Inter-Client Exchange (ICE) Protocol
Version 1.1
X Consortium Standard

X Version 11, Release 6.4

Robert Scheifler

X Consortium, Inc.

Jordan Brown

Quarterdeck Office Systems

ABSTRACT

There are numerous possible protocols that can be used for communication among
clients. Thg havemary similarities and common needs, including authentication,
version negotiation, data typing, and connection managementintéreClient
Exchang€ICE) protocol is intended to provide a franaek for building such protocols.

Using ICE reduces the complexity of designingvmpeotocols and allows the sharing of
mary aspects of the implementation.

Copyright © 1993, 1994 X Consortium

Permission is hereby granted, free of charge, ygarson obtaining a cgpf this software and associated
documentation files (the “Software”), to deal in the Software without restriction, including without
limitation the rights to use, cgpmodify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The abee mpyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PRVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENTN NO EVENT SHALL THE

X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER

IN AN ACTION OF CONTRACT TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or
otherwise to promote the sale, use or other dealings in this Software without prior written authorization
from the X Consortium.

X Window System is a trademark of X Consortium, Inc.

1. Purpose and Goals

In discussing a variety of protocols — existing, undeeldpment, and hypothetical — it was noted that
they havemary elements in common. Most protocols need mechanisms for authentication, for version
negotiation, and for setting up and taking down connections. There are also cases where the same two
parties need to talk to each other using multiple protodatsexample, an embedding relationship

between tw parties is likely to require the simultaneous use of session management, datg foamsfer
negotiation, and command notification protocols. While these are logically separate protocols, it is
desirable for them to share as maieces of implementation as possible.

TheInter-Client Exchang€lCE) protocol provides a generic frawark for building protocols on top of

reliable, byte-stream transport connections. It provides basic mechanisms for setting up and shutting down
connections, for performing authentication, for negotiating versions, and for reporting errors. The

protocols running within an ICE connection are referred to hesalgzotocols.ICE provides facilities for

each subprotocol to do its own version negotiation, authentication, and error reporting. In addition, if two
parties are communicating usingyaml different subprotocols, ICE will alothem to share the same

transport layer connection.

2. Owerview of the protocol

Through some mechanism outside ICE parties mak themselves known to each other and agree that

they would like to ommunicate using an ICE subprotocol. ICE assumes that this negotation includes some
notion by which the parties will decide which is the “originatiqgrty and which is the “answering”

party The negotiation will also need to provide the originating party with a name or address of the
answering party Examples of mechanisms by which parties caneviaédmselves known to each other are

the X selection mechanism, environment variables, and shared files.

The originating party first determines whether there is an existing ICE connection betweanpities.

If there is, it can re-use the existing connection andendoectly to the setup of the subprotocol. If no ICE
connection exists, the originating party will open a transport connection to the answering party and will
start ICE connection setup.

The ICE connection setup dialog consists of three major parts: byte order exchange, authentication, and
connection informationxehange. Théirst message in each direction iBgteOrder message telling

which byte order will be used by the sending party in messages that it sends. After that, the originating
party sends &£onnectionSetupmessage giving information about itself (vendor name and release
number) and giving a list of ICE version numbers it is capable of supporting and a list of authentication
schemes it is willing to accept. Authentication is optional. If no authentication is required, the answering
party responds with &onnectionReply message giving information about itself, and the connection setup
is complete.

If the connection setup is to be authenticated, the answering party will respond with an
AuthenticationRequired message instead of@onnectionReply message. Thparties then exchange
AuthenticationReply and AuthenticationNextPhasemessages until authentication is complete, at which
time the answering party finally sends@snnectionReply message.

Once an ICE connection is established (or an existing connection reused), the originating party starts
subprotocol negotiation by sendind’eotocolSetup message. Thisiessage ges the name of the
subprotocol that the partiesveaagreed to use, along with the ICE major opcode that the originating party
has assigned to that subprotocol. Authentication can also occur for the subprotocol, independently of
authentication for the connection. Subprotocol authentication is optional. If there is no subprotocol
authentication, the answering party responds wihadocolReply message, giving the ICE major opcode
that it has assigned for the subprotocol.

Subprotocols are authenticated independently of each beoause themay have dffering security
requirements. Ithere is authentication for this particular subprotocol, it takes place before the answering
party emits theProtocolReply message, and it uses tAathenticationRequired, AuthenticationReply,

and AuthenticationNextPhasemessages, just as for the connection authentication. Only when
subprotocol authentication is complete does the answering party sémdtdsolReply message.

Inter-Client Exchange Protocol X11,Release 6.4

When a subprotocol has been set up and authenticated otparties can communicate using messages
defined by the subprotocol. Each message hagppwodes: a major opcode and a minor opcode. Each
party will send messages using the major opcode it has assigneBriotd@solSetup or ProtocolReply
message. Thesmcodes will, in general, not be the sarfrer a particular subprotocol, each party will

need to keep track of twmajor opcodes: the major opcode it uses when it sends messages, and the major
opcode it expects to see in messages itvexeil heminor opcode values and semantics are defined by
each individual subprotocol.

Each subprotocol will hee e or more messages whose semantics are that the subprotocol is to be shut
down. Whethethis is done unilaterally or is performed through negotiation is defined by each subprotocol.
Once a subprotocol is shut down, its major opcodes arevedifrom use; no further messages on this
subprotocol should be sent until the opcode is reestablishedPwatbcolSetup.

ICE has a facility to negotiate the closing of the connection when there are no longetiven

subprotocols. Wheaither party decides that no subprotocols are@dtican send &VantToClose

message. lthe other party agrees to close the connection, it can simply do so. If the other party wants to
keep the connection open, it can indicate its desire by replying WiihGlose message.

It should be noted that the party that initiates the connectiamistessarily the same as the one that
initiates setting up a subprotocdtor example, suppose party A connects to partyPRty A will issue the
ConnectionSetupmessage and party B will respond witiCannectionReplymessage. (The
authentication steps are omitted here for brevilypically, party A will also issue th&rotocolSetup
message and expecPaotocolReply from party B. Once the connection is established, kenvether

party may initiate the negotiation of a subprotocol. Continuing this example, party B may decide that it
needs to set up a subprotocol for communication with partiyaty B would issue thérotocolSetup
message and expecPaotocolReply from party A.

3. DataTypes

ICE messages containveeal types of data. Byte order is negotiated in the initial connection messages; in
general data is sent in the senslé&yte order and the rear is required to swap it appropriatelyn order

to support 64-bit machines, ICE messages are padded to multiples of 8 bytes. All messages are designed so
that fields are “naturallyaligned on 16-, 32-, and 64-bit boundaries. The following formutasghe

number of bytes necessary to [adytes to the next multiple @

padg, b) = (b - (E modb)) modb

3.1. Primitive Types

Type Name Description

CARDS8 8-bitunsigned integer

CARD16 16-bitunsigned integer

CARD32 32-bitunsigned integer

BOOL False or True

LPCE A character from the X Portable Character Set in Latin

Portable Character Encoding

Inter-Client Exchange Protocol X11,Release 6.4

3.2. ComplexTypes

Type Name Type
VERSION [Major, minor: CARD16]
STRING LISTofLPCE

LISTof<type> denotes a counted collection of <type>. The exact encoding varies depending on the
context; see the encoding section.

4. Messagd-ormat
All ICE messages include the following information:

Field Type Description

CARDS8 protocolmajor opcode

CARDS8 protocolminor opcode

CARD32 lengthof remaining data in 8-byte units

The fields are as follows:

Protocol major opcode
This specifies what subprotocol the message is intendetfgor opcode 0 is reserved for ICE
control messages. The major opcodes of other subprotocols are dynamically assigned and exchanged
at protocol negotiation time.

Protocol minor opcode
This specifies what protocol-specific operation is to be performed. Minor opcode 0 is reserved for
Errors; other values are protocol-specific.

Length of data in 8-byte units
This specifies the length of the information following the first 8 bytes. Each message-type has a
different format, and will need to be separately length-checked againstlifes \Asevay data item
has either an explicit length, or an implicit length, this can be easily accomplished. Messages that
have o little or too much data indicate a serious protocol failure, and should resiaoi_angth
error.

5. Owerall Protocol Description

Every message sent in agi direction has an implicit sequence numtsrting with 1. Sequence
numbers are global to the connection; independent sequence numlrertsraamtained for each protocol.

Messages of agen major-opcode (i.e., of agen protocol) must be responded to (if a response is called
for) in order by the receiving partyessages from different protocols can be responded to in arbitrary
order.

Minor opcode 0 ineery protocol is for reporting errors. At most one error is generated per request. If
more than one error condition is encountered in processing a request, the choice of which error is returned
is implementation-dependent.

Inter-Client Exchange Protocol X11,Release 6.4

Error
offending-minor-opcode CARD8
severity { CanContinue, FatalToProtocol, FatalToConnection}
sequence-numberCARD32
class CARD16
value(s) <dependent on major/minor opcode and class>

This message is sent to report an error in response to a messageyfotaol. TheError message

exists in all protocol major-opcode spaces; it is minor-opcode zereeip protocol. The minor opcode of

the message that caused the error is reported, as well as the sequence number of that messagity The se
indicates the sendsrbehavior following the identification of the erro€anContinue indicates the sender

is willing to accept additional messages for this proto€@talToProcotol indicates the sender is

unwilling to accept further messages for this protocol but that messages for other protocols may be
accepted.FatalToConnection indicates the sender is unwilling to accept irther messages for any
protocols on the connection. The sender is required to conform to speoiigty smnditions for generic

and ICE (major opcode 0) errors; see Sections 6.1 and 6.2. The class defines the generic class of error.
Classes are specified separately for each protocol (numeric values can mean different things in different
protocols). Theerror values, if ay) and their types vary with the specific error class for the protocol.

6. ICE Control Subprotocol — Major Opcode 0

Each of the ICE control opcodes is describedweldlost of the messagesvsaalditional information
included beyond the description &ko The additional information is appended to the message header and
the length field is computed accordingly.

In the following message descriptions, “Expected erronglicates errors that may occur in the normal
course of geents. Othelerrors (in particulaBadMajor , BadMinor , BadState, BadLength, BadValue,
ProtocolDuplicate, and MajorOpcodeDuplicate) might occur but generally indicate a serious
implementation failure on the part of the errant peer.

ByteOrder
byte-order { MSBfirst, LSBfirst}

Both parties must send this message before sendyngitaa, including errors. This message specifies the
byte order that will be used on subsequent messages sent by this party.

Note: Ifthe recerer detects an error in this message, it must be sure to send iByte@rder message
before sending th&rror .

ConnectionSetup
versions LISTofVERSION
must-authenticate BOOL
authentication-protocol-named_ISTofSTRING
vendor. STRING
release STRING

ResponsesConnectionReply, AuthenticationRequired. (See note)

Expected errorsNoVersion, SetupFailed, NoAuthentication, AuthenticationRejected,
AuthenticationFailed.

The party that initiates the connection (the one that does the “connect()”) must send this message as the
second message (aftByteOrder) on dartup.

Inter-Client Exchange Protocol X11,Release 6.4

Versions gves a Ist, in decreasing order of preference, of the protocol versions this party is capable of
speaking. Thislocument specifies major version 1, minor version 0.

If must-authenticate i3r ue, the initiating party demands authentication; the accepting parggpick an
authentication scheme and use it. In this case, the only valid respdngbesticationRequired.

If must-authenticate ifalse, the accepting party may choose an authentication mechanism, use a host-
address-based authentication scheme, or skip authentication. When must-autheifétsde is
ConnectionReply and AuthenticationRequired are both valid responses. If a host-address-based
authentication scheme is usédithenticationRejected and AuthenticationFailed errors are possible.

Authentication-protocol-names specifee§possibly null, if must-authenticate kalse) list of
authentication protocols the party is willing to perform. If must-authenticateuis, presumably the party
will offer only authentication mechanisms allowing mutual authentication.

Vendor gves the name of the vendor of this ICE implementation.
Release gies the release identifier of this ICE implementation.

AuthenticationRequired
authentication-protocol-indexCARD8
data: <specific to authentication protocol>

Response:AuthenticationReply.
Expected errors:AuthenticationRejected, AuthenticationFailed.

This message is sent in response @oanectionSetupor ProtocolSetup message to specify that
authentication is to be done and what authentication mechanism is to be used.

The authentication protocol is specified by a 0-basediimde the list of namesg#n in the
ConnectionSetupor ProtocolSetup. Any protocol-specific data that might be required is also sent.

AuthenticationReply
data: <specific to authentication protocol>

ResponsesAuthenticationNextPhase ConnectionReply, ProtocolReply.
Expected errors:AuthenticationRejected, AuthenticationFailed, SetupFailed.

This message is sent in response téathenticationRequired or AuthenticationNextPhasemessage, to
supply authentication data as defined by the authentication protocol being used.

Note that this message is sent by the party that initiated the current negotiation — the party that sent the
ConnectionSetupor ProtocolSetup message.

AuthenticationNextPhaseindicates that more is to be done to complete the authentication. If the
authentication is complet€onnectionReplyis appropriate if the current authentication handslisihe
result of aConnectionSetup and aProtocolReply is appropriate if it is the result ofRrotocolSetup.

AuthenticationNextPhase
data: <specific to authentication protocol>

Response:AuthenticationReply.
Expected errors:AuthenticationRejected, AuthenticationFailed.

This message is sent in response téathenticationReply message, to supply authentication data as
defined by the authentication protocol being used.

Inter-Client Exchange Protocol X11,Release 6.4

ConnectionReply
version-index CARD8
vendor. STRING
release STRING

This message is sent in response @oanectionSetupor AuthenticationReply message to indicate that
the authentication handsteis mmplete.

Version-inde gives a Gbased indeinto the list of versions offered in tl@@nnectionSetupmessage; it
specifies the version of the ICE protocol that both parties should speak for the duration of the connection.

Vendor gves the name of the vendor of this ICE implementation.
Release gies the release identifier of this ICE implementation.

ProtocolSetup
protocol-name STRING
major-opcode CARDS8
versions LISTofVERSION
vendor. STRING
release STRING
must-authenticate BOOL
authentication-protocol-named ISTofSTRING

ResponsesAuthenticationRequired, ProtocolReply.

Expected errorsUnknownProtocol, NoVersion, SetupFailed, NoAuthentication,
AuthenticationRejected, AuthenticationFailed.

This message is used to initiate negotiation of a protocol and estalyliahtla@ntication specific to it.
Protocol-name ges the name of the protocol the party wishes to speak.

Major-opcode gies the opcode that the party will use in messages it sends.

Versions gves a Ist of version numbers, in decreasing order of preference, that the party is willing to speak.

Vendor and release are identification strings with semantics defined by the specific protocol being
negotiated.

If must-authenticate i3r ue, the initiating party demands authentication; the accepting parggpick an
authentication scheme and use it. In this case, the only valid respdngbesticationRequired.

If must-authenticate ifalse, the accepting party may choose an authentication mechanism, use a host-
address-based authentication scheme, or skip authentication. When must-autheifétsde is
ProtocolReply and AuthenticationRequired are both valid responses. If a host-address-based
authentication scheme is usédithenticationRejected and AuthenticationFailed errors are possible.

Authentication-protocol-names specifee§possibly null, if must-authenticate kalse) list of
authentication protocols the party is willing to perform. If must-authenticafteuis, presumably the party
will offer only authentication mechanisms allowing mutual authentication.

[

Inter-Client Exchange Protocol X11,Release 6.4

ProtocolReply
major-opcode CARDS8
version-index CARD8
vendor. STRING
release STRING

This message is sent in response Ry@ocolSetup or AuthenticationReply message to indicate that the
authentication handshaks cmmplete.

Major-opcode gies the opcode that this party will use in messages that it sends.

Version-inde gives a @based indeinto the list of versions offered in tirotocolSetup message; it
specifies the version of the protocol that both parties should speak for the duration of the connection.

Vendor and release are identification strings with semantics defined by the specific protocol being
negotiated.

Ping
Response:PingReply.

This message is used to test if the connection is still functioning.
PingReply
This message is sent in response Rirgg message, indicating that the connection is still functioning.

WantToClose
ResponsesWantToClose, NoClose ProtocolSetup.

This message is used to initiate a possible close of the connection. The sending party has noticed that, as a
result of mechanisms specific to each protocol, there are ne gatiocols left. There are four possible
scenarios arising from this request:

(1) Thereceiving side noticed too, and has already s&idaatToClose. On receiving aWwantToClose
while already attempting to shut down, each party should simply close the connection.

(2) Thereceiving side hashhoticed, but agrees. It closes the connection.

(3) Thereceiving side has BrotocolSetup“ in flight,” i n which case it is to ignor&/antToClose and
the party sendingVantToClose is to abandon the shutdown attempt when it wesdhe
ProtocolSetup.

(4) Thereceiving side wants the connection kept open for some reason not specified by the ICE protocol,
in which case it sendsoClose

See the state transition diagram for additional information.

NoClose

This message is sent in response YamtToClose message to indicate that the responding party does not
want the connection closed at this time. The receiving party should not close the connection. Either party
may again initiatdVantToClose at some future time.

6.1. GenericError Classes

These errors should be used by all protocols, as applicetéCE (major opcode O¥atalToProtocol
should be interpreted &atalToConnection.

Inter-Client Exchange Protocol X11,Release 6.4

BadMinor
offending-minor-opcode<any>
severity FatalToProtocol or CanContinue (protocol’s dscretion)
values (none)

Receved a nessage with an unknown minor opcode.

BadState
offending-minor-opcode<any>
severity FatalToProtocol or CanContinue (protocol’s dscretion)
values (none)

Receved a nessage with a valid minor opcode which is not appropriate for the current state of the protocol.

BadLength
offending-minor-opcode<any>
severity FatalToProtocol or CanContinue (protocol’s dscretion)
values (none)

Receved a nessage with a bad length. The length of the message is longer or shorter than required to
contain the data.

BadValue
offending-minor-opcode<any>
severity CanContinue

values CARD32 Byte offset to offending value in offending message
CARD32 Length of offending value
<varies> Offending value

Receved a nessage with a bad value specified.

6.2. ICE Error Classes
These errors are all major opcode 0 errors.

BadMajor
offending-minor-opcode<any>
severity CanContinue
values CARDS8 Opcode

The opcode gien is ot one that has been registered.

Inter-Client Exchange Protocol X11,Release 6.4

NoAuthentication
offending-minor-opcode ConnectionSetup ProtocolSetup

severity ConnectionSetup — FatalToConnection
ProtocolSetup — FatalToProtocol

values (none)

None of the authentication protocols offered alable.

NoVersion
offending-minor-opcode ConnectionSetup ProtocolSetup

severity ConnectionSetup — FatalToConnection
ProtocolSetup — FatalToProtocol

values (none)

None of the protocol versions offered available.

SetupFailed
offending-minor-opcode ConnectionSetup ProtocolSetup, AuthenticationReply

severity ConnectionSetup — FatalToConnection
ProtocolSetup — FatalToProtocol
AuthenticationReply — FatalToConnection if authenticating a connection, otherwise
FatalToProtocol

values STRING reason

The sending side is unable to accept the cannection or n& protocol for a reason other than
authenticationdilure. Typically this error will be a result of inability to allocate additional resources on the
sending side. The reason field wilgia uman-interpretable message providing further detail on the type
of failure.

AuthenticationRejected

offending-minor-opcode AuthenticationReply, AuthenticationRequired,
AuthenticationNextPhase

severity FatalToProtocol
values STRING reason

Authentication rejected. The peer has failed to properly authenticate itself. The reason fielcwaill gi
human-interpretable message providing further detail.

AuthenticationFailed

offending-minor-opcode AuthenticationReply, AuthenticationRequired,
AuthenticationNextPhase

severity FatalToProtocol
values STRING reason

Authentication failed.AuthenticationFailed does not imply that the authentication was rejected, as
AuthenticationRejecteddoes. Instead means that the sender was unable to complete the authentication
for some other reason. (For instance, it mayeH@en unable to contact an authentication sgrvigne

reason field will gre a uman-interpretable message providing further detail.

Inter-Client Exchange Protocol X11,Release 6.4

ProtocolDuplicate
offending-minor-opcode ProtocolSetup
severity FatalToProtocol (but see note)
values STRING protocol name

The protocol name was alreadygistered. Thiss fatal to the “new’protocol being set up by
ProtocolSetup, but it does not affect the existing registration.

MajorOpcodeDuplicate
offending-minor-opcode ProtocolSetup
severity FatalToProtocol (but see note)
values CARDS opcode

The major opcode specified was alreadystered. Thiss fatal to the “new’protocol being set up by
ProtocolSetup, but it does not affect the existing registration.

UnknownProtocol
offending-minor-opcode ProtocolSetup
severity FatalToProtocol
values STRING protocol name

The protocol specified is not supported.

7. StateDiagrams
Here are the state diagrams for the party that initiates the connection:

start:
connect to other end, seByteOrder, ConnectionSetup - conn_wai t

conn_wait:
recevve ConnectionReply — st asi s
receve AuthenticationRequired — conn_aut hl
receve Error - quit
receve <other>, sencError - qui t

conn_aut hl:
if good auth data, sendluthenticationReply — conn_aut h2
if bad auth data, serilrror — qui t

conn_aut h2:
recevve ConnectionReply - st asi s
receve AuthenticationNextPhase— conn_aut hl
receve Error - quit
receve <other>, sencError - qui t

10

Inter-Client Exchange Protocol X11,Release 6.4

Here are top-hel state transitions for the party that accepts connections.

listener:
accept connection. i ni t _wai t

init wait:
receve ByteOrder, ConnectionSetup —» aut h_ask
receve <other>, sencrror - qui t

aut h_ask:
sendByteOrder, ConnectionReply - st asi s
sendAuthenticationRequired - aut h_wai t
sendError - quit

auth wait:
receve AuthenticationReply - aut h_check
receve <other>, sencError - qui t

aut h_check:
if no more auth needed, se@®nnectionReply - st asi s
if good auth data, sentluthenticationNextPhase - aut h_wai t
if bad auth data, serirror — qui t

Here are the top-lel state transitions for all parties after the initial connection establishment subprotocol.

Note: thisis not quite the truth for branches out from stasis, in that multiplergations can be
interleaved on the connection.

stasis:
sendProtocolSetup — prot o_wai t
receve ProtocolSetup — proto_reply
sendPing - pi ng_wai t
receve Ping, sendPingReply - stasi s
receve WantToClose - shut down_at t enpt
receve <other>, sencrror - stasi s
all protocols shut down, sentfantToClose - cl ose_wai t

proto_wait:
receve ProtocolReply — st asi s
receve AuthenticationRequired — gi ve_aut hl
receve Error , give up on this protocob st asi s
recevve WantToClose - prot o_wai t

gi ve_aut hl:
if good auth data, sendluthenticationReply - gi ve_aut h2
if bad auth data, seridrror , give up on this protocol- st asi s
recevve WantToClose - gi ve_aut hl

gi ve_aut h2:
receve ProtocolReply — st asi s
receve AuthenticationNextPhase- gi ve_aut hl
receve Error , give up on this protocob st asi s
recevve WantToClose - gi ve_aut h2

proto_reply:
sendProtocolReply - st asi s
sendAuthenticationRequired — t ake_aut hl
sendError , give up on this protocob st asi s

11

Inter-Client Exchange Protocol

take authl:
receve AuthenticationReply - t ake_aut h2
receve Error , give up on this protocob st asi s

take_aut h2:
if good auth data- t ake_aut h3
if bad auth data, seridrror , give up on this protocol st asi s

t ake_aut h3:
if no more auth needed, seRdotocolReply - st asi s
if good auth data, sendluthenticationNextPhase - t ake_aut hl
if bad auth data, seridrror , give up on this protocol st asi s

pi ng_wait:
receve PingReply - stasi s

quit:
- close connection

Here are the state transitions for shutting down the connection:

shut down_at t enpt :
if want to stay alie anyway, £ndNoClose - st asi s
else- qui t

close wait:
receve ProtocolSetup — proto_reply
receve NoClose - st asi s
receve WantToClose - qui t
connection closes qui t

8. Protocol Encoding

In the encodings belg the first column is the number of bytes occupied. The second column is either the

X11,Release 6.4

type (if the value is variable) or the actualue. Thehird column is the description of the value (e.g., the
parameter name). Reweis must ignore bytes that are designated as unused or pad bytes.

This document describes major version 1, minor version 0 of the ICE protocol.
LISTof<type> indicates some number of repetitions of <type>, with no additional padding. The number of

repetitions must be specified elsewhere in the message.

8.1. Primitive Types

Type Name Length (bytes) Description

CARDS8 1 8-bit unsigned integer

CARD16 2 16-bit unsigned integer

CARD32 4 32-bit unsigned integer

LPCE 1 A character from the X Portable Character Set in Latin

Portable Character Encoding

12

Inter-Client Exchange Protocol X11,Release 6.4

8.2. Enumerations

Type Name Value Description
BOOL 0 False
1 True

8.3. CompoundTypes

Type Name Length (bytes)Type Description
VERSION
2 CARD16 Majorversion number
2 CARD16 Minorversion number
STRING
2 CARD16 lengthof string in bytes
n LISTofLPCE string
p unused, p = pad(n+2, 4)

8.4. ICE Minor opcodes

Message Name

Encoding

Error
ByteOrder
ConnectionSetup

AuthenticationRequired
AuthenticationReply
AuthenticationNg&tPhase

ConnectionReply
ProtocolSetup
ProtocolReply
Ping

PingReply
WantToClose
NoClose

Om\lmmhwwpo

10

12

13

Inter-Client Exchange Protocol

8.5. Messagé&ncoding

LISTofSTRING
LISTofVERSION

Error
1 CARDS8
1 0
2 CARD16
4 (n+p)/8+1
1 CARDS8
1
0
1
2
2
4 CARD32
n <varies>
p
ByteOrder
1 0
1 1
1
0
1
1
4 0
ConnectionSetup
1 0
1 2
1 CARDS8
1 CARDS8
4 (i+j+k+m+p)/8+1
1 BOOL
7
[STRING
] STRING
k
m
p

AuthenticationRequired

T SONRMRRLRRER

0
3
CARDS8

(n+p)/8+1
n

<varies>

X11,Release 6.4

majoropcode
Eror
class
length
offending-minor-opcode
evaity:
CanContinue
FatalToProtocol
FatalToConnection
unused
sequencaumber of erroneous message
\alue(s)
pad, p = pad(n,8)

ICE
ByteOrder
byte-order:
LSBfirst
MSBfirst
unused
length

ICE

GonnectionSetup

Numberof versions offered
Numberof authentication protocol names offered
length

must-authenticate

unused

vendor

release
authentication-protocol-names
\ersion-list

unused, p = pad(i+j+k+m,8)

ICE

AuthenticationRequired
authentication-protocol-inde
unused

length

length of authentication data
unused

data

unused, p = pad(n,8)

14

Inter-Client Exchange Protocol

AuthenticationReply
1 0
4

1
2
4 (n+p)/8+1
2
6
n

n
varies>
p
AuthenticationNextPhase
1 0

5

1

2

4 (n+p)/8+1
2 n

6

n

varies>
p

ConnectionReply
0

6

CARDS

(i+j+p)/8
STRING
STRING

T T AR R RPR

ProtocolSetup

0

7

CARDS

BOOL
(i+jtk+m+n+p)/8+1
CARDS

CARDS

STRING
STRING
STRING
LISTofSTRING
LISTofVERSION

TS3IX T TORRPARRPRER

ProtocolReply

0

8
CARDS
CARDS
(i+j+p)/8
STRING
STRING

T T AR RRPR

ICE

AuthenticationReply

unused

length

length of authentication data
unused

data

unused, p = pad(n,8)

ICE
AuthenticationNextPhase
unused

length

length of authentication data
unused

data

unused, p = pad(n,8)

ICE

GonnectionReply
version-index

unused

length

vendor

release

unused, p = pad(i+j,8)

ICE

FotocolSetup

majoropcode
must-authenticate

length

Numberof versions offered
Numberof authentication protocol names offered
unused

protocol-name

vendor

release
authentication-protocol-names
\ersion-list

unused, p = pad(i+j+tk+m+n,8)

ICE

FotocolReply
version-index
majoropcode

length

vendor

release

unused, p = pad(i+j, 8)

15

X11,Release 6.4

Inter-Client Exchange Protocol X11,Release 6.4

Ping

1 0 ICE

1 9 Ang

2 0 wnused

4 0 length
PingReply

1 0 ICE

1 10 FingReply

2 0 wnused

4 0 length
WantToClose

1 0 ICE

1 11 WantToClose

2 0 wnused

4 0 length
NoClose

1 0 ICE

1 12 NoClose

2 0 wnused

4 0 length

8.6. Error Class Encoding

Generic errors hee dasses in the range 0x8000—-0xFF&t# subprotocol-specific errors are in the range
0x0000-0x7FFF.

8.6.1. GenericError Class Encoding

Class Encoding

BadMinor 0x8000
BadState 0x8001
BadLength 0x8002
Bad\alue 0x8003

8.6.2. ICE-specificError Class Encoding

Class Encoding
BadMajor 0
NoAuthentication 1
NoVersion 2
Setuphiled 3
AuthenticationRejected 4
Authenticationkiled 5
ProtocolDuplicate 6
MajorOpcodeDuplicate 7
UnknownProtocol 8

16

Inter-Client Exchange Protocol X11,Release 6.4

Appendix A

A. Modification History

A.1l. Releasé to Release 6.1
Release 6.1 added the ICE X rendezvous protocol (Appendix B) and updated the document version to 1.1.

A.2. Releasé.1 to Release 6.3
Release 6.3 added the listen on well known ports feature.

17

Inter-Client Exchange Protocol X11,Release 6.4

Appendix B

B. ICE X Rendezvous Protocol

B.1. Introduction

The ICE X rendezvous protocol is designed to answer the need posed in Section 2 for one mechanism by
which two dients interested in communicating via ICE are able to exchange the necessary information.
This protocol is appropriate foratwo ICE clients who also lva X mnnections to the same X server.

B.2. Owerview of ICE X Rendezvous

The ICE X Rendezvous Mechanism requires clients willing to act as ICE originating parties to pre-register
the ICE subprotocols thesupport in an ICE_P&TOCOLS property on their topatel window. Clients

willing to act as ICE answering parties then send an ICBTRIREOLS X ClientMessageevent to the ICE
originating parties. Thi€lientMessageevent identifies the ICE network IDs of the ICE answering party

as well as the ICE subprotocol it wishes to speak. Upon receipt of this message the ICE originating party
uses the information to establish an ICE connection with the ICE answering party.

B.3. RegisteringKnown Protocols

Clients willing to act as ICE originating parties preregister the ICE subprotocplsughygort in a list of
atoms held by an ICE_RIR'OCOLS property on their topyel window. The name of each atom listed in
ICE_PROTOCOLS must be of the form ICE_INITIATE hamewherepnameis the name of the ICE
subprotocol the ICE originating party is willing to speak, as would be specified in aré@&eolSetup
message.

Clients with an ICE_INITIATE pnameatom in the ICE_PTOCOLS property on their topael windows
must respond t&lientMessageevents of type ICE_PRTOCOLS specifying ICE_INITIATEpname If a
client does not want to respond to these client messagtsgeit should remee the ICE_INITIATE_pname
atom from its ICE_PRTOCOLS property or reme the ICE_PRTOCOLS property entirely.

B.4. Initiating the Rendezvous

To initiate the rendezvous a client acting as an ICE answering party sendsSlemiKlessageevent of

type ICE_PRTOCOLS to an ICE originating partyThis ICE_PROTOCOLS client message contains the
information the ICE originating party needs to identify the ICE subprotocol theasties will use as well
as the ICE network identification string of the ICE answering party.

Before the ICE answering party sends the client mess@&geiemust define a text property on one of its
windows. Thistext property contains the ICE answering partZE network identification string and will
be used by ICE originating parties to determine the ICE answeringsetyf ICE network IDs.

The property hame will normally be ICE_NETWORK_IDS, but may herame of the ICE answering
party’s choosing. Thdormat for this text property is as follows:

Field Value

type XA_STRING

format 8

value comma-separatéidt of ICE network IDs

Once the ICE answering party has established this text property on one of its windows, it initiates the
rendezvous by sending an ICE_®ROCOLS ClientMessageevent to an ICE originating party'top-level
window. This ezent has the following format and must only be sent to windows tivat fne-registered the

18

Inter-Client Exchange Protocol X11,Release 6.4

ICE subprotocol in an ICE_RIR OCOLS property on their topsel window.

Field Value

message_type Atom"ICE_PROTOCOLS"

format 32

data.l[0] Atomidentifying the ICE subprotocol to speak

data.l[1] Timestamp

data.l[2] ICE answering partywindow ID with ICE network IDs text property

data.l[3] Atom naming text property containing the ICE answering ga@g
network IDs

data.l[4] Resered. Mustbe 0.

The name of the atom in data.l[0] must be of the form ICE_INITIAJriiame wherepnameis the name of
the ICE subprotocol the ICE answering party wishes to speak.

When an ICE originating party rewes aClientMessageevent of type ICE_PRTOCOLS specifying
ICE_INITIATE_pnameit can initiate an ICE connection with the ICE answering partyopen this
connection the client retwes the ICE answering party'ICE network IDs from the windo specified in
data.l[2] using the text property specified in data.l[3].

If the connection attempt fails foryareason, the client must respond to the client messeage sy
sending a returiClientMessageevent to the windw specified in data.l[2]. This returrvent has the
following format:

Field Value

message_type Atom"ICE_INITIATE_FAILED"

format 32

data.l[0] Atomidentifying the ICE subprotocol requested
data.l[1] Timestamp

data.l[2] Initiating partys window ID (holding ICE_PRTOCOLS)
data.l[3] int:reason for failure

data.l[4] Resered, must be 0

The values of data.l[0] and data.l[1] are copied directly from the client messzg¢he client receied.

The value in data.l[2] is the id of the winddo which the ICE_PRTOCOLS.ICE_INITIATE_pname
client messagevent was sent.

Data.l[3] has one of the following values:

19

Inter-Client Exchange Protocol

X11,Release 6.4

Value Encoding Description

OpenFailed 1 The client was unable to open the connection (e.g. a call to
IceOpenConnection(pfled). Ifthe client is able to distinguish
authentication or authorization errors from general errors, then the
preferred reply iAuthenticationFailed for authorization errors.

AuthenticationFailed 2 Authentication or authorization of the connection or protocol setup was
refused. Thigeply will be given only if the client is able to distinguish
it from OpenFailed; otherwiseOpenFailed will be returned.

SetupFailed 3 The client was unable to initiate the specified protocol on the
connection (e.g. a call to IceProtocolSetup() failed).

UnknownProtocol 4 The client does not recognize the requested protocol. (This represents a
semantic error on the part of the answering party.)

Refused 5 The client was in the process of removing ICE_INITIApBEamefrom

its ICE_PROTOCOLS list when the client message was sent; the client
no longer is willing to establish the specified ICE communication.

Advice to Implementors

Clients willing to act as ICE originating parties must update the ICEDTRROLS property
on their top-lgel windows to include the ICE_INITIATEpnameatom(s) identifying the ICE
subprotocols thespeak. Themethod a client uses to update the ICEOPRCOLS property
to include ICE_INITIATE pnameatoms is implementation dependent, but the client must
ensure the integrity of the list to peat the accidental omission ofyastoms previously in the

list.

When setting up the ICE network IDs text property on one of its windows, the ICE answering
party can determine its comma-separated list of ICE network IDs by calling
IceComposeNetworkldList() after making a call to IceLisan@onnections(). Theethod an
ICE answering party uses to find the topelevindows of clients willing to act as ICE
originating parties is dependent upon the nature of the answering $antyy may wish to use
the approach of requiring the user to click on a ckenindow. Others wishing to find
existing clients without requiring user interaction might use something similar to the
XQueryTree() method used byveeal freely-available applications. In order for the ICE
answering party to become automaticallyage of nev clients willing to originate ICE
connections, the ICE answering party might register for SubstructureNaifiseon the root
window of the display When it recaies a SibstructureNotify eent, the ICE answering party
can check to see if it was the result of the creation ofvechient top-level window with an

ICE_PROTOCOLS property.

In ary case, before attempting to use this ICE X Rendezvous Mechanism ICE answering
parties wishing to speak ICE subprotopnbmeshould check for the ICE_INITIATEpname
atom in the ICE_P&TOCOLS property on a cliest’top-level window. A client that does not
include an ICE_INITIATE pnameatom in a ICE_PRTOCOLS property on some topvid
window should be assumed to ignoBientMessageevents of type ICE_PRTOCOLS
specifying ICE_INITIATE pnamefor ICE subprotocopname

B.5. ICE Subprotocol Versioning

Although the version of the ICE subprotocol could be passed in the client megsagéGE provides
more a flexible version negotiation mechanism than will fit within a si@fEntMessageevent. Because
of this, ICE subprotocol versioning is handled within the ICE protocol setup phase.

20

Inter-Client Exchange Protocol X11,Release 6.4

Example

Clients wish to communicate with each other via an ICE subprotocol known as "RAP V1.0".
In RAP terminology one partyhe "agent”, communicates with other RAP-enabled
applications on demand. The user may direct the agent to establish communication with a
specific application by clicking on the applicat®mindow, or the agent may watch for new
application windows to be created and automatically establish communication.

During startup the ICE answering party (the agent) first calls IceRegisterForProtocolReply()
with a list of the versions (i.e., 1.0) of RAP the agent can speak. The answering party then
calls IceListenForConnections() followed by IceComposeNetworkldList() and stores the
resulting ICE network IDs string in a text property on one of its windows.

When the answering party (agent) finds a client with which it wishes to speak, it checks to see
if the ICE_INITIATE_RAP atom is in the ICE_RIR OCOLS property on the cliesttop-level
window. If it is present the agent sends the clieigp-level window an ICE_PROTOCOLS

client messagevent as described attle When the client recees the client messageent

and is willing to originate an ICE connection using RABerforms an
IceRegisterForProtocolSetup() with a list of the versions of RAP the client can speak. The
client then retriees the agens ICE network ID from the property and windapecified by the
agent in the client messageset and calls IceOpenConnection(). After this call succeeds the
client calls IceProtocolSetup() specifying the RAP protocol. During this process, ICE calls the
RAP protocol routines that handle the version negotiation.

Note that it is not necessary for purposes of this rendezvous that the client application call any
ICElib functions prior to receipt of the client messagene

21

Inter-Client Exchange Protocol X11,Release 6.4

22

Table of Contents

1. Purpose and Goals

2. Overviav of the protocol .

3. Data Vpes

3.1. Primitve Types

3.2. Compl& Types

4. Message érmat .

5. Overall Protocol Descrlptlon

6. ICE Control Subprotocol — Major Opcode 0.

6.1. Generic Error Classes.

6.2. ICE Error Classes .

7. State Diagrams.

8. Protocol Encoding.

8.1. Primitve Types

8.2. Enumerations

8.3. Compoundylpes . .

8.4. ICE Minor opcodes.

8.5. Message Encoding.

8.6. Error Class Encoding . .
8.6.1. Generic Error Class Encoding
8.6.2. ICE-specific Error Class Encoding .
A. Modification History . .
A.l. Release 6 to Release 6.1

A.2. Release 6.1 to Release 6.3.

B. ICE X Rendezvous Protocol .
B.1. Introduction . .
B.2. Overviav of ICE X Rendeznus .
B.3. Registering Known Protocols .
B.4. Initiating the Rendepus

B.5. ICE Subprotocol &sioning

o~NPwLWwWNMNNN PR R

CREPERNRNNPPARRRNNNQ

