
X Print Service Extension Library

Protocol Version 1.0

X Consortium Standard
 X Version 11 Release 6.4

A. Deininger
T. Gilg

J. Miller
H. Phinney
C. Prince

Hewlett-Packard Co.

K. Samborn
R. Swick

X Consortium, Inc.

Copyright (c) 1996 Hewlett-Packard Company
Copyright (c) 1996 International Business Machines, Inc.
Copyright (c) 1996 Sun Microsystems, Inc.
Copyright (c) 1996 Novell, Inc.
Copyright (c) 1996 Digital Equipment Corp.
Copyright (c) 1996 Fujitsu Limited
Copyright (c) 1996 Hitachi, Ltd.
Copyright (c) 1996 X Consortium, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to
promote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

X Window System is a trademark of X Consortium, Inc.

Table of Contents

1 X Print Service Overview ... 1
1.1 X Print Service Core Components.. 1
1.2 X Print Service Key Concepts .. 2
1.3 The Developer’s/Integrator’s View .. 3
1.4 The Printer Vendor’s View... 5
1.5 The System Administrator’s View ... 5

2 X Print Service Extension Library.. 7
2.1 Dependencies.. 7
2.2 Library Calls ... 7

2.2.1 Creating and Managing Print Contexts... 8
2.2.2 Obtaining the Screen for a Print Context.. 10
2.2.3 Obtaining Page Dimensions ... 10
2.2.4 Starting, Ending, and Canceling Jobs ... 12
2.2.5 Starting, Ending, and Canceling Documents.. 13
2.2.6 Getting and Putting Data into Documents .. 15
2.2.7 Starting, Ending, and Canceling Pages... 18
2.2.8 Selecting Input .. 19
2.2.9 Getting and Setting Attributes .. 20
2.2.10 Getting Printer Lists.. 23
2.2.11 Querying Version, Extension, and Screen.. 24
2.2.12 Getting PDM Parameters.. 25
2.2.13 Setting and Getting Locale Hinters... 26

X Version 11 Release 6.4

X Print Service Overview 1

1 X Print Service Overview

The X Print Service allows X imaging to non-display devices, such as printers. It is called the X“Print”
Service because the technology will primarily be applied to printing. The technology can, however, be
applied to a range of non-display devices. To date, print rendering technologies have evolved separately
from display rendering technologies. The thrust of the X Print Service is to converge the evolution of these
print and display technologies by extending the use of the X imaging model.

For example, today’s X environment provides a number of APIs and technologies for rendering to a display,
including:

• Xlib
• PEXlib
• X Imaging Extension
• OSF/Motif Toolkit
• Scalable Fonts

By retaining and supplementing these (and many more) standard APIs with one small print-specific API,
libXp, the X Print Service will allow an existing X application to render against a printer in addition to tradi-
tional display devices with small changes.

1.1 X Print Service Core Components

The X Print Service is made up of the following core components:

• X Print Extension - A new X-Server Extension and corresponding X Print Extension Protocol.

• libXp - The X Print Extension Library which provides an API for applications to the X Print Exten-
sion Protocol.

• X Print “DDX” Drivers - DDX-level drivers for the X Server that generate page description lan-
guages (PDL) such as PCL and Postscript.

• Configuration Files and Defaults - Configuration files that describe the capabilities of several
printer models, and other X Print Server configuration files.

The X Print Service is enhanced by the addition of the following components that are not included in this
standard:

• libDtPrint - A library of print-specific GUIs tuned to several reference page-description-languages
and printer models. See the Common Desktop Environment Specification, Version 2.

• dtpdm - Also known as the Dt Print Dialog Manager, a daemon-like process that provides second-
ary printer-specific GUIs that handle specific printer and spooler setup tasks. See the Common
Desktop Environment Specification, Version 2.

Several keywords and concepts used in this specification were borrowed from the abstract standard ISO
10175, the subsetted standard and implementation represented by POSIX 1387.4, and the yet further subset-
ted implementation represented by OSF Palladium. The X Print Service does not attempt to duplicate the
functionality or APIs provided by any of these print subsystems, or by any other print subsystems such as
System V lp or BSD lp. It does, however, attempt to allow implementations to work with these print sub-
system, and its architecture is open enough to allow tighter binding to a specific print subsystem in the
future.

2 December 15, 1997 X Print Service Overview

2 X Print Service Overview

Release 6.4 X Version 11

1.2 X Print Service Key Concepts

The center of the X Print Service is theX Print Server. To anX application, it should look and behave like a
regularX Server with the following enhancements.

Figure 0-1.X Print Service Key Concepts Diagram

When theX Print Server starts, it may read a configuration file for instructions concerning whichprint DDX
drivers to load and which printer names to support. It may also read some DDX dependent configuration
files.

At this point, theX Print Server knows which printers to support, and has access to printer model configura-
tion files that describe the capabilities of the printer models. Parallel to the printer model configuration files
are some printer attribute configuration files which can be modified if per-printer customization is desired.

When an application wishes to print, it can make a display connection to theX Print Server and ask to see
the list of available printers by way of theXpGetPrinterList request. Once the application has selected a
printer, it can create and set aPrint Context usingXpCreateContext andXpSetContext.

ThePrint Context represents the embodiment of the printer selected. It is initialized by theX Print Server at
XpCreateContext time to contain a printer’s default capabilities as well as the description of its overall capa-
bilities, and to maintain the state of settings on the printer, the state of rendering against the printer, and the
rendered output. The Print Context affects how theDDX driver generates its page description language
(PDL), and how the PDL is submitted to a spooler. The Print Context may also affect fonts and other ele-

X Application

DIX + OS +

Print DDX

Print Extension

Print Contexts

Fonts + Other

Print Spooler

Print Dialog Manager

XpGetPrinterList
XpCreateContext
XpStartJob
...x rendering...
XpEndJob

XpSetContext
XpGetAttributes
XpSetAttributes

XpNotifyPdm

Printers config file(config needed)
Printer model files(provided by printer vendors)
Printer attribute files(some config needed)
DDX config files(provided by DDX vendors)

Job, Document & Page attributes
Server & Printer attributes

X Version 11 Release 6.4

X Print Service Overview 3

ments in thedix layer of theX Print Server. The most outwardly visible aspects of a Print Context are the
attribute pools contained within it. These attributes express and control server, printer, job, document and
page options. Attribute pools can be accessed and modified usingXpGetAttributes andXpSetAttributes.

Because Print Contexts can be shared among processes, applications can enlist the help of asecondary pro-
cess to manipulate print options in the Print Context rather than taking on the task directly. The convenience
routineXpGetPdmStartParams is provided to enlist the help of thePrint Dialog Manager. By externalizing
this task, new configuration dialogs and capabilities can be added without having to modify individual appli-
cations.

In most cases, the dialogs displayed by aPrint Dialog Manager will be tuned to the capabilities of the corre-
spondingDDX driver. It is possible to have multiplePrint Dialog Managers, each one responsible for han-
dling setup tasks for a different PDL.

Once the application has, with or without aPrint Dialog Manager’s help, set options within the Print Con-
text, the application can make calls such asXpStartJob to delineate jobs, documents and pages within a
sequence of normal X calls. Conceptually, ajob is a collection ofdocuments, where each document is in turn
a collection ofpages. WhenXpEndJob is called, the resulting PDL is either sent to a print spooler or can be
retrieved by the application.

1.3 The Developer’s/Integrator’s View

The developer or integrator is the person who will modify anX application to use the X Print Service.

From the application’s perspective, it can attach to one of two nearly identical X Servers (see figure pointsA
andB in the following diagram). The primary difference is that when connected to the X Print Server addi-
tional calls can be made to delineate print “jobs”, “documents” and “pages”, and to create and modify a Print
Context. The functions of the two servers may be combined into a single process, but applications will usu-
ally find it convenient to open separate connections for video and print rendering.

Conceptually, a “job” is a collection of “documents”, where each document is in turn a collection of
“pages”. Depending on the print facilities underlying theX Print Server (for example, a print management
system conforming to POSIX 1387.4), these delineations may be translated into tangible functionality.

4 December 15, 1997 X Print Service Overview

4 X Print Service Overview

Release 6.4 X Version 11

Figure 0-2. Developer’s/Integrator’s View

A simple X application supplemented with some of the libXp routines might look like this:

/*
 * Connect to the X Print Server
 */
pdpy = XOpenDisplay(printServerName);
/*
 * See if the printer “myLaser” is available
 */
plist = XpGetPrinterList(pdpy, “myLaser”, &plistCnt);

/*
 * Initialize a print context representing “mylaser”
 */
pcontext = XpCreateContext(pdpy, plist[0].name);
XpFreePrinterList(plist);
/*
 * Possibly modify attributes in the print context
 */
attrPool = XpGetAttributes(pdpy, pcontext, poolType);
/* twiddle attributes */
XpSetAttributes(pdpy, pcontext, poolType, attrPool, XPAttrMerge);

X Video Server X Print Server

X Application

Dt Print Dialog Manager

Application
Display Window

Application
Print Window

Coordinated
Print Setup
GUIs

Printer Spooler Subsystem

A B

E

C

D

X Version 11 Release 6.4

X Print Service Overview 5

/*
 * Set a print context, then start a print job against it
 */
XpSetContext(pdpy, pcontext);
XpStartJob(pdpy, XPSpool);
 /*
 * Generate the first page
 */
 pscreen = XpGetScreenOfContext(pdpy, pcontext);
 pwin = XCreateWindow(pdpy, pscreen,);

XpStartPage(pdpy, pwin, True);
 usual_rendering_stuff(pdpy, pscreen, pwin);

XpEndPage(pdpy);
 /*
 * Generate more pages, and so on...
 */

XpStartPage(pdpy, pwin, True);
 more_rendering_stuff(pdpy, pscreen, pwin);

XpEndPage(pdpy);
/*
 * End the print job - the final results are sent by the
 * X Print Server to the spooler subsystem
 */
XpEndJob(pdpy);
XpDestroyContext(pdpy, pcontext);

1.4 The Printer Vendor’s View

The printer vendor is the person or company that wishes to enhance the X Print Service to support a new
printer model or a new page description language. Enhancements may range from simple ones such as pro-
viding new printer model configuration files, to more complex ones such as providing a newDDX driver and
correspondingPrint Dialog Manager.

The major elements within the X Print Service that can be enhanced are:

• TheDDX driver layer in the XPrint Server. New DDX drivers can be added to support new page
description languages, provide more capabilities, or provide tighter integration with a given printer
model.

• ThePrint Dialog Manager, either as a new executable or an enhancement to an existing Print Dia-
log Manager. It can be used to provide dialogs that expose highly printer-specific options to the user
and that communicate with theDDX driver by way of the Print Context attributes.

• The printer model files. These files describe the capabilities and defaults of printers based on the
model.

1.5 The System Administrator’s View

The system administrator is the person who configures and maintains the system processes and files associ-
ated with the X Print Service. An X Print Service implementation will typically have built-in fallback
defaults for nearly everything, but in custom environments it will be configured considerably.

6 December 15, 1997 X Print Service Overview

6 X Print Service Overview

Release 6.4 X Version 11

The X Print Service architecture has been designed so that support for specific page description languages
and spooler subsystems is isolated to theX Print Server’s DDX layer and a corresponding layer in thePrint
Dialog Manager. Using this architecture support for new page description languages and spooler subsystems
can be added centrally, without reconfiguring applications.

Support information for specific types of printers and descriptions of the printer topology is typically stored
in centralized configuration files, which are maintained by theX Print Server. Using libXp, the configuration
information can be retrieved both by applications and by theDt Print Dialog Manager.

The key areas of configuration and system administration are:

• X Print Service Startup - Deciding whether a “per-user ” or “global service” model of operation is
desired. In the per-user model, a separate X Print Server process with its own Print Dialog Manager
exists for each desktop. In the global service model, a centralized X Print server process services
multiple users in a workgroup. Typically, there may be one such centralized process per shared
printer.

• X Print Server Startup - Configuration files to control which printers are available.

• Attribute files - A collection of files that define the full range of capabilities of the printers accessed
by theX Print Servers (e.g. 150, 300 and 600dpi supported), and default values (e.g. use 300dpi).

• Printer Model files - A collection of files typically supplied by a printer vendor to describe the capa-
bilities of specific printer models (e.g. Laserjet 4si). These files will generally not require reconfig-
uration, but may be useful to reference when configuring files that describe the actual physical
printers available (e.g. eliminate the duplex printing option because the printer’s duplexer isn’t
working).

X Version 11 Release 6.4

X Print Service Extension Library 7

2 X Print Service Extension Library

These functions provide access to the X Print Protocol Extension to X. In addition, some convenience func-
tions over the X Print Extension Protocol and core X Protocol are provided which make it easier for an
application programmer to use the X Print Service.

The X Print Service Extension Library concentrates on print job, document and page management. It
includes the following calls:

• XpCreateContext
• XpSetContext
• XpGetContext
• XpDestroyContext
• XpGetScreenOfContext
• XpGetPageDimensions
• XpStartJob
• XpEndJob
• XpCancelJob
• XpStartDoc
• XpEndDoc
• XpCancelDoc
• XpPutDocumentData
• XpGetDocumentData
• XpStartPage
• XpEndPage
• XpCancelPage
• XpSelectInput
• XpInputSelected
• XpGetAttributes
• XpSetAttributes
• XpGetOneAttribute
• XpGetPrinterList
• XpFreePrinterList - convenience routine
• XpRehashPrinterList
• XpQueryVersion
• XpQueryExtension - convenience routine
• XpQueryScreens
• XpGetPdmStartParams - convenience routine
• XpSetLocaleHinter
• XpGetLocaleHinter

2.1 Dependencies

The X Print Service is an extension to the core X protocol, and cannot be used outside of the X environment.

2.2 Library Calls

The header fileX11/extensions/Print.h contains prototypes for the following routines.

8 December 15, 1997 X Print Service Extension Library

8 X Print Service Extension Library

Release 6.4 X Version 11

2.2.1 Creating and Managing Print Contexts

UseXpCreateContext to create and initialize a new print context.

XPContext XpCreateContext (display, printer_name)
Display *display;
char *printer_name;

display Specifies a pointer to the Display structure; returned from XOpenDisplay.
printer_name The name of a printer on display. String encoded as COMPOUND_TEXT.

XpCreateContext creates a new print context that is initialized with the default printer attributes and other
information available for printer_name on display. A print context maintains the printer name, print
attributes, font capabilities, print (rendering) state and results, and is the object upon which the Xp calls act.

If the library fails to generate a new print context-id, a value ofNone is returned, otherwise a print context-id
is always returned. If printer_name is invalid, aBadMatch is generated later by theX Print Server.

A call to XpGetPrinterList will return a valid list of values for printer_name. All printer name values in the X
Print Service are encoded as COMPOUND_TEXT (of which the ISO-8859-1 code-set is a proper subset).

As soon as a print context is created, the print attributes in it can be accessed and modified by calling
XpGetAttributes andXpSetAttributes, and the event selections in it can be modified by callingXpSelectInput and
XpInputSelected. Other Xp calls that explicitly take a print context-id as a parameter will operate directly on
that print context. All Xp and X calls without a print context-id parameter (for example, all rendering ori-
ented calls likeXpStartJob andXDrawLine) require that a print context be set on the display connection (see
XpSetContext). Failure to set a print context prior to calling a print-context-dependent call will result in the
generation of anXPBadContext error.

The XPContext returned byXpCreateContext is an XID, and can be used to set the print context on display
connections by callingXpSetContext. The XPContext id can be shared between processes and display con-
nections. It is the responsibility of the clients sharing a print context to coordinate their usage of the context;
for example they must ensure that in-use print contexts are not prematurely destroyed.

The context_id remains valid for all clients until 1) the client creating the print context closes its display con-
nection, or 2) any client callsXpDestroyContext. The context_id can be kept valid after the creating client’s
display connection closes ifXSetCloseDownMode is called on display withRetainPermanent or RetainTempo-

rary.

After creating a print context, and possibly modifying theXPDocAttr attributedocument-format using a value
from the list of available formats shown in theXPPrinterAttr attributedocument-formats-supported, the applica-
tion must query theX Print Server via XpGetScreenOfContext for the screen that has been associated with the
print context, and then create all server resources that will be used in the print job on that screen. Failure to
do so will result in undefined behavior.

WhenXpCreateContext is called, theclient’s locale (seeXpSetLocaleHinter) is included in the request as a
“hint” to theX Print Server. If supported by the implementation, theX Print Server will use the hint to ini-
tialize the attribute pools with any localized attribute values (for example, the human readableXPPrinterAttr

attribute “descriptor” may be available in several different languages, and the hint will be used to select one).
If the X Print Server cannot understand the hint, theX Print Server chooses a default value.

This function can generate aBadMatch error if the specified printer_name does not exist on display, or if the
print server could not interpret the code set specified in printer_name.

UseXpSetContext to set or unset a print context with the specified display connection to theX Print Server.

void XpSetContext (display, print_context)
Display *display;

X Version 11 Release 6.4

X Print Service Extension Library 9

XPContextprint_context;
display Specifies a pointer to the Display structure; returned from XOpenDisplay.
print_context A pre-existing print context on the same X Server.

XpSetContext sets the print context for a display connection. All subsequent print operations that do not
explicitly take a print context-id (for example,XpStartJob) on display will use and act upon the print context
set by this call, until the print context is unset orXpDestroyContext is called. The print context can be set and
used on multiple jobs, if not destroyed.

If print_context isNone, XpSetContext will unset (disassociate) the print context previously associated with
display. If there was no previously associated print context, no action is taken. The content of the formerly
associated print context is not affected by this call, and other display connections may continue to use the
print context.

Since font capabilities can vary from printer to printer,XpSetContext may modify the list of available fonts
(seeXListFonts) on display, and the actual set of usable fonts (seeXLoadFont). A unique combination of fonts
may be available from within a given print context; a client should not assume that all the fonts available
when no print context is set will be available when a print context is set.

When a print context is set on a display connection, the default behavior ofListFonts andListFontsWithInfo is
to list all of the fonts normally associated with the X print server (i.e. fonts containing glyphs) as well as any
internal printer fonts defined for the printer. Thexp-listfonts-modes attribute is provided so that applications
can control the behavior ofListFonts andListFontsWithInfo and is typically used to show just internal printer
fonts. Using only internal printer fonts is useful for performance reasons; the glyphs associated with the font
are contained within the printer and do not have to be downloaded.

If the value ofxp-listfonts-modes includesxp-list-glyph-fonts, ListFonts andListFontsWithInfo will include all of
the fonts available to the server that have glyphs associated with them. If the value ofxp-listfonts-modes

includesxp-list-internal-printer-fonts, thenListFonts andListFontsWithInfo will include all of the fonts defined as
internal printer fonts.

When the print context is unset orXpDestroyContext is called, the available fonts on display revert back to
what they were previously.

XpSetContext can generate anXPBadContext error.

UseXpGetContext to get the current print context-id for a display connection.

XPContext XpGetContext (display)
Display *display;

display Specifies a pointer to the Display structure; returned from XOpenDisplay.

XpGetContext returns the id of the current print context associated with display. If a print context has not been
set, a value ofNone is returned.

UseXpDestroyContext to unset and destroy a print context.

void XpDestroyContext (display, print_context)
Display *display;
XPContextprint_context;

display Specifies a pointer to the Display structure; returned from XOpenDisplay.
print_context Specifies the print context to destroy.

10 December 15, 1997 X Print Service Extension Library

10 X Print Service Extension Library

Release 6.4 X Version 11

XpDestroyContext closes any outstanding associations between the print context and any display connections,
and then destroys the print context. All display connections using the print context will no longer be able to
access the print context.

Destroying a print context will cause any in-progress pages, documents and jobs to be canceled within theX
Print Server.

XpDestroyContext can generate anXPBadContext error.

2.2.2 Obtaining the Screen for a Print Context

UseXpGetScreenOfContext to obtain a pointer to the screen associated with the specified print context.

Screen *XpGetScreenOfContext (display, print_context)
Display *display;
XPContextprint_context;

display Specifies a pointer to the Display structure; returned from XOpenDisplay.
print_context A pre-existing print context. This argument is currently ignored, but must be specified.

XpGetScreenOfContext returns the screen that is associated with the current print context of display. This call
must be made afterXpSetContext to determine which specific screen other X resources must be created on.

Each printer supported by a print server is associated with exactly one of the screens returned in the connec-
tion setup reply.

XpGetScreenOfContext will generate anXPBadContext error if print_context is invalid.

2.2.3 Obtaining Page Dimensions

UseXpGetPageDimensions to get the page dimensions for the current printer settings.

Status XpGetPageDimensions (display, print_context, width, height, reproducible_area)
Display *display;
XPContextprint_context;
unsigned short *width;
unsigned short *height;
XRectangle*reproducible_area;

display Specifies a pointer to the Display structure; returned from XOpenDisplay.
print_context A pre-existing print context.
width Returns the pixel width of the page currently selected in the print context.
height Returns the pixel height of the page currently selected in the print context.
reproducible_areaReturns the net reproducible area of the page currently selected in the print context,

expressed in pixel offsets and dimensions.

XpGetPageDimensions considers the medium currently selected in the print context (derived in part from
default-medium, default-input-tray, input-trays-medium, content-orientation, default-resolution), and returns
the total width and height of the page in pixels, and the net reproducible area within the total width and
height. The net reproducible area is the portion of the page on which the printer is physically capable of
placing ink.

XpGetPageDimensions returns a Status of0 on failure, or1 on success.

XpGetPageDimensions can generate anXPBadContext error.

X Version 11 Release 6.4

X Print Service Extension Library 11

UseXpSetImageResolution to set the resolution for subsequentPutImage requests.

Bool XpSetImageResolution (display, print_context, image_res, prev_res_return)
Display *display;
XPContextprint_context;
int image_res;
int *prev_res_return;

display Specifies a pointer to the Display structure.
print_context Specifies the print context on which to set the resolution.
image_res Specifies the image resolution in pixels per inch.
prev_res_return Returns the previous image resolution in pixels per inch.

XpSetImageResolution returnsTrue if the printer server allowed the resolution to be set, otherwiseFalse is
returned.

XpSetImageResolution sets the resolution for subsequentPutImage requests to the screen of the specified print
context. If the return value isFalse, then the print server does not support image scaling for the particular res-
olution given the current configuration of the printer, and the application is responsible for any desired scal-
ing. If the return value isTrue, then the contents of any subsequentPutImage request to a Pixmap or to a
Window on the screen of the specified print context will automatically be scaled as part of thePutImage

request. The scale factor is:

default_printer_resolution / image_res

Where default_printer_resolution is the current value of that page attribute. Only the image itself is scaled
(meaning the effective width and height of the image change), the dst-x and dst-y parameters toPutImage are
not altered.

As a special case, a value of zero for image_res resets the resolution to automatically track the printer reso-
lution; in this case (which is also the default setting for a newly created print context), subsequent images
will not be scaled.

If the return value isTrue and prev_res_return is a non-NULL pointer, then the previous image resolution that
was set for the print context is stored in prev_res_return.

XpSetImageResolution returnsFalse immediately if image_res is negative or greater than 65535.

XpSetImageResolution can generate anXPBadContext error.

UseXpGetImageResolution to get the current image resolution for a print context.

int XpGetImageResolution (display, print_context)
Display *display;
XPContextprint_context;

display Specifies a pointer to the Display structure.
print_context Specifies the print context on which to get the resolution.

XpGetImageResolution returns the current image resolution for the specified print context. A value of zero
means the resolution automatically tracks the printer resolution. If the request fails in some way, a negative
value is returned.

XpGetImageResolution can generate anXpBadContext error.

12 December 15, 1997 X Print Service Extension Library

12 X Print Service Extension Library

Release 6.4 X Version 11

2.2.4 Starting, Ending, and Canceling Jobs

UseXpStartJob to indicate the beginning of a single print job.

void XpStartJob(display, output_mode)
Display *display;
XPSaveDataoutput_mode;

display Specifies a pointer to the Display structure; returned from XOpenDisplay.
output_mode Specifies how the printer output data is to be handled.

XpStartJob signals the beginning of a new print job.

If output_mode isXPSpool theX Print Server will automatically spool the printer output. If output_mode is
XPGetData, then theX Print Server buffers the document output for retrieval byXpGetDocumentData. In this
case, the print server suspends processing further requests on this print context until some other client sends
XpGetDocumentData. Subsequent operations that use the print context may be suspended at any time pending
the processing ofXpGetDocumentData replies to read any buffered output.

TheXPSaveData values for output_mode are defined in <X11/extensions/Print.h>.

#define XPSpool 1 /* Job data sent to spooler */
#define XPGetData 2 /* Job data via XpGetDocumentData */

XpStartJob sets the job-owner job attribute (included in the XPJobAttr pool) immediately prior to issuing the
PrintStartJob request. On POSIX systems, the job-owner attribute is set using getpwuid_r on the result of
getuid. This attribute may be used by theX Print Server to identify the user to the spooler.

All changes to theXPJobAttr attribute pool (seeXpSetAttributes) must be made prior to callingXpStartJob, after
which anXPBadSequence will be generated if changes are attempted, untilXpEndJob is called.

For clients selectingXPPrintMask (seeXpSelectInput), the eventXPPrintNotify will be generated with its detail
field set toXPStartJobNotify when theX Print Server has completed thePrintStartJob request.

Conceptually, a “Job” is a collection of “Documents”, where each Document is in turn a collection of
“Pages”. Depending on the print facilities underlying theX Print Server, these delineations may be mapped
by a DDX driver into real functionality (e.g. see the server attributemultiple-documents-supported).

XpStartJob can generate one of the following errors:

XPBadContext A valid print context-id has not been set prior to making this call.

XPBadSequence The function was not called in the proper order with respect to the other X Print
Service Extension calls (for example,XpEndJob prior toXpStartJob).

BadValue The value specified for output_mode is not valid.

UseXpEndJob to indicate the ending of a single print job.

void XpEndJob(display)
Display *display;

display Specifies a pointer to the Display structure; returned from XOpenDisplay.

XpEndJob signals the end of a print job. Any accumulated print data that remains is either sent to the printer
or made available toXpGetDocumentData.

For clients selectingXPPrintMask (seeXpSelectInput), the eventXPPrintNotify will be generated with its detail
field set toXPEndJobNotify when theX Print Server has completed the request.

X Version 11 Release 6.4

X Print Service Extension Library 13

XPEndJobNotify indicates that the document data has been sent to the spooler (output_mode=XPSpool) or
been completely sent to the client viaXpGetDocumentData (output_mode=XPGetData) - it does not mean that
the document data has been completely received and processed by the client or spooler.

XpEndJob can generate one of the following errors:

XPBadContext A valid print context-id has not been set prior to making this call.

XPBadSequence The function was not called in the proper order with respect to the other X Print
Service Extension calls (for example,XpEndJob prior toXpStartJob).

UseXpCancelJob to cancel a single print job.

void XpCancelJob(display, discard)
Display *display;
Bool discard;

display Specifies a pointer to the Display structure; returned from XOpenDisplay.
discard WhenTRUE, specifies that allXPPrintNotify events should be discarded.

XpCancelJob cancels an in-progress job. If the job was started with output_modeXPGetData then the data
stream toXpGetDocumentData is terminated. For many page description languages such arbitrary termination
may invalidate the output.

If the job was started with output_modeXPSpool then depending on the driver and spooler configuration the
entire job may be canceled or a partial job may be generated.

If discard is TRUE, allXPPrintNotify events with a detail field ofXPEndPageNotify, XPEndDocNotify, or XPEnd-

JobNotify are discarded beforeXpCancelJob returns.

For clients selectingXPPrintMask (seeXpSelectInput), the eventXPPrintNotify will be generated with its detail
field set toXPEndJobNotify.

XpCancelJob can generate one of the following errors:

XPBadContext A valid print context-id has not been set prior to making this call.

XPBadSequence The function was not called in the proper order with respect to the other X Print
Service Extension calls (for example,XpEndJob prior toXpStartJob).

2.2.5 Starting, Ending, and Canceling Documents

UseXpStartDoc to indicate the beginning of a print document.

void XpStartDoc(display, type)
Display *display;
XPDocumentTypetype;

display Specifies a pointer to the Display structure; returned from XOpenDisplay.
type Specifies the type of document. It can be eitherXPDocRaw or XPDocNormal.

XpStartDoc signals the beginning of a new print document.

If type isXPDocRaw, then the client will provide all the data for the resulting document usingXpPutDocument-

Data; theX Print Server will not write any data into the resulting document. CallingXpStartPage in a
XPDocRaw document will generate an XPBadSequence error. For more information, seeXpPutDocumentData.

14 December 15, 1997 X Print Service Extension Library

14 X Print Service Extension Library

Release 6.4 X Version 11

If type isXPDocNormal, then theX Print Server will generate document data, and depending on the DDX
driver, can incorporate additional data fromXpPutDocumentData into the output. For more information, see
XpPutDocumentData.

TheXPDocumentType values are defined in <X11/extensions/Print.h>:

#define XPDocNormal 1 /* Doc data handled by Xserver*/
#define XPDocRaw 2 /* Doc data passed through Xserver*/

All changes to theXPDocAttr attribute pool (seeXpSetAttributes) must be made prior to callingXpStartDoc,
after which an XPBadSequence will be generated if changes are attempted, untilXpEndDoc is called.

The application is not required to callXpStartDoc andXpEndDoc in the process of printing. The “document”
delineation may not be useful from the application’s or spooler’s perspective, hence is optional. If
XpStartPage is called immediately afterXpStartJob then a syntheticXpStartDoc with XPDocNormal will be
assumed by theX Print Server prior toXpStartPage (i.e. theXPStartDocNotify andXPStartPageNotify events will
have the same sequence number). Likewise, ifXpEndJob is called immediately afterXpEndPage then a syn-
theticXpEndDoc will be assumed by theX Print Server prior toXpEndJob (i.e., the XPEndDocNotify and
XPEndJobNotify events will have the same sequence number).

For clients selectingXPPrintMask (seeXpSelectInput), the eventXPPrintNotify will be generated with its detail
field set toXPStartDocNotify.

XpStartDoc can generate one of the following errors:

XPBadContext A valid print context-id has not been set prior to making this call.

XPBadSequence The function was not called in the proper order with respect to the other X Print
Service Extension calls (example,XpStartDoc prior toXpStartJob).

BadValue The value specified for type is not valid.

UseXpEndDoc to indicate the ending of a print document.

void XpEndDoc(display)
Display *display;

display Specifies a pointer to the Display structure; returned from XOpenDisplay.

XpEndDoc signals the end of a print document. All resulting document data is assembled and combined with
data previously sent byXpPutDocumentData.

For clients selectingXPPrintMask (seeXpSelectInput), the eventXPPrintNotify will be generated with its detail
field set toXPEndDocNotify.

XpEndDoc can generate one of the following errors:

XPBadContext A valid print context-id has not been set prior to making this call.

XPBadSequence The function was not called in the proper order with respect to the other X Print
Service Extension calls (example,XpEndDoc prior toXpStartDoc).

UseXpCancelDoc to cancel a print document.

void XpCancelDoc(display, discard)
Display *display;
Bool discard;

display Specifies a pointer to the Display structure; returned from XOpenDisplay.
discard WhenTRUE, specifies that allXPPrintNotify events with a detail ofXPEndPageNotify or

XPEndDocNotify should be discarded.

X Version 11 Release 6.4

X Print Service Extension Library 15

XpCancelDoc cancels an in-progress document. If the job was started with output_modeXPGetData then the
data stream toXpGetDocumentData is interrupted; no further data for the current document will be generated
but data for subsequent documents can be generated. For many page description languages such arbitrary
termination may invalidate the output.

If the job was started with output_modeXPSpool then depending on the driver and spooler implementation
the entire document may be canceled or a partial document may be generated.

If discard isTrue all XPPrintNotify events with a detail field ofXPEndPageNotify or XPEndDocNotify are dis-
carded beforeXpCancelDoc returns.

For clients selectingXPPrintMask (seeXpSelectInput), the eventXPPrintNotify will be generated with its detail
field set toXPEndDocNotify.

XpCancelDoc can generate one of the following errors:

XPBadContext A valid print context-id has not been set prior to making this call.

XPBadSequence The function was not called in the proper order with respect to the other X Print
Service Extension calls (example,XpEndDoc prior toXpStartDoc).

2.2.6 Getting and Putting Data into Documents

UseXpPutDocumentData to send and incorporate data into the output.

void XpPutDocumentData(display, drawable, data, data_len, doc_fmt, options)
Display *display;
Drawabledrawable;
unsigned char*data;
int data_len;
char*doc_fmt;
char*options;

display Specifies a pointer to the Display structure; returned from XOpenDisplay.
drawable Specifies the destination drawable for rendering.
data Specifies the device-specific data sent.
data_len Specifies the number of bytes in data.
doc_fmt Specifies the type of data sent. See below for valid values. String limited to XPCS

characters.
options Specifies DDX driver dependent options. String limited to XPCS characters.

Depending on type forXpStartDoc, XpPutDocumentData has two modes of operation.

In XPDocRaw mode,XpPutDocumentData sends data directly to the output, and drawable must beNone, else a
BadDrawable error will be generated. TheX Print Server does not emit document or page control codes into
the output, and data is passed through unmodified. This is useful for sending previously constructed and
complete documents using theX Print Server’s job control and submission capabilities. The printer attribute
xp-raw-formats-supported defines the valid values for doc_fmt in this mode, with unsupported values for
doc_fmt causing aBadMatch error to be generated.

In XPDocNormal mode,XpPutDocumentData sends data to theX Print Server, and depending on the DDX
driver implementation, integrates data into the output. The parameters doc_fmt and options describe the for-
mat of data which guides the DDX driver in interpreting data. The printer attributexp-embedded-formats-sup-

ported defines the valid values for doc_fmt in this mode, with unsupported values for doc_fmt causing a
BadMatch error to be generated.

If doc_fmt is not in eitherxp-raw-formats-supported or xp-embedded-formats-supported aBadValue error is gen-
erated.

16 December 15, 1997 X Print Service Extension Library

16 X Print Service Extension Library

Release 6.4 X Version 11

Depending on the DDX driver implementation in use,XpPutDocumentData might be used, for example, to
send a simple text file to a Postscript DDX driver that is capable of wrapping the appropriate document and
page control constructs around the text so that it can be printed on a Postscript printer. Likewise, Encapsu-
lated Postscript Files might be handled. Another use could be to send a TIFF file to a PCL DDX driver that
can convert the image from TIFF into PCL and then integrate it into the current PCL output.

There is no limit to the value of data_len.XpPutDocumentData automatically decomposes the call into multi-
ple protocol requests to make sure that the maximum request size of the server is not exceeded.

XpPutDocumentData can generate one of the following errors:

XPBadContext A valid print context-id has not been set prior to making this call.

XPBadSequence The function was not called in the proper order with respect to the other X Print
Service Extension calls (for example,XpPutDocumentData prior toXpStartDoc).

BadValue The value specified for doc_fmt is not supported.

BadMatch The value specified for doc_fmt is not valid for the current document type or the
value specified for drawable is not valid for the print context and print screen.

BadDrawable The value specified for drawable is not valid.

UseXpGetDocumentData to setup callbacks to retrieve document data from a print context.

Status XpGetDocumentData(data_display, context, save_proc, finish_proc, client_data)
Display *data_display;
XPContext context;
XPSaveProcsave_proc;
XPFinishProcfinish_proc;
XPointerclient_data;

data_display Specifies a pointer to the Display structure; returned from XOpenDisplay.
context The print context from which document data is to be retrieved.
save_proc A procedure to be registered and called repeatedly to save blocks of document data.
finish_proc A procedure to be registered and called once when the print job has completed and all

document data has been sent to save_proc.

client_data Specifies client data to be passed to save_proc and finish_proc when called.

The return value is NULL if XpGetDocumentData encounters an error, non-NULL otherwise.

XpGetDocumentData registers callbacks that allow a “consumer” to continuously retrieve document data gen-
erated in theX Print Server by a separate “producer”, where both are referencing the same print context by
way ofdifferent display connections. ThoughXpGetDocumentData retrieves document data, its effect is
bounded byXpStartJob andXpEndJob. XpGetDocumentData always returns immediately; if an error occurs and
the callbacks cannot be registered, the return status is 0, else the return status is non-zero and the callbacks
will be called sometime after the return fromXpGetDocumentData. This producer/consumer exchange is set
up whenXpStartJob is called by the producer with output_mode equalXPGetData, and is subsequently initi-
ated whenXpGetDocumentData is called by the consumer. ThoughXpStartJob will return immediately, further
attempts to use the producer’s display connection may be blocked by theX Print Server until XpGetDocu-

mentData is called on the consumer’s display connection.

OnceXpGetDocumentData is called on data_display, data_display cannot be used for any additional X
requests until finish_proc is called and returns. Further, data_display cannot be closed from within save_proc
or finish_proc. To avoid deadlock, the producer and consumer must run in separate processes, or in separate
threads of a single process.

The save_proc is defined in <X11/extensions/Print.h> as:

X Version 11 Release 6.4

X Print Service Extension Library 17

typedef void (*XPSaveProc)(Display *data_display,
 XPContext context,
 unsigned char *data,
 unsigned int data_len,
 XPointer client_data);

The save_proc is repeatedly called on each chunk of document data sent by theX Print Server until either
XpEndJob or XpCancelJob is called. data_len specifies the number of bytes in data. The memory for data itself
is owned by the library, so save_proc should copy data to another location before returning. After the last
block of data has been delivered to save_proc, finish_proc is called with final status.

The finish_proc is defined in <X11/extensions/Print.h> as:

typedef void (*XPFinishProc)(Display *data_display,
 XPContext context,
 XPGetDocStatus status,
 XPointer client_data);

After XpGetDocumentData successfully registers the callbacks, any generated X errors (for example,BadAlloc)
or Xp errors (for example,XPBadContext or XPBadSequence) that are the result ofXpGetDocumentData will
cause the Xlib error handler to be invoked, and then will cause finish_proc to be called with a status of
XPGetDocError. Any other activities (for example, a separate process destroying the print context) that prove
fatal to the progress ofXpGetDocumentData will also cause finish_proc to be called with a status ofXPGet-

DocError.

If XpGetDocumentData is called prior toXpStartJob, then anXPBadSequence error is generated and finish_proc
is called withXPGetDocError. If XpGetDocumentData is called afterXpStartJob and output_mode was specified
asXPSpool, then anXPBadSequence error is generated and finish_proc is called withXPGetDocError. If the
producer starts generating data and the consumer cannot consume data quickly enough, then the producer’s
display connection will be blocked by theX Print Server.

Until XpEndJob or XpCancelJob is called, it is possible that variousXPPrintNotify events will be generated (for
example, a page has been canceled). The data passed to save_proc is not necessarily organized according to
the consumer’s requests or any generated events, and its consistency is guaranteed only if the entire job com-
pletes successfully (i.e. without being canceled or generating an error). Consumers may want to select for
XPPrintNotify events and terminate save processing upon receipt of cancellation events.

When finish_proc is called, sometime afterXpGetDocumentData is called and returns, status gives the com-
pletion status of the job and is defined in <X11/extensions/Print.h> as:

#define XPGetDocFinished 0 /* normal termination */
#define XPGetDocSecondConsumer 1 /* setup error */
#define XPGetDocError 2 /* progress error */

XPGetDocFinshed indicates that all intended document data has been delivered by way of save_proc. All can-
cellation events are guaranteed to have arrived by the time finished_proc is called, and they should be taken
into consideration for evaluating the validity of the document data returned.

XPGetDocSecondConsumer indicates that a consumer had already been established for the print context. The
X Print Server only supports one consumer per print context.

XPGetDocError indicates that an error has been generated (for example,XPBadContext or XPBadSequence) and
that no further document data will be delivered by theX Print Server to save_proc.

After finish_proc returns, save_proc and finish_proc are unregistered and will no longer be called.

XpGetDocumentData can generate one of the following errors:

XPBadContext The specified print context-id is not valid.

18 December 15, 1997 X Print Service Extension Library

18 X Print Service Extension Library

Release 6.4 X Version 11

XPBadSequence The function was not called in the proper order with respect to the other X Print
Service Extension calls (for example,XpGetDocumentData prior toXpStartJob).

2.2.7 Starting, Ending, and Canceling Pages

UseXpStartPage to indicate the beginning of a print page.

void XpStartPage(display, window)
Display *display;
Windowwindow;

display Specifies a pointer to the Display structure; returned from XOpenDisplay.
window Specifies the window ID.

XpStartPage signals the beginning of a new print page, with window serving as the drawable representing the
page. window is required to be a descendant of the root window of the current print context window, else a
BadWindow is generated. No generation of document data will occur for rendering operations against window
or its inferiors prior toXpStartPage.

XpStartPage causes window to be mapped. SeeXpGetPageDimensions andXResizeWindow for details on resiz-
ing window to the size of the media selected prior to callingXpStartPage. Within theXpStartPage and
XpEndPage sequence, attempts to resize, move or unmap window will yield undefined results. To resize or
move inferiors of window the standard semantics of ConfigureWindow apply, except that the contents of any
configured window may be discarded. AnExpose event will be generated if a window’s contents are dis-
carded.

All changes to theXPPageAttr attribute pool (seeXpSetAttributes) must be made prior to callingXpStartPage,
after which anXPBadSequence error will be generated if changes are attempted, untilXpEndPage is called.

For clients selectingXPPrintMask (seeXpSelectInput), the eventXPPrintNotify will be generated with its detail
field set toXPStartPageNotify when theX Print Server has completedXpStartPage. If the eventExpose is also
selected for (seeXSelectInput), the exposure events will be generated prior toXPPrintNotify.

The client need not wait forXPStartPageNotify prior to calling any other X rendering routines.

XpStartPage can generate one of the following errors:

XPBadContext A valid print context-id has not been set prior to making this call.

XPBadSequence The function was not called in the proper order with respect to the other X Print
Service Extension calls; for example,XpStartPage was called before XpStartJob or

was called for a type XPDocRaw document.

BadWindow The value specified for window is not valid.

UseXpEndPage to indicate the end of a print page.

void XpEndPage(display)
Display *display;

display Specifies a pointer to the Display structure; returned from XOpenDisplay.

XpEndPage signals the end of a print page, and causes window to be unmapped. All resulting page data is
assembled and combined with data previously sent byXpPutDocumentData. No generation of document data
will occur for rendering operations to the corresponding windows afterXpEndPage is called.

For clients selectingXPPrintMask (seeXpSelectInput), the eventXPPrintNotify will be generated with its detail
field set toXPEndPageNotify when theX Print Server has completedXpEndPage.

XpEndPage can generate anXPBadSequence error.

X Version 11 Release 6.4

X Print Service Extension Library 19

UseXpCancelPage to cancel a print page.

void XpCancelPage(display, discard)
Display *display;
Bool discard;

display Specifies a pointer to the Display structure; returned from XOpenDisplay.
discard WhenTRUE, specifies thatXPPrintNotify events with a detail ofXPEndPageNotify should be

discarded.

XpCancelPage cancels an in-progress page. If the job was started with output_modeXPGetData then the data
stream toXpGetDocumentData is interrupted; no further data for the current page will be generated but data
for subsequent pages can be generated. For many page description languages, such arbitrary interruptions
may invalidate the output.

If the job was started with output_modeXPSpool then depending on the driver and spooler implementation
the entire page may be canceled or a partial page may be generated.

If discard isTrue all XPPrintNotify events with a detail field ofXPEndPageNotify are discarded beforeXpCan-

celPage returns.

For clients selectingXPPrintMask (seeXpSelectInput), the eventXPPrintNotify will be generated with its detail
field set toXPEndPageNotify when theX Print Server has completedXpCancelPage.

XpCancelPage can generate anXPBadSequence error.

2.2.8 Selecting Input

UseXpSelectInput to select which X Print events from the specified print context the client is interested in.

void XpSelectInput(display, context, event_mask)
Display *display;
XPContextcontext;
unsigned longevent_mask;

display Specifies a pointer to the Display structure; returned from XOpenDisplay.
context The print context from which to select events.
event_mask Specifies the event mask. This mask is the bitwise OR one or more of the valid events

mask bits (see below).

XpSelectInput selects which X Print events from the specified print context the client is interest in. The X
Print Events are generated from a current print context, andnot from a window as is the case withXSelectIn-

put.

The bits for event_mask are defined in <X11/extensions/Print.h>:

#define XPNoEventMask 0
#define XPPrintMask (1L<<0)
#define XPAttributeMask (1L<<1)

The resulting events are defined in <X11/extensions/Print.h>:

#define XPPrintNotify 0
#define XPAttributeNotify 1

XpSelectInput can generate one of the following errors:

XPBadContext The specified print context is not valid.

20 December 15, 1997 X Print Service Extension Library

20 X Print Service Extension Library

Release 6.4 X Version 11

BadValue The value specified for event_mask is not valid.

UseXpInputSelected to query which X Print events the client has selected to receive from the specific print
context.

unsigned long XpInputSelected(display, context, all_event_mask_return)
Display *display;
XPContextcontext;
unsigned long *all_event_mask_return;

display Specifies a pointer to the Display structure; returned from XOpenDisplay.
context Specifies the print context to which the query is being made.
all_event_mask_return Returns the set of events any client has selected.

This request returns a bit mask describing which event classes the client has selected to receive. The value
returned to all_event_mask_return is the union of every client’s event mask.

XpInputSelected queries which X Print events from the specified print context the client has selected to
receive. The X Print Events are generated from a print context, andnot from a window as is the case with
XSelectInput. As events arrive, the context field in the event can be used to determine which print context gen-
erated the event.

SeeXpSelectInput for the event_mask and all_event_mask values.

XpInputSelected can generate anXPBadContext error.

2.2.9 Getting and Setting Attributes

UseXpGetAttributes to get an attribute pool from the specified print context.

char *XpGetAttributes(display, context, type)
Display *display;
XPContextcontext;
XPAttributestype;

display Specifies a pointer to the Display structure; returned from XOpenDisplay.
context The print context from which the attribute pool is to be retrieved.
type Specifies the attribute pool.

XpGetAttributes returns pool, a COMPOUND_TEXT resource string representing the attribute pool specified
by type. The caller is expected to free pool when it is no longer needed using XFree.

The values for the typedefXPAttributes in <X11/extensions/Print.h> are:

#define XPJobAttr 1 /* get/set */
#define XPDocAttr 2 /* get/set */
#define XPPageAttr 3 /* get/set - subset of XPDocAttr */
#define XPPrinterAttr 4 /* get only (library) */
#define XPServerAttr 5 /* get only (library), no context needed */

The attribute pool (hence the resource string) consists of many name-value pairs (for example,‘copy-count:

3’). The syntax of an attribute pool is the same as an X resource file (see “Resource File Syntax” in the Xlib
specification).

Valid characters for each name (left hand side) are derived from the Posix Portable Filename Character Set
(PPFCS), which is“a”-”z” and“A”-”Z” and“0”-”9” and“_” and“-”. Valid characters for each value (right hand
side) are all characters exceptNULL and unescapedNEWLINE, though all predefined values in the X Print Ser-

X Version 11 Release 6.4

X Print Service Extension Library 21

vice are confined to X Portable Character Set (XPCS) characters. Non XPCS values are typically limited to
localized “description” strings. SeeXpCreateContext regarding the locale hint for more information on local-
ized values.

XpGetAttributes can generate of one of the following errors:

XPBadContext The specified print context-id is not valid.

BadValue The value specified for type is not valid.

BadAlloc Insufficient memory.

If any errors occur,XpGetAttributes returnsNULL.

UseXpGetOneAttribute to get a single print attribute from the specified print context.

char *XpGetOneAttribute(display, context, type, attribute_name)
Display *display;
XPContextcontext;
XPAttributestype;
char*attribute_name;

display Specifies a pointer to the Display structure; returned from XOpenDisplay.
context The print context from which the attribute pool is to be retrieved.
type Specifies the attribute pool.
attribute_name The name of the attribute to be returned.

This request returns a COMPOUND_TEXT string attribute_value, elseNULL if any errors occurred.

XpGetOneAttribute is a variation ofXpGetAttributes to get a single attribute value from an attribute pool. Unlike
XpGetAttributes, where the reply contains an entire attribute pool,XpGetOneAttribute returns just one
attribute_value.

attribute_name should not include a colon. The caller is expected to free the attribute value returned using
XFree.

XpGetOneAttribute can generate of one of the following errors:

XPBadContext The specified print context-id is not valid.

BadValue The value specified for type is not valid.

BadAlloc Insufficient memory.

UseXpSetAttributes to set or update an attribute pool in the specified print context.

void XpSetAttributes(display, context, type, pool, replacement_rule)
Display *display;
XPContextcontext;
XPAttributestype;
char*pool;
XPAttrReplacementreplacement_rule;

display Specifies a pointer to the Display structure; returned from XOpenDisplay.
context The print context whose attribute pool is to be modified.
type Specifies the attribute pool to be modified.
pool An attribute pool represented as a resource string. Encoded in COMPOUND_TEXT.
replacement_ruleEither XPAttrReplace orXPAttrMerge.

22 December 15, 1997 X Print Service Extension Library

22 X Print Service Extension Library

Release 6.4 X Version 11

XpSetAttributes accepts pool, a COMPOUND_TEXT resource string representing new name-value pairs for
the attribute pool specified by type. The attribute pool is modified by the new name-value pairs according to
replacement_rule. ForXPAttrReplace, the existing attribute pool is discarded and replaced with pool. For
XPAttrMerge, pool is merged into the existing attribute pool; pre-existing name-value pairs are replaced, and
non-existing name-value pairs are added. The contents of pool is not affected by this call, and can be freed
by the caller afterwards.

The values for the typedefXPAttributes in <X11/extensions/Print.h> are:

#define XPJobAttr 1 /* get/set */
#define XPDocAttr 2 /* get/set */
#define XPPageAttr 3 /* get/set - subset of XPDocAttr */
#define XPPrinterAttr 4 /* get only (library) */
#define XPServerAttr 5 /* get only (library), no context needed */

The values for the typedefXPAttrReplacement in <X11/extensions/Print.h> are:

#define XPAttrReplace 1
#define XPAttrMerge 2

When setting supported attribute names, the X Print Server and associated driver will validate the new values
and ignore those that are invalid; previous values remain unchanged. When setting unsupported (i.e.,
unknown) attribute names, no validation is done, and the name-value pairs will be set, even though they will
not be used. When deleting (i.e. failing to reset with XPAttrReplace) a supported attribute name, the X Print
Server explicitly or implicitly resets the attribute to a default value.

When setting certain supported attributes, the X Print Server may modify other associated attributes. For
example, considering theXPPrinterAttr attributedocument-formats-supported, setting theXPDocAttr attribute
document-format may cause a number of other attributes to change.

For attribute pools that are read-only (see “get only” in XPAttributes definition), attempting to useXpSetAt-

tributes generates aBadMatch. For attribute pools that are writable, lists of the supported attributes can be
found in theXPPrinterAttr pool.

The lifetime of all attribute pools are bounded by the lifetime of the print context they are contained in.
When set, all attribute values will be retained across all Xp operations, until changed by the user directly, the
X Print Server directly, or changed because of a side effect when either the user orX Print Server changed
another attribute value.

Refer to a complete description of all print attributes, the precedence between print attributes, and the side
effects of setting certain print attributes on other print attributes, etc.

To monitor changes to the attribute pools, seeXpSelectInput and the eventXPAttributeNotify. Since a print con-
text can be shared among clients, changes made by one client will be seen by all others, and if selected for,
the eventXPAttributeNotify will be sent to all clients referencing the print context when changes do occur. It is
the responsibility of the clients sharing a print context to coordinate their operations.

XpSetAttributes can generate of one of the following errors:

XPBadContext The specified print context-id is not valid.

XPBadSequence A request to set an attribute pool occurred at a time when the attribute pool could
not be modified (for example, modifyingXPJobAttr immediately after calling
XpStartJob).

BadValue The value specified for type is invalid.

BadMatch The attribute pool specified by pool cannot be set.

BadAlloc Insufficient memory.

X Version 11 Release 6.4

X Print Service Extension Library 23

2.2.10 Getting Printer Lists

UseXpGetPrinterList to retrieve a list of all printers supported on anX Print Server.

XPPrinterList XpGetPrinterList(display, printer_name, list_count_return)
Display *display;
char *printer_name;
int *list_count_return;

display Specifies a pointer to the Display structure; returned from XOpenDisplay.
printer_name Specifies the name of the printer for which information is desired. IfNULL, then

information is returned for all printers associated with the server.
list_count_returnReturns the number of printers in the list.

XpGetPrinterList returns a list of printer records where each record describes a printer supported by theX
Print Server,or NULL if any errors occur.

If printer_name isNULL, then a list of all printers supported is returned. If printer_name is non-NULL, only
print records matching printer_name are returned, and if no records match printer_name, thenNULL is
returned.

printer_name is a COMPOUND_TEXT string, and the name and desc fields in the returned list will be in
COMPOUND_TEXT (note, ISO 8859-1 (Latin-1) is a proper subset of COMPOUND_TEXT, so can be
used directly). If printer_name is in a code-set that theX Print Server cannot convert (into its operating code-
set), then theX Print Server may fail to locate the requested printer. If printer_name isNULL, then all printer
names, regardless of their code-set, can be returned, leaving the task of specific printer recognition up to the
caller.

WhenXpGetPrinterList is called, the caller’s locale (seeXpSetLocaleHinter) is included in the request as a
“hint” to theX Print Server. If supported by the implementation, theX Print Server will use the hint to locate
a localized description for each printer in the list. If theX Print Server cannot understand the hint, theX
Print Server will choose a default.

The returned printer list can be freed by callingXpFreePrinterList.

The XPPrinterList structure defined in <X11/extensions/Print.h> contains:

typedef struct {
char *name; /* name */
char *desc; /* localized description */

} XPPrinterRec, *XPPrinterList;

XpGetPrinterList can generate aBadAlloc error.

XpFreePrinterList should be used to free a printer list.

void XpFreePrinterList(printer_list)
XPPrinterListprinter_list;

printer_list A list of printer records returned byXpGetPrinterList.

XpFreePrinterList frees the list of printer records returned byXpGetPrinterList.

UseXpRehashPrinterList to recompute the list of available printers.

void XpRehashPrinterList(display)

24 December 15, 1997 X Print Service Extension Library

24 X Print Service Extension Library

Release 6.4 X Version 11

Display *display;
display Specifies a pointer to the Display structure; returned from XOpenDisplay.

XpRehashPrinterList causes theX Print Server to recompute (update) its list of available printers, and update
the attributes for the printers. The intended usage of this routine is in a special tool that a system administra-
tor can run after changing the printer topology. General applications are encouraged to use this call sparingly
if at all, and let the system administrator control printer topology updates.

Depending on the print facilities underlying theX Print Server, theX Print Server may be able to detect
changes in the printer topology and dynamically update to reflect the changes, or may not be able to detect
the changes and will have to be notified viaXpRehashPrinterList.

Existing print contexts will not be affected byXpRehashPrinterList as long as their printer destination remains
valid.

2.2.11 Querying Version, Extension, and Screen

UseXpQueryVersion to query an X Server to determine if it supports the X Print Service Extension, and if it
does, which version of the X Print Service Extension.

Status XpQueryVersion(display, major_version_return, minor_version_return)
Display *display;
short *major_version_return;
short*minor_version_return;

display Specifies a pointer to the Display structure; returned from XOpenDisplay.
major_version_return Returns the major version if the X Print Service Extension exists, else zero.
minor_version_return Returns the minor version if the X Print Service Extension exists, else zero.

XpQueryVersion determines if the X Print Service Extension is present. A non-zero Status is returned if the
extension is supported, otherwise a zero Status is returned. If the extension is supported, the major and
minor version numbers are returned to indicate the level of X Print Service Extension support.

The X Print Service Extension is initialized on the first call to any X Print Service function; there is no need
to explicitly initialize the X Print Service Extension.

UseXpQueryExtension to query an X Server to determine if it supports the X Print Service Extension, and if it
does, what the offsets are for associated events and errors.

Bool XpQueryExtension(display, event_base_return, error_base_return)
Display *display;
int *event_base_return;
int *error_base_return;

display Specifies a pointer to the Display structure; returned from XOpenDisplay.
event_base_return The base value for X Print Service Extension events.
error_base_return The base value for X Print Service Extension errors.

XpQueryExtension determines if the X Print Service Extension is present. It returnsTrue if the extension is
supported, otherwiseFalse. If the extension is present, the base values for events and errors are returned, and
can be used to decode incoming event and error values.

The X Print Service Extension is initialized on the first call to any X Print Service function; there is no need
to explicitly initialize the X Print Service Extension.

X Version 11 Release 6.4

X Print Service Extension Library 25

UseXpQueryScreens to query an X Server to determine which of all the screens on the server support the X
Print Service Extension.

Screen **XpQueryScreens(display, list_count_return)
Display *display;
int * list_count_return;

display Specifies a pointer to the Display structure; returned from XOpenDisplay.
list_count_returnReturns the number of screens in the list.

This request returns a non-NULL pointer to a list of screen pointers if one or more screens support the X Print
Service Extension; otherwise it returnsNULL.

XpQueryScreens determines if the X Print Service Extension is present, and if so, which of all the screens on
the X Server support the X Print Service Extension. Unlike many other extensions, the X Print Service
Extension may be restricted to a subset of all available screens - for example, a single X Server may be sup-
porting video displays on some screens and printers on others.

The list of screen pointers can be freed by callingXFree.

2.2.12 Getting PDM Parameters

UseXpGetPdmStartParams as a standard convenience function to build up parameters in accordance with the
PDM Selection Protocol

Status XpGetPdmStartParams(print_display, print_window, print_context, video_display, video_window,
selection_display_return, selection_return, type_return, format_return,
data_return, nelements_return)

Display *print_display;
Windowprint_window;
XPContextprint_context;
Display*video_display;
Windowvideo_window;
Display**selection_display_return;
Atom *selection_return;
Atom *type_return;
int *format_return;
unsigned char**data_return;
int *nelements_return;

print_display Specifies a pointer to the print Display structure; returned from XOpenDisplay
on theX Print Server.

print_window Specifies a client window on any screen of print_display long-lived enough for
ICCCM communications of the final PDM status (“OK” or “CANCEL”
ClientMessage) sent to print_window.

print_context An existing print context that the PDM should reference.
video_display Specifies a pointer to the video Display structure; returned fromXOpenDisplay

on theVideo X-Server.
video_window Specifies the window on video_display near which the transient dialogs from

the PDM should be posted.
selection_display_returnReturns the display connection on which the PDM selection should be made.

May be equal to print_display or video_display, or may be a new display
connection that the caller should close when done.

selection_return Returns the selection atom for which a PDM selection should be made.
type_return Returns the type for the PDM Selection Protocol property the caller is expected

to create.

26 December 15, 1997 X Print Service Extension Library

26 X Print Service Extension Library

Release 6.4 X Version 11

format_return Returns the format for the PDM Selection Protocol property the caller is
expected to create.

data_return Returns the data set for the PDM Selection Protocol property the caller is
expected to create. The caller is expected to XFree the data when finished.

nelements_return Returns the number of elements for the PDM Selection Protocol property the
caller is expected to create.

This request returns a zero status if an error occurred, non-zero otherwise.

XpGetPdmStartParams is a convenience routine used to construct the necessary property information and
selection display connection information needed to initiate a PDM Selection per the “PDM Selection Proto-
col”. Once the information is constructed, the caller is responsible for the creation of a property, the genera-
tion of aSelectionRequest, the receipt of aSelectionNotify event, and the recept of aClientMessage event, as
described in the PDM Selection Protocol.

When finished, the caller is expected to free data using XFree.

XpGetPdmStartParams returns zero if an error occurred, else non-zero. If an error occurs all other _return val-
ues are undefined.

Setting the environment variable XPDMSELECTION causesXpGetPdmStartParams to use an alternate selec-
tion name. If not set, the selection namePDM_MANAGER is used.

Setting the environment variable XPDMDISPLAY causesXpGetPdmStartParams to locate the selection on an
alternateX Server. If not set, selection_display_return is set equal to print_display. If XPDMDISPLAY is set
to one of the keywords“print” or “video”, selection_display_return is set to print_display or video_display,
respectively. If XPDMDISPLAY is set to a validDISPLAY-style string, selection_display_return may be set,
as appropriate, to one of print_display, video_display, or to anew display connection opened from within
XpGetPdmStartParams. Only in the single case where anew display connection is made should the caller
close selection_display_return using XCloseDisplay.

WhenXpGetPdmStartParams is called, the caller’s locale (seeXpSetLocaleHinter) is included in the informa-
tion as a “hint” to the Print Dialog Manager (PDM). If supported by the implementation, the PDM will use
the hint to display dialogs more appropriately labeled for the locale of the client. If the Print Dialog Manager
cannot understand the hint, the PDM will choose a default. Note that the locale of the print attributes that the
PDM will subsequently access, will already have been determined when the client calledXpCreateContext.

The environment variables XPDMDISPLAY and XPDMSELECTION are re-read each timeXpGetPdmStart-

Params is called.

2.2.13 Setting and Getting Locale Hinters

UseXpSetLocaleHinter to set a “locale hinter” function and description of it.

void XpSetLocaleHinter(hinter_proc, hinter_desc)
XPHinterProchinter_proc;
char*hinter_desc;

hinter_proc A pointer to a “hinter proc”.
hinter_desc A pointer to contextual information about the locale hinter proc.

Since (to date) there is no single industry standard for locale values, locale information about the current cli-
ent required byXpCreateContext, XpGetPrinterList andXpGetPdmStartParams is at best considered a “hint”
when transmitted to the X Print Server and PDM. In single vendor environments, the locale hint should be
consistent and understood. In multi-vendor environments however, the locale hint may or may not be under-
stood. The caller locale will be used as the fallback default.

X Version 11 Release 6.4

X Print Service Extension Library 27

XpSetLocaleHinter andXpGetLocaleHinter access hooks that are used to register more advanced hint generators.
By default, Xp uses a hinter proc that calls setlocale on theCTYPE category on POSIX systems, and
hinter_desc isNULL.

XpSetLocaleHinter sets the hinter_proc and hinter_desc which will be subsequently used by the Xp calls
requiring a locale hint (see above). hinter_proc is the function that will generate the locale hint (for example,
“C”), and hinter_desc is a string, with or without the embeddable keyword%locale%, that provides a higher
level context for the results of hinter_proc.

If hinter_proc is set toNULL, then the default Xp hinter proc is installed.XpSetLocaleHinter makes its own pri-
vate copy of hinter_desc prior to returning.

An example set call might look as follows:
XpSetLocaleHinter(my_hinter, “%locale%;CDElocale”);

Where my_hinter might look as follows:
char *my_hinter()
{
 /*
 * Use setlocale() to retrieve the current locale.
 */
 return(my_x_strdup(setlocale(LC_CTYPE, (char *) NULL)));
}

The signature for hinter_proc is defined in <X11/extensions/Print.h> as follows:
typedef char * (*XPHinterProc)();

hinter_proc is expected to return a string that can be freed using XFree by the Xp calls themselves.

When the client’s locale is needed, if both hinter_desc and the results of hinter_proc are non-NULL, and the
keyword%locale% is found in hinter_desc, then the keyword will be replaced with the result of hinter_proc.
The resulting string will be used as the locale hint by the Xp calls.

If both hinter_desc and the results of hinter_proc are non-NULL, but the keyword%locale% is not found in
hinter_desc, then hinter_desc, as is, becomes the string used as the locale hint by the Xp calls.

If one of hinter_desc or the results of hinter_proc isNULL, then the other non-NULL value becomes the string
used as the locale hint by the Xp calls.

If hinter_desc and the results of hinter_proc areNULL, then aNULL (i.e. (char *) NULL) locale hint is sent by
the Xp calls.

The syntax for hinter_desc is a variation of the unadopted X/Open standard for a “String Network Locale-
Specification Syntax” (X/Open, Distributed Internationalization Services, Version 2, 1994 Snapshot). The
Xp hinter_desc syntax is:

name_spec[;registry_spec[;ver_spec[;encoding_spec]]]

Some examples include (hinter_desc to left, expanded results to the right):
CFRENCH CFRENCH
%locale% C
%locale%;CDElocale C;CDElocale
%locale%;HP C;HP
%locale%;IBM C;IBM
%locale%;XOPEN;01_11;XFN-001001 de_DE;XOPEN;01_11;XFN-001001

In Xp, the first item is the locale name, followed by progressively more detailed information about the locale
name, with each piece of information separated by a ‘;’.

28 December 15, 1997 X Print Service Extension Library

28 X Print Service Extension Library

Release 6.4 X Version 11

UseXpGetLocaleHinter to get a pointer to and description of the current “locale hinter” function.

char *XpGetLocaleHinter(hinter_proc_return)
XPHinterProc *hinter_proc_return;

hinter_proc_return Returns a pointer to the current hinter proc.

XpGetLocaleHinter returns the currently installed hinter proc and hinter description. The function value is the
pointer to the description. The caller is expected to XFree the returned hinter description string.

Index 29

A

attributes, getting and setting 20

C

calls, library 7–27
canceling documents 13
canceling jobs 12
canceling pages 18
core components 1
creating print contexts 8

D

developer’s view 3
documents, starting, ending, and canceling 13

E

ending documents 13
ending jobs 12
ending pages 18
extension, querying 24

G

getting attributes 20
getting data for documents 15
getting locale hinters 26
getting printer lists 23

H

hinters, locale 26

I

input, selecting 19
integrator’s view 3

J

jobs, starting, ending, and canceling 12

K

key concepts 2

L

library calls 7–27
locale hinters, setting and getting 26

M

managing print contexts 8

O

obtaining page dimensions 10
obtaining screen for context 10
overview 1

P

page dimensions, obtaining 10
pages, starting, ending, and canceling 18
PDM parameters, setting 25
print context, obtaining screen for 10
printer lists, getting 23
printer vendor’s view 5
putting data in documents 15

Q

querying version, extension, screen 24

S

screen for print context 10
screen, querying 24
selecting input 19
setting attributes 20
setting locale hinters 26
setting PDM parameters 25
starting documents 13
starting jobs 12
starting pages 18
system administrator’s view 5

V

version, querying 24

X

XpCancelDoc 14
XpCancelJob 13
XpCancelPage 19
XpCreateContext 8
XpDestroyContext 9
XpEndDoc 14
XpEndJob 12
XpEndPage 18
XpFreePrinterList 23
XpGetAttributes 20
XpGetContext 9

30 Index

XpGetDocumentData 16
XpGetImageResolution 11
XpGetLocaleHinter 28
XpGetOneAttribute 21
XpGetPageDimensions 10, 11
XpGetPdmStartParams 25
XpGetPrinterList 23
XpGetScreenOfContext 10
XpInputSelected 20
XpPutDocumentData 15
XpQueryExtension 24
XpQueryScreens 25
XpQueryVersion 24
XpRehashPrinterList 23
XpSelectInput 19
XpSetAttributes 21
XpSetContext 8
XpSetImageResolution 11
XpSetLocaleHinter 26
XpStartDoc 13
XpStartJob 12
XpStartPage 18

