
Font server i mplementation overview

Dave Lemke

Network Computing Devices, Inc.
Copyright © 1991 Network Computing Devices, Inc.

1. Intr oduction

The font server uses the same client/server model as X. The basic structure is that of the X Consor-
tium X11R5 X server, and those who know that code should find theosanddifs (device independent font
server) layers familiar.

+-----------------+
+-----| difs |------+
| +-----------------+ |
| |

+----+ +------------+
| os | | renderers |
+----+ +------------+

Definitions

• Renderer. Code that knows how to take font data in its raw format and convert it to the font server’s
format.

• Font Path Element (FPE). An instance of a renderer, associated with a specific font source, (ie a direc-
tory of PCF bitmaps).

Thedifs layer interprets the requests, and handles the renderer independent work. Thisincludes error
checking of requests, and the top level font database. It also contains various utility functionality such as
caching and byte swapping.

Theos layer sets up the communications channel, reads requests and sends the raw data of replies
and events. Italso handles font server configuration issues, controlled by command line arguments and a
configuration file.

The renderer layer contains all font-specific code, and is responsible for rendering a font (which may
mean just reading a bitmap from disk, or may include scaling of outline data), computing a fonts properties
and header information.

2. Startup

At startup, the font server handles any command line arguments, initializes any OS-specific data, and
then sets up the communications.Various internal databases are then initialized (extensions, the font cata-
logue, etc).

The config file, an ordered list of font sources, cache size hints, default resolutions, and security
information, is then read in. Each of these source names could be a directory name, the name of another
font server, or some other string that a particular renderer can recognize.

The default font catalogue is then built up by taking each of the font source names and comparing it
with the names a renderer recognizes. The one that matches this name will become attached to this source.
A renderer will ‘‘understand’’ a name if it can parse the data in that directory, or recognize that it is a valid
font server address, or recognizes a special string. Thus a collection of valid font path elements is built up.
EachFPE has a set of functions to support opening a font and accessing its data.

-2-

Font information is accessed via method functions in theFont. When a font is first loaded, the
header information and properties are loaded/computed. The font also initializes its function pointers to do
the proper work. Whenspecific metrics or bitmaps are required, they are access via the font’s functions. A
disk-based bitmap font will probably want to load all data when first accessed.A scaled font or FS font
may want to do more selective caching. Inboth cases, the renderer can use the utility functions to keep
track of this data. Changing values of bitmap formats could result in the font having multiple copies of data
in different formats, which the renderer may use the utility functions to manage.

3. Per client processing

Each entity attaching to the server is a client. Each client has its own authorization and resolution
information, and its own view of the font database.A font open to one client may not be open to another,
though the font server may have it loaded.

After initialization, new clients can attach to the font server and have their requests processed.For
each request that is searching for a font(OpenBitmapFont) or listing font names(ListFonts, List-
FontsWithXInfo), the pattern is given to eachFPE.

OpenBitmapFont will take the supplied name and pass it to eachFPE. TheFPE will return one of
three things:Success,and the font object;BadFont,because it doesn’t know the font; orBadFontand an
alias name, when it has an alias for the font. IfSuccessis returned, the server goes on to create an ID (or
find an existing one) and return a reply. If BadFontis returned, it goes on to the nextFPE. If it reaches the
end without finding a font, an error is returned to the client. If an alias is returned, the search resets to the
first FPE and starts again, using the alias as the new font name. This allows aliases to work across different
FPEs,without any ordering restrictions.

When eachFPE receives a font name to open, it searches for the font’s existence. Ifit can’t find, or
can only find an alias, it returnsBadFontand any alias. If it finds the font, it checks the authorization and
license status of the font to that of the client. If it passes, it then creates a new font object, and reads and/or
computes at least the font’s header information and properties. (It may also want to produce the bitmaps
and extents, but that choice is left to the renderer.)

When a font’s information is accessed, the interpreter routine looks up the font ID to find the font
object, and then uses the font’s access functions to get the data. These functions will return the data in the
format expected by the client.

4. Client shutdown

When a client disconnects, all its references to any fonts it still has opened are removed. If no other
clients reference these fonts, they may be freed, though the server may choose to cache them.

5. Server r eset and cleanup

A server may be reset to flush the caches, re-read the configuration file, and a new list of FPEsto be
built, via an OS-specific outside action. In UNIX, this will be handled via signals; in VMS it could be han-
dled via an async trap or event flag.

6. Server offloading

In order to deal with numerous clients without major performance degradation, the server must be
able to clone itself, or provide the client with a substitute server via the alternate server mechanism. Since
both strategies have their uses, both will be supported.For a server that has plenty of host memory or CPU,
but insufficient sockets, cloning may be a good choice.For a host with limited memory, assigning an alter-
nate server on a different host may be a good choice. The server will make this decision based on configu-
ration options.

-3-

7. Font server data structures

TheClient handles per-client information and interpreter status.

typedef struct _Client {
int index;
pointer osPrivate;
int noClientException;
int (**requestVector) ();
pointer requestBuffer;
int clientGone;
int sequence;
Bool swapped;
long last_request_time;
void (*pSwapReplyFunc) ();
AuthContextPtr auth;
char *catalogues;
int num_catalogues;
Mask eventmask;
fsResolution *resolutions;
int num_resolutions;

} ClientRec, *ClientPtr;

TheFont contains basic font information, including header information and properties.

typedef struct _font {
int refcount;
fsHeader header;
fsBitmapFormat format;
int (*get_glyphs)();
int (*get_metrics)();
int (*get_extents)();
int (*get_bitmaps)();
int (*unload_font)();
FontPathElementPtr fpe;
int *client_ids;
Bool restricted_font;

} FontRec *FontPtr;

TheClientFont is a wrapper on top ofFont, handling client specific font information.

typedef struct _clientfont {
FontPtr font;
int clientindex;

} ClientFontRec, *ClientFontRec;

TheAuthContext contains authorization information.

typedef struct _authcontext {
char *authname;
char *authdata;
FSID acid;

} AuthContextRec *AuthContextPtr;

8. Font Path Element functions

These functions are associated with each renderer, and handle all aspects of font access.Font data
access is controlled via another set of functions described later. These functionsare intended to support
the R5 X server as well as the font server. As a result, some design decisions were made to support both
models. Whenthedifs layer needs to access a font, it uses these functions.

-4-

typedef unsigned long Mask;

typedef unsigned char *pointer;

typedef struct _FontPathElement {
int name_length;
char *name;
int type;
int refcount;
pointer private;

} FontPathElementRec, *FontPathElementPtr;

The FPE’s reference count is incremented when it is added to the current list of FPEs and when it
opens a font. It is decremented when it is no longer in the current list and when it closes a font. All refer-
ence changes are handled by thedifs layer. The count is required to support font catalogue changes that
may occur while the fontserver has fonts open, and keeps FPEs from being lost.

typedef struct FontNames {
int nnames;
int size;
int *length;
char **names;

} FontNamesRec, *FontNamesPtr;

typedef struct {
Bool (*name_check)();
int (*init_fpe)();
int (*reset_fpe)();
int (*free_fpe)();
int (*open_font)();
int (*close_font)();
int (*list_fonts)();
int (*start_list_fonts_with_info)();
int (*list_next_font_with_info)();
int (*wakeup_fpe)();
int (*client_died);
FontNamesPtr renderer_names;

} FPEFunctions;

int init_fpe_type(Bool (name_func)(),
int (init_func)(), int (free_func)(), int (reset_func),
int (open_func)(), int (close_func)(),
int (list_func)(),
int (start_lfwi_func)(), int (next_lfwi_func)(),
int (wakeup_func)(),
int (client_died_func)()
)

This is called by the renderer when it is initialized at the beginning of time, and sets up an FPEFunctions
entry for the renderer.

TheFPEFunctionshave the following parameters:

Bool name_check(char *name);

If nameis something the renderer recognizes as a valid font source name, it return True, otherwise False.
ie, if nameis a directory name, or is prefixed by the renderer’s prefix, and the directory contains font data
the renderer can interpret, it would return True.

int init_fpe(FontPathElementPtr fpe);

-5-

Does any initialization work for the renderer. The name infpewill be one whose prefix matches the list
returned when the renderer was initialized.

int reset_fpe(FontPathElementPtr fpe);

Tells fpeto reset any internal state about what fonts it has available. Thiswill typically be called because
the font server’sFPE search list has been changed. Thefpeshould reset any cached state of available fonts
(ie, re-read thisfonts.dir)when

int free_fpe(FontPathElementPtr fpe);

Frees any renderer-specific data and closes any files or sockets.

int open_font(pointer client, FontPathElementPtr fpe, Mask flags,
char *fontname, int namelength,
fsBitmapFormat format_hint, fsBitmapFormatMask format_mask,
XID fontid, FontPtr *ppfont, char **alias);

Opens the font. The bits marked by theformat_maskin format_hintare used where applicable. The result-
ing FontPtr is returned inppfont. Theclient is optional state information for use with blocking renderers.
If the fontname
resolves to an alias, it is returned inaliaswith aFontNameAliaserror. This tells the calling code to start
searching again, usingaliasas the font name. The renderer is expected to fill in any information specified
by theflags.

Possible flags values are:

#define FontLoadInfo 0x0001 /* font header info */
#define FontLoadProps 0x0002 /* font properties */
#define FontLoadMetrics 0x0004 /* font extents */
#define FontLoadBitmaps 0x0008 /* glyph bitmaps */
#define FontLoadAll 0x000f
#define FontOpenSync 0x0010 /* force synchronous loading */

Once a font has been opened, the server may place it and the pattern it matched into a name cache, to avoid
lengthy searching if the font is reopened. If the renderer does not wish the font to be in this cache (for
licensing reasons), it should set the font’srestricted_accessflag.

int close_font(FontPtr pfont);

Frees up all the data associated with the font.

int list_fonts(pointer client, FontPathElementPtr fpe,
char *pattern, int pattern_length, int maxnames,
FontNamesPtr *paths);

Returns inpathsup tomaxnamesfont names the fpe recognizes as matching the given pattern.

int start_list_fonts_with_info(pointer client,
FontPathElementPtr fpe, char *pattern, int pattern_length,
int maxnames, pointer fpe_data);

Initiates aListFontsWithXInfo. Typically, a disk-based renderer will do the equivalent of ListFonts to
gather all the font names matching the pattern.A font server renderer will send the request.fpe_data

-6-

provides a handle for any FPE-private data that needs to be passed in later vialist_next_font_with_info(),
eg, the list of font names for a disk-based renderer.

int list_next_font_with_info(pointer client, FontPathElementPtr fpe,
char **name, int *namelen, FontInfoPtr &pinfo,
int &num_fonts, pointer fpe_data);

Returns the next font’s information. Therenderer should keep any state it requires in thefpe_datafield.
num_fontscontains the number of replies remaining.

These two routines are split for because of the way both disk-based renderers and font server renderers han-
dle this request. The first function initiates the action, the second is used to gather the results.For a disk-
based renderer, a list of font names matching the pattern is first built up whenstart_list_fonts_with_info()
is called, and the results are gathered with each call tolist_next_font_with_info. In a font server renderer,
the first function sends theListFontsWithXInfo request, and the second processes the replies.

int wakeup_fpe(FontPathElementPtr fpe, unsigned long *mask)

Optional function which can be used for blocking renderers.Typical usage is for a font server renderer,
where it is called when a reply is received, allowing the data to be read and the client to be signaled and
unblocked.

int client_died(pointer client, FontPathElementPtr fpe)

This function is called when a client dies in the middle of a blocked request, allowing the renderer to clean
up.

9. Font specific functions

These functions are contained in eachFont. For many renderers, every font will use the same functions,
but some renderers may wish to use different interfaces for different fonts.

typedef struct {
INT16 left B16,

right B16;
INT16 width B16;
INT16 ascent B16,

descent B16;
CARD16 attributes B16;

} fsCharInfo;

typedef struct {
CARD8 low,

high;
} fsChar2b;

typedef struct {
fsChar2b min_char,

max_char;
} fsRange;

int get_extents(pointer client,
FontPtr pfont, Mask flags, int num_ranges, fsRange *ranges,
int *num_extents, fsCharInfo **extents);

Possible flags:

-7-

LoadAll /* ignore the ranges and get everything */
FinishRange /* magic for range completion as specified by protocol */

Builds up the requested array of extents. Theextent data (which the renderer allocates) is returned, as well
as the number of extents.closurecontains any blocking state information.

int get_bitmaps(pointer client,
FontPtr pfont, fsBitmapFormat format, Mask flags,
int num_ranges, fsRange *ranges,
unsigned long *size, unsigned long *num_glyphs,
unsigned long **offsets, pointer *glyph_data);

Possible flags:

LoadAll
FinishRange /* magic for range completion as specified by protocol */

Builds up the requested array of bitmaps. The glyph and offset data (which the renderer allocates) is
returned, as well as the number of glyphs. Theclosurecontains any blocking state information. This func-
tion will build up the bitmap data in the format specified byformatso that the interpreter can return it with-
out any additional modification. This should minimize data massaging, since outline renderers will hope-
fully be able to produce the bitmaps in the proper format.

void unload_font(FontPtr pfont)

The render will free any allocated data. Note that theFPE functionclose_font()will also be called, and
should handle anyFPE data allocated for the font.

int get_glyphs()
int get_metrics()

These two functions are used by the X server for loading glyphs and metrics. They expect the results in a
considerably different form. Theget_bitmaps()andget_extents()routines both allow for better cache con-
trol by the renderer.

10. Font directories and aliases

Existing bitmap renderers already have their own concept of font organization. Inthe X sample
server, the filesfonts.dir andfonts.aliasare used to list the known fonts.fonts.dir maps file names to font
names, whilefonts.aliasmaps font names to other font names.

These concepts will also be needed by other forms of fonts which the sample X server does not cur-
rently use, but the font server will, like Bitstream outlines.

11. Handlingscalable fonts

For those renderers that support scalable fonts, several issues must be addressed:

• Name Parsing. AnXLFD name must be parsed to determine the requested resolutions and/or sizes.

• Property scaling. Many of the standard font properties have values that depend on scaling (eg,RESO-
LUTION_X. POINT_SIZE)

• Default values. Ifresolution information is wildcarded, the proper default resolution should be sup-
plied.

-8-

Name Parsing

The font name pattern supplied toOpenBitmapFont or ListFonts may require some parsing to be
recognized as a scalable font known to the renderer. ThePIXEL_SIZE, POINT_SIZE, RESOLU-
TION_X, RESOLUTION_Y andAVERAGE_WIDTH all need to determined from the font name pat-
tern. Themaster font must then be found, and scaled appropriately. Any unspecified values that cannot be
determined should be replaced by the proper defaults. For size fields, this is whatever the configuration
specifies. For resolution fields, these should be taken from the client’s resolution list, if set, or from the
server’s configuration.

Property scaling

Part of scaling a font is scaling its properties. Many scalable fonts will have a very large number of
scalable properties. One way to deal with these is for the ‘‘master’’ outline to keep track of the property
names, and supply new values for each instance of the font. If the property names are stored as Atoms,
memory usage is kept to a minimum.

Using defaults

Using default values as substitutions for missing values was covered above. These defaults will also
be useful in handlingListFonts requests. Returninga scalable font with an instance using the default val-
ues will provide the most user-friendly environment.

12. Accesscontrol

The font server will also support large grain security. It will have both a limit of the number of users,
and on the hosts which it will support.

Limiting the number of users is as much a server loading issue as a security issue. The limitation
will be typically be set via configuration options or OS limitations.To change it, use:

void AccessSetConnectionLimit(int limit)

A limit of 0 will set it to a compiled constant based on OS resources (eg, number of file descriptors).

Client-host based access control can be used to supplement licensing, and support font server load
balancing by restricting access. As with licensing, this is OS-specific code.To manipulate these functions,
use:

typedef struct _host_address {
int type;
pointer address;
struct _host_address *next;

} HostAddress;

typedef HostAddress *HostList;

int AddHost(HostList list, HostAddress *address)
int RemoveHost(HostList list, HostAddress *address)
Bool ValidHost(HostList list, HostAddress *address)

AddHost() adds a host to thelist. RemoveHost() removes it, andValidHost() checks to see if its on the
list. In all functions, theaddresshas will ignore any value in thenextfield.

Network addresses are used here to avoid issues with host name aliases. The caller fills in the desired
type, and an address of that form is returned. This is highly OS-specific, but values for thetypeandaddress
fields could include:

-9-

#define HOST_AF_INET 1
struct in_addr *address;

#define HOST_AF_DECnet 2
struct dn_addr *address;

The server will use a global host list, but having the list as an argument will allow licensing schemes to
have their own host lists.

13. Licensing

Licensing is a tricky issue, which each renderer will support in a different way. The sample font
server will attempt to provide some guidelines, and present a possible implementation of some simple
licensing schemes.

Host Address licensing

This is simplistic licensing based on the client’s host. With this form of licensing, a font may be accessible
to some host but not others.To get the current client’s host, the following is used:

void GetHostAddress(HostAddress *address);

A renderer can also use the host access functions to keep a list of the licensed hosts, andValidHost() to
check a client.

Simultaneous use license

This licensing allows for a limited number of copies of the font to be open at once. Since this should
be a simple per-font counter, no support should be required outside of the renderer.

14. DIFScontents

This contains the protocol dispatcher, interpreter and reply encoding routines.

The interpreter is table driven off the request code. The dispatcher gets a request from the os layer
from WaitForSomething(), and uses the request code to determine which function to call.eg, aCloseFont
request would callProcCloseFont().

Each request’s routine handles any applicable error checking, and then does as much work as it can.
For font related requests, this means converting the request to the proper arguments for the renderers.

If any replies are generated, the reply data is gathered into the bytestream format, and sent viaos
write functions to the client.

If the byte order of the client and server differ, the above is modified by having the dispatcher call an
intermediate function which re-orders the request to the proper byte order. Replies go through similar
swapping.

Client blocking

To minimize delay caused by font server request, clients can be blocked while they wait for data to be
produced. Thisis primarily intended forFPEsusing a remote font server, but can be used anywhere where
the font server can pause to handle other client requests while data needed to satisfy another is produced
(possibly via multiple processes).

Bool ClientSleep(ClientPtr client, Bool (*function)(), pointer closure)

Puts a client to ’sleep’. Thismeans the client will no longer be considered while the server is dispatching
requests.functionwill be called when the client is signaled, with theclientandclosureas its arguments.

-10-

Bool ClientSignal(ClientPtr client)

This should be called when the client is ready to do more work. At this point, the function given to
ClientSleep()will be called.

void ClientWakeup(ClientPtr client)

Puts the client back to its normal state processing requests.

Bool ClientIsAsleep(ClientPtr client)

Can be used to check if a client is asleep. This is useful for handling client termination, so that any requests
the client is waiting upon can be properply cleaned up.

Sample Usage

For handling a font server renderer request forOpenBitmapFont the renderer will send the request
to the remote font server, and the callClientSleep(). The font server will then continue processing requests
from other clients, while the one making the request is blocked. Whenthe reply returns, the renderer will
notice when itswakeup_fpe()function is called. At this point the font server renderer will read and
process the reply.ClientSignal() will be called, and theclosurefunction will be called. It will request the
data from the renderer, completing the request, and callClientWakeup() to return the client to normal sta-
tus.

This layer also contains the resource database, which associates fonts with IDs, extension interface
functions and the server initialization and reset control.

15. OScontents

This layer contains OS specific routines for configuration, command line parsing, client/server com-
munications, and various OS-dependent utilities such as memory management and error handling.

ReadRequestFromClient()returns a full request to the dispatcher.WaitForSomething() is where
the server spends its idle time, waiting for any action from a client or processing any work left from a
blocked client.

When a client attempts to connect, the server will call

int CheckClientAuthorization(ClientPtr client, AuthPtr client_auth,
int *accept, int *index, int *size, char **authdata)

to see if the server is set to allow the client to connect. It may use licensing or configuration information to
determine if the client can connect.

When then connection is established, the server will use the

typedef struct _alt_server {
char subset;
char namelen;
char *name;

} AlternateServerRec, *AlternateServerPtr;

int ListAlternateServers(AlternateServerPtr *servers)

to return any alternate server information it may have.

When the client limit is reached, the font server may attempt to copy itself, by calling

-11-

int CloneMyself()

This function will (if the configuartion options allow) start a new font server process. This is done in such a
way that no pending connections should be lost, and that the original server will accept no new connections.
Once the original server has no more clients, it will exit.

Catalogue manipulation

Catalogues are configuration dependent, and hence sent by OS-dependent methods. In order for the
difs layer to get them, it uses

int ListCatalogues(char *pattern, int pattern_length,
int maxnames, char **catalogues, int *len)

which returns the list of all catalogues it supports which match the pattern. This function will be used by
the catalogue manipulation requests, as well as by renderers when they giv e theirListFonts results.

int ValidateCatalogues(int number, char *catalogues)

Can be used to validate a list of catalogues, returning True if the list is acceptable.

16. Utility functions

Client data functions

These provide access to the current client’s resolution and authorization data. This form of interface
is supplied rather than passing it to all renderers in theFPE functions because the data may be complex
and/or uninteresting to all renderers.

AuthContextPtr GetClientAuthorization()

Returns the authorization data for the current client.

fsResolution *GetClientResolutions(int *num_resolutions)

Returns the list of resolutions that the current client has set.

Caching functions

These are functions that simplify caching of renderer data. These are for use by renderers that take
significant resources to produce data. The data must be re-creatable -- the cache is not meant for general
storage. Thedata may also be moved by the cache, so it should only be accessed by CacheID.

typedef void (*CacheFree)();
typedef unsigned long CacheID;
typedef unsigned long Cache;

Cache CacheInit(int renderer_id)

Initializes a cache object for the renderer. the returned ID should be passed toCacheStoreMemory()when
adding an object to the cache.

-12-

void CacheStats(Cache cid, unsigned long *num_entries,
unsigned long *max_storage, unsigned long *current_storage,
unsigned long *num_lookups, unsigned long *hit_ratio)

Returns statistics on the cache. Useful if the renderer wants some hints about whether to place an object in
the cache. If the cache is nearly full, and the priority low, it may want to take different action.

CacheID CacheStoreMemory(Cache cacheid, pointer data, unsigned long size,
CacheFree free_func)

The renderer hands the cache some chunk of contiguous memory, which the cache timestamps and stores.
When it needs to remove them, it calls thefree_func,which must take responsibility for properly freeing the
data. sizeis primarily a hint to the cache, so that cache limits can be properly calculated.A return value of
zero means the store failed, probably because the given size was over the cache limit. If the given data is
too large for the current cache, it will attempt to free old data to make room. Thereturned ID is a unique
value that refers both to the object and the cache in which it was placed.

pointer CacheFetchMemory(CacheID cid, Bool update)

Returns the memory attached to the id. Ifupdateis set, the timestamp is updated. (some accesses may
wish to be ’silent’, which allows some control over the freeing scheduling.) If the cid is invalid, NULL is
returned.

int CacheFreeMemory(CacheID cid, Bool notify)

Allows the cache to flush the data. Ifnotify is set, the CacheFree function passed in when the data was
cached will also be called.

void MemoryFreed(CacheID cid, pointer data, int reason)

Callback function from the cache to the renderer notifying it that its data has been flushed. This function
then has the responsibility to free that data.reasonmay be one of:

CacheReset /* all cache freed because of server reset */
CacheEntryFreed /* explicit request via free_memory() */
CacheEntryOld /* cache hit limit, and memory being freed because its old */

and is supplied so that the renderer may choose how to deal with the free request. (It will probably be
ignored by most, but some may want to keep the memory around by bypassing the cache, or re-inserting it.)
Note that the cache will consider the data gone, so itmust be re-inserted to keep it alive.

void CacheSimpleFree(CacheID cid, pointer data, int reason)

Just callsfree() on the data. Simple CacheFree defined here to prevent it being redefined in each renderer.

Typical usage of the cache is for the renderer to store a CacheID rather than a pointer to the
cacheable data. The renderer is responsible for both allocating and freeing the data, as well as keeping
track of just what it is. When the renderer needs the cached data, it will request it from the cache. If it
fails, it must rebuild it.

A possible configuration parameter is the size of the cache. when the cache is filled (with the calcu-
lation based on the given size), it sweeps the cache and frees old data. The amount of memory actually
freed may wish to be tunable: some systems may want to keep the cache as full as possible, others may

-13-

want to free some percentage such that sweeps occur less frequently.

Cache statistics may want to be available for administrators. They could be dumped to a file when a
signal is received. (SNMPseems like a perfect match, but apparently the technology isn’t there yet.

Cached data could also be compressed, if the memory/CPU tradeoffs make it worthwhile.

ISSUE: Isa time-based freeing schedule sufficient? Shouldpriorities or size also be taken into
account? [No. Anything that the renderer thinks should have a higher priority should probably not be
placed into the cache.]

Byte swapping

Functions for swapping a 4-byte quantity, a 2-byte quantity and inverting a byte.

void BitOrderInvert(pointer buffer, unsigned long num_bytes)
void TwoByteSwap(pointer buffer, unsigned long num_shorts)
void FourByteSwap(pointer buffer, unsigned long num_longs)

Bitmap padding

Functions taking a desired extents and a bitmap that will return the bitmap properly padded.

int RepadBitmap(pointer src, pointer dst, fsFormat src_format,
fsFormat dst_format, int width, int height)

Takes a bitmap insrc_formatand converts it to one indst_format.

Atoms

Existing bitmap-based renderers use atoms to store strings for property information. Rather than
duplicate this code in each renderer, it l iv es in theutil directory.

Atoms will be especially useful for property information, to prevent many copies of the same strings
from being saved. Usingatoms for comparison when modifying properties after scaling is also more effi-
cient. Sinceatomswill will exist until the server is reset, they may want to be used sparingly for property
values to avoid extraneous string data.

typedef unsigned long Atom;

Atom MakeAtom(char *string, unsigned int length, Bool create)

Returns the atom associated withstring. If createis true, a new atom will be created.

char *NameForAtom(Atom atom)

Returns the string associated withatom.

17. Server r equest details

This section describes in-depth the action of each protocol request. In all cases, the request is first
error checked for simple length or value errors, with the server immediately returning an error if one is
encountered.

17.1. Connection

When a new client attempts to connect, the server first checks its initial authorization information to
see if the server is willing to talk to it. This will be handled in some OS-specific form using

-14-

CheckClientAuthorization(). If it passes this test, and the server has sufficient to resources to talk to it,
the server sends accepts the connection and returns its connection block. If the connection fails, the server
returns the proper status and a list of any alternate servers it may know of (gathered fromListAlternate-
Servers().)

17.2. ListExtension

Returns the list of extensions the server knows about. Any extensions will be initialized when the
server is first started.

17.3. QueryExtension

Returns the information about the requested extension, which was set when the extension was initial-
ized.

17.4. ListCatalogues

Returns the catalogues the server recognizes (the results ofListCatalogues().)

17.5. SetCatalogues

Sets the requesting client’s catalogues after verifying them with the supported catalogues.

17.6. GetCatalogues

Returns the requesting client’s catalogues.

17.7. CreateAC

Creates a new authorization context and fills it in. The list of authorization protocols is then checked
by the server withCheckClientAuthorization(). If any are accepted, theAC is placed in the resource
database andSuccessis returned with the name of the accepted protocol. If more than one is accepted,
Continueis returned with each of the accepted protocols, until the last one which has statusSuccessOther-
wiseDeniedis returned.

17.8. FreeAC

Looks up theAC in the resource database, and frees it if it finds it. Otherwise anAccesserror is
returned.

17.9. SetAuthorization

Looks up theAC in the resource database, and set the client’s AuthContextPtr to its value if it is
found. Otherwiseit sends anAccesserror.

17.10. SetResolution

Sets the requesting client’s resolution list to the supplied list.

17.11. GetResolution

Returns the requesting client’s list of resolutions.

17.12. ListFonts

Iterates over each open FPE, calling the FPE’slist_fonts() routine passing it the pattern. When all
FPE’s hav ebeen processed, the list that has been built up is returned. Note that the sameFontNamesPtr is
sent to each FPE in turn, so that one list is built up. An FPE may restrict the fonts it returns based on the
client’s catalogue.

-15-

17.13. ListFontsWithXInfo

Iterates over each FPE, calling itsstart_list_fonts_with_info() function to prime the FPE’s renderer.
It then calls the FPE’slist_next_font_with_info(), sending each font’s data to the client until no more fonts
remain. Whenall FPEs have been processed, the final reply with a zero-length name is then sent to mark
the end of the replies. An FPE may restrict the fonts it returns based on the client’s catalogue. Note:an
issue exists with font aliases which may require this to change, since an FPE may contain an alias pointing
to another FPE, and cannot therefore return the font’s info.

17.14. OpenBitmapFont

The pattern is first searched for in the font server’s name cache. If it doesn’t find it, the server iterates
over each FPE, calling itsopen_fontfunction with the supplied pattern. This will return one of the follow-
ing values:

• an Accesserror, which means the renderer has the font but the client does not have access to it because
of some form of licensing restriction

• aFont error and a NULLaliasparameter, which will cause the next FPE to be tried

• aFont error but a non-NULLalias,which will cause the search to start over with the first FPE using
aliasas the new font pattern

• Success,in which case a valid font has been found.

If the end of the FPE list is reached without having found the font, an error is returned to the client.
If an Accesserror was encountered, it is returned, otherwise aFont error is returned. If a valid font is
found, its reference count will be incremented and it will be checked to see if the client has already opened
it before. If so, the previous ID will be returned. Otherwise the font will be placed in the resource data-
base.

The renderer will fill in the font’s header and property information, and may also choose to load or
create the font’s metrics or glyphs. If the glyphs are built, they will use any suppliedformat hint.

Whenever a new font is successfuly opened, the font and its name pattern will be placed in a name
cache. Thiscache exists to minimize the amount of work spent searching for a font. It will be flushed
when the font catalogue is modified. Client’s with private font catalogues will require private name caches.

17.15. QueryXInfo

Thefontid is looked up in the resource database, and the font’s header and property info is returned.

17.16. QueryXExtents8QueryXExtents16

Thefontid is looked up in the resource database. The supplied list of characters (interpreted accord-
ing to request type) is then translated into a list of ranges. The font’sget_extents()function is then called.
It builds the requested list of extents, and returns them along with the number of extents. Theresults are
properly swapped and sent to the client.

17.17. QueryXBitmaps8QueryXBitmaps16

Thefontid is looked up in the resource database. The supplied list of characters (interpreted accord-
ing to request type) is then translated into a list of ranges. The font’sget_bitmaps()function is called, and
the renderer will build up the requested bitmaps, using the specifiedformat,and returns the bitmaps, the
number of glyphs and the offsets. Theoffsets are properly swapped and the offsets and bitmaps are sent to
the clients.

17.18. CloseFont

The font’s reference count is decremented. If this was the last reference, the font’sunload_font()
function is called to free the renderer’s data, and the font’s FPEclose_font()function is called to free up
any FPE specific data.

-16-

18. Configuration

The configuration mechanism is a simple keyword-value pair, separated by an ’=’.

Configuration types:

cardinal non-negative number

boolean "[Yy]es","[Yy]" "on", "1", "[Nn]o", "[Nn]", "off", "0"

resolution cardinal,cardinal

list of foo 1 or more of foo, separated by commas

Here is an incomplete list of the supported keywords:

in the first column, a comment character

catalogue (list of string)
Ordered list of font path element names.

alternate-servers (list of string)
List of alternate servers for this FS.

client-limit (cardinal)
Number of clients this FS will support before refusing
service.

clone-self (boolean)
Whether this FS should attempt to clone itself or
use delegates when it reachs the client-limit.

default-point-size (cardinal)
The default pointsize (in decipoints) for fonts that
don’t specify.

default-resolutions (list of resolutions)
Resolutions the server supports by default.
This information may be used as a hint for pre-rendering.

error-file (string)
Filename of the error file. All warnings and errors
will be logged here.

port (cardinal)
The TCP port on which the server will listen for connections.

use-syslog (boolean)
Whether syslog(3) is to be used for errors.

Each renderer may also want private configuration options. The names should be prefixed by the ren-
derer name, iepcf-, atm-.

Examples:

allow a ˜a meg abyte of memory to be reserved for cache data
cache-size = 1000000

-17-

catalogue = pcf:/usr/lib/X11/fonts/misc,speedo:/usr/lib/fonts/speedo

