

Drawables

Pixmaps

Windows . .
Window Procedures in the ScreenRec
Window Painting Procedures . .
Screen Operations for Backing Store .
Screen Operations for Multi-Layered Framébtﬁ
Graphics Contexts andalidation .o
Details of operation .

GC Handling Routines .

GC Clip Region Routines .

Drawing Primitives

GC Components .

NN@IIRPRRUEROUNNBRIBINERNRRERENAERARABRUNRRBERR

Porting Layer Definition -1- April 8, 1994

The Primitves

Pixblit Procedures.

Span Routines.

Glyph Routines.
PushPixels routine
Shutdown Procedures .
Command Line Procedures
Wrappers and devRetes
devPrvates

Screen devPvates .
Window devPrivates

GC and Pixmap devRates .
Wrappers . . .o
Work Queue.

Extension Interdices
Callback Manager.
Summary of Routines

Porting Layer Definition

N

g8t ©

April 8, 1994

