Font server i mplementation overview

Dave Lemke

Network Computing Devices, Inc.
Copyright © 1991 Network Computing Devices, Inc.

1. Introduction

The font server uses the same client/server model as X. The basic structure is that of the X Consor-
tium X11R5 X serverand those who kne that code should find ttesanddifs (device independent font
server) layers familiar.

oo +

+o---- difs |------ +

| - + |

I I
-t o +
| os | | renderers |
-t o +

Definitions

* Renderer Code that knows heto take font data in its na format and covert it to the font server’s
format.

« Font Path Element (FPE). An instance of a rendessociated with a specific font source, (ie a direc-
tory of PCF bitmaps).

Thedifs layer interprets the requests, and handles the renderer independenthisincludes error
checking of requests, and the topddont database. It also contains various utility functionality such as
caching and byte swapping.

Theoslayer sets up the communications channel, reads requests and senagitia o replies
and eents. Italso handles font server configuration issues, controlled by command line arguments and a
configuration file.

The renderer layer contains all font-specific code, and is responsible for rendering a font (which may
mean just reading a bitmap from disk, or may include scaling of outline data), computing a fonts properties
and header information.

2. Startup

At startup, the font server handleyyaommand line arguments, initializesya@S-specific data, and
then sets up the communicationgarious internal databases are then initialized (extensions, the font cata-
logue, etc).

The config file, an ordered list of font sources, cache size hints, default resolutions, and security
information, is then read in. Each of these source names could be a directory name, the name of another
font serveror some other string that a particular renderer can recognize.

The default font catalogue is then built up by taking each of the font source names and comparing it
with the names a renderer recognizes. The one that matches this name will become attached to this source.
A renderer will “understanda name if it can parse the data in that directoryrecognize that it is a valid
font server address, or recognizes a special string. Thus a collection of valid font path elements is built up.
EachFPE has a set of functions to support opening a font and accessing its data.

Font information is accessed via method functions irFr@. When a font is first loaded, the
header information and properties are loaded/computed. The font also initializes its function pointers to do
the proper wrk. Whenspecific metrics or bitmaps are requiredythee access via the fostfunctions. A
disk-based bitmap font will probably want to load all data when first acceassxhled font or FS font
may want to do more seleai aching. Inboth cases, the renderer can use the utility functions to keep
track of this data. Changing values of bitmap formats could result in the font having multiple copies of data
in different formats, which the renderer may use the utility functions to manage.

3. Per client processing

Each entity attaching to the server is a client. Each client has its own authorization and resolution
information, and its own vie of the font databaseA font open to one client may not be open to another,
though the font server mayveit loaded.

After initialization, nev clients can attach to the font server andehtheir requests processelor
each request that is searching for a {@penBitmapFont) or listing font name¢ListFonts, List-
FontsWithXInfo), the pattern is gen to eachFPE.

OpenBitmapFont will take the supplied name and pass it to eBPlE. The FPE will return one of
three thingsSuccessand the font objecBadFont,because it doesrknow the font; orBadFontand an
alias name, when it has an alias for the fonSucesss returned, the server goes on to create an ID (or
find an existing one) and return a repliyBadFontis returned, it goes on to the n&RE. If it reaches the
end without finding a font, an error is returned to the client. If an alias is returned, the search resets to the
first FPE and starts again, using the alias as thefioat name. This allows aliases to work across different
FPEs,without ary ordering restrictions.

When each-PE receves a font name to open, it searches for the foatistence. Ifit can't find, or
can only find an alias, it returBadFontand awy dias. Ifit finds the font, it checks the authorization and
license status of the font to that of the client. If it passes, it then createSamebject, and reads and/or
computes at least the famteader information and properties. (It may also want to produce the bitmaps
and extents, but that choice is left to the renderer.)

When a fons information is accessed, the interpreter routine looks up the font ID to find the font
object, and then uses the fandtcess functions to get the data. These functions will return the data in the
format expected by the client.

4. Client shutdown

When a client disconnects, all its references jofants it still has opened are rewed. If no other
clients reference these fonts,thmay be freed, though the server may choose to cache them.

5. Sewer r eset and cleanup

A server may be reset to flush the caches, re-read the configuration file, antist oEFPEsto be
built, via an OS-specific outside action. In UNIX, this will be handled via signals; in VMS it could be han-
dled via an async trap ovent flag.

6. Sewer offloading

In order to deal with numerous clients without major performance degradation, the server must be
able to clone itself, or provide the client with a substitute server via the alternate server mechanism. Since
both strategies lva teir uses, both will be supporteBor a ®rver that has plenty of host memory or CPU,
but insufficient sockets, cloning may be a good cholea.a host with limited memoryassigning an alter-
nate server on a different host may be a good choice. The server véltimga#lecision based on configu-
ration options.

7. Font sewer data structures

The Client handles per-client information and interpreter status.

typedef struct _dient {

int i ndex;

poi nter osPrivate;

int nod i ent Excepti on;
int (**request Vector) ();
poi nter request Buf f er;

int cl i ent Gone;

int sequence;

Bool swapped;

| ong | ast _request _tine;
voi d (*pSwapRepl yFunc) ();

Aut hCont ext Ptr aut h;

char *cat al ogues;
int num cat al ogues;
Mask event mask;

f sResol ution *resol utions;

int

num resol utions;
ClientRec, *ClientPtr;

The Font contains basic font information, including header information and properties.

typedef struct _font {
int ref count;
f sHeader header;
f sBi t mapFor mat format;
int (*get_glyphs)();
int (*get _metrics)();
int (*get _extents)();
int (*get _bitmaps) ();
int (*unl oad_font)();
Font Pat hEl enent Pt r f pe;
int *client_ids;
Bool restricted_font;
} Font Rec *Font Ptr;

TheClientFont is a wrapper on top dfont, handling client specific font information.

typedef struct _clientfont {
FontPtr font;
int clientindex;
} Client Font Rec, *d i ent Font Rec;

The AuthContext contains authorization information.

typedef struct _authcontext {
char *aut hnane;
char *aut hdat a;
FSI D aci d;

} Aut hCont ext Rec * Aut hCont ext Pt r;

8. Font Path Element functions

These functions are associated with each render@handle all aspects of font acceBsnt data
access is controlled via another set of functions described Tatese functionsare intended to support
the R5 X server as well as the font servis a esult, some design decisions were made to support both
models. Whenhedifs layer needs to access a font, it uses these functions.

t ypedef unsi gned | ong Mask;
t ypedef unsi gned char *poi nter;

typedef struct _Font Pat hEl enent {

int name_| engt h;
char *nane;
int type;
int ref count;
poi nter private;
} Font Pat hEl enent Rec, *Font Pat hEl enent Ptr;

The FPES reference count is incremented when it is added to the current list of FPEs and when it
opens a font. It is decremented when it is no longer in the current list and when it closes a font. All refer-
ence changes are handled bydielayer The count is required to support font catalogue changes that
may occur while the fontserver has fonts open, and keeps FPEs from being lost.

typedef struct FontNanes {
int nnanes;

int size;
int *length;
char **nanes;
} Font NanesRec, *Font NanmesPtr;
typedef struct {
Bool (*nanme_check) ();
int (*init_fpe)();
int (*reset_fpe)();
int (*free_fpe)();
int (*open_font)();
int (*close_font)();
int (*list_fonts)();
int (*start_list_fonts_with_info)();
int (*list_next_font_with_info)();
int (*wakeup_fpe)();
int (*client_died);
Font NamesPt r render er _nanes;

} FPEFuncti ons;

int init_fpe_type(Bool (nane_func)(),
int (init_func)(), int (free_func)(), int (reset_func),
int (open_func)(), int (close_func)(),
int (list_func)(),
int (start_Ifw _func)(), int (next_Ifw _func)(),
int (wakeup_func)(),
int (client_died_func)()
)

This is called by the renderer when it is initialized at the beginning of time, and sets up an FPEFunctions
entry for the renderer.

The FPEFunctionshave the following parameters:

Bool name_check(char *nane);
If nameis something the renderer recognizes as a valid font source name, it return True, otherwise False.

ie, if nameis a directory name, or is prefixed by the rendsnggfix, and the directory contains font data
the renderer can interpret, it would return True.

int init_fpe(FontPat hEl ement Ptr fpe);

Does am initialization work for the rendereiThe name iripewill be one whose prefix matches the list
returned when the renderer was initialized.

int reset _f pe(Font Pat hEl enent Ptr f pe);

Tells fpeto reset apinternal state about what fonts it hasilable. Thiswill typically be called because
the font server'$PE search list has been changed. Tpeshould reset gncached state ofvailable fonts
(ie, re-read thimnts.diriwhen

int free_f pe(Font Pat hEl enent Ptr fpe);

Frees aprenderer-specific data and closey files or sockets.

int open_font(pointer client, FontPathEl enentPtr fpe, Mask fl ags,
char *fontnanme, int nanel ength,
fsBi t mapFor mat fornmat _hint, fsBitnmapFornmat Mask fornmat_nask,
XID fontid, FontPtr *ppfont, char **alias);

Opens the font. The bits marked byftirenat_mask format_hintare used where applicable. The result-
ing FontPtr is returned ippfont. Theclientis optional state information for use with blocking renderers.
If the fontname

resolves to an alias, it is returnedaifas with a FontNameAliaserror. This tells the calling code to start
searching again, usiradias as the font name. The renderer is expected to fill yrirgformation specified
by theflags.

Possible flags values are:

#defi ne Font Loadl nfo 0x0001 /* font header info */

#defi ne Font LoadPr ops 0x0002 /* font properties */

#def i ne Font LoadMetrics 0x0004 /* font extents */

#defi ne Font LoadBi t maps 0x0008 /* glyph bitmaps */

#defi ne Font LoadAl | 0x000f

#defi ne Font OpenSync 0x0010 /* force synchronous | oading */

Once a font has been opened, the server may place it and the pattern it matched into a hamevoithe, to a
lengthy searching if the font is reopened. If the renderer does not wish the font to be in this cache (for
licensing reasons), it should set the fordstricted_acces#ag.

int cl ose_font(FontPtr pfont);

Frees up all the data associated with the font.

int list_fonts(pointer client, FontPathEl ementPtr fpe,
char *pattern, int pattern_length, int naxnanes,
Font NanesPtr *paths);

Returns inpathsup tomaxname$ont names the fpe recognizes as matching tengiattern.

int start_list_fonts_with_info(pointer client,
Font Pat hEl ement Ptr fpe, char *pattern, int pattern_|length,
int maxnanes, pointer fpe_data);

Initiates aListFontsWithXInfo. Typically, a dsk-based renderer will do the egaléent of ListFonts to
gaher all the font names matching the patteif.ont server renderer will send the requdpt_data

provides a handle for giFPE-private data that needs to be passed in latelistianext_font_with_info(),
eg the list of font names for a disk-based renderer.

int list_next_font_wi th_info(pointer client, FontPathEl ementPtr fpe,
char **nane, int *nanelen, FontlnfoPtr &pinfo,
int &umfonts, pointer fpe_data);

Returns the next fort'information. Theenderer should keepyastate it requires in thipe datafield.
num_fontsontains the number of replies remaining.

These tw routines are split for because of the way both disk-based renderers and font server renderers han-
dle this request. The first function initiates the action, the second is used to gather theFasaltisk-

based renderga list of font names matching the pattern is first built up wdtart_list_fonts_with_info()

is called, and the results are gathered with each dalt taext _font with_info. In a font server renderer,

the first function sends thastFontsWithXInfo request, and the second processes the replies.

int wakeup_f pe(Font Pat hEl ement Ptr fpe, unsigned | ong *nask)

Optional function which can be used for blocking render&ypical usage is for a font server renderer,
where it is called when a reply is resl, allowing the data to be read and the client to be signaled and
unblocked.

int client_died(pointer client, FontPathEl ementPtr fpe)

This function is called when a client dies in the middle of a blocked request, allowing the renderer to clean
up.

9. Font specific functions

These functions are contained in e&oht. For mary renderers,\ery font will use the same functions,
but some renderers may wish to use different interfaces for different fonts.

typedef struct {
I NT16 | eft B16,
ri ght B16;
I NT16 wi dt h B16;
I NT16 ascent B16,
descent BL16;
CARD16 attri butes B16;

} f sChar | nf o;
typedef struct {
CARDS | ow,
hi gh;
} f sChar 2b;
typedef struct {
f sChar 2b m n_char,
max_char;
} f sRange;
int get _extents(pointer client,

FontPtr pfont, Mask flags, int numranges, fsRange *ranges,
int *numextents, fsCharlnfo **extents);

Possible flags:

LoadAl | /* ignore the ranges and get everything */
Fi ni shRange /* magic for range conpl etion as specified by protocol */

Builds up the requested array atents. Theextent data (which the renderer allocates) is returned, as well
as the number of extentslosurecontains ay blocking state information.

int get _bi t maps(pointer client,
FontPtr pfont, fsBitmapFormat format, Msk fl ags,
int numranges, fsRange *ranges,
unsi gned | ong *size, unsigned | ong *num gl yphs,
unsi gned |l ong **of fsets, pointer *glyph_data);

Possible flags:

LoadAl |
Fi ni shRange /* magic for range conpletion as specified by protocol */

Builds up the requested array of bitmaps. The glyph and offset data (which the renderer allocates) is
returned, as well as the number of glyphs. @lesurecontains ap blocking state information. This func-
tion will build up the bitmap data in the format specifieddaynatso that the interpreter can return it with-
out ary additional modification. This should minimize data massaging, since outline renderers will hope-
fully be able to produce the bitmaps in the proper format.

voi d unl oad_f ont (Font Ptr pfont)

The render will free anallocated data. Note that tld°E functionclose_font()will also be called, and
should handle anlyPE data allocated for the font.

int get _gl yphs()
int get _netrics()

These tw functions are used by the X server for loading glyphs and metricy. ekpect the results in a
considerably different form. Thget bitmaps(Jandget_extents(youtines both alle for better cache con-
trol by the renderer.

10. Font directories and aliases

Existing bitmap renderers alreadwhaheir own concept of font genization. Inthe X sample
server the filesfonts.dir andfonts.aliasare used to list the known fontints.dir maps file names to font
names, whildonts.aliasmaps font names to other font names.

These concepts will also be needed by other forms of fonts which the sample X server does not cur-
rently use, but the font server will, &iBitstream outlines.

11. Handling scalable fonts
For those renderers that support scalable font&rakissues must be addressed:
* Name Rrsing. AnXLFD name must be parsed to determine the requested resolutions and/or sizes.

» Property scaling. Mayof the standard font propertiesveavalues that depend on scaling (B&SO-
LUTION_X. POINT_SIZE)

» Default alues. Ifresolution information is wildcarded, the proper default resolution should be sup-
plied.

Name Parsing

The font name pattern supplied@penBitmapFont or ListFonts may require some parsing to be
recognized as a scalable font known to the rend@itee PIXEL_SIZE, POINT_SIZE, RESOLU-
TION_X, RESOLUTION_Y andAVERAGE_WIDTH all need to determined from the font name pat-
tern. Themaster font must then be found, and scaled approprigdaly unspecified values that cannot be
determined should be replaced by the propeaudts. for size fields, this is whater the configuration
specifies. Br resolution fields, these should be taken from the dliezgblution list, if set, or from the
servers configuration.

Property scaling

Pat of scaling a font is scaling its properties. Manalable fonts will hee a vey large number of
scalable properties. One way to deal with these is for the “mastriihe to keep track of the property
names, and supply wevalues for each instance of the font. If the property names are stored as Atoms,
memory usage is kept to a minimum.

Using defaults

Using default values as substitutions for missing values wasatbaboe. These defaults will also
be useful in handlingistFonts requests. Returning scalable font with an instance using the default val-
ues will provide the most user-friendly environment.

12. Accesgontrol

The font server will also support large grain securityill have loth a limit of the number of users,
and on the hosts which it will support.

Limiting the number of users is as much a server loading issue as a security issue. The limitation
will be typically be set via configuration options or OS limitatiofs.change it, use:

voi d AccessSet ConnectionLimt(int limt)

A limit of O will set it to a compiled constant based on OS resources (eg, number of file descriptors).

Client-host based access control can be used to supplement licensing, and support font server load
balancing by restricting access. As with licensing, this is OS-specific dod@anipulate these functions,
use:

typedef struct _host_address {

int type;

poi nter address;

struct _host_address *next;
} Host Addr ess;

t ypedef Host Address *Host Li st ;

int AddHost (Host Li st |ist, HostAddress *address)
int RenpoveHost (Host Li st |ist, HostAddress *address)
Bool Val i dHost (Host Li st 1ist, HostAddress *address)

AddHost() adds a host to tHest. RemoveHost() removes it, andValidHost() checks to see if its on the
list. In all functions, theddresshas will ignore ap value in thenextfield.

Network addresses are used herevtdaissues with host name aliases. The caller fills in the desired
type, and an address of that form is returned. This is highly OS-specific, but valuesypetreladdress
fields could include:

#define HOST_AF_I NET 1
struct in_addr *addr ess;
#defi ne HOST_AF_DECnet 2

struct dn_addr *address;

The server will use a global host list, but having the list as an argument willleémsing schemes to
have their own host lists.

13. Licensing

Licensing is a trick issue, which each renderer will support in a different vidne sample font
server will attempt to provide some guidelines, and present a possible implementation of some simple
licensing schemes.

Host Address licensing

This is simplistic licensing based on the clisfist. With this form of licensing, a font may be accessible
to some host but not other$o get the current clierd’host, the following is used:

voi d Get Host Addr ess(Host Addr ess *addr ess) ;

A renderer can also use the host access functions to keep a list of the licensed hdalisiHosl() to
check a client.

Simultaneous use license

This licensing allows for a limited number of copies of the font to be open at once. Since this should
be a simple per-font counfero sipport should be required outside of the renderer.

14. DIFScontents
This contains the protocol dispatchiaterpreter and reply encoding routines.

The interpreter is table agn off the request code. The dispatcher gets a request from the os layer
from WaitForSomething(), and uses the request code to determine which function toega.CloseFont
request would calProcCloseFont().

Each request’routine handles grapplicable error checking, and then does as much work as it can.
For font related requests, this meanswenting the request to the proper arguments for the renderers.

If any replies are generated, the reply data is gathered into the bytestream format, andbsent via
write functions to the client.

If the byte order of the client and server diffbie abee is nodified by having the dispatcher call an
intermediate function which re-orders the request to the proper byte Refdies go through similar
swapping.

Client blocking

To minimize delay caused by font server request, clients can be blocked whileaibéor data to be
produced. Thiss primarily intended foFPEsusing a remote font servédaut can be used anywhere where
the font server can pause to handle other client requests while data needed to satisfy another is produced
(possibly via multiple processes).

Bool ClientSleep(CientPtr client, Bool (*function)(), pointer closure)

Puts a client tosleep’. Thismeans the client will no longer be considered while the server is dispatching
requests.functionwill be called when the client is signaled, with thientandclosureas its arguments.

-10-

Bool ClientSignal (ClientPtr client)

This should be called when the client is ready to do mor&.wAt this point, the function gén to
ClientSleep()will be called.

void dientWkeup(CQientPtr client)

Puts the client back to its normal state processing requests.

Bool dientlsAsleep(CientPtr client)

Can be used to check if a client is asleep. This is useful for handling client termination, sg tegqtiasts
the client is waiting upon can be properply cleaned up.

Sample Usage

For handling a font server renderer requestOpenBitmapFont the renderer will send the request
to the remote font serveand the callClientSleep(). The font server will then continue processing requests
from other clients, while the one making the request is blhckVherthe reply returns, the renderer will
notice when itsvakeup_fpe()function is called. At this point the font server renderer will read and
process the replyClientSignal() will be called, and thelosurefunction will be called. It will request the
data from the renderarompleting the request, and c@lientWakeup() to return the client to normal sta-
tus.

This layer also contains the resource database, which associates fonts with IDs, extension interface
functions and the server initialization and reset control.

15. OScontents

This layer contains OS specific routines for configuration, command line parsing, client/server com-
munications, and various OS-dependent utilities such as memory management and error handling.

ReadRequestFromClient()returns a full request to the dispatchéfaitForSomething() is where
the server spends its idle time, waiting foy aation from a client or processingyawork left from a
blocked client.

When a client attempts to connect, the server will call

int Checkd ient Authorization(ClientPtr client, AuthPtr client_auth,
int *accept, int *index, int *size, char **authdata)

to see if the server is set to alithe client to connect. It may use licensing or configuration information to
determine if the client can connect.

When then connection is established, the server will use the

typedef struct _alt_server {

char subset ;
char nanel en;
char *nane;
} Al t ernat eServer Rec, *AlternateServerPtr;

int ListAlternateServers(AlternateServerPtr *servers)

to return ag aternate server information it mayve
When the client limit is reached, the font server may attempt tpitswif, by calling

-11-

int doneMself()

This function will (if the configuartion options allow) start awfent server process. This is done in such a
way that no pending connections should be lost, and that the original server will acceptaomnections.
Once the original server has no more clients, it will exit.

Catalogue manipulation

Catalogues are configuration dependent, and hence sent by OS-dependent methods. In order for the
difslayer to get them, it uses

int Li st Cat al ogues(char *pattern, int pattern_|ength,
int maxnanes, char **catal ogues, int *|en)

which returns the list of all catalogues it supports which match the pattern. This function will be used by
the catalogue manipulation requests, as well as by renderers wheivétheir ListFonts results.

int ValidateCatal ogues(int nunmber, char *catal ogues)

Can be used to validate a list of catalogues, returning True if the list is acceptable.

16. Utility functions
Client data functions

These provide access to the current cleemisolution and authorization data. This form of interface
is supplied rather than passing it to all renderers ifrBtefunctions because the data may be complex
and/or uninteresting to all renderers.

Aut hCont ext Pt r Get d i ent Aut hori zation()

Returns the authorization data for the current client.

f sResol ution *CGet ClientResol utions(int *numresol utions)

Returns the list of resolutions that the current client has set.

Caching functions

These are functions that simplify caching of renderer data. These are for use by renderers that take
significant resources to produce data. The data must be re-creatable -- the cache is not meant for general
storage. Thelata may also be naed by the cache, so it should only be accessed by CachelD.

typedef void (*CacheFree)();
typedef unsigned | ong Cachel D
t ypedef unsi gned | ong Cache;

Cache Cachelnit(int renderer_id)

Initializes a cache object for the rendertre returned ID should be passetcheStoreMemory()when
adding an object to the cache.

-12-

voi d CacheStats(Cache cid, unsigned |long *numentries
unsi gned | ong *max_storage, unsigned |ong *current_storage
unsi gned | ong *num | ookups, unsigned long *hit_ratio)

Returns statistics on the cache. Useful if the renderer wants some hints about whether to place an object in
the cache. If the cache is nearly full, and the priority, ibmay want to tak dfferent action.

Cachel D CacheSt oreMenory(Cache cacheid, pointer data, unsigned |ong size
CacheFree free_func)

The renderer hands the cache some chunk of contiguous mevhaty the cache timestamps and stores.
When it needs to reme them, it calls thdree_funcwhich must tak responsibility for properly freeing the
data. sizeis primarily a hint to the cache, so that cache limits can be properly calcubatetlirn value of
zero means the store failed, probably because ¥Be gze was wer the cache limit. If the gen data is

too large for the current cache, it will attempt to free old data temoakn. Thereturned ID is a unique
value that refers both to the object and the cache in which it was placed.

poi nter CacheFet chMenory(Cachel D ci d, Bool update)
Returns the memory attached to the idugtiateis set, the timestamp is updated. (some accesses may

wish to be ’silent’, which allows some contralen the freeing scheduling.) If the cid isvatid, NULL is
returned.

int CacheFr eeMenory(Cachel D cid, Bool notify)

Allows the cache to flush the data.nitifyis set, the CacheFree function passed in when the data was
cached will also be called.

voi d Menor yFreed(Cachel D ci d, pointer data, int reason)

Callback function from the cache to the renderer notifying it that its data has been flushed. This function
then has the responsibility to free that daasonmay be one of:

CacheReset /* all cache freed because of server reset */
CacheEnt ryFr eed /* explicit request via free_menory() */
CacheEntryd d /* cache hit limt, and nmenory being freed because its old */

and is supplied so that the renderer may choosgdideal with the free request. (It will probably be
ignored by most, but some may want to keep the memory around by bypassing the cache, or re-inserting it.)
Note that the cache will consider the data gone, st be re-inserted to keep it adi

voi d CacheSi npl eFree(Cachel D cid, pointer data, int reason)

Just calldree() on the data. Simple CacheFree defined here teqtré being redefined in each renderer.

Typical usage of the cache is for the renderer to store a CachelD rather than a pointer to the
cacheable data. The renderer is responsible for both allocating and freeing the data, as well as keeping
track of just what it is. When the renderer needs the cached data, it will request it from the cache. If it
fails, it must rebuild it.

A possible configuration parameter is the size of the cache. when the cache is filled (with the calcu-
lation based on thegn sze), it sweeps the cache and frees old data. The amount of memory actually
freed may wish to be tunable: some systems may want to keep the cache as full as possible, others may

-13-

want to free some percentage such that sweeps occur less frequently.

Cache statistics may want to baitable for administrators. Tlyecould be dumped to a file when a
signal is recefed. (SNMPseems like a grfect match, but apparently the technologytigrére yet.

Cached data could also be compressed, if the memory/CPU tradeoés makhwhile.

ISSUE: Isa time-based freeing schedule f&tient? Shouldriorities or size also be taken into
account? [No. Awthing that the renderer thinks shouldréa ligher priority should probably not be
placed into the cache.]

Byte swapping
Functions for swapping a 4-byte quantay2>byte quantity and ierting a byte.

voi d Bi t Orderlnvert (pointer buffer, unsigned | ong num byt es)
voi d TwoByt eSwap(poi nter buffer, unsigned | ong numshorts)
voi d Four Byt eSwap(poi nter buffer, unsigned | ong num.| ongs)

Bitmap padding
Functions taking a desired extents and a bitmap that will return the bitmap properly padded.

int RepadBi t map(poi nter src, pointer dst, fsFormat src_format,
fsFormat dst_format, int width, int height)

Takes a btmap insrc_formatand cowerts it to one indst_format.
Atoms

Existing bitmap-based renderers use atoms to store strings for property information. Rather than
duplicate this code in each rendeitlives in the util directory.

Atoms will be especially useful for property information, toyergé mary copies of the same strings
from being seed. Usingatoms for comparison when modifying properties after scaling is also more effi-
cient. Sinceatomswill will exist until the server is reset, thenay want to be used sparingly for property
values to &oid extraneous string data.

t ypedef unsigned | ong At om
At om MakeAt on(char *string, unsigned int |ength, Bool create)

Returns the atom associated wsthing. If createis true, a n& atom will be created.

char * NaneFor At om(At om at om)

Returns the string associated watiom.

17. Sewer r equest details

This section describes in-depth the action of each protocol request. In all cases, the request is first
error checked for simple length or value errors, with the server immediately returning an error if one is
encountered.

17.1. Connection

When a n& client attempts to connect, the server first checks its initial authorization information to
see if the server is willing to talk to it. This will be handled in some OS-specific form using

-14-

CheckClientAuthorization(). If it passes this test, and the server has sufficient to resources to talk to it,

the server sends accepts the connection and returns its connection block. If the connection fails, the server
returns the proper status and a list of dternate servers it may kwoof (gathered fronListAlternate-

Sewers().)

17.2. ListExtension

Returns the list of extensions the server knows abouy. eftiensions will be initialized when the
server is first started.

17.3. QueryExtension

Returns the information about the requested extension, which was set when the extension was initial-
ized.

17.4. ListCatalogues
Returns the catalogues the server recognizes (the resList@dtalogues().)

17.5. SetCatalogues
Sets the requesting clientatalogues after verifying them with the supported catalogues.

17.6. GetCatalogues
Returns the requesting clientatalogues.

17.7. CrateAC

Creates a ve authorization context and fills it in. The list of authorization protocols is then checked
by the server witlCheckClientAuthorization(). If any are accepted, thaC is placed in the resource
database an8uccesss returned with the name of the accepted protocol. If more than one is accepted,
Continueis returned with each of the accepted protocols, until the last one which haSatates©Other-
wise Deniedis returned.

17.8. FreeAC

Looks up theAC in the resource database, and frees it if it finds it. Otherwigeeesserror is
returned.

17.9. SetAthorization

Looks up theAC in the resource database, and set the diéntthContextPtr to its value if it is
found. Otherwisdt sends amccesserror.

17.10. SetResolution
Sets the requesting cliesitesolution list to the supplied list.

17.11. GetResolution
Returns the requesting cliemtist of resolutions.

17.12. ListFonts

Iterates wer each open FPE, calling the FPH& fonts() routine passing it the pattern. When all
FPES havebeen processed, the list that has been built up is returned. Note that tieortaenesPtris
sent to each FPE in turn, so that one list is built up. An FPE may restrict the fonts it returns based on the
client’'s catalogue.

-15-

17.13. ListFontsWithXInfo

Iterates wer each FPE, calling itstart_list_fonts_with_info() function to prime the FPErenderer.
It then calls the FPE&st_next_font_with_info(), sending each for#t’data to the client until no more fonts
remain. Wherall FPEs hge been processed, the final reply with a zero-length name is then sent to mark
the end of the replies. An FPE may restrict the fonts it returns based on ths ditigue. Notean
issue exists with font aliases which may require this to change, since an FPE may contain an alias pointing
to another FPE, and cannot therefore return thesfario.

17.14. OpenBitmapfont

The pattern is first searched for in the font sesveame cache. If it doestfind it, the server iterates
ove each FPE, calling itspen_fontfunction with the supplied pattern. This will return one of the follow-
ing values:

* an Accesserror, which means the renderer has the font but the client doesveo#dtass to it because
of some form of licensing restriction

» aFont error and a NULlalias parameterwhich will cause the next FPE to be tried

» aFont error but a non-NULlalias, which will cause the search to staveowith the first FPE using
alias as the ne font pattern

» Successin which case a valid font has been found.

If the end of the FPE list is reached without having found the font, an error is returned to the client.
If an Accesserror was encountered, it is returned, otherwiBerd error is returned. If a valid font is
found, its reference count will be incremented and it will be checked to see if the client has already opened
it before. If so, the previous ID will be returned. Otherwise the font will be placed in the resource data-
base.

The renderer will fill in the fon$ header and property information, and may also choose to load or
create the fon$' metrics or glyphs. If the glyphs are built, yheill use ary suppliedformat hint

Wheneer a nrew font is successfuly opened, the font and its name pattern will be placed in a name
cache. Thigache exists to minimize the amount of work spent searching for a font. It will be flushed
when the font catalogue is modified. Clisntith private font catalogues will require pete name caches.

17.15. QueryXinfo
Thefontidis looked up in the resource database, and thesftedder and property info is returned.

17.16. QueryXExtents8QueryXExtents16

Thefontidis looked up in the resource database. The supplied list of characters (interpreted accord-
ing to request type) is then translated into a list of ranges. The dgett'extents(function is then called.
It builds the requested list of extents, and returns them along with the numktrmé.e Theesults are
properly swapped and sent to the client.

17.17. QueryXBitmaps8QueryXBitmaps16

Thefontidis looked up in the resource database. The supplied list of characters (interpreted accord-
ing to request type) is then translated into a list of ranges. The dgettbitmaps()function is called, and
the renderer will build up the requested bitmaps, using the spdoifirdt,and returns the bitmaps, the
number of glyphs and thefeéts. Theoffsets are properly swapped and the offsets and bitmaps are sent to
the clients.

17.18. Closebnt

The fonts reference count is decremented. If this was the last reference, thaufdods_font()
function is called to free the renderedata, and the forda’FPE close_font()function is called to free up
ary FPE specific data.

-16-

18. Configuration
The configuration mechanism is a simpésword-value pairseparated by an '='.
Configuration types:

cardinal non-ngative rumber

boolean "[Yyles",[Yy]" "on", "1", "[Nn]o", “[Nn]", "off", "0"
resolution cardinal,cardinal

list of foo 1 or nore of foo, separated by commas

Here is an incomplete list of the supportegvords:
in the first column, a comment character

catalogue (list of string)
Ordered list of font path element names.

alternate-servers (list of string)
List of alternate servers for this FS.

client-limit (cardinal)
Number of clients this FS will support before refusing
service.

clone-self (boolean)
Whether this FS should attempt to clone itself or
use delgaes when it reachs the client-limit.

default-point-size (cardinal)
The default pointsize (in decipoints) for fonts that
don't specify.

default-resolutions (list of resolutions)
Resolutions the server supports by default.
This information may be used as a hint for pre-rendering.

error-file (string)
Filename of the error file. All warnings and errors
will be logged here.

port (cardinal)
The TCP port on which the server will listen for connections.

use-syslog (boolean)
Whether syslog(3) is to be used for errors.

Each renderer may also wantvate configuration options. The names should be prefixed by the ren-
derer name, ipcf-, atm-.

Examples:

dlow a "a megayte of memory to be reserved for cache data
cache-size = 1000000

-17-

catalogue = pcf:/usr/lib/X11/fonts/misc,speedo:/ust/lib/fonts/speedo

