X L ogical Font Description Comwentions
Version 1.5
X Consortium Standard

X Version 11, Release 6.4

Jim Flowers
Digital Equipment Corporation

Version 1.5 edited by Stephen Gildea
X Consortium, Inc.



XWndow Systemis a trademark of X Consortium, Inc.

Helvetica and Times are registered trademarks of Linotype Compan

ITC Avant Garde Gothic is a registered trademark of International Typeface Corporation.
Times Roman is a registered trademark of Monotype Corporation.

Bitstream Amerigo is a registered trademark of Bitstream Inc.

Stone is a registered trademark of Adobe Systems Inc.

Copyright © 1988, 1994 X Consortium

Permission is hereby granted, free of charge, yparson obtaining a cgpof this software and associated documenta-
tion files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The abwe mpyright notice and this permission notice shall be included in all copies or substantial portions of the Soft-
ware.

THE SOFTWARE IS PRVIDED “AS IS, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENTIN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACTTORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to pro-
mote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

Copyright © 1988, 1989 Digital Equipment Corporation, Maynard MA. All rights reserved.

Permission to use, cgpmodify, and distribute this documentation forygpurpose and without fee is hereby granted,
provided that the alve cpyright notice and this permission notice appear in all copies. Digital Equipment Corpora-
tion makes no representations about the suitability fpparpose of the information in this document. This documen-
tation is provided as is without express or implied warranty.



1. Introduction

It is a requirement that X client applications must be portable across server implementations, with
very different file systems, naming aamtions, and font libraries. Hower, font access requests,

as defined by th& Window System Protocol, neither specify server-independent eemtions for

font names nor provide adequate font properties for logically describing typographic fonts.

X clients must be able to dynamically determine the fovditadole on ag given server so that
understandable information can be presented to the user or so that intelligent font fallbacks can be
chosen. lis desirable for the most common queries to be accomplished withowethead of

opening each font and inspecting font properties, by means of dinsgf@nts requests. ér

example, if a user selected a Helvetica typeface famidyent application should be able to

guery the server for all Helvetica fonts and present only those setwidths, weights, slants, point
sizes, and character setsitable for that family.

This document gies a $gandard logical font description (hereafter referred to as XLFD) and the
corventions to be used in the core protocol so that clients can query and access screen type
libraries in a consistent manner across all X aerv Inaddition to completely specifying avgn
font by means of itfontName, the XLFD also provides for a standard set®f kontProper-

ties that describe the font in more detail.

The XLFD provides an adequate set of typographic font properties, sG&{PasEIGHT,

X_HEIGHT, and RELATIVE_SETWIDTH, for publishing and other applications to do intelligent

font matching or substitution when handling documents created on some foreign server that use
potentially unknown fonts. In addition, this information is required by certain clients to position
subscripts automatically and determine small capital heights, recommended leading, word-space
vaues, and so on.

2. Requirements and Goals

The XLFD meets the short-term and long-term goals ¥e asandard logical font description
that:

. Provides unique, descript font names that support simple pattern matching
. Supports multiple font vendors, arbitrary character sets, and encodings

. Supports naming and instancing of scalable and polymorphic fonts

. Supports transformations and subsetting of fonts

. Is independent of X server and operating or file system implementations
. Supports arbitrarily compiefont matching or substitution
. Is extensible

2.1. Provide Unigue and Descriptve Font Names

It should be possible to % font names that are long enough and deseetiough to hee a
reasonable probability of being unique withowtenting a nev regstration oganization. Resolu-
tion and size-dependent font masters, metiilor font libraries, and so on must be anticipated
and handled by the font name alone.

The name itself should be structured to be amenable to simple pattern matching and parsing, thus
allowing X clients to restrict font queries to some subset of all possible fonts in the server.

2.2. SupportMultiple Font Vendors and Character Sets

The font name and properties should distinguish between fonts that were supplied by different
font vendors but that possibly share the same nakfeanticipate a highly competité font



X L ogical Font Description Coiventions X11,Release 6.4

market where users will be able to buy fonts from yremrces according to their particular
requirements.

A number of font vendors dekr each font with all glyphs designed for that font, where charset
mappings are defined by encodiregiors. Someerver implementations may force these map-
pings to proprietary or standard charsets statically in the font data. Others may desire to perform
the mapping dynamically in the servérovisions must be made in the font name that allows a

font request to specify or identify specific charset mappings in server environments where multi-
ple charsets are supported.

2.3. SupportScalable and Polymorphic Fonts

If a font source can be scaled to an arbitrary size or varied in other ways, it should be possible for
an application to determine that fact from the font name, and the application should be able to
construct a font name for yspecific instance.

2.4. SupportTransformations and Subsetting of Fonts

Arbitrary two-dimensional linear transformations of fonts should be able to be requested by appli-
cations. Sincsuch transformed fonts may be used for special effects requirimgchdeacters

from each of mandifferently transformed fonts, it should be possible to request onhy alfer-

acters from a font for efficiegic

2.5. Belndependent of X Sewer and Operating or File System Implementations

X client applications that require a particular font should be able to use the descepte with-
out knowledge of the file system or other repository in use by the sétoeeve, it should be
possible for servers to translate gegifont name into a file name syntax that it knows bm

deal with, without compromising the uniqueness of the font name. This algorithm should be
reversible (exactly he this translation is done is implementation dependent).

2.6. SupportArbitrarily Complex Font Matching and Substitution

In addition to the font name, the XLFD should define a standard list of desefigatt properties,
with agreed-upon fallbacks for all fonts. This allows client applications teedfenmt-specific
formatting or display data and to perform font matching or substitution when asked to handle
potentially unknown fonts, as required.

2.7. BeExtensible

The XLFD must be extensible so thatwand/or private descriptie font properties can be added
to conforming fonts without making existing X client or server implementations obsolete.

3. XLogical Font Description

XLFD is divided into tvo basic components: thieontName, which gives dl font information
needed to uniquely identify a font in X protocol requests (for exar@enFont, ListFonts,
and so on) and a variable list of optioR@htProperties, which describe a font in more detail.

The FontName is used in font queries and is returned as data in certain X protocol requests. It is
also specified as the data value for B@NT item in the X Consortium Character Bitmap Distri-
bution Format Standard (BDF V2.1).

The FontProperties are supplied on a font-by-font basis and are returned as data in certain X
protocol requests as part of ti&ontStruct data structure. The names and associated data val-
ues for each of thEontProperties may also appear as items of BIBARTPROPERTIES...END-
PROPERTIES list in the BDF V2.1 specification.



X L ogical Font Description Coiventions X11,Release 6.4

3.1. FontName

EachFontName is logically composed of twgrings: aFontNameRegistry prefix that is fol-

lowed by aFontNameSuffix. The FontName uses the ISO 8859-1 encoding. Trent-
NameRegistryis an x-registered-name (a name that has been registered with the X Consortium)
that identifies the registration authority that owns the spedfioatNameSuffix syntax and
semantics.

All font names that conform to this specification are to usereaNameRegistry prefix, which is
defined to be the string “{HYPHEN). All FontNameRegistry prefixes of the form: ver-

sion—, where the specified version indicates some future XLFD specification, are reserved by the
X Consortium for future extensions to XLFD font names. If required, extensions to the current
XLFD font name shall be constructed by appending firelds to the current structure, each
delimited by the existing field delimiteThe aailability of other FontNameRegistry prefixes or

fonts that support other registries is server implementation dependent.

In the X protocol specification, tifeontName is required to be a string; hence, numeric field val-
ues are represented in the name as stringagois. All FontNameSuffix fields are also

defined ag-ontProperties; numeric property values are represented as signed or unsigned inte-
gers, as appropriate.

3.1.1. FontName Syntax

The FontName is a structured, parsable string (of type STRING8) whose Backus-Naur Form
syntax description is as follows:

FontName ::=  XFontNameRegistry XFontNameSuffix | PrivFontNameRegistry PrivFont-
NameSuffix
XFontNameRegistry ::=  XFNDelim | XFNExtPrefix Version XFNDelim
XFontNameSuffix ::=  FOUNDR X FNDelim FAMILY_NAME XFNDelim WEIGHT_NAME

XFNDelim SLANT XFNDelim SETWIDTH_NAME XFNDelim ADD_
STYLE_NAME XFNDelim PIXEL_SIZE XFNDelim POINT_SIZE
XFNDelim RESOLUTION_X XFNDelim RESOLUTION_Y XFNDelim
SFACING XFNDelim AVERAGE_WIDTH XFNDelim CHARSET_REG-
ISTRY XFNDelim CHARSET_ENCODING

Version ::=  STRINGS8 - the XLFD version that defines an extension to the font name
syntax (for example, “1.4")
XFNExtPrefix :=  OCTET - “+ (PLUS)
XFNDelim ::= OCTET - “~" (HYPHEN)
PrivFontNameRegistry ::=  STRINGS8 - other than those strings reserved by XLFD
PrivFontNameSuffix ::=  STRING8

Field values are constructed as strings of ISO 8859-1 graphic characters, excluding the following:

. “="" (HYPHEN), the XLFD font name delimiter character

. “?” (QUESTION MARK) and “*” (ASTERISK), the X protocol font name wildcard char-
acters

. “)”" (COMMA), used by Xlib to separate XLFD font names in a font set.

. “"7 (QUOTATION MARK), used by some commercial products to quote a font name.

Alphabetic case distinctions are allowed but are for human readability concern€onfgrm-

ing X servers will perform matching on font name query or open requests independent of case.
The entire font name string musiviean more than 255 characters. It is recommended that
clients construct font name query patterns by explicitly including all field delimitewsith a



X L ogical Font Description Coiventions X11,Release 6.4

unexpected results. Note that”8FE is a \alid character of &ontName field; for example, the
string “ITC Avant Garde Gothi¢'might be a FAMILY_NAME.

3.1.2. ntName Field Definitions

This section discusses th®entName:

. FOUNDRY field

. FAMILY_NAME field

. WEIGHT_NAME field

. SLANT field

. SETWIDTH_NAME field

. ADD_STYLE_NAME field

. PIXEL_SIZE field

. POINT_SIZE field

. RESOLUTION_X and RESOLUTION Y fields
. SPACING field

. AVERAGE_WIDTH field

. CHARSET_ REGISTR and CHARSET_ENCODING fields

3.1.2.1. FOUNDF Field

FOUNDRY is an xregistered-name, the hame or identifier of the digital type foundry that digi-
tized and supplied the font data, or if different, the identifier of thanaration that last modified
the font shape or metric information.

The reason this distinction is necessary is thatendont design may be licensed from one

source (for example, ITC) but digitized and sold by mmmnber of different type suppliers. Each
digital version of the original design, in general, will be somewhat different in metrics and shape
from the idealized original font data, because each font foufairipetter or for worse, has its

own gandards and practices for tweaking a typeface for a particular generation of output tech-
nologies or has its own perception of market needs.

It is up to the type supplier to register with the X Consortium a suitable name fBoitidame
field according to the registration procedures defined by the Consortium.

The X Consortium shall define procedures for registering foundry and other names and shall
maintain and publish, as part of its public distribution, a registry of such registered names for use
in XLFD font names and properties.

3.1.2.2. AMILY_NAME Field

FAMILY_NAME is a string that identifies the range or family of typeface designs that are all
variations of one basic typographic style. This must be spelled out in full, with words separated

by spaces, as required. This name must be human-understandable and suitable for presentation to
a font user to identify the typeface family.

It is up to the type supplier to supply and maintain a suitable string for this field and font property,
to secure the properdd title to a gven name, and to guard against the infringement of other’s
copyrights or trademarks. By ogamtion, FAMILY_NAME is not translatedFAMILY_NAME

may include an indication of design ownership if considered a valid part of the typeface family
name.



X L ogical Font Description Coiventions X11,Release 6.4

The following are examples of FAMILY_NAME:
. Helvetica

. ITC Avant Garde Gothic

. Times

. Times Roman

. Bitstream Amerigo

. Stone

3.1.2.3. WEIGHT_NAME Field

WEIGHT_NAME is a string that identifies the fantypographic weight, that is, the nominal
blackness of the font, according to the FOUNDRMtgment. Thisiame must be human-under-
standable and suitable for presentation to a font Uder value “0’ is used to indicate a poly-
morphic font (see section 6).

The interpretation of this field is somewhat problematic because the typographic judgment of
weight has traditionally depended on ttverall design of the typeface family in question; that is,
it is possible that the DemiBold weight of one font could be almosvagqnt in typographic feel

to a Bold font from another family.

WEIGHT_NAME is captured as an arbitrary string because it is an important part of a font's
complete human-understandable name. Hewé should not be used for font matching or sub-
stitution. For this purpose, X client applications should use the weight-related font properties
(RELATIVE_WEIGHT and WEIGHT) that gie the coded relate weight and the calculated
weight, respectily.

3.1.2.4. SLANTField

SLANT is a code-string that indicates the@ll posture of the typeface design used in the font.
The encoding is as follows:

Code EnglishTranslation  Description

“R” Roman Uprightdesign

“r [ talic Italic design, slanted clockwise from the vertical

“Q” Oblique Obligued upright design, slanted clockwise from the ver-
tical

“RI” Revese ltalic Italic design, slanted counterclockwise from the vertical

“RO" R evease Oblique Obliqued upright design, slanted counterclockwise from
the vertical

“oT” Other Other

numeric  Polymorphic See section 6 on polymorphic font support.

The SLANT codes are for programming gemience only and usually are a@nted into their
equivalent human-understandable form before being presented to a user.

3.1.2.5. SETWIDTH_NAME Field

SETWIDTH_NAME is a string that ges the fonts typographic proportionate width, that is, the
nominal width per horizontal unit of the font, according to the FOUNBR¥Igment. Theaue
“0” is used to indicate a polymorphic font (see section 6).



X L ogical Font Description Coiventions X11,Release 6.4

As with WEIGHT _NAME, the interpretation of this field or font property is somewhat problem-
atic, because the desigreejidgment of setwidth has traditionally depended on eeath design

of the typeface family in questiorkor purposes of font matching or substitution, X client appli-
cations should either use the RELATIVE_SETWIDTH font property thassdhe relatve amded
proportionate width or calculate the proportionate width.

The following are examples of SETWIDTH_NAME:

. Normal
. Condensed
. Narrow

. Double Wide

3.1.2.6. ADD_STYLE_NAME Field

ADD_STYLE_NAME is a string that identifies additional typographic style information that is
not captured by other fields but is needed to identify the particular font. The chardery-[’
where in the field is used to indicate a polymorphic font (see section 6).

ADD_STYLE_NAME is not a typeface classification field and is only used for uniqueness. Its
use, as such, is not limited to typographic style distinctions.

The following are examples of ADD_STYLE_NAME:

. Serif
. Sans Serif
. Informal

. Decorated

3.1.2.7. PIXEL_SIZEField

PIXEL_SIZE gves the body size of the font at a particular POINT_SIZE and RESOLUTION_Y.
PIXEL_SIZE is either an integer-string or a string beginning with ‘K string beginning with

“I"’ represents a matrix (see section 4). PIXEL_SIZE usually incorporates additional vertical
spacing that is considered part of the font design. (Note,Jsovileat this value is not necessar-

ily equivalent to the height of the font bounding box.) Zero is used to indicate a scalable font (see
section 5).

PIXEL_SIZE usually is used by X client applications that need to query fonts according to
device-dependent size gaedless of the point size or vertical resolution for which the font was
designed.

3.1.2.8. POINT_SIZEField

POINT_SIZE gves the body size for which the font was designed. POINT_SIZE is either an
integer-string or a string beginning with “['A string beginning with “[' represents a matrix

(see section 4). This field usually incorporates additional vertical spacing that is considered part
of the font design. (Note, hower, that POINT_SIZE is not necessarily egaient to the height

of the font bounding box.) POINT_SIZE is expressed in decipoints (where points are as defined
in the X protocol or 72.27 points equal 1 inch). Zero is used to indicate a scalable font (see sec-
tion 5).

POINT_SIZE and RESOLUTION_Y are used by X clients to query fonts according to device-
independent size to maintain constant text size on the disglagless of the PIXEL_SIZE used
for the font.



X L ogical Font Description Coiventions X11,Release 6.4

3.1.2.9. RESOLUTION_Xand RESOLUTION_Y Fields

RESOLUTION_X and RESOLUTION_Y are unsigned integer-strings thattge horizontal

and vertical resolution, measured in pixels or dots per inch (dpi), for which the font was designed.
Zero is used to indicate a scalable font (see section 5). Horizontal and vertical values are required
because a separate bitmap font must be designed for displays with very different aspect ratios (for
example, 1:1, 4:3, 2:1, and so on).

The separation of pixel or point size and resolution is necessary because X allows for servers with
very different video characteristics (for example, horizontal and vertical resolution, screen and
pixel size, pixel shape, and so on) to potentially access the same font lilnarfont name, for
example, must differentiate between a 14-point font designed for 75 dpi (body size of about 14
pixels) or a 14-point font designed for 150 dpi (body size of about 2&pixFurtherin servers

that implement some or all fonts as continuously scaled and scagrtedroutlines,

POINT_SIZE and RESOLUTION_Y will help the server to differentiate between potentially sep-
arate font masters for text, title, and display sizes or for other typographic considerations.

3.1.2.10. SRCING Field

SPACING is a code-string that indicates the escapement class of the font, that is, monospace
(fixed pitch), proportional (variable pitch), or charcell (a special monospaced font that conforms
to the traditional data-processing character cell font model). The encoding is as follows:

Code EnglishTr anslation Description

“pP” Proportional A font whose logical character widths vary for each glyph. Note that
no other restrictions are placed on the metrics of a proportional font.

“M” M onospaced A font whose logical character widths are constant (thatésy e

glyph in the font has the same logical width). No other restrictions
are placed on the metrics of a monospaced font.

“Cc” CharCell A monospaced font that follows the standard typewriter character cell
model (that is, the glyphs of the font can be modeled by X clients as
“ boxes’ of the same width and height that are imaged side-by-side to
form text strings or top-to-bottom to form text lines). By definition,
all glyphs hae the same logical character width, and no glyph&ha
“ink” outside of the character cell. There is no kerning (that is, on a
per-character basis with posginetrics: 0 <= left-bearing <= right-
bearing <= width; with ngetive metrics: width <= left-bearing <=
right-bearing <= zero). Also, the vertical extents of the font do not
exceed the vertical spacing (that is, on a per-character basis: ascent
<= font-ascent and descent <= font-descent). The cell height = font-
descent + font-ascent, and the width = AVERAGE_WIDTH.

3.1.2.11. NERAGE_WIDTH Field

AVERAGE_WIDTH is an integer-string typographic metric value thagsghe unweighted arith-
metic mean of the absolute value of the width of each glyph in the font (measured in tenths of
pixels), multiplied by -1 if the dominant writing direction for the font is right-to-léfl.eading

“”” (TILDE) indicates a ngetive value. r monospaced and character cell fonts, this is the
width of all glyphs in the font. Zero is used to indicate a scalable font (see section 5).



X L ogical Font Description Coiventions X11,Release 6.4

3.1.2.12. CHARSET_REGISTR and CHARSET_ENCODING Fields

The character set used to encode the glyphs of the font (and implicitly treegfgpli repertoire),

as maintained by the X Consortium character set regiSHYARSET REGISTR is an xregis-
tered-name that identifies the registration authority that owns the specified encoding.
CHARSET_ENCODING is a registered name that identifies the coded character set as defined by
that registration authority and, optionaldysibsetting hint.

Although the X protocol does not explicitlyyeany kowledge about character set encodings, it

is expected that server implementors will prefer to embed knowledge of certain proprietary or
standard charsets into their font library for reasons of performance arshiemte. The
CHARSET_REGISTR and CHARSET_ENCODING fields or properties alan X dient font

request to specify a specific charset mapping in server environments where multiple charsets are
supported. Thavailability of ary particular character set is font and server implementation
dependent.

To prevent collisions when defining character set names, it is recommended that
CHARSET_REGISTR and CHARSET_ENCODING name pairs be constructed according to
the following conentions:

CharsetRegistry ::=  StdCharsetRegistryName | PrivCharsetRegistryName
CharsetEncoding ::=  StdCharsetEncodingName | PrivCharsetEncodingName
StdCharsetRegistryName ::=  Stafamizationld StdNumber | Std@anizationld StdNumber Dot Year
PrivCharsetRegistryName ::=  @mizationld STRING8
StdCharsetEncodingName ::=  STRING8-numeric part number of referenced standard
PrivCharsetEncodingName ::=  STRING8
StdOganizationld ::=  STRING8-the registered name or acronym of the referenced standard
organization
StdNumber ;= STRING8-referenced standard number
Organizationld ::=  STRING8-the registered name or acronym of thanration
Dot::= OCTET-"." (FULL STOP)
Year ::=  STRING8-numeric year (for example, 1989)

The X Consortium shall maintain and publish a registry of such character set names for use in X
protocol font names and properties as specified in XLFD.

The ISO Latin-1 character set shall be registered by the X Consortium as the CHARSET REG-
ISTRY-CHARSET_ENCODING value pair: “ISO8859-1".

If the CHARSET_ENCODING contains a “[LEFT SQJARE BRACKET), the “[" and the
characters after it up to a “fRIGHT SQJARE BRACKET) are a subsetting hint telling the font
source that the client is interested only in a subset of the characters of the font. The font source
can, optionallyreturn a font that contains only those characters psgerset of those charac-

ters. Theclient can expect to obtain valid glyphs and metrics only for those characters, and not
for ary other characters in the font. The font properties may optionally be calculated by consider-
ing only the characters in the subset.

The BNF for the subsetting hint is

Subset ::=  LeftBracket RangeList RightBracket
RangelList ::= Range | Range Space RangelList
Range ::=  Number | Number Underscore Number
Number ::=  “0x” HexNumber | DecNumber
HexNumber ::=  HexDigit | HexDigit HexNumber



X L ogical Font Description Coiventions

DecNumber ::=
DecDigit ::=
HexDigit ::=

LeftBracket ::=

RightBracket ::=
Space ::=

Underscore ::=

X11,Release 6.4

DecDigit | DecDigit DecNumber
O i A B e S I B O R A A R
DecDigit | “a’ | b’ | “c”’ | “d’" | “'e” | “'f"’
“[” (LEFT SQUARE BRACKET)
“1" (RIGHT SQUARE BRACKET)
“ " (SFACE)
“_" (LOW LINE)

Each Range specifies characters that are to be part of the subset included in h&forge
containing tvo Numbers specifies the first and last charaatelusvely, of a ange of characters.
A Range that is a single Number specifies a single character to be included in the font. A
HexNumber is interpreted as a hexadecimal numhAddecNumber is interpreted as a decimal
number The font consists of the union of all the Ranges in the RangeList.

For example,

-misc-fixed-medium-r-normal--0-0-0-0-c-0-is08859-1[65 70 80_90]
tells the font source that the client is interested only in characters 65, 70, and 80-90.

3.1.3. Examples

The following examples of font names are dedifrom the screen fonts shipped with the X Con-

sortium distribution.

Font

X FontName

75-dpi Fonts

Charter 12 pt

Charter Bold 12 pt
Charter Bold Italic 12 pt
Charter Italic 12 pt
Courier 8 pt

Courier 10 pt

Courier 12 pt

Courier 24 pt

Courier Bold 10 pt
Courier Bold Oblique 10 pt
Courier Oblique 10 pt

100-dpi Fonts

Symbol 10 pt

Symbol 14 pt

Symbol 18 pt

Symbol 24 pt

Times Bold 10 pt
Times Bold Italic 10 pt
Times lItalic 10 pt
Times Roman 10 pt

-Bitstream-Charter-Medium-R-Normal--12-120-75-75-P-68-1SO8859-1
-Bitstream-Charter-Bold-R-Normal--12-120-75-75-P-76-1SO8859-1
-Bitstream-Charter-Bold-I-Normal--12-120-75-75-P-75-1SO8859-1
-Bitstream-Charter-Medium-I-Normal--12-120-75-75-P-66-1SO8859-1
-Adobe-Courier-Medium-R-Normal--8-80-75-75-M-50-1SO8859-1
-Adobe-Courier-Medium-R-Normal--10-100-75-75-M-60-1SO8859-1
-Adobe-Courier-Medium-R-Normal--12-120-75-75-M-70-1ISO8859-1
-Adobe-Courier-Medium-R-Normal--24-240-75-75-M-150-1SO8859-1
-Adobe-Courier-Bold-R-Normal--10-100-75-75-M-60-1SO8859-1
-Adobe-Courier-Bold-O-Normal--10-100-75-75-M-60-1ISO8859-1
-Adobe-Courier-Medium-O-Normal--10-100-75-75-M-60-1SO8859-1

-Adobe-Symbol-Medium-R-Normal--14-100-100-100-P-85-Adobe-FONTSPECIFIC
-Adobe-Symbol-Medium-R-Normal--20-140-100-100-P-107-Adobe-FONTSPECIFIC
-Adobe-Symbol-Medium-R-Normal--25-180-100-100-P-142-Adobe-FONTSPECIFIC
-Adobe-Symbol-Medium-R-Normal--34-240-100-100-P-191-Adobe-FONTSPECIFIC
-Adobe-Times-Bold-R-Normal--14-100-100-100-P-76-1SO8859-1
-Adobe-Times-Bold-I-Normal--14-100-100-100-P-77-ISO8859-1
-Adobe-Times-Medium-I-Normal--14-100-100-100-P-73-1ISO8859-1
-Adobe-Times-Medium-R-Normal--14-100-100-100-P-74-1SO8859-1

3.2. Font Properties

All font properties are optional but will generally include the font name fields and, on a font-by-
font basis, ayother useful font descripte and use information that may be required to use the



X L ogical Font Description Coiventions X11,Release 6.4

font intelligently The XLFD specifies an extensi ®t of standard X font properties, their inter-
pretation, and fallback rules when the property is not defined foea fgint. Thegoal is to pro-
vide client applications with enough font information to be able toeraaiomatic formatting and
display decisions with good typographic results.

Font property names use the 1ISO 8859-1 encoding.

Additional standard X font property definitions may be defined in the future amtegsroper-

ties may exist in X fonts at gtime. Priate font properties should be defined to conform to the
general mechanism defined in the X protocol to@reoverlap of name space and ambiguous
property names, that is, pate font property names are of the form:"(LOW LINE), followed

by the oganizational identifierfollowed by “_" (LOW LINE), and terminated with the property
name.

The Backus-Naur Form syntax description of X font properties is as follows:

Properties ::=  OptFontPropList
OptFontPropList ::=  NULL | OptFontProp OptFontPropList
OptFontProp ::=  PvateFontProp | XFontProp
PrivateFontProp ::=  STRINGS8 | Underscoreg@rizationld Underscore STRING8
XFontProp ::= FOUNDR | FAMILY_NAME | WEIGHT_NAME | SLANT |

SETWIDTH_NAME | ADD_STYLE_NAME | PIXEL_SIZE |
POINT_SIZE | RESOLUTION_X | RESOLUTION_Y | S€ING |
AVERAGE_WIDTH | CHARSET REGISTR| CHARSET _ENCODING
| QUAD_WIDTH | RESOLUTION | MIN_SRCE | NORM_SRCE |
MAX_SPACE | END_SRACE | SUPERSCRIPT_X | SUPERSCRIPT_Y |
SUBSCRIPT_X | SUBSCRIPT_Y | UNDERLINE_POSITION | UNDER-
LINE_THICKNESS | STRIKEOUT_ASCENT | STRIKE-
OUT_DESCENT | ITALIC_ANGLE | X_HEIGHT | WEIGHT |
FACE_NAME | FULL_NAME | FONT | COPYRIGHT |VG_CAPI-
TAL_WIDTH | AVG_LOWERCASE_WIDTH | RELATIVE_SETWIDTH
| RELATIVE_WEIGHT | CAP_HEIGHT | SUPERSCRIPT_ SIZE | FIG-
URE_WIDTH | SUBSCRIPT_SIZE | SMALL_CAP_SIZE | NOTICE |
DESTINATION | FONT_TYPE | FONT_VERSION | RASTER-
IZER_NAME | RASTERIZER_VERSION | RAW_ASCENT |
RAW_DESCENT | RAW_* | AXIS_NAMES | AXIS_LIMITS |

AXIS_TYPES
Underscore ::=  OCTET-""(LOW LINE)
Organizationld ::=  STRING8-the registered name of thgaoization

3.2.1. FOUNDRY
FOUNDRY is as cfined in theFontName except that the property type iS@M.
FOUNDRY cannot be calculated or defaulted if not supplied as a font property.

3.2.2. AMILY_NAME
FAMILY_NAME is as defined in thé&ontName except that the property type iFAM.
FAMILY_NAME cannot be calculated or defaulted if not supplied as a font property.

10



X L ogical Font Description Coiventions X11,Release 6.4

3.2.3. WEIGHT_NAME
WEIGHT_NAME is as defined in thEontName except that the property type iFAM.
WEIGHT_NAME can be defaulted if not supplied as a font propasyllows:

if (WEIGHT_NAME undefined) then
WEIGHT_NAME = ATOM(“Medium”)

3.2.4. SLANT
SLANT is as defined in thEontName except that the property type iFAM.
SLANT can be defaulted if not supplied as a font propasybllows:

if (SLANT undefined) then
SLANT = ATOM(“R")

3.2.5. SETWIDTH_NAME
SETWIDTH_NAME is as defined in theontName except that the property type iSAM.
SETWIDTH_NAME can be defaulted if not supplied as a font propastypllows:

if (SETWIDTH_NAME undefined) then
SETWIDTH_NAME = ATOM(“Normal”)

3.2.6. ADD_STYLE_NAME
ADD_STYLE_NAME is as defined in thEontName except that the property type iFAM.
ADD_STYLE_ NAME can be defaulted if not supplied as a font propasgyllows:

if (ADD_STYLE_NAME undefined) then
ADD_STYLE_NAME = ATOM(*")

3.2.7. PIXEL_SIZE
PIXEL_SIZE is as defined in thieontName except that the property type is INT32.

X clients requiring pixel values for the various typographic fixed spaces (em space, en space, and
thin space) can use the following algorithm for computing these values from other properties
specified for a font:

DeciPointsPerinch = 722.7

EMspace = ROUND ((RESOLUTION_X * POINT_SIZE) / DeciPointsPerInch)
ENspace = ROUND (EMspace / 2)

THINspace = ROUND (EMspace / 3)

where a slash/] denotes real division, an asterigk flenotes real multiplication, and ROUND
denotes a function that rounds its real arguraent or down to the next integefhis rounding is
done according to X = FLOOR\ ¢ 0.5), where FLOOR is a function that rounds its real argu-
ment down to the nearest integer.

PIXEL_SIZE can be approximated if not supplied as a font propedygrding to the following
algorithm:

11



X L ogical Font Description Coiventions X11,Release 6.4

DeciPointsPerinch = 722.7
if (PIXEL_SIZE undefined) then
PIXEL_SIZE = ROUND ((RESOLUTION_Y * POINT_SIZE) / DeciPointsPerinch)

3.2.8. POINT_SIZE
POINT_SIZE is as defined in tit®ntName except that the property type is INT32.

X clients requiring device-independent values for em space, en space, and thin space can use the
following algorithm:

EMspace = ROUND (POINT_SIZE / 10)
ENspace = ROUND (POINT_SIZE / 20)
THINspace = ROUND (POINT_SIZE / 30)

Design POINT_SIZE cannot be calculated or approximated.

3.2.9. RESOLUTION_X
RESOLUTION_X is as defined in tHeontName except that the property type is CARD32.
RESOLUTION_X cannot be calculated or approximated.

3.2.10. RESOLUTION_Y
RESOLUTIONL_Y is as defined in tifeontName except that the property type is CARD32.
RESOLUTION_X cannot be calculated or approximated.

3.2.11. SRCING
SFACING is as defined in thEontName except that the property type iF@M.

SFACING can be calculated if not supplied as a font propectyording to the definitions ggn
above for the FontName.

3.2.12. NERAGE_WIDTH

AVERAGE_WIDTH is as defined in tHeontName except that the property type is INT32.
AVERAGE_WIDTH can be calculated if not provided as a font propastprding to the follow-
ing algorithm:

if (AVERAGE_W!IDTH undefined) then
AVERAGE_WIDTH = ROUND (MEAN (ABS (width of each glyph in font)) * 10)
* (if (dominant writing direction L-to-R) then 1 else -1)

where MEAN is a function that returns the arithmetic mean of its arguments.

X clients that require values for the number of characters per inch (pitch) of a monospaced font
can use the following algorithm using the AVERAGE_WIDTH and RESOLUTION_X font prop-
erties:

if (SPACING not proportional) then
CharPitch = (RESOLUTION_X * 10) / AVERAGE_WIDTH

12



X L ogical Font Description Coiventions X11,Release 6.4

3.2.13. CHARSET_REGISTRY
CHARSET_REGISTR is as fined in theFontName except that the property type iFAM.
CHARSET_REGISTR cannot be defaulted if not supplied as a font property.

3.2.14. CHARSET_ENCODING
CHARSET_ENCODING is as defined in tRentName except that the property type iSAM.
CHARSET_ENCODING cannot be defaulted if not supplied as a font property.

3.2.15. MIN_SIACE

MIN_SPFACE is an nteger value (of type INT32) thatvgs the recommended minimum word-
space value to be used with this font.

MIN_SPACE can be approximated if not provided as a font propecgording to the following
algorithm:

if (MIN_SPACE undefined) then
MIN_SPACE = ROUND(0.75 * NORM_SRCE)

3.2.16. NORM_SRCE

NORM_SRACE is an nteger value (of type INT32) thatvgs the recommended normal word-
space value to be used with this font.

NORM_SRACE can be approximated if not provided as a font propettording to the follow-
ing algorithm:

DeciPointsPerinch = 722.7
if (NORM_SRACE undefined) then
if (SPACE glyph exists) then
NORM_SRACE = width of SARCE
else NORM_SRCE = ROUND((0.33 * RESOLUTION_X * POINT_SIZE)/ DeciPointsPerInch)

3.2.17. MAX_SRACE

MAX_SPACE is an nteger value (of type INT32) thatvgs the recommended maximum word-
space value to be used with this font.

MAX_SPACE can be approximated if not provided as a font propecgording to the following
algorithm:

if (MAX_SPACE undefined) then
MAX_SPACE = ROUND(1.5 * NORM_SRCE)

3.2.18. END_SRCE

END_SRACE is an nteger value (of type INT32) thatvgs the recommended spacing at the end
of sentences.

END_SRACE can be approximated if not provided as a font propectording to the following
algorithm:

13



X L ogical Font Description Coiventions X11,Release 6.4

if (END_SFACE undefined) then
END_SRACE = NORM_SRACE

3.2.19. AG_CAPITAL_WIDTH

AVG_CAPITAL_WIDTH is an integer value (of type INT32) thaveg the unweighted arith-

metic mean of the absolute value of the width of each capital glyph in the font, in tenths of pixels,
multiplied by -1 if the dominant writing direction for the font is right-to-left. This property

applies to both Latin and non-Latin fontSor Latin fonts, capitals are the glyphs A through Z.

This property is usually used for font matching or substitution.

AVG_CAPITAL_WIDTH can be calculated if not provided as a font propectyording to the
following algorithm:

if (AVG_CAPITAL_WIDTH undefined) then
if (capitals exist) then
AVG_CAPITAL_WIDTH = ROUND (MEAN
(ABS (width of each capital glyph)) * 10)
* (if (dominant writing direction L-to-R) then 1 else -1)
else AG_CAPITAL_WIDTH undefined

3.2.20. NG_LOWERCASE_WIDTH

AVG_LOWERCASE_WIDTH is an integer value (of type INT32) thategithe unweighted
arithmetic mean width of the absolute value of the width of each lowercase glyph in the font in
tenths of pixels, multiplied by -1 if the dominant writing direction for the font is right-to-left.

For Latin fonts, lowercase are the glyphs a through z. This property is usually used for font
matching or substitution.

Where appropriate, VG _LOWERCASE_WIDTH can be approximated if not provided as a font
property according to the following algorithm:

if (AVG_LOWERCASE_WIDTH undefined) then
if (lowercase exists) then
AVG_LOWERCASE_WIDTH = ROUND (MEAN
(ABS (width of each lowercase glyph)) * 10)
* (if (dominant writing direction L-to-R) then 1 else -1)
else AG_LOWERCASE_WIDTH undefined

3.2.21. QJAD_WIDTH

QUAD_WIDTH is an integer typographic metric (of type INT32) thakegithe width of a quad
(em) space.

Note

Because all typographic fixed spaces (em, en, and thin) are constantv@ar foigi

size (that is, thedo ot vary according to setwidth), the use of this font property has
been deprecated clients that require typographic fixed space values are encour-
aged to discontinue use ofJAD_WIDTH and compute these values from other font
properties (for example, PIXEL_SIZEX clients that requirea font-dependent

width value should use either the FIGURE_WIDTH or one of leeage character
width font properties (AVERAGE_WIDTH,¥G_CAPITAL_WIDTH or
AVG_LOWERCASE_WIDTH).

14



X L ogical Font Description Coiventions X11,Release 6.4

3.2.22. FIGURE_WIDTH

FIGURE_WIDTH is an integer typographic metric (of type INT32) theegihe width of the
tabular figures and the dollar sign, if suitable for tabular setting (all widths edeal)l.atin
fonts, these tabular figures are the Arabic numerals 0 through 9.

FIGURE_WIDTH can be approximated if not supplied as a font praomedgrding to the fol-
lowing algorithm:

if (numerals and DOLLAR sign are defined & widths are equal) then
FIGURE_WIDTH = width of DOLLAR
else FIGURE_WIDTH property undefined

3.2.23. SUPERSCRIPT_X

SUPERSCRIPT_X is an integer value (of type INT32) thetdghe recommended horizontal
offset in pixels from the position point to the X origin of synthetic supersckpt tethe current
position point is at [X,Y], then superscripts should begin at [X + SUPERSCRIPT_X, Y -
SUPERSCRIPT_Y].

SUPERSCRIPT_X can be approximated if not provided as a font progertyding to the fol-
lowing algorithm:

if (SUPERSCRIPT_X undefined) then
if (TANGENT(ITALIC_ANGLE) defined) then
SUPERSCRIPT_X = ROUND((0.40 * CAP_HEIGHT) / TANGENT(ITALIC_ANGLE))
else SUPERSCRIPT_X = ROUND(0.40 * CAP_HEIGHT)

where TANGENT is a trigonometric function that returns the tangent of its argument, which is in
1/64 degrees.

3.2.24. SUPERSCRIPT_Y

SUPERSCRIPT_Y is an integer value (of type INT32) theegghe recommended vertical offset
in pixels from the position point to the Y origin of synthetic superscrqpt tié the current posi-
tion point is at [X,Y], then superscripts should begin at [X + SUPERSCRIPT_X, Y - SUPER-
SCRIPT_Y].

SUPERSCRIPT_Y can be approximated if not provided as a font proamrtyding to the fol-
lowing algorithm:

if (SUPERSCRIPT_Y undefined) then
SUPERSCRIPT_Y = ROUND(0.40 * CAP_HEIGHT)

3.2.25. SUBSCRIPT_X

SUBSCRIPT_X is an integer value (of type INT32) thaegihe recommended horizontal offset
in pixels from the position point to the X origin of synthetic subscrifit td the current position
point is at [X,Y], then subscripts should begin at [X + SUBSCRIPT_X, Y + SUBSCRIPT_Y].

SUBSCRIPT_X can be approximated if not provided as a font propectyrding to the follow-
ing algorithm:

15



X L ogical Font Description Coiventions X11,Release 6.4

if (SUBSCRIPT_X undefined) then
if (TANGENT(ITALIC_ANGLE) defined) then
SUBSCRIPT_X = ROUND((0.40 * CAP_HEIGHT) / TANGENT(ITALIC_ANGLE))
else SUBSCRIPT_X = ROUND(0.40 * CAP_HEIGHT)

3.2.26. SUBSCRIPT_Y

SUBSCRIPT_Y is an integer value (of type INT32) thaegithe recommended vertical offset in
pixels from the position point to the Y origin of synthetic subscrift td the current position
point is at [X,Y], then subscripts should begin at [X + SUBSCRIPT_X, Y + SUBSCRIPT_Y].

SUBSCRIPT_Y can be approximated if not provided as a font propectyrding to the follow-
ing algorithm:

if (SUBSCRIPT_Y undefined) then
SUBSCRIPT_Y = ROUND(0.40 * CAP_HEIGHT)

3.2.27. SUPERSCRIPT_SIZE

SUPERSCRIPT_SIZE is an integer value (of type INT32) thagsdihe recommended body size

of synthetic superscripts to be used with this font, ielgix Thiswill generally be smaller than

the size of the current font; that is, superscripts are imaged from a smaller font offset according to
SUPERSCRIPT_X and SUPERSCRIPT_Y.

SUPERSCRIPT_SIZE can be approximated if not provided as a font prapedyding to the
following algorithm:

if (SUPERSCRIPT_SIZE undefined) then
SUPERSCRIPT_SIZE = ROUND(0.60 * PIXEL_SIZE)

3.2.28. SUBSCRIPT_SIZE

SUBSCRIPT_SIZE is an integer value (of type INT32) the¢gthe recommended body size of
synthetic subscripts to be used with this font, irejgix Aswith SUPERSCRIPT_SIZE, this will
generally be smaller than the size of the current font; that is, subscripts are imaged from a smaller
font offset according to SUBSCRIPT_X and SUBSCRIPT_Y.

SUBSCRIPT_SIZE can be approximated if not provided as a font prpaertyding to the algo-
rithm:

if (SUBSCRIPT_SIZE undefined) then
SUBSCRIPT_SIZE = ROUND(0.60 * PIXEL_SIZE)

3.2.29. SMALL_CAP_SIZE

SMALL_CAP_SIZE is an integer value (of type INT32) thategithe recommended body size of
synthetic small capitals to be used with this font, irelsix Smallcapitals are generally imaged
from a smaller font of slightly more weight. No offset [X,Y] is necessary.

SMALL_CAP_SIZE can be approximated if not provided as a font promecdgrding to the fol-
lowing algorithm:

16



X L ogical Font Description Coiventions X11,Release 6.4

if (SMALL_CAP_SIZE undefined) then
SMALL_CAP_SIZE = ROUND(PIXEL_SIZE * ((X_HEIGHT
+ ((CAP_HEIGHT - X_HEIGHT) / 3)) / CAP_HEIGHT))

3.2.30. UNDERLINE_POSITION

UNDERLINE_POSITION is an integer value (of type INT32) thaegithe recommended verti-
cal offset in pixels from the baseline to the top of the underline. If the current position point is at
[X,Y], the top of the baseline is\gin by [X, Y + UNDERLINE_POSITION].

UNDERLINE_POSITION can be approximated if not provided as a font propecyrding to
the following algorithm:

if (UNDERLINE_POSITION undefined) then
UNDERLINE_POSITION = ROUND((maximum descent) / 2)

wheremaximum descent is the maximum descent (beldhe baseline) in pixels of gglyph in
the font.

3.2.31. UNDERLINE_THICKNESS

UNDERLINE_THICKNESS is an integer value (of type INT32) thakgithe recommended
underline thickness, in pixels.

UNDERLINE_THICKNESS can be approximated if not provided as a font propedyrding to
the following algorithm:

CapStemWidth =\&rage width of the stems of capitals
if (UNDERLINE_THICKNESS undefined) then
UNDERLINE_THICKNESS = CapStemWidth

3.2.32. STRIKEOUT_ASCENT

STRIKEOUT_ASCENT is an integer value (of type INT32) thatgithe vertical ascent for box-
ing or voiding glyphs in this font. If the current position is at [X,Y] and the string extent is
EXTENT, the upper-left corner of the strikeout box is at [X, Y — STRIKEOUT_ASCENT] and
the lower-right corner of the box is at [X + EXTENT + STRIKEOUT_DESCENT].

STRIKEOUT_ASCENT can be approximated if not provided as a font propectyrding to the
following algorithm:

if (STRIKEOUT_ASCENT undefined)
STRIKEOUT_ASCENT = maximum ascent

wheremaximum ascent is the maximum ascent (amte baseline) in pixels of gmylyph in the
font.

3.2.33. STRIKEOUT_DESCENT

STRIKEOUT_DESCENT is an integer value (of type INT32) thaegthe vertical descent for
boxing or voiding glyphs in this font. If the current position is at [X,Y] and the string extent is
EXTENT, the upper-left corner of the strikeout box is at [X, Y — STRIKEOUT_ASCENT] and
the lower-right corner of the box is at [X + EXTENT + STRIKEOUT_DESCENT].

STRIKEOUT_DESCENT can be approximated if not provided as a font propertyding to
the following algorithm:

17



X L ogical Font Description Coiventions X11,Release 6.4

if (STRIKEOUT_DESCENT undefined)
STRIKEOUT_DESCENT = maximum descent

wheremaximum descent is the maximum descent (beldhe baseline) in pixels of sglyph in
the font.

3.2.34. ITALIC_ANGLE

ITALIC_ANGLE is an integer value (of type INT32) thavgs the nominal posture angle of the
typeface design, in 1/64 degrees, measured from the glyph origin counterclockwise from the three
o’clock position.

ITALIC_ANGLE can be defaulted if not provided as a font propextgording to the following
algorithm:

if (ITALIC_ANGLE undefined) then
ITALIC_ANGLE = (90 * 64)

3.2.35. CAP_HEIGHT

CAP_HEIGHT is an integer value (of type INT32) thategithe nominal height of the capital let-
ters contained in the font, as specified by the FOUKDRypeface designer.

Certain clients require CAP_HEIGHT to compute scale factors and positioning offsets for synthe-
sized glyphs where this information or designed glyphs are not explicitly provided by the font (for
example, small capitals, superiors, inferiors, and so on). CAP_HEIGHT is also a critical factor in

font matching and substitution.

CAP_HEIGHT can be approximated if not provided as a font proedgrding to the following
algorithm:

if (CAP_HEIGHT undefined) then
if (Latin font) then
CAP_HEIGHT = XCharStruct.ascent[glyph X]
else if (capitals exist) then
CAP_HEIGHT = XCharStruct.ascent[some unaccented capital glyph]
else CAP_HEIGHT undefined

3.2.36. X_HEIGHT

X_HEIGHT is an integer value (of type INT32) thate the nominal height alve the baseline
of the lowercase glyphs contained in the font, as specified by the FOUNDRoeface
designer.

As with CAP_HEIGHT X_HEIGHT is required by certain clients to compute scale factors for
synthesized small capitals where this information is not explicitly provided by the font resource.
X_HEIGHT is a critical factor in font matching and substitution.

X_HEIGHT can be approximated if not provided as a font propagtyrding to the following
algorithm:

18



X L ogical Font Description Coiventions X11,Release 6.4

if (X_HEIGHT undefined) then
if (Latin font) then
X_HEIGHT = XCharStruct.ascent[glyph X]
else if (lowercase exists) then
X_HEIGHT = XCharStruct.ascent[some unaccented Ic glyph without an ascender]
else X_HEIGHT undefined

3.2.37. RELATIVE_SETWIDTH

RELATIVE_SETWIDTH is an unsigned integer value (of type CARD32) thatsghe coded
proportionate width of the font, relaéi o dl known fonts of the same typeface famiégcording
to the type designexr’or FDOUNDRY'’s judgment.

RELATIVE_SETWIDTH ranges from 10 to 90 or is 0 if undefined or umkmoThefollowing
reference values are defined:

Code EnglishTranslation Description

0 Undefined Undefinedr unknown

10 UltraCondensed The lowest ratio of\erage width to height
20 ExtraCondensed

30 Condensed Condensed, Narvg Compressed, ...

40 SemiCondensed

50 Medium Medium, Normal, Regular..

60 SemiExpanded SemiExpanded, DemiExpanded, ...

70 Expanded

80 ExtraExpanded ExtraExpanded, Wide, ...

90 UltraExpanded The highest ratio ofveerage width to height

RELATIVE_SETWIDTH can be defaulted if not provided as a font propectyording to the fol-
lowing algorithm:

if (RELATIVE_SETWIDTH undefined) then
RELATIVE_SETWIDTH = 50

For polymorphic fonts, RELATIVE_SETWIDTH is not necessarily a linear function of the font’s
setwidth axis.

X clients that want to obtain a calculated proportionate width of the font (that is, a font-indepen-
dent way of identifying the proportionate width across all fonts and all font vendors) can use the
following algorithm:

SETWIDTH = A/G_CAPITAL_WIDTH / (CAP_HEIGHT * 10)

where SETWIDTH is a real number with zero being the narrowest calculated setwidth.

3.2.38. RELATIVE_WEIGHT

RELATIVE_WEIGHT is an unsigned integer value (of type CARD32) thatésghe coded
weight of the font, relatie t dl known fonts of the same typeface fam#gcording to the type
designers or DUNDRY'’s judgment.

RELATIVE_WEIGHT ranges from 10 to 90 or is 0 if undefined or unkmo Thefollowing ref-
erence values are defined:

19



X L ogical Font Description Coiventions X11,Release 6.4

Code EnglishTranslation Description

0 Undefined Undefinedr unknown

10 UltraLight The lowest ratio of stem width to height

20 ExtraLight

30 Light

40 SemiLight SemiLight, Book, ...

50 Medium Medium, Normal, Regular,...

60 SemiBold SemiBold, DemiBold, ...

70 Bold

80 ExtraBold ExtraBold, Heavy...

90 UltraBold UltraBold, Black, ..., the highest ratio of stem width to
height

RELATIVE_WEIGHT can be defaulted if not provided as a font propectyording to the fol-
lowing algorithm:

if (RELATIVE_WEIGHT undefined) then
RELATIVE_WEIGHT = 50

For polymorphic fonts, RELATIVE_WEIGHT is not necessarily a linear function of the font’s
weight axis.

3.2.39. WEIGHT

Calculated WEIGHT is an unsigned integer value (of type CARD32) thext thie calculated
weight of the font, computed as the ratio of capital stem width to CAP_HEI@H¥e range 0 to
1000, where 0 is the lightest weight.

WEIGHT can be calculated if not supplied as a font propactprding to the following algo-
rithm:

CapStemWidth =\&erage width of the stems of capitals
if (WEIGHT undefined) then
WEIGHT = ROUND ((CapStemWidth * 1000) / CAP_HEIGHT)

A calculated value for weight is necessary when matching fonts from different families because
both the RELATIVE_WEIGHT and the WEIGHT_NAME are assigned by the typeface supplier,
according to its tradition and practice, and therefore, are somewhat sigbj€eticulated

WEIGHT provides a font-independent way of identifying the weight across all fonts and all font
vendors.

3.2.40. RESOLUTION

RESOLUTION is an integer value (of type INT32) thategithe resolution for which this font
was aeated, measured in 1/100 pixels per point.

20



X L ogical Font Description Coiventions X11,Release 6.4

Note

As independent horizontal and vertical design resolution components are required to
accommodate displays with nonsquare aspect ratios, the use of this font property has
been deprecated, and independent RESOLUTION_X and RESOLUTION_Y font
name fields/properties Y@ been defined (see sections 3.1.2.9 and 3.1.2.10). X

clients are encouraged to discontinue use of the RESOLUTION property and are
encouraged to use the appropriate X,Y resolution properties, as required.

3.2.41. FONT

FONT is a string (of type PFOM) that gives the full XLFD name of the font—that is, the value
can be used to open another instance of the same font.

If not provided, the FONT property cannot be calculated.

3.2.42. ACE_NAME

FACE_NAME is a human-understandable string (of typ©K) that gives the full device-inde-
pendent typeface name, including the ownight, slant, set, and so on but not the resolution,
size, and so on. This property may be used as feedback during font selection.

FACE_NAME cannot be calculated or approximated if not provided as a font property.

3.2.43. FULL_NAME

FULL_NAME is the same asMCE_NAME. Itsuse is deprecated, but it is found on some old
fonts.

3.2.44. COPYRIGHT

COPYRIGHT is a human-understandable string (of typ®M)) that gives the copyright infor-
mation of the Igd owner of the digital font data.

This information is a required component of a font but is independent of the particular format
used to represent it (that is, it cannot be captured as a comment that could later bevthyown a
for efficieng/ reasons).

COPYRIGHT cannot be calculated or approximated if not provided as a font property.

3.2.45. NOICE

NOTICE is a human-understandable string (of typ©M) that gives the copyright information
of the lggd owner of the font design pif not applicable, the trademark information for the type-
face FAMILY_NAME.

Typeface design and trademark protection laws vary from country to cahettySA having no
design copyright protection currently while various countries in Europe offer both design and
typeface family name trademark protection. As with COPYRIGHI$ information is a required
component of a font but is independent of the particular format used to represent it.

NOTICE cannot be calculated or approximated if not provided as a font property.

3.2.46. DESTINATION

DESTINATION is an unsigned integer code (of type CARD32) thadsgihe font design destina-

tion, that is, whether it was designed as a screen proofing font to match printer font glyph widths
(WYSIWYG), as an optimal video font (possibly with corresponding printer font) for extended
screen viewing (video text), and so on.

21



X L ogical Font Description Coiventions X11,Release 6.4

The font design considerations are very different, and at current display resolutions, the readabil-
ity and legibility of these tevkinds of screen fonts are veryfdifent. DESTIMTION allows

publishing clients that use X to model the printed page and video text clients, such as on-line doc-
umentation browsers, to query for X screen fonts that suit their particular requirements.

The encoding is as follows:

Code EnglishTranslation Description

0 WYSIWYG The font is optimized to match the typographic design and
metrics of an equilent printer font.

1 Video text The font is optimized for screen legibility and readability.

3.2.47. FONT_TYPE

FONT_TYPE is a human-understandable string (of typ@M) that describes the format of the

font data as theare read from permanent storage by the current font source. It is a static attribute
of the source data. It can be used by clients to select a type of bitmap or outline font without
regard to the rasterizer used to render the font.

Predefined values are as follows:

Value Whenapplicable

“ Bitmap” Hand-tuned bitmap fonts. Some attempt has been made to optimize the visual
appearance of the font for the requested size and resolution.

“ Prebuilt” All bitmap format fonts that cannot be described as “Bitmap”, that is, hand-

tuned. fer example, a bitmap format font that was generated mechanically using
a calable font rasterizer would be considered “Prebuilt”, not “Bitmap”.

“Type 1’ Any Type 1 font.

“TrueType’ Any TrueType font.

“ Speedd’ Any Seedo font.

“F3” Any F3 font.

Other values may be registered with the X Consortium.

3.2.48. FONT_VERSION

FONT_VERSION is a human-understandable string (of typ®M) that describes the formal or
informal version of the fontNoneis a valid value.

3.2.49. RASTERIZER_NAME

RASTERIZER_NAME is a human-understandable string (of typeM) that is the specific
name of the rasterizer that has performed some rasterization operation (such as scaling from out-
lines) on this font.

To define a RASTERIZER_NAME, the following format is recommended:

RasterizerName ::=  @enizationld Space Rasterizer

22



X L ogical Font Description Coiventions X11,Release 6.4

Organizationld ::=  STRING8—the X Registry ORGANIZATION name of the rasterizer
implementor or maintainer.
Rasterizer ::=  the case-sensgitihuman-understandable product name of the rasterizer.

Words within this name should be separated by a singd€EP
OCTET+"’ (SFACE)

Space ::

Examples:
X Consortium Bit Scaler
X Consortium Type 1 Rasterizer
X Consortium Speedo Rasterizer
Adobe Type Manager
Sun TypeScaler

If RASTERIZER_NAME is not defined, or Idone no rasterization operation has been applied
to the FONT_TYPE.

3.2.50. RASTERIZER_VERSION

RASTERIZER_VERSION is a human-understandable string (of tyji@\My that represents the
formal or informal version of a font rasterizéthe RASTERIZER_VERSION should match the
corresponding product version number known to users, when applicable.

3.2.51. RAV_ASCENT

For a font with a transformation matrix, RAW_ASCENT is the font ascent in 1000 pixel metrics
(see section 4.1).

3.2.52. RAV_DESCENT

For a font with a transformation matrix, RAW_DESCENT is the font descent in 1000 pixel met-
rics (see section 4.1).

3.2.53. RAV_*

For a font with a transformation matrix, all font properties that represent horizontal or vertical
sizes or displacements will be accompanied byapteperty named as the original except pre-
fixed with “RAW _", that is computed as described in section 4.1.

3.2.54. AXIS_NMMES

AXIS_NAMES is a list of all the names of the axes for a polymorphic font, separated by a null
(0) byte. These names are suitable for presentation in a user interface (see section 6).

3.2.55. AXIS_LIMITS

AXIS_LIMITS is a list of integers, ta for each axis, giving the minimum and maximum allow-
able values for that axis of a polymorphic font (see section 6).

3.2.56. AXIS_TYPES

AXIS_TYPES is like AXIS_NAMES, but can be registered as having specific semantics (see sec-
tion 6).

3.3. Built-in Font Property Atoms

The following font property atom definitions were predefined in the initial version of the core pro-
tocol:

23



X L ogical Font Description Coiventions X11,Release 6.4

Font Property/Atom Name Property Type

MIN_SPACE INT32
NORM_SRACE INT32
MAX_SPACE INT32

END_SRACE INT32
SUPERSCRIPT_X INT32
SUPERSCRIPT_Y INT32
SUBSCRIPT_X INT32
SUBSCRIPT_Y INT32
UNDERLINE_POSITION INT32
UNDERLINE_THICKNESS INT32
STRIKEOUT_ASCENT INT32
STRIKEOUT_DESCENT INT32
FONT_ASCENT INT32
FONT_DESCENT INT32
ITALIC_ANGLE INT32

X_HEIGHT INT32
QUAD_WIDTH INT32 - deprecated
WEIGHT CARD32
POINT_SIZE INT32
RESOLUTION CARD32- deprecated
COPYRIGHT AT OM
FULL_NAME ATOM - deprecated
FAMILY_NAME ATOM
DEFAULT_CHAR CARD32

4. Matrix Transformations

An XLFD name presented to the server cavettae POINT_SIZE or PIXEL_SIZE field begin
with the character “[! If the first character of the field is “[”, the character must be followed
with ASCII representations of four floating point numbers and a trailing “]”, with white space
separating the numbers and optional white space separating the numbers frohattee i’
characters. Numbersse standard floating point syntax but use the chardctdo‘represent a
minus sign in the mantissa or exponent.

The BNF for a matrix transformation string is as follows:

MatrixString ::=  LeftBracket OptionalSpace Float Space Float Space
Float Space Float OptionalSpace RightBracket
OptionalSpace ::= “” | Space
Space ::=  SpaceChar | SpaceChar Space
Float ::=  Mantissa | Mantissa Exponent
Mantissa ::=  Sign Number | Number
Sign ::=  Plus | Tilde
Number ::= Integer | Integer Dot Integer | Dot Integer
Integer ::=  Digit | Digit Integer
Digit ;= “0” |1 [“2" "3 |“4" |5 |6 |78 ]"9”
Exponent ::= “e” Signedinteger | “E’Signedinteger

24



X L ogical Font Description Coiventions X11,Release 6.4

Signedinteger ::=  Sign Integer | Integer
LeftBracket ;=  OCTET - “ (LEFT SQUARE BRACKET)
RightBracket ::=  OCTET - “T'(RIGHT SQJARE BRACKET)
SpaceChar ;= OCTET + "' (SFACE)
Tilde ::= OCTET -"""" (TILDE)
Plus :=  OCTET - “+ (PLUS)
Dot::= OCTET -“."" (FULL STOP)

The string “[a b ¢ d]'represents a graphical transformation of the glyphs in the font by the
matrix

[ a b 0 ]
[ ¢ d 0 ]
[ 0 0 1 ]

All transformations occur around the origin of the glyph. The relationship between the current
scalar values and the matrix transformation values is that the scalar valireti

POINT_SIZE field produces the same glyphs as the matrix “[N/10 0 O Nii®liat field, and

the scalar value “N'in the PIXEL_SIZE field produces the same glyphs as the matrix “[N*RES-
OLUTION_X/RESOLUTION_Y 0 0 NT'in that field.

If matrices are specified for both the POINT_SIZE and PIXEL_SIZE,rthest bear the follow-
ing relationship to each other within an implementation-specific tolerance:
PIXEL_SIZE_MATRIX = [Sx 0 0 Sy] * POINT_SIZE_MATRIX
where
Sx = RESOLUTION_X/72.27
Sy = RESOLUTION_Y / 72.27

If either the POINT_SIZE or PIXEL_SIZE field is unspecified (eithet 60wildcarded), the
preceding formulas can be used to compute one from the other.

4.1. Metricsand Font Properties

In this section, the phrase “1000 pixel metricseans the metrics that would be obtained if the
rasterizer took the base untransformed design used to generate the transformed font and scaled it
linearly to a height of 1000 pixels, with no rotation component. Note that there may be no way

for the application to actually request this font since the rasterizer may use different outlines or
rasterization techniques at that size from the ones used to generate the transformed font.

Notes on properties and metrics:

The per-char ink metrics (Ibearing, rbearing, ascent, and descent) represent the ink extent of the
transformed glyph around its origin.

The per-char width is the x component of the transformed character width.
The font ascent and descent are the y component of the transformed font ascent or descent.

The FONT property returns a name reflecting the matrix being used—that is, the name returned
can be used to open another instance of the same font. The returned name is not necessarily an
exact copy of the requested name. If, for example, the user requests
—misc—fixed—-medium-r-normal--0-[2el 0 0.0 +10.0]-72-72-c-0-is08859-1
the resulting FONT property might be
—misc—fixed—-medium-r-normal--[19.9 0 0 10]-[20 0 0 10]-72-72-c-0-is08859-1
The FONT property will avays include matrices in both the PIXEL_SIZE and the POINT_SIZE
fields.

25



X L ogical Font Description Coiventions X11,Release 6.4

To dlow accurate client positioning of transformed characters, the attributes field of the XChar-
Info contains the width of the character in 1000 pixel metrics. This attributes field should be
interpreted as a signed integer.

There will alvays be 2 ne font properties defined, RAW_ASCENT and RAW_DESCEtat
hold the ascent and descent in 1000 pixel metrics.

All font properties that represent horizontal widths or displacemenésdaaheir value the x
component of the transformed width or displacement. All font properties that represent vertical
heights or displacementsugass their value the y component of the transformed height or dis-
placement. Eackuch property will be accompanied by avr@operty named as the original

except prefixed with “RAW_", that gies the value of the width, height, or displacement in 1000
pixel metrics.

5. ScalableFonts

The XLFD is designed to support scalable fo{sscalable font is a font source from which
instances of arbitrary size can be dedi A scalable font source might be one or more outlines
together with zero or more hand-tuned bitmap fonts at specific sizes and resolutions, or it might
be a programmatic description together with zero or more bitmap fonts, or some other format
(perhaps en just a single bitmap font).

The following definitions are useful for discussing scalable fonts:
Well-formed XLFD pattern

A pattern string containing 14 hyphens, one of which is the first character of the pattern.
Wildcard characters are permitted in the fields of a well-formed XLFD pattern.

Scalable font name

A well-formed XLFD pattern containing no wildcards and containing the digiiri@he
PIXEL_SIZE, POINT_SIZE, and AVERAGE_WIDTH fields.

Scalable fields

The XLFD fields PIXEL_SIZE, POINT_SIZE, RESOLUTION_X, RESOLUTION avd
AVERAGE_WIDTH.

Derived instance

The result of replacing the scalable fields of a font name with values to yield a font name
that could actually be produced from the font souscaling engine is permitted, but not
required, to interpret the scalable fields in font names to support anamorphic scaling.

Global list

The list of names that would be returned by an X server fdgt&onts protocol request
on the pattern “¥'if t here were no protocol restrictions on the total number of names
returned.

The global list consists of font names gediifrom font sources. If a single font source can sup-

port multiple character sets (specified in the CHARSET_REGYSaie CHARSET_ENCOD-

ING fields), each such character set should be used to form a separate font name ir-tealist.
nonscalable font source, the simple font name for each character set is included in the global list.
For a alable font source, a scalable font name for each character set is included in the list. In
addition to the scalable font name, specificwigrinstance names may also be included in the

list. Therelative ader of denved instances with respect to the scalable font name is not con-
strained. Finallyfont name aliases may also be included in the list. Thewelater of aliases

with respect to the real font name is not constrained.

26



X L ogical Font Description Coiventions X11,Release 6.4

The values of the RESOLUTION_X and RESOLUTION_Y fields of a scalable font name are
implementation dependent, but to maximize backward compatiltilégy should be reasonable

nonzero values, for example, a resolution close to that provided by the screen (in a single-screen
sener). Becaussome existing applications rely on seeing a collection of point and pixel sizes,
server vendors are strongly encouraged in the near term to provide a mechanism for including, for
each scalable font name, a set of specifiordginstance named-or font sources that contain a
collection of hand-tuned bitmap fonts, including names of these instances in the global list is rec-
ommended and sufficient.

The X protocol requesbpenkFont on a scalable font name returns a font corresponding to an
implementation-dependent dexil instance of that font name.

The X protocol requedtistFonts on a well-formed XLFD pattern returns the foliog. Starting

with the global list, if the actual pattern argument has values containing no wildcards in scalable
fields, then substitute each such field into the corresponding field in each scalable font name in
the list. For each resulting font name, if the remaining scalable fields cannot be replaced with val-
ues to produce a deed instance, reme the font name from the list. Motake the modified list,

and perform a simple pattern match against the pattern arguiristionts returns the resulting

list.

For example, gven the global list:

-Linotype-Times-Bold-1-Normal--0-0-100-100-P-0-1SO8859-1
-Linotype-Times-Bold-R-Normal--0-0-100-100-P-0-1ISO8859-1
-Linotype-Times-Medium-I-Normal--0-0-100-100-P-0-1SO8859-1
-Linotype-Times-Medium-R-Normal--0-0-100-100-P-0-1S08859-1

a ListFonts request with the pattern:
-*-Times-*-R-Normal--*-120-100-100-P-*-ISO8859-1

would return:

-Linotype-Times-Bold-R-Normal--0-120-100-100-P-0-1ISO8859-1
-Linotype-Times-Medium-R-Normal--0-120-100-100-P-0-1ISO8859-1

ListFonts on a pattern containing wildcards that is not a well-formed XLFD pattern is only
required to return the list obtained by performing a simple pattern match against the global list. X
servers are permitted, but not required, to use a more sophisticated matching algorithm.

6. Polymorphic Fonts

Fonts that can be varied in ways other than size or resolution are palewr phic fonts. Multi-

ple Master Type 1 font programs are one type of a polymorphic font. Current examples of axes
along which the fonts can be varied are width, weight, and optical size; others might include for-
mality or x-height.

To support polymorphic fonts, special values indicating variability are defined for the following
XLFD fields:

WEIGHT_NAME

SLANT

SETWIDTH_NAME

ADD_STYLE_NAME

The string “0’ is the special polymorphicalue. Inthe WEIGHT_NAME, SLANT or
SETWIDTH_NAME field, “0” must be the entire field. There may be multiple polymorphic

27



X L ogical Font Description Coiventions X11,Release 6.4

vaues in the ADD_STYLE_NAME field. Theare surrounded by “['and ]’ and separated by
a Sace, as[0 0]". The polymorphic values may coexist with other data in the field. It is rec-
ommended that the polymorphic values be at the end of the ADD_STYLE_NAME field.

The font-matching algorithms for a font with polymorphic fields are identical to the matching
algorithms for a font with scalable fields.

There are three mefont properties to describe the axes of variation, AXIS_NAMES,
AXIS_LIMITS, and AXIS_TYPES. AXIS_NAMES is a list of all the names of the axes for the
font, separated by a null (0) byte. These names are suitable for presentation in a user interface.
AXIS_LIMITS is a list of integers, ta for each axis, giving the minimum and maximum allow-
able values for that axis. AXIS_TYPES isdikXIS_NAMES, but can be registered as having
specific semantics.

The axes are listed in the properties in the same ordenaapibear in the font name. There
matched with font name fields by looking for the special polymorphic values in the font name.

Examples:

The Adobe Myriad MM font program has width and weigresax\Wight can vary from 215 to
830, and width from 300 to 700.

Name:
-Adobe-Myriad MM-0-R-0--0-0-0-0-P-0-1SO8859-1
AXIS_NAMES:
Weight, Width
AXIS_LIMITS:
215, 830, 300, 700
AXIS_TYPES:
Adobe-Weight, Adobe-Width
Sample devied instance:
-Adobe-Myriad MM-412-R-575--*-120-100-100-P-*-1SO8859-1

The Adobe Minion MM ltalic font program has width, weight, and optical size axes.

Name:
-Adobe-Minion MM-0-1-0-[0]-0-0-0-0-P-0-1SO8859-1
AXIS_NAMES:
Weight, Width, Optical size
AXIS_LIMITS:
345, 620, 450, 600, 6, 72
AXIS_TYPES:
Adobe-Weight, Adobe-Width, Adobe-OpticalSize
Sample devied instance:
-Adobe-Minion MM-550-1-480-[18]-*-180-100-100-P-*-1SO8859-1

The Adobe Minion MM Swash lItalic font program has the same axesadunesy Thishows
how “[0]' " in the ADD_STYLE_NAME field can coexist with other words.

Name:
-Adobe-Minion MM-0-1-0-Swash[0]-0-0-0-0-P-0-1SO8859-1
AXIS_NAMES:
Weight, Width, Optical size
AXIS_LIMITS:
345, 620, 450, 600, 6, 72
AXIS_TYPES:

28



X L ogical Font Description Coiventions X11,Release 6.4

Adobe-Weight, Adobe-Width, Adobe-OpticalSize
Sample devied instance:
-Adobe-Minion MM-550-1-480-Swash[18]-*-180-100-100-P-*-1SO8859-1

The XYZ Abc font, a hypothetical font, has optical size and x-heigtdg.aXhisshows hw there
can be more than one polymorphic value in the ADD_STYLE_NAME field.

Name:
-XYZ-Abc-Medium-R-Normal-[0 0]-0-0-0-0-P-0-1SO8859-1
AXIS_NAMES:
Optical size, X-height
AXIS_LIMITS:
6, 72, 400, 600
AXIS_TYPES:
XYZ-OpticalSize, XYZ-Xheight
Sample devied instance:
-XYZ-Abc-Medium-R-Normal-[14 510]-*-140-100-100-P-*-1SO8859-1

If an axis allows ngative values, a client requests agakive value by using™’ (TILDE) as a
minus sign.

Axis types can be registered with the X Consortium, along with their semantics.

If a font name that contains the polymorphic value or a wildcard in a polymorphic field is pre-
sented to a font source, the font source is free to substiuiakm® that is corenient. Havever,

font sources should try to use a value that would be considenadl or medium for the particu-

lar font. For example, if an optical size variable is unresolved, the font source should provide a
value appropriate to the size of the font.

The result of specifying an out-of-range value for a polymorphic field is undefined. The font
source may treat this aBBadNameerror, treat the value as if it were the closegdealue, or
extrapolate to try to accommodate the value.

7. AffectedElements of Xlib and the X Protocol
The following X protocol requests must support the XLFDventions:

. OpenFont - for the name argument

. ListFonts — for the pattern argument

. ListFontsWithinfo - for the pattern argument

In addition, the following Xlib functions must support the XLFD wentions:
. XLoadFont — for the name argument

. XListFontsWithinfo - for the pattern argument

. XLoadQueryFont - for the name argument

. XListFonts - for the pattern argument

8. BDF Conformance

The bitmap font distribution and interchange format adopted by the X Consortium (BDF V2.1)
provides a general mechanism for identifying the font name of an X font and a variable list of

font properties, but it does not mandate the syntax or semantics of the font name or the semantics
of the font properties that might be provided in a BDF font. This section identifies the require-
ments for BDF fonts that conform to XLFD.

29



X L ogical Font Description Coiventions X11,Release 6.4

8.1. XLFD Conformance Requirements

A BDF font conforms to the XLFD specification if and only if the following conditions are satis-

fied:

. The value for the BDF itetRONT conforms to the syntax and semantic definition of a
XLFD FontName string.

. The FontName begins with the X~ontNameRegistry prefix: “~".
. All XLFD FontName fields are defined.

. Any FaontProperties provided conform in name and semantics to the )ddrbBProperty
definitions.

A simple method of testing for conformance would entail verifying thaFttreéNameRegistry

prefix is the string “-", that the number of field delimiters in the string and coded field values are
valid, and that each font property name either matches a standard XLFD property name or fol-
lows the definition of a prate property.

8.2. FONT_ASCENT, FONT_DESCENT, and DEFAULT _CHAR

FONT_ASCENTFONT_DESCENTand DEFAULT _CHAR are provided in the BDF specifica-
tion as properties that are wed to the XFontStruct by the BDF font compiler in generating the

X server-specific binary font encoding. If present, these properties shall comply with the follow-
ing semantic definitions.

8.2.1. FONT_ASCENT

FONT_ASCENT is an integer value (of type INT32) thakgithe recommended typographic
ascent abee the baseline for determining interline spacing. Specific glyphs of the font may
extend beyond this. If the current position point for Imis at [X,Y], then the origin of the next
linem= n+ 1 (allowing for a possible font change) is [X, Y + FONT_DESCENTnN +
FONT_ASCENTm].

FONT_ASCENT can be approximated if not provided as a font progedyrding to the follow-
ing algorithm:

if (FONT_ASCENT undefined) then
FONT_ASCENT = maximum ascent

where maximum ascent is the maximum ascentv@lh@ baseline) in pixels of gmglyph in the
font.

8.2.2. FONT_DESCENT

FONT_DESCENT is an integer value (of type INT32) thaegithe recommended typographic
descent belo the baseline for determining interline spacing. Specific glyphs of the font may
extend beyond this. If the current position point for Imis at [X,Y], then the origin of the next
line m= n+1 (allowing for a possible font change) is [X, Y + FONT_DESCENTnN +
FONT_ASCENTm].

The logical extent of the font is inclusi between the Y-coordinate values: Y — FONT_ASCENT
and Y + FONT_DESCENT + 1.

FONT_DESCENT can be approximated if not provided as a font propectyrding to the fol-
lowing algorithm:

30



X L ogical Font Description Coiventions X11,Release 6.4

if (FONT_DESCENT undefined) then
FONT_DESCENT = maximum descent

where maximum descent is the maximum descentyible baseline) in pixels of sglyph in
the font.

8.2.3. DERAULT _CHAR

The DERAULT _CHAR is an unsigned integer value (of type CARD32) that specifies thedhde

the default character to be used by the X server when an attempt is made to display an undefined
or nonexistent character in the font. (For a font using a 2-byte matrix format, tReoytee are
encoded in the integer as bytel * 65536 + byte2.) If theADERF CHAR itself specifies an

undefined or nonexistent character in the font, then no display is performed.

DEFAULT _CHAR cannot be approximated if not provided as a font property.

31



X L ogical Font Description Coiventions X11,Release 6.4

32



Table of Contents

1. Introduction. .

2. Requirements and GoaLs :

2.1. Provide Unique and Descrii Fcnt Names

2.2. Support Multiple Font Vendors and Character Sets
2.3. Support Scalable and Polymorphimts .o

2.4. Support Transformations and Subsettingauit§

2.5. Be Independent of X Server and Operating or File System Implementatlons.

2.6. Support Arbitrarily CompieFont Matching and Substitution .
2.7. Be Extensible Ce e e
3. X Logical Font Description.

3.1. FontName . . .

3.1.1. FontName Syntax . .

3.1.2. FontName Field Definitions .

3.1.2.1. FOUNDR Field .

3.1.2.2. FAMILY_NAME Field .

3.1.2.3. WEIGHT_NAME Field .

3.1.2.4. SLANT Field . . .

3.1.2.5. SETWIDTH_NAME Fleld

3.1.2.6. ADD_STYLE_NAME Field.

3.1.2.7. PIXEL_SIZE Field

3.1.2.8. POINT_SIZE Field . .

3.1.2.9. RESOLUTION_X and RESOLUTION Y Flelds
3.1.2.10. SRCING Field . . .

3.1.2.11. AVERAGE_WIDTH F|eId oo .
3.1.2.12. CHARSET_REGISTRand CHARSET ENCODING Flelds
3.1.3. Examples .

3.2. Font Properties .

3.2.1. FOUNDF . .

3.2.2. FAMILY_NAME .

3.2.3. WEIGHT_MME .

3.2.4. SLANT . . .

3.2.5. SETWIDTH_ MME

3.2.6. ADD_STYLE_MME

3.2.7. PIXEL_SIZE .

3.2.8. POINT_SIZE . .

3.2.9. RESOLUTION_X .

3.2.10. RESOLUTION_Y .

3.2.11. SRCING . .

3.2.12. AVERAGE_WIDTH .

3.2.13. CHARSET_REGISTR .

3.2.14. CHARSET_ENCODING.

3.2.15. MIN_SRCE .

3.2.16. NORM_SRCE

3.2.17. MAX_SRRCE

3.2.18. END_SRCE . . . .

3.2.19. NG_CAPITAL_ WIDTH .

=
W W R = o
fo RPN R BERPO 0P Nu~N0o0otatarbwwN PNV R L

RS

-
W



X L ogical Font Description Coiventions

3.2.20. AG_LOWERCASE_WIDTH
3.2.21. QQAD_WIDTH . .

3.2.22. FIGURE_WIDTH .

3.2.23. SUPERSCRIPT_X

3.2.24. SUPERSCRIPT_Y.

3.2.25. SUBSCRIPT_X.

3.2.26. SUBSCRIPT_Y. . .
3.2.27. SUPERSCRIPT_SIZE
3.2.28. SUBSCRIPT_SIZE

3.2.29. SMALL_CAP_SIZE . .
3.2.30. UNDERLINE_POSITION .
3.2.31. UNDERLINE_THICKNESS.
3.2.32. STRIKEOUT_ASCENT .
3.2.33. STRIKEOUT_DESCENT
3.2.34. IALIC_ANGLE

3.2.35. CAP_HEIGHT .

3.2.36. X_HEIGHT . . . :
3.2.37. RELAIVE_ SETWIDTH .
3.2.38. RELAIVE_WEIGHT .
3.2.39. WEIGHT . . .

3.2.40. RESOLUTION .

3.2.41. FONT . .

3.2.42. ACE_NAME

3.2.43. FULL_MME

3.2.44. COPYRIGHT.

3.2.45. NTICE . .

3.2.46. DESTIMTION

3.2.47. FONT_TYPE . .

3.2.48. FONT_VERSION . .
3.2.49. RASTERIZER_AME . . .
3.2.50. RASTERIZER_VERSION .
3.2.51. RAV_ASCENT . .

3.2.52. RAV_DESCENT

3.2.53. RAV_* . .

3.2.54. AXIS_ I\AMES

3.2.55. AXIS_LIMITS

3.2.56. AXIS_TYPES

3.3. Built-in Font Property Atoms
4. Matrix Transformations

4.1. Metrics and Font Properties

5. Scalable énts

6. Polymorphic Bnts .

7. Affected Elements of Xlib and the X Protocol
8. BDF Conformance .
8.1. XLFD Conformance Reqwrements .

8.2. FONT_ASCENTFONT_DESCENTand DEFAULT CHAR

8.2.1. FONT_ASCENT. .
8.2.2. FONT_DESCENT .
8.2.3. DERULT_CHAR

X11,Release 6.4

BB NDOIRNNNNNNNNONNNRRRIIRRRRSOQCO M MPMNRMNMNMNOO® @ (E W @EE DR



