Net wor k Wor ki ng Group B. Greenberg
Request for Comments: 1037 S. Keene
Decenber 1987

NFILE - A File Access Protocol

STATUS OF THI S MEMO

Thi s docunent includes a specification of the NFILE file access
protocol and its underlying | evels of protocol, the Token Li st
Transport Layer and Byte Streamwi th Mark. The goal of this
specification is to pronote di scussion of the ideas described here,
and to encourage designers of future file protocols to take advantage
of these ideas. A secondary goal is to nmake the specification
available to sites that might benefit frominplenenting NFILE. The
distribution of this document is unlimted.

TABLE OF CONTENTS

Page

1. | NTRODUCTI ON 3
2. NFI LE PROTOCCOL LAYERI NG 4
3. OVERVI EW CF AN NFI LE SESSI ON 5
4. NFILE CONTROL AND DATA CONNECTI ONS 6
5. NFILE FI LE OPENI NG MODES 7
6. NFI LE CHARACTER SET 9
7. CONVENTIONS USED I N THI S DOCUMENT 10
7.1 Mapping Data Types Into Token List Representation 10

7.2 Format of NFILE Commands and Responses 10

7.3 Data Channel Handles and Direct File ldentifiers 13

7.4 Syntax of File and Directory Pathnane Argunents 13

7.5 Format of NFILE File Property/Val ue Pairs 14

8. NFI LE COVMANDS 16
8.1 ABORT Command 16

8.2 CHANGE- PROPERTI ES Commrand 16

8.3 CLOSE Command 17

8.4 COWPLETE Commrand 19

8.5 CONTI NUE Commrand 20

Greenberg & Keene [Page 1]

RFC 1037 NFILE - A File Access Protocol Decenber 1987
8.6 CREATE- DI RECTORY Commrand 21
8.7 CREATE- LI NK Command 21
8.8 DATA- CONNECTI ON Conmmand 22
8.9 DELETE Conmand 23
8.10 DI RECT- QUTPUT Conmand 23
8.11 DI RECTORY Conmand 24
8.11.1 NFILE DI RECTORY Data For mat 26
8.12 DI SABLE- CAPABI LI TI ES Comrand 27
8. 13 ENABLE- CAPABI LI TI ES Conmmand 28
8.14 EXPUNGE Conmand 28
8.15 FILEPCS Command 29
8.15.1 Inplenentation Hint for FILEPOS Comand 30
8.16 FIN SH Comrand 30
8.17 HOVE- DI RECTORY Conmand 31
8.18 LOG N Conmand 32
8.19 MJLTI PLE- FI LE- PLI STS Cormmand 34
8.20 OPEN Command 35
8.20.1 NFILE OPEN Optional Keyword/Value Pairs 39
8.20.2 NFILE OPEN Response Return Val ues 45
8.21 PROPERTIES Command 47
8.22 READ Command 49
8.23 RENAME Command 50
8.24 RESYNCHRONI ZE- DATA- CHANNEL Conmmand 51
8.24.1 Inplenentation H nts for RESYNCHRONI ZE- DATA- 51

CHANNEL Conmand
8.25 UNDATA- CONNECTI ON Conmand 52
9. NFI LE RESYNCHRONI ZATI ON PROCEDURE 53
9.1 NFILE Control Connection Resynchronization 54
9.2 NFILE Data Connection Resynchronization 55
10. NFILE ERRORS AND NOTI FI CATI ONS 58
10.1 Notifications Fromthe NFILE Server 58
10.2 NFILE Command Response Errors 59
10.3 NFILE Asynchronous Errors 60
10.4 NFILE Three-letter Error Codes 61
11. TOKEN LI ST TRANSPORT LAYER 65
11.1 Introduction to the Token List Transport Layer 65
11.2 Token List Stream 66
11.2.1 Types of Tokens and Token Lists 66
11.2.2 Token List Stream Exanple 68
11.2.3 Mapping of Lisp hjects to Token List Stream 70

Represent ati on

11.2.4 Aborting and the Token List Stream 71
Greenberg & Keene [Page 2]

RFC 1037 NFILE - A File Access Protocol Decenber 1987

11.3 Token List Data Stream 72

12. BYTE STREAM W TH MARK 73

12.1 Discussion of Byte Streamw th Mark 73

12.2 Byte Streamwi th Mark Abortable States 75

13. PCSSI BLE FUTURE EXTENSI ONS 77

APPENDI X A. NORMAL TRANSLATI ON MODE 79

APPENDI X B. RAW TRANSLATI ON MODE 83

APPENDI X C. SUPER- | MAGE TRANSLATI ON MODE 84

NOTES 86

LI ST OF TABLES

TABLE 1. TRANSLATI ONS FROM NFI LE CHARACTERS TO UNI X CHARACTERS 80

TABLE 2. TRANSLATI ONS FROM UNI X CHARACTERS TO NFI LE CHARACTERS 80

TABLE 3. TRANSLATI ONS FROM NFI LE TO PDP-10 CHARACTERS 81

TABLE 4. TRANSLATI ONS FROM PDP- 10 CHARACTERS TO NFI LE 82

CHARACTERS
TABLE 5. SUPER- | MAGE TRANSLATI ON FROM NFI LE TO ASCI | 84
TABLE 6. SUPER- | MAGE TRANSLATI ON FROM ASCI | TO NFI LE 85
1. | NTRODUCTI ON

NFI LE stands for "New File Protocol”. NFILE was originally designed
as a replacenent for an ol der protocol named QFILE, with the goal of

sol ving robustness problems of QFILE, hence the nane "New File

Pr ot ocol ".

NFI LE was desi gned and i npl emented at Synbolics by Bernard S.
M ke McMahon nade i nportant contributions, especially in
the design and inplenentation of the Byte Streamw th Mark and Token

Gr eenberg.

Li st Transport layers. NFILE has been used successfully for file
access between Synbolics conputers since 1985.

NFI LE servers have

been witten for UNI X hosts as well. NFILE is intended for use by
any type of file system not just the native Synbolics file system

NFILE is a
operations

Greenberg & Keene

file access protocol that supports a |arge set of

on files and directories on renote systemns, including:

Reading and witing entire files
Readi ng and witing selected portions of files
Del eting and renaning files

[Page 3]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

- Creating links

- Listing, creating, and expunging directories

- Listing and changing the properties of files

- Enabling and di sabling access capabilities on a renote
host

NFI LE supports file transfer of binary or character files.

The NFILE server provides information about any errors that occur in
the course of a command. |In addition, NFILE has a robust schene for
handl i ng aborts on the user side.

This specification defines NFILE user version 2 and server version 2.
We do not envision NFILE as an unchangi ng protocol, but rather as a
protocol that could continue to develop if additional requirements
are identified though the process of this Request for Comments. The
design of NFILE nmakes room for various useful extensions. Sone of
the extensions that we are considering are described later on in this
docunment: See the section "Possible Future Extensions", section 13.

2. NFI LE PROTOCOL LAYERI NG

NFILE is a layered file protocol. The |ayers are:
S . +
| client program or user interface |
I e S~ +
| NFI LE |
o e +
| Token List Transport Layer
S e . +
| Byte Streamwi th Mark |
S~ +
| reliabl e host-host byte transm ssion protocol
o e +

Byte Streamwith Mark is a sinple protocol that guarantees that an
out - of -band signal can be transnmitted in the case of program
interruption. Byte Streamwith Mark is to be |ayered upon extant
byte stream protocols. An inportant goal of the NFILE design was
that NFILE could be built on any byte stream It is currently

i mpl emented on TCP and Chaosnet. See the section "Byte Streamwth
Mar k", section 12.

The Token List Transport Layer is a protocol that facilitates the

transm ssion of sinple structured data, such as lists. See the
section "Token List Transport Layer", section 11

Greenberg & Keene [Page 4]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

The NFI LE conmands and conmand responses are transnmitted in "token
lists". See the section "NFILE Commands", section 8.

This specification does not include a client program or user
interface to the protocol. In the Synmbolics inplenmentation, the
normal file operations transparently invoke NFILE, when the renote
host is known to support NFILE. Another possible interface to NFILE
woul d be through a dedicated client programthat would i ssue NFlLE
commands in response to explicit requests by the user

3. OVERVI EW COF AN NFI LE SESSI ON

An NFI LE session is a dial ogue between two hosts. The host that
initiates the NFILE session is known as the "user side", and the
other host is the "server side". The user side sends all NFILE
commands. The server receives each conmand, processes it, and
responds to it, indicating the success or failure of the command.

The user side keeps track of commands sent and command responses
received by using "transaction identifiers" to identify each conmand.
The user side generates a transaction identifier (which nust be

uni que per this dialogue) for each command, and sends the transaction
identifier to the server along with the command. Each NFI LE server
response includes the transaction identifier of the command with

whi ch the response is associated. The server is not required to
respond to comrands in the same order that the user gave them

The user side sends NFILE commands over a bidirectional network
connection called the "control connection”. The server sends its
command responses on the sane control connection. The contro
connection governing the NFILE session is established at the

begi nning of the session. |f the control connection is ever broken
the NFILE session is ended.

Wher eas NFI LE conmmands and responses are transmitted on the contro
connection, file data is transferred over "data channels". An "input
data channel" transfers data fromserver to user. An "output data
channel " transfers data fromuser to server. Each input data channe
is associated with an output data channel; together these two
channel s conprise a "data connection".

Often nore than one NFILE activity is occurring at any given tine.
For exanple, several files can be open and transferring data

si nul t aneously; one or nore conmands can be in process at the sane
time; and the server can be sinultaneously transmitting directory

lists and processing further conmands. This happens in an

i npl ementation in which the user side has nmultiple processes, and

several processes share a single NFILE server

Greenberg & Keene [Page 5]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

4.

NFI LE CONTRCL AND DATA CONNECTI ONS

The user and server conmuni cate through a single control connection
and a set of data connections. Data connections are established and
di sestabli shed by NFILE commands. The user side sends NFILE commuands
to the server over the control connection. The server responds to
every user command over this control connection. The actual file
data is transnmitted over the data connections.

User aborts can disrupt the nornal flow of data on the control
connection and data connections. An inportant aspect of any file
protocol is the way it handl es user aborts. NFILE uses a
resynchroni zation procedure to bring the affected control connection
or data channel from an unknown, unsafe state into a known state.
After resynchronization, the control connection or data channel can
be reused. See the section "NFILE Resynchronization Procedure"
section 9.

THE CONTROL CONNECTI ON

An NFI LE session is begun when the NFILE user program connects to a
renote host and establishes a network connection. This initial
connection is the control conection of the dialogue. If TCP is used
as the underlying protocol, contact NFILE s well-known port, 59. |If
Chaos is used, use the contact name "NFILE"

The control connection is the vehicle used by the user to send its
commands, and the server to send its command responses. These types
of comuni cation occur over the NFILE control connection

- The user side sends NFlLE conmands.

- The server sends comand responses.

- The server sends "notifications" and "asynchronous errors"
See the section "NFILE Errors and Notifications", section 10.

- During resynchronization (a special circunstance) either the
user or server sends a nmark

Al'l conmands, comand responses, and ot her data flow ng over the

NFI LE control connection are transnitted in the format of "top-Ieve
token lists". The control connection expects never to receive "l oose
tokens"; that is, tokens not contained in token lists.

Greenberg & Keene [Page 6]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

DATA CONNECTI ONS

Dat a connections are established and di scarded at user request, by
means of two NFILE commands: DATA- CONNECTI ON and UNDATA- CONNECTI ON
Each data connection is associated with a specific contro

connection, which is the sane control connection that caused the data
connection to be established.

Each data connection is conposed of two "data channel s". Each data
channel is capable of sending data in one direction. The term"input
channel " refers to the data channel that transmts data fromthe
server to the user side; "output channel" refers to the data channe
that transnmits data fromthe user to the server side. Throughout the
NFI LE docunentation, the terms "input channel" and "output channel"”
are seen fromthe perspective of the user side. A single data
channel can be used for one data transfer after another.

The format of the data transferred on the data channels is defined as
a "token list data streanf. See the section "Token List Data
Streant', section 11.3. Wen the end of data is reached, the keyword
token EOF is sent. (Qccasionally, token lists are transnmtted over
the data channels, such as asynchronous error descriptions.

5. NFILE FI LE OPENI NG MODES

The NFI LE OPEN command opens a file for reading, witing, or "direct
access" at the server host. That neans, in general, asking the host
file systemto access the file and obtaining a file nunber, pointer,
or other quantity for subsequent rapid access to the file; this is
called an "opening". The term"opening"” translates to a file stream
in Synbolics term nology, a JFN in TOPS-20 terminology, and a file
descriptor in UNI X term nol ogy. An opening usually keeps track of
how many bytes have been read or witten, and ot her bookkeeping

i nformati on.

NFI LE supports two ways of transferring file data, "data stream node"
and "direct access node". A single node is associated with each
opening. Note that an NFILE dial ogue can have nore than one openi ng,
and thus use bot h nodes.

DATA STREAM MODE
Data stream node of file transfer is the default node of NFILE s OPEN
command. Data streamnode is appropriate when the entire file is

transferred, either fromuser to server, or fromserver to user
Data stream npde is used nore often than direct access node

Greenberg & Keene [Page 7]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

The OPEN command i ncludes a "handl e" argunent, which identifies the
data channel to be used to transfer the data. The handle is used in
subsequent commands to reference this particul ar opening. Wen a
data streamopening is requested with the OPEN command, the file is
opened and the data begins to flow imediately.

The sending side transnits the entire contents of the specified file
over the specified data channel as rapidly as the network permts.
Wien the sending side reaches the end of the file, it transmts a
special control token to signal end of file. The receiving side
expects an uninterrupted stream of bytes to appear imediately on its
side of the data channel

The user gives the CLOSE conmand to terminate a data streamtransfer.
CLCSE results in closing the file.

DI RECT ACCESS MODE

Direct access node enables reading or witing data froma given
starting point in a file through a specified nunber of bytes. In
direct access node, data is requested and sent in individua
transactions. To request a direct access node opening, the OPEN
command is used with a DIRECT-FILE-ID argunent. (lIn data stream
node, no DIRECT-FILE-ID is supplied.) The direct file identifier is
used i n subsequent commands to reference the direct access opening.

Wien a file is opened in direct access node, the flow of data does
not start imediately. Rather, the user gives either a READ command
(to request data to flow fromserver to user) or a DI RECT- QUTPUT
conmand (to request data to flow fromuser to server). Wen reading,
the READ comand all ows the user to specify the starting point and

t he nunber of bytes of data to transfer. Wen witing, the FILEPCS
command can be used to specify the starting point, before the

DI RECT- QUTPUT conmand is given. The user can give many READ and

DI RECT- QUTPUT conmands, one after another

The user side term nates the direct access transfer by using the

CLCSE command. The ABORT command can be given to term nate without
transmitting all of the specified bytes.

Greenberg & Keene [Page 8]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

6.

NFlI LE CHARACTER SET

The NFILE character set <1> is an extension of standard ASCII. NFILE
command and response nanmes use only the standard ASCI| characters.
However, the protocol supports the transfer of the non-ASCl
characters in the NFILE character set; these characters m ght be
stored in files, or mght be used in pathnanes.

Servers on machi nes that do not natively use the NFILE character set
must perform character set translations for character openings,
dependi ng on the requested translation node. No translation is
required for binary openings. There are three translation nodes for
character openings: NORVAL, RAW and SUPER-|1 MAGE. Each node
specifies a way to translate between the server’'s native set and the
NFI LE character set.

NORMAL node is the default of the OPEN command. The translation for
NORMAL node ensures that a file containing characters in the NFILE
character set can be witten to a renote host and read back intact.
OPEN has optional keyword argunents to specify RAWor SUPER-| MACE
RAW node neans to performno translati on whatsoever. SUPER-|1 MAGE
nmode is intended for use by PDP-10 fam |y machines only. It is
included largely as an illustration of a system dependent extension

The details of each translation nbde are given in Appendices:

See the section "NORVAL Transl ati on Mode", Appendix A. See the
section "RAW Transl ati on Mbde", Appendix B. See the section
"SUPER- | MAGE Transl ati on Mode", Appendix C

The use of the NFILE character set brings up a difficulty involved
with deternmining an exact position within a character file. Sone
NFI LE characters expand to nore than one native character on sone
servers. Thus, for character files, when we speak of a given
position in a file or the length of a file, we nust specify whether
we are speaking in "NFILE units" or "server units", because the
counting of characters is different. This causes major problens in
file position reckoning for character files. Specifically, it is
futile for a user side to carefully nonitor file position during
out put by counting characters, when character translation is in
effect. The server’s operating systeminterface for "position to
point x in a file" necessarily operates in server units, but the user
side has counted in NFILE units. The user side cannot try to
second- guess the transl ation-counting process w thout |osing host-

i ndependence. See the section "FILEPOS NFI LE Comand"

Greenberg & Keene [Page 9]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

7. CONVENTIONS USED I N THI S DOCUMENT
7.1 Mapping Data Types Into Token List Representation

Thr oughout this NFILE specification, the data types of argunents,
return val ues, asynchronous error descriptions, and notifications are
descri bed as being strings, integers, dates, tine intervals, and so
on. However, each conceptual data type nust be napped into the
appropriate token list representation for transmi ssion. The nmapping
of conceptual data types to token list representation is shown here:

Conceptual Type Token List Representation

Keywor d A keyword token

Keyword |i st A token list of keyword tokens

I nt eger A nureric data token

String A data token containing the characters of the

string in the NFILE character set.

Bool ean Truth The token known as BOOLEAN- TRUTH.
Bool ean Fal se The enpty token list.
Dat e A nuneric data token. The date is expressed in

Uni versal Tine format, which neasures a tine as
t he nunber of seconds since January 1, 1900, at

nm dni ght GMI
Dat e- or - never Can be either a date or the enpty token list,
representing "never". "Never" is used for

val ues such as the tine a directory was | ast
expunged, if it has never been expunged.

Time interval A nuneric data token. The tine interval is
expressed in seconds. Atine interva
indicating "never" is represented by the enpty
token Iist.

7.2 Format of NFILE Commands and Responses
Each command description begins by giving the command fornmat and

response format. Here is the beginning of the DATA- CONNECTI ON
conmmand descri ption:

Greenberg & Keene [Page 10]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

Command: (DATA- CONNECTI ON tid new i nput - handl e new out put - handl e)
Response: (DATA- CONNECTION tid connection-identifier)
The conmand descriptions follow these conventions:

1. NFILE commands and responses are transnitted as top-1evel token
lists.

Top-1evel token lists are enclosed in parentheses in these
command descriptions. These parentheses are not sent literally
across the control or data connections, but are a shorthand
representation of special control tokens that delinit top-Ieve
token lists. Specifically, TOP-LEVEL-LIST-BEA N starts a top-

| evel token list; TOP-LEVEL-LIST-END ends a top-level token I|ist.

2. NFI LE command nanes are keywords

The conmand nane is required in every conmand and comand
response. All NFILE conmand nanes are keywords. Keywords appear
in the NFILE docunmentation as their names in uppercase. For
exanpl e, DATA- CONNECTI ON and DELETE are two conmand nanes.

3. A unique transaction identifier (tid) identifies each conmand.

The transaction identifier is a string nmade up by the user side
to identify this particular transaction, which is conposed of the
command and t he response associated with this command. The
transaction identifier is abbreviated in the command descriptions
as tid. Transaction identifiers are limted to fifteen
characters in length. The transaction identifier is required in
every comrand and commrand response.

OPTI ONAL ARGUMENTS

Many NFI LE conmmands have "optional argunents". Optional argunents
can be supplied (with appropriate values), or left out. |If optiona
arguments are left out, their omission nmust be made explicit by means
of substituting the enpty token list in their place. The only
exception to that rule is for trailing optional argunments or return
val ues, which can be onmtted wi thout including the enpty token |ist.

For exanple, the text of the DELETE command description explains that
either a handle or a pathnane nust be supplied, but not both;
therefore, one of themis an optional argunment. Here is the command
format of DELETE:

(DELETE tid handl e pat hnane)

Greenberg & Keene [Page 11]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

If you supply a handl e and no pat hnane, the command fornmat is:
(DELETE tid handl e)

If you supply a pathname and no handl e, the command format is:
(DELETE tid enpty-token-1list pathnane)

The enpty token list in the token |list stream appears as a LI ST-BEG N
foll owed i medi ately by a LI ST-END.

OPTI ONAL KEYWORD/ VALUE PAI RS

Four NFILE conmands have "optional keyword/val ue pairs". These
conmands are: COVWPLETE, LOA N, OPEN, and READ. Optiona
keyword/ val ue pairs can be either included in the conmand or onitted
entirely. There is no need to substitute the enpty token list for
ommtted optional keyword tokens, unlike optional argunents. The
order of the option keyword/value pairs is not significant.

I f included, optional keyword/value pairs are a sequence of
alternating keywords and val ues. The val ues associated with the
keywords can be keywords, lists, strings, Bool eans, integers, dates,
date-or-never’s, and tine intervals. The text of each command
description states what type of value is appropriate for each
optional keyword.

Optional keyword/val ue pairs appear in the text as the keyword only,
in uppercase letters. For exanple, here is the format of the LOG N
comrand:
Conmand For mat :

(LOG@ N tid user password FI LE- SYSTEM USER- VERSI ON)
FI LE- SYSTEM and USER- VERSI ON are two optional keywords associ at ed
with the LO@ N command. The user side can supply USER-VERSI ON, and
omt FILE-SYSTEM as shown in this exanple:

(LOGA N x105 tjones let-ne-in USER- VERSI ON 2)
As seen above, the optional keyword/value pair USER-VERSION, if

supplied in a command, consists of the keyword USER- VERSI ON f ol | oned
by the value to be used for that keyword (in this exanple, 2).

Greenberg & Keene [Page 12]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

7.3 Data Channel Handles and Direct File ldentifiers

Several NFILE commands require an argunent that specifies an opening.
This kind of argunent is called a handle in the command description

It is always a string type argunent. A handle can be either a data

channel handle or a direct file identifier, depending on the node of
t he openi ng:

Data Stream

The handl e nust identify a data channel that is bound to an openi ng.

Direct Access

In general, the handle nust be a direct file identifier. A direct

file identifier specifies a direct access opening. It is the same as
the val ue supplied in the DI RECT-FILE-1D keyword/value pair in the
OPEN conmmand. It is used for all operations that identify an opening

rat her than a data channel

Two NFI LE commands applicable to direct access openings are
exceptions to the general rule. The handle supplied in ABORT and
CONTI NUE cannot be a direct file identifier, but nmust be a data
channel handl e instead.

7.4 Syntax of File and Directory Pathnane Arguments

Some argunents and return values in the NFILE conmand descri ptions
represent file pathnames. These are strings in the pathnane syntax
native to the server host. These pat hnames contain no host
identifiers of any kind. These pathnanes nust be fully defaulted, in
the sense that they have a directory and file nanme (and file type, if
the server operating systemsupports file types). |If appropriate, a
device is referenced in the pathnanme. |If the server file system
supports version nunbers, there is always an explicit version nunber,
even if that nunmber or other specification is that systenis
representation of "newest" or "ol dest".

Greenberg & Keene [Page 13]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

Here are sone exanples of file pathnanes, for different server hosts:

Server Host Exanpl e of File Pathname
UNI X fusr/max/life.c
TOPS- 20 ps: <max>life.bin. 17
VB MACD: [MAX] LI FE. FOR; 3

Synbolics LMFS >nax>life.lisp. newest

The CREATE- DI RECTORY and HOVE- DI RECTORY conmands take a directory as
an argunent. In NFILE conmands, a directory is represented by a
string that nanes the directory. |n nost cases this string is in the
syntax native to the server host. However in sonme cases the native
format is nodified sonewhat to clarify that the string names a
directory, and not a file. For exanple, a directory on UNNX is
represented by "/usr/max/", not "/usr/max".

Here are sone exanples of directory pathnanes for different server

host s:

Server Host Exanpl e of Directory Pathname
UNI X / usr/ max/
TOPS- 20 <max>
VIVB MACD: [MAX]

Synbolics LMFS >nax>hacks>

7.5 Format of NFILE File Property/Val ue Pairs

Several NFILE comands request information regarding the properties
of files or directories. These commands include: D RECTORY

MULTI PLE- FI LE- PLI STS, PROPERTI ES, and CHANGE- PROPERTI ES. This
section describes how file property information is conveyed over the
token list stream

Greenberg & Keene [Page 14]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

File property information is usually sent in property/value pairs,
where the property identifies the property, and the follow ng val ue
gives the value of that property for the specified file.

Each property is denoted either by a keyword or an integer. You can
m x both ways of specifying properties (keyword or integer) within a
single description. An integer is interpreted as an index into the
Property I ndex Table, an array of property keywords. The server can
optionally send a Property Index Table to the user during the
execution of the LO@ N conmand, although it is not required. This
greatly reduces the Iength of transm ssions.

In command argunents, file properties cannot be specified with

i ntegers; keywords nust be used to specify file properties in comand
arguments. Integers can be used to denote file properties only in
command responses.

We now list the keywords associated with file properties. This |ist
is not intended to be restrictive. |If a progranmer inplenenting

NFI LE needs a new keyword, a new keyword (not on this list) can be

i nvented. The type of value of any new keywords is by default
string. The keywords are sorted here by conceptual data type:

Data type Keywords denoting file properties

I nt egers BLOCK- Sl ZE, BYTE-SI ZE, GENERATI ON- RETENTI ON- COUNT,
LENGTH- | N- BLOCKS, LENGTH-1 N-BYTES,
DEFAULT- GENERATI ON- RETENTI ON- COUNT

Dat es CREATI ON- DATE, MODI FI CATI ON- DATE

Dat e- or - never’ s REFERENCE- DATE, | NCREMENTAL- DUVP- DATE
COVPLETE- DUVP- DATE, DATE- LAST- EXPUNGED,
EXPI RATI ON- DATE

Tinme intervals AUTO EXPUNGE- | NTERVAL

Keyword Lists SETTABLE- PROPERTI ES, LI NK- TRANSPARENCI ES,
DEFAULT- LI NK- TRANSPARENCI ES

Bool ean val ues DELETED, DONT- DELETE, DONT- DUMP, DONT- REAP,

SUPERSEDE- PROTECT, NOT- BACKED- UP, OFFLI NE
TEMPORARY, CHARACTERS, DI RECTORY

Greenberg & Keene [Page 15]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

Strings ACCOUNT, AUTHOR, LINK-TO, PHYSI CAL-VOLUMVE
PROTECTI ON, VOLUME- NAME, PACK- NUMBER, READER,
Dl SK- SPACE- DESCRI PTI ON, and any keywor ds not
on this list

Note that these keyword nanes are intended to inply the senmantics of
the properties. For a discussion of the senantics of CREATI ON- DATE:
See the section "NFILE OPEN Response Return Val ues", section 8.20.2.
The "Reference Quide to Streans, Files, and I/0 in the Synbolics
docunentati on set details the semantics that Symbolics associ ates
with these properties.

8. NFI LE COMVANDS

It is inmportant to understand the conventions used in each of the
foll owi ng command descriptions. See the section "Conventions Used in
Thi s Docunent”, section 7.

8.1 ABORT Conmand
Conmand: (ABCRT tid input-handle)
Response: (ABORT tid)

ABORT cleanly interrupts and prematurely ternminates a single direct
access node data transfer initiated with READ. The required input-
handl e string argument identifies a data channel on which an input
transfer is currently taking place; this nmust be a direct access
transfer. input-handle nust identify a data channel; it cannot be a
direct file identifier

Upon receiving the ABORT conmand, the server checks to see if a
transfer is still active on that channel. |f so, the server

term nates the transfer by telling the data connection | ogica

process to stop transferring bytes of data. The user side needs to

i ssue this command only when there are outstandi ng unread bytes.

This excludes the case of the data channel having been disestablished
or reallocated by the user side.

Whet her or not a transfer is active on that channel, the user side
puts the data channel into the unsafe state. Before the data channe
can be used again, it nust be resynchronized.

8.2 CHANCE- PROPERTI ES Comand
Command: (CHANGE- PROPERTI ES tid handl e pat hnane property-pairs)

Response: (CHANGE- PROPERTI ES ti d)

Greenberg & Keene [Page 16]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

CHANGE- PROPERTI ES changes one or nore properties of a file. Either a
handl e or a pathname nmust be given, but not both. Whichever one is
gi ven nust be supplied as a string. handle identifies a data channe
that is bound to an open file; it can be a direct file identifier.

pat hnane identifies a file on the server nachine.

property-pairs is a required token list of keyword/val ue pairs, where
the nane of the property to be changed is the keyword, and the
desired new property value is the val ue.

The properties that can be changed are host-dependent, as are any
restrictions on the values of those properties. The properties that
can be changed are the sane as those returned as settabl e-properties,
in the comrmand response for the PROPERTIES comrand.

The server tries to nodify all the properties listed in property-
pairs to the desired new values. There is currently no definition
about what should be done if the server can successfully change sone
properties but not others.

For further information on file property keywords and associ at ed
val ues: See the section "Format of NFILE File Property/Val ue Pairs"
section 7.5.

8.3 CLCSE Conmmand
Conmand: (CLOSE tid handl e abort-p)
Response: (CLCSE tid truename binary-p other-properties)

CLCSE term nates a data transfer, and frees a data channel. The
handl e nust be a data channel handle for a data stream opening, or a
direct file identifier for a direct access opening. |If a data
channel is given, a transfer nust be active on that handle. |If
abort-p is supplied as Boolean truth, the file is close-aborted, as
descri bed bel ow

"Closing the file" has different inplications specific to each
operating system It generally inplies invalidation of the pointer
or logical identifier obtained fromthe operating system when the
file was "opened”, and freeing of operating system and/or job
resources associated with active file access. For output files, it
i nvol ves ensuring that every last bit sent by the user has been
successfully witten to disk. The server should not send a
successful response until all these things have conpl eted
successful ly.

Greenberg & Keene [Page 17]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

In either data streamor direct access node, the user can request the
server to close-abort the file, instead of sinply closing it. To

cl ose-abort a file means to close it in such a way, if possible, that
it is as if the file had never been opened. |In the specific case of
a file being created, it nust appear as if the file had never been
created. This mght be nore difficult to inplenent on certain
operating systens than others, but tricks with tenporary nanes and

cl ose-tinme renam ngs by the server can usually be used to inplenent

cl ose-abort in these cases. |In the case of a file being appended to,
cl ose-abort neans to forget the appended data.

AN UNSUCCESSFUL CLOSE OPERATI ON

For the normal CLOSE operation (not a close-abort), after witing
every last bit sent by the user to disk, and before closing the file,
the server checks the data channel specified by handle to see if an
asynchronous error is outstanding on that channel. That is, the
server nust deternine whether it has sent an asynchronous error
description to the user, to which the user has not yet responded with

a CONTI NUE command. |f so, the server is unable to close the file,
and therefore sends a comrand error response indicating that an error
is pending on the channel. The appropriate three-letter error code

is EPC. See the section "NFILE Errors and Notifications", section
10.

A SUCCESSFUL CLOSE OPERATI ON

The return val ues for OPEN and CLOSE are syntactically identical, but
the val ues m ght change between the time of the file being opened and
when it is closed. For exanple, the truenane return value is
supplied after all the close-tinme renaning of output files is done
and the version nunbers resolved (for operating systems supporting
version nunbers). Therefore, on some systens the truenanme of a file
has one value at the tine it is opened, and a different value when it
has been closed. For a description of the CLOSE return val ues: See
the section "NFI LE OPEN Response Return Val ues", section 8.20. 2.

If the user gives the CLOSE command with abort-p supplied as Bool ean

truth, thus requesting a close-abort of the file, the server need not
check whether an asynchronous error description is outstanding on the
channel . The server sinmply close-aborts the file.

Greenberg & Keene [Page 18]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

8.4 COWPLETE Conmand
Conmand: (COWPLETE tid string pathname DI RECTI ON NEW OK DELETED)
Response: (COVPLETE tid new string success)
COWPLETE perforns file pathname conpl etion

string is a partial filenanme typed by the user and pathname is the
default name against which it is being typed. Both string and

pat hnane are required argunments, and are of type string. The
remai ni ng argunments are optional keyword/val ue pairs.

NEW K is Boolean; if followed by Boolean truth, the server should
allow either a file that already exists, or a file that does not yet
exist. The default of NEWOK is false; that is, the server does not
consider files that do not already exist.

DELETED is a Bool ean type argunent; if followed by Boolean truth, the
server is instructed to look for files that have been del eted but not
yet expunged, as well as non-deleted files. The default is to ignore
soft-deleted files.

DI RECTI ON can be followed by READ, to indicate that the file is to be
read. If the file is to be witten, DI RECTION can be foll owed by
WRI TE. The default is READ

The filenanme is conpleted according to the files present in the host
file system and the expanded string newstring is returned. New
string is always a string containing a file nane: either the
original string, or a new, nore specific string. The value of
success indicates the status of the conpletion. The keyword value OLD
or NEW neans conpl ete success, whereas the enpty token |ist means
failure. The follow ng val ues of success are possible:

Val ue Meani ng

oD Success: the string conpleted to the nanme of
a file that exists.

NEW Success: the string conpleted to the nane of
a file that could be created

Enmpty token |ist Failure due to one of these reasons:

The file is on a file systemthat does not

Greenberg & Keene [Page 19]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

support conpletion. newstring is supplied as
t he unchanged stri ng.

There is no possible conpletion. newstring
is supplied as the unchanged string.

There is nore than one possible conpletion

The given string is conpleted up to the first
poi nt of ambiguity, and the result is supplied
as new string.

A directory nane was conpleted. Conpletion
was not successful because additiona
components to the right of this directory
remain to be specified. The string is

conpl eted through the directory nanme and the
delimter that follows it, and the result is
returned in newstring.

The semantics of COVWLETE are not docunented here. See the
"Reference Guide to Streans, Files, and I/O" in the Synbolics
docunent ati on set for the recommended semanti cs of COMPLETE

8.5 CONTI NUE Conmand
Conmand: (CONTINUE tid handl e)
Response: (CONTI NUE tid)

CONTI NUE resunes a data transfer that was tenporarily suspended due
to an asynchronous error. Each asynchronous error description has an
optional argument of RESTARTABLE, indicating whether it makes any
sense to try to continue after this particular error occurred.
CONTINUE tries to resune the data transfer if the error is
potentially recoverable, according to the RESTARTABLE argunent in the
asynchronous error description. For a discussion of asynchronous
errors: See the section "NFILE Errors and Notifications", section
10.

handle is a required string-type argunent that refers to the handle
of the data channel that received an asynchronous error. That data
channel could have been in use for a data streamor direct access
transfer. handle cannot be a direct file identifier

I f the asynchronous error description does not contain the

RESTARTABLE argunent, and the user issues the CONTI NUE command
anyway, the server gives a command error response.

Greenberg & Keene [Page 20]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

8.6 CREATE- DI RECTORY Commrand
Command: (CREATE- DI RECTORY tid pathnane property-pairs)
Response: (CREATE-DI RECTORY tid dir-truenane)

CREATE- DI RECTORY creates a directory on the renote file system The
requi red pathnane argunment is a string identifying the pathnane of
the directory to be created. The return value dir-truenane is the
pat hnanme of the directory that was successfully created. Both of
these pathnames are directory pathnanes: See the section "Syntax of
File and Directory Pat hnanme Argunments", section 7.4.

property-pairs is a keyword/value |ist of properties that further
define the attributes of the directory to be created. The allowable
keywords and associ ated val ues are operating system dependent;
typically they indicate argunments to be given to the native primtive
for creating directories.

If property-pairs is supplied as the enpty token list, default access
and creation attributes apply and shoul d be assured by the server.
See the section "Format of NFILE File Property/Value Pairs", section
7.5.

8.7 CREATE- LI NK Command
Command: (CREATE-LINK tid pathnane target-pathnanme properties)
Response: (CREATE-LINK tid Iink-truenane)
CREATE-LINK creates a link on the renote file system
pat hname is the pathname of the link to be created; target-pathnane
is the place in the file systemto which the link points. Both are
required argunments. The return value |ink-truenane nanes the

resulting |ink.

If a server on a file systemthat does not support l|inks receives the
CREATE- LI NK command, it sends a command error response.

The argunents pathnanme and target-pathnanme, and the return val ue
link-truenane, are all strings in the full pathnane syntax of the
server host. See the section "Syntax of File and Directory Pat hnane
Argunments", section 7.4.

The required properties argunment is a token list of keyword/val ue

pairs. These properties and their values specify certain attributes
to be given to the Iink. The allowable keywords and associ at ed

Greenberg & Keene [Page 21]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

val ues are operating system dependent; typically they indicate
arguments to be given to the native prinitive for creating |links

If no property pairs are given in the command, the server should
apply a reasonable default set of attributes to the link. See the
section "Format of NFILE File Property/Value Pairs", section 7.5.

8.8 DATA- CONNECTI ON Conmand
Command: (DATA- CONNECTI ON tid new i nput - handl e new out put - handl e)
Response: (DATA- CONNECTION tid connection-identifier)

DATA- CONNECTI ON enabl est he user side to initiate the establishment of
a new data connection. The user side supplies two required string
argunents, new i nput-handle and new output-handle. These argunents
are used by subsequent conmands to reference the two data channel s
that constitute the data connection now being created. new i nput-
handl e descri bes the server-to-user data channel, and new- out put -
handl e descri bes the user-to-server channel. newinput-handle and
new out put - handl e cannot refer to any data channels already in use.

Upon receiving the DATA- CONNECTI ON command, the server arranges for a
| ogi cal port (called socket or contact nane on sone networks) to be
made avail abl e on the foreign host machine. Wen the server has nade
that port available, it must informthe user of its identity. The
server relays that information in the comrmand response, in the
required connection-identifier, a string. The server then listens on
the port naned by connection-identifier, and waits for the user side
to connect to it.

Upon receiving the success conmand response, the user side supplies
the connection-identifier to the local network inplenmentation, in
order to connect to the specified port. The data connection is not
fully established until the user side connects successfully to that
port. This comand is unusual in that the successful comand
response does not signify the conpletion of the command; it indicates
only that the server has fulfilled its responsibility in the process
of establishing a data connecti on.

Greenberg & Keene [Page 22]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

The connection-identifier informs the user of the correct identity of
the logical port that the server has provided. NFILE expects the
connection-identifier to be a string. For TCP this string is the
port nunber represented in decimal. For Chaosnet, this string is the
contact name. The connection-identifier is used only once; in all
subsequent NFI LE commands that need to reference either of the data
channel s that constitute this data connection, the new i nput-handle
and new- out put - handl e are used.

For background information: See the section "NFILE Control and Data
Connections", section 4.

8.9 DELETE Conmand
Command: (DELETE tid handl e pat hnane)
Response: (DELETE tid)
DELETE deletes a file on the renote file system

Ei ther a handle or a pathname nust be supplied, but not both. |If

gi ven, the handle nmust be a data channel handle for a data stream
opening, or a direct file identifier for a direct access opening.
pathnane is a string in the full pathname syntax of the server host.
See the section "Syntax of File and Directory Pathname Argunents",
section 7. 4.

Wth a pat hname supplied, the DELETE comand causes the specified
file to be deleted. DELETE has different results depending on the
operating systeminvolved. That is, DELETE causes soft del etion on
TOPS-20 and LMFS, and hard deletion on UNIX and Multics. |If an
attenpt is made to delete a delete-through Iink on a Synbolics LMS,
its target is deleted instead.

If the handle argunent is supplied to DELETE, the server deletes the
open file bound to the data channel specified by handl e at close
time. This is true in both the output and input cases.

8.10 DI RECT- QUTPUT Conmand
Command: (DI RECT-OQUTPUT tid direct-handl e out put-handl e)
Response: (DI RECT- QUTPUT tid)
DI RECT- QUTPUT starts and stops output data flow for a direct access

file opening. DIRECT-QUTPUT explicitly controls binding and
unbi ndi ng of an output data channel to a direct access opening.

Greenberg & Keene [Page 23]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

direct-handle is a required argunent, and output-handle is optional

I f supplied, output-handle is a request to bind an output data
channel (indicated by output-handle) to the direct access opening
designated by the direct-handle. The specified output data channe
nmust be free. The server binds the data channel and begi ns accepting
data fromthat connection and witing it to the opening.

If the output-handle is onmitted, this is a request to unbind the
channel and term nate the active output transfer.

8.11 DI RECTORY Command

Conmmand: (DI RECTORY tid input-handl e pathname control - keywords
properties)

Response: (DI RECTORY tid)

DI RECTORY returns a directory listing including the identities and
attributes for logically related groups of files, directories, and
links. If the command is successful, a single token list containing
the requested information is sent over the data channel specified by
i nput-handl e, and the data channel is then inplicitly freed by both
sides <2>. For details on the format of the token list: See the
section "NFILE DI RECTORY Data Format", section 8.11.1.

pat hnanme specifies the files that are to be described; it is a string
in the full pathnane syntax of the server host. See the section
"Syntax of File and Directory Pathname Argunents”, section 7.4.

The pat hnane generally contains wildcard characters, in operating-
system specific format, describing potential file name matches. Most
operating systens provide a facility that accepts such a pat hname and
returns information about all files matching this pathnanme. Some
operating systens allow wildcard (potential multiple) matches in the
directory or device portions of the pathnane; other operating systens
do not. There is no clear contract at this tine about what is
expected of servers on systens that do not allow wildcard matches (or
sonme kinds of wild card matches), when presented with a wildcard.

properties is a token list of keywords that are the nanes of
properties. |If properties is onmitted or supplied as the enpty token
list, the server sends along all properties. |If any properties are
supplied, the user is requesting the server to send only those
properties.

Greenberg & Keene [Page 24]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

control - keywords ARGUMENT TO DI RECTORY

control -keywords is a token list of keywords. The control-keywords
af fect the way the DI RECTORY command works on the server machine.

Al t hough sone of the options bel ow request the server to limt (by
sone filter) the data to be returned, it is never an error if the
server returns nore infornation than is requested.

The foll owi ng keywords are recogni zed:
DELETED

I ncludes soft-deleted files in the directory list. Wthout this
option, they nust not be included. Such files have the DELETED
property indicated as true" among their properties. DELETED is
i gnored on systenms that do not support soft del etion

DI RECTORI ES- ONLY

This option changes the semantics of DI RECTORY fairly drastically.
Normal Iy, the server returns information about all files,
directories, and |inks whose pathnanes match the supplied pathnane.
This means that for each file, directory, or link to be listed, its
directory nane nust natch the potentially wldcarded) directory nane
in the supplied pathnane, its file nanme nust nmatch the file nane in
t he supplied pathnane, and so on

When DI RECTORI ES-ONLY is supplied, the server is to list only
directories, not whose pat hnanes match the supplied pat hnane, but
whose pat hnanes expressed as directory pathnanes match the
(potentially wildcarded) directory portion of the supplied pathnane.
The description of the PROBE-DI RECTORY keyword that can be supplied
as the direction argunment of the OPEN comrand di scusses this: See
the section "OPEN Command", section 8. 20.

It is not yet established what servers on hosts that do not support
this type of action natively are to do when presented with
DI RECTORI ES- ONLY and a pathnane with a wildcard directory conponent.

FAST Speeds up the operation and data transm ssion by not listing any

properties at all for the files concerned; that is, only the
truenames are returned.

Greenberg & Keene [Page 25]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

NO- EXTRA- I NFO

Specifies that the server is to suppress listing those properties
that are generally nore difficult or expensive to obtain. This
typically elimnates listing of directory-specific properties such as
i nformati on about default generation counts and expunge dates.

SCORTED

This causes the directory listing to be sorted. The sorting is done
al phabetically by directory, then by file name, then file type, then
file version (by increasing version nunber).

8.11.1 NFILE DI RECTORY Data For nat

If the NFILE D RECTORY command conpl etes successfully, a single token
list containing the requested directory information is sent on the
dat a channel specified by the input-handle argunent in the D RECTORY
command. This section describes the format of that single token
list, and gives further detail on the properties argunment to

DI RECTCORY

The token list is a top-level token list, so it is delimted by TOP-
LEVEL- LI ST-BEG N and TOP-LEVEL-LI ST-END. The top-level token list
cont ai ns enbedded token lists. The first enmbedded token |i st
contains the enpty token list followed by property/value pairs
describing property information of the file systemas a whol e rather
than of a specific file. NFILE requires one property of the file
systemto be present: DI SK-SPACE-DESCRIPTION is a string describing
the amount of free file space available on the system The follow ng
enbedded token lists contain the pathnane of a file, followed by
property/val ue pairs describing the properties of that file.

The followi ng exanpl e shows the format of the top-level token list
returned by DI RECTORY, for two files. It is expected that the server
return several property/value pairs for each file; the nunber of
pairs returned is not constrained. In this exanple, two
property/value pairs are returned for the file system two pairs are
returned for the first file, and only one pair is returned for the
second file.

TOP- LEVEL- LI ST- BEG N

LI ST- BEG N - first enbedded token list starts

LI ST-BEG N - an enpty enbedded token list starts
LI ST- END - the enpty enbedded token |ist ends
propl val uel - property/value pairs of file system
prop2 val ue2

LI ST- END

Greenberg & Keene [Page 26]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

LI ST- BEG N

pat hnanel - pathnane of the first file

propl val uel - property/value pairs of first file
prop2 val ue2

LI ST- END

LI ST- BEG N

pat hnane2 - pat hnane of the second file

propl val uel - property/value pairs of second file
LI ST- END

TOP- LEVEL- LI ST- END

The following exanple is designed to illustrate the structure of the
top-level token list by depicting TOP-LEVEL-LI ST-BEG N and TOP-
LEVEL- LI ST- END by parentheses and LI ST-BEG N and LI ST- END by squar be
rackets. respectively. The indentation, blank spaces, and new i nes
in the exanple are not part of the token list, but are used here to
make the structure of the token list clear.

([[] propl val uel prop2 val ue2]
[pat hnanel propl val uel prop2 val ue2]
[pat hnane2 propl val uel])

The pathnane is a string in the full pathname syntax of the server
host. See the section "Syntax of File and Directory Pathnane
Arguments", section 7.4.

For further information on file property/value pairs: See the
section "Format of NFILE File Property/Value Pairs", section 7.5.

8.12 DI SABLE- CAPABI LI TI ES Comrand
Command: (DI SABLE- CAPABI LI TIES tid capability)

Response: (DI SABLE-CAPABILITIES tid cap-1 success-1
cap-2 success-2 cap-3 success-3 ...)

Dl SABLE- CAPABI LI TI ES causes an access capability to be disabled on
the server nmachine. capability is a string naming the capability to
be disabled. The nmeaning of the capability is dependent on the
operating system

The return values cap-1, cap-2, and so on, are strings specifying
nanes of capabilities. |If the capability naned by cap-1 was
successful |y di sabl ed, the correspondi ng success-1 is supplied as
Bool ean truth; otherwise it is the enpty token list.

Greenberg & Keene [Page 27]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

Al t hough the user can specify only one capability to disable, it is
conceivable that the result of disabling that particular capability
is the disabling of other, related capabilities. That is why the
command response can contain information on nore than one capability.

8.13 ENABLE- CAPABI LI TI ES Conmand
Command: (ENABLE- CAPABILITIES tid capability password)}

Response: (ENABLE- CAPABILITIES tid cap-1 success-1
cap-2 success-2 cap-3 success-3 ...)

ENABLE- CAPABI LI TI ES causes an access capability to be enabled on the
server nmachine. The password argunent is optional, and should be
included only if it is needed to enable this particular capability.
Bot h password and capability are strings. The neaning of the
capability is dependent on the operating system

The return val ues cap-1, cap-2 and so on, are strings specifying
nanes of capabilities. |If the capability naned by cap-1 was
successful ly enabl ed, the correspondi ng success-1 is supplied as
Boolean truth; otherwise it is the enpty token I|ist.

Al t hough the user can specify only one capability to enable, it is
concei vable that the result of enabling that particular capability is
the enabling of other, related capabilities. That is why the command
response can contain informati on on nore than one capability.

8.14 EXPUNGE Conmand
Command: (EXPUNCE tid directory-pathnane)
Response: (EXPUNGE tid server-storage-units-freed)

EXPUNGE causes the directory specified by pathname to be expunged.
Expungi ng neans that any files that have been soft deleted are to be
per manently renoved

For file systenms that do not support soft deletion, the command is to
be ignored; a success command response is sent, but no action is
performed on the file system In this case, the nunber-of-server-
storage-units-freed return value should be omtted.

directory-pathname is a required string argument in the directory
pat hname format; it nust refer to a directory on the server file
system and not to a file. See the section "Syntax of File and
Directory Pathnane Argunents”, section 7.4.

Greenberg & Keene [Page 28]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

The return val ue server-storage-units-freed is an integer specifying
how many records, blocks, or whatever unit is used to nmeasure file
storage on the server host system were recovered. This return value
should be omitted if the server does not know how many storage units
were freed.

The protocol does not define whether directory-pathnane is really a
pat hnane as directory or a wildcard pathname of files to be expunged.
The protocol does not define whether or not wildcards are permtted,
or required to be supported, in the directory portion of the pathname
(representing an inplicit request to expunge many directories).

8.15 FILEPGCS Comrand
Command: (FILEPCS tid handl e position resync-uid)
Response: (FILEPGCS tid)

FI LEPCS sets the file access pointer to a given position, relative to
the beginning of the file. FILEPOS is used to indicate the position
of the next byte of data to be transferred.

The handl e indicates the file to be affected. handle nust be a data
channel handle for a data streamopening, or a direct file identifier
for a direct access opening. Both handle and position are required
ar gunment s.

position is an integer indicating to which point in the file the file
access pointer is to be reset. position is either a byte nunber
according to the current byte size being used, or characters for
character openings. Position zero is the beginning of the file. |If
this is a character opening, position is nmeasured in server units,

not in NFILE character set units.

If the FILEPCS command is given on an input data channel (that is, a
data channel currently sending data from server to user), the

af fected data channel nust be resynchronized after the FILEPCS is
acconplished, in order to identify the start of the new data. The
resync-uid is a unique identifier associated with the

resynchroni zation of the data channel; it is unique with respect to
this dialogue. resync-uid nust be supplied if handle is an input
handl e, but it is not supplied otherwise. For nore information on
the resynchroni zation procedure: See the section "NFILE Data
Connecti on Resynchroni zation", section 9. 2.

In the output case, the user nust sonehow indicate to the server, on

the out put data channel, when there is no nore data. The user side
sends the keyword token EOF to do so. Upon receiving that contro

Greenberg & Keene [Page 29]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

token, the server is required to position the file pointer according
to the position given. Wen the newfile position is established,
the server resunes accepting data at the new file position

In nost cases, using the direct access node of transfer is nore
conveni ent and efficient than repeated use of FILEPCS with a data
st ream openi ng.

There are problens inherent in trying to set a file position of a
character-oriented file on a foreign host, if one machine is a
Synbolics conputer and the other is not. For exanple, character set
transl ation nust take place. See the section "NFILE Character Set",
section 6. Because of these difficulties, FILEPCS night not be
supported in the future on character files. FILEPOS is not
problematic for binary files.

8.15.1 Inplenentation H nt for FILEPOS Command

The server processing of this conmand (by the control connection
handl er) mnmust not attenpt to wait for the resynchroni zation procedure
to conplete. It is possible that the user could abort between
sendi ng the FILEPGCS conmmand and reading for the mark and

resynchroni zation identifier. That scenario could | eave the sender
of the resynchronization identifier, on the server side, blocked for
output indefinitely.

Only two comands received on the control connection can break the
data channel out of the blocked state described above: CLCSE with
abort-p supplied as Bool ean truth, and RESYNCHRONI ZE- DATA- CHANNEL.
Therefore, the control connection nust not wait for the data channe
to finish perform ng the resynchroni zation procedure. This wait
shoul d i nstead be perfornmed by the process nanagi ng the data channel

8.16 FIN SH Conmmand
Command: (FINISH tid handl e)
Response: (FINISH tid truenane binary-p other-properties)
FINISH closes a file and reopens it imediately with the file
position pointer saved, thus leaving it open for further 1/QO If
possi ble, the inplenentation should do the closing and opening in an

i ndi visible operation, such that no other process can get access to
the file.

Greenberg & Keene [Page 30]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

The argunents, results, and their neaning are identical to those of
the CLOSE conmmand. See the section "CLOSE Conmand", section 8.3

FINI SH requires a handl e, which has the same neaning as the handl e of
t he CLCSE conmand.

In the output case, for both direct node and data stream node of
openi ngs, the server wites out all buffers and sets the byte count
of the file. The user sends the keyword token EOF on the data
channel, to indicate that the end of data has been reached. The
server leaves the file in such a state that if the systemor server
crashes anytinme after the FINI SH command has conpleted, it would

| ater appear as though the file had been cl osed by this conmand.
However, the file is not left in a closed state now, it is left open
for further 1/O operations. FINNSHis a reliability feature.

FINISH i s somewhat pointless in the input case, but valid. The
native Synmbolics file system (LMFS) inplenents FIN SH on an out put
file by an internal operation that effectively goes through the work
of closing but |eaves the file open for appending.

ERRORS ON FI NI SH

After witing every last bit sent by the user to disk, and before
closing the file, the server checks the data channel specified by
handle to see if an asynchronous error is outstanding on that
channel. That is, the server nust deternine whether it has sent an
asynchronous error to the user, to which the user has not yet
responded with a CONTINUE conmmand. |If so, the server is unable to
finish the file, and it nust send a command error response response,
indicating that an error is pending on the channel. The appropriate
three-letter error code is EPC. See the section "NFILE Errors and
Noti fications", section 10.

8.17 HOVE- DI RECTORY Conmand
Command: (HOME- DI RECTORY tid user)
Response: (HOVE- DI RECTORY tid directory-pathnane)

HOVE- DI RECTORY returns the full pathnanme of the honme directory on the
server machine for the given user.

user is a string that should be recogni zable as a user’s |l ogin nanme
on the server operating system directory-pathname is a string in

the directory pathname format. See the section "Syntax of File and
Directory Pathnane Argunments", section 7.4.

Greenberg & Keene [Page 31]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

8.18 LOG N Conmand
Command: (LOG N tid user password FlLE- SYSTEM USER- VERSI ON)
Response: (LOG@ N tid keyword/val ue-pairs)

LOAd N Il ogs the given user in to the server nmachine, using the
password if necessary. Both user and password are string argunents;
user is required, password is optional. An onitted password is valid
if the host allows the specified user to log in without a password.
Dependi ng on the operating system and server, it mght be necessary
tolog into run a program (in this case the NFILE server progranm on
the host. LOd N establishes a user identity that is used by the
operating systemto establish the file author and determine file
access rights during the current session.

The server has the option to reject with an error any comrand except
LOA N if a successful LOG N conmand has not been perforned. This is
recomended. Many operating systens performthe login function in a
di fferent process and/or environnent than user prograns. The portion
of the NFILE server running in the special login environment could
concei vably be capable only of processing the LO@ N conmand; this is
the reason for having the LOG@ N command in NFILE

FI LE- SYSTEM and USER- VERSI ON are optional keyword/value pairs. The
FI LE- SYSTEM keywor d/ val ue pair selects the identity of the file
systemto which all following commands in this session are to be
directed. This argunent has nmeaning only if the server host machine
has multiple file systens, and the targeted file systemis other than
the default file systemthat a user would get by initiating a

di al ogue with that host. The FILE-SYSTEM argunent is an arbitrary
token list. If the server does not recognize it, the server gives an
appropriate conmand error response.

Currently, the only use of FILE-SYSTEMis for Synbolics servers to
sel ect one of the front-end processor hosts instead of the LMS,
which is the default. |In this case, the first element in the token
list is the keyword FEP, and the second elenent in the token list is
an integer, indicating the desired FEP di sk unit nunber. |If the
server discovers there is no such file system the server gives a
command error response including the three-letter code NFS, neaning
"no file systenf'. See the section "NFILE Errors and Notifications"
section 10.

Greenberg & Keene [Page 32]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

The user tells the server what version of NFILE it is running by

i ncludi ng the optional USER-VERSI ON keyword/val ue pair. The val ue
associ ated with USER-VERSI ON can be a string, an integer, or a token
list. This document describes NFILE user version 2 and server
version 2.

Upon receiving the representation of the user version, the server can
either adjust certain paraneters to handle this particular version
or sinply ignore the user version altogether. Currently, the only
rel eased versions of NFILE are user version 2 and server version 2.

LOd N RETURN VALUES: keyword/val ue-pairs

The keyword/val ue-pairs is a token list conposed of keywords foll owed
by their values. The server includes any or all of the follow ng
keywords and their values; they are all optional. The follow ng
keywords are recogni zed:

NANME

The val ue associated with NAME is a string specifying the user
identity, in the server host’s terns.

PERSONAL - NAME

The val ue associated with PERSONAL-NAME is a string representing the
user’s personal nanme, |last name first. For exanple: "MGIIicuddy,
Al oysius X ".

HOVEDI R- PATHNAME

The val ue associ ated with HOVEDI R- PATHNAME is a string in the

pat hnane as directory format, indicating the hone directory of the
user. See the section "Syntax of File and Directory Pathnane
Argument s", section 7.4.

GROUP- AFFI LI ATI ON

The val ue associated with GROUP- AFFI LIATION is a string specifying
the group to which the user bel ongs, when this concept is
appropri at e.

SERVER- VERSI ON

The val ue associ ated with SERVER- VERSI ON can be a string, an integer,
or a token list. The value is a representation of the version of the

server is running. Upon receiving the server version, the user can
adjust certain paraneters to handle this particular version; accept

Greenberg & Keene [Page 33]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

the version; or close the connection. Currently, the only rel eased
versi ons of NFILE are user version 2 and server version 2.

PROPERTY- | NDEX- TABLE

The val ue associ ated with PROPERTY-| NDEX- TABLE is a token |ist of
keywords. This return value enables the server to informthe user
which file properties are nmeaningful on its file system The
keywords in PROPERTY-| NDEX- TABLE can be used by the DI RECTORY command
(a user request for information on file properties of a specified
directory or directories). The server can specify a certain property
by giving an integer that is the index of that file property into the
PROPERTY- | NDEX- TABLE. This reduces the volune of data sent during
directory listings. The first elenment in PROPERTY-I| NDEX- TABLE is

i ndexed by the nunber 0. See the section "Dl RECTORY Command"

section 8.11.

8.19 MULTI PLE- FI LE- PLI STS Conmand

Conmmand: (MULTI PLE- FI LE- PLI STS tid input-handl e paths
characters properties)

Response: (MJLTI PLE- FI LE- PLI STS ti d)

MULTI PLE- FI LE- PLI STS returns file property informati on of one or nore
files. The server sends the information in a data structure (the
format is described later in this section) on the given input-handle.
paths is an enbedded token list conmposed of the pathnanes in which
the user is interested. Each pathnane in this list is a string in
the full pathnane syntax of the server host. Unlike for the

DI RECTORY command, wildcards are not allowed in these pathnanes. See
the section "Syntax of File and Directory Pathname Argunents",
section 7. 4.

characters is either Boolean truth (indicating that each file is a
character file), the enpty token list (each file is a binary file),

or the keyword DEFAULT. DEFAULT indicates that the server itself is
to figure out whether a file is a character or binary file. For nore
i nformation on the neaning of the DEFAULT keyword: See the section
"OPEN Command", section 8.20. The value of characters can influence
some servers’' idea of a file s length

properties is a token list of keywords indicating which properties
the user wants returned. The server is always free to return nore
properties than those requested in the properties argunent. |f
properties is supplied as the enpty token list, the server should
transmt all known properties on the files.

Greenberg & Keene [Page 34]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

The server transnmits as nuch of the requested informati on as possible
on the given input-handle. The information is contained in a top-

I evel token list of elenents. Each elenent corresponds with a
suppl i ed pat hnanme; the order of the original pathlist nust be
retained in the returned token list. An element is an enpty token
list if the corresponding file or any of its containing directories
does not exist. The elenents that correspond to successfully | ocated
files are lists conposed of truenane followed by any properties.
properties are keyword/value pairs. truename is a string in the ful
pat hnanme syntax of the server host.

The foll owi ng exanpl e shows TOP-LEVEL-LI ST-BEG N and TOP- LEVEL- LI ST-
END as parentheses, and LI ST-BEA N and LI ST-END with square brackets.

For exanple, the user supplied a pathlist argunment resenbling:
[filel file2 file3]

The server could not locate filel or file3, but did locate file2, and
found the Iength and author of file2. The top-level token |ist
transmtted by the server is:

([1 [truename-of-file2 LENGTH 381 AUTHOR williams] [])

For further detail on how file properties and val ues are expressed:
See the section "Format of NFILE File Property/Val ue Pairs", section
7.5.

8.20 OPEN Conmand

Command: (OPEN tid handl e pathnane direction binary-p
TEMPORARY RAW SUPER- | MAGE DELETED PRESERVE- DATES
SUBM T DI RECT- FI LE- 1 D ESTI MATED- LENGTH BYTE- SI ZE
| F- EXI STS | F- DOES- NOT- EXI ST)

Response: (OPEN tid truenane bi nary-p other-properties)

OPEN opens a file for reading, witing, or direct access at the
server host. That nmeans, in general, asking the host file systemto
access the file and obtaining a file nunber, pointer, or other
quantity for subsequent rapid access to the file; this is called an
"openi ng". See the section "NFILE File Opening Mbdes", section 5.

The OPEN command has the nost conplicated syntax of any NFILE
conmand. The OPEN command has required argunents, an optiona
argunent, and many optional keyword/value pairs. For details on the
syntax of each of these parts of the OPEN command: See the section
"Conventions Used in This Docunent”, section 7.

Greenberg & Keene [Page 35]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

The followi ng argunments are required: pathnane, direction, and

bi nary-p. handle is an optional argunment, which nust either be
supplied or explicitly omtted by nmeans of substituting in its place
the enpty token list.

The OPEN command has many optional keyword/val ue pairs, which encode
conceptual argunments to the server file systemfor the OPEN
operation. A detailed description of all the supported OPEN optiona
keywords is given bel ow.

The OPEN return values reflect information about the file opened,
when the opening is successful. |In the case of a probe-type opening,
this information is returned when the given file (or link, or
directory) exists and is accessible, even though the file (or link
or directory) is not actually opened. For detail on the OPEN return
val ues: See the section "NFILE OPEN Response Return Val ues", section
8. 20. 2.

THE pat hnane OPEN ARGUVENT

The pathnanme is a required argunment specifying the file to be opened.
pat hnanme is a string in the full pathname syntax of the server host.
See the section "Syntax of File and Directory Pathname Argunents”
section 7.4.

For some purposes (for exanple, when the OPEN argunent direction is
suppl i ed as PROBE- DI RECTORY), only the directory specified by this
pat hnanme is utilized. See the section "NFILE OPEN Opti onal
Keywor d/ Val ue Pairs", section 8.20.1.

THE handl e OPEN ARGUMENT

The handl e argunment of the OPEN conmand specifies a data channel to
be used for the transfer. Subsequent commands in this session use
the sane handle to specify this opening. It is the user side’'s
responsibility to ensure that handle refers to an existing and free
data channel that does not require resynchronizati on before use. A
handl e nust be supplied, unless a probe-type opening is desired (that
is, the direction is supplied as PROBE, PROBE-DI RECTORY, or PROBE-
LINK) or a direct access opening is being requested (that is, a

DI RECT-FILE-ID is supplied). |In those cases, the enpty token list is
supplied for handle.

THE direction OPEN ARGUVENT
The direction argument nust be supplied as one of these keywords:

| NPUT, QUTPUT, | O, PROBE, PROBE-DI RECTORY, and PROBE-LINK. The
meani ngs of the direction keywords are as foll ows:

Greenberg & Keene [Page 36]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

I NPUT

Specifies that the file is to be opened for input server-to-user
transfer). To request a direct access opening, supply a value for
DI RECT-FILE-ID. If no DIRECT-FILE-ID is supplied, the opening is a
dat a stream openi ng.

OQUTPUT

Specifies that the file is to be opened for output user-to-server
transfer). To request a direct access opening, supply a value for
DIRECT-FILE-ID. If no DIRECT-FILE-ID is supplied, the opening is a
dat a stream openi ng.

Specifies that interspersed input and output will be perforned on
the file. This is only neaningful in direct access node. A

DI RECT- FI LE-I1 D nust al so be supplied. See the section "NFILE OPEN
Optional Keyword/ Val ue Pairs", section 8.20.1.

If direction is supplied as PROBE, PROBE-LINK, or PROBE-DI RECTORY
the opening is said to be a probe-type opening. The DI RECT-FILE-ID
option is neaningless and an error for probe-type openings. The file
handl e nust be supplied as an enpty token list for probe-type

openi ngs.

PROBE
Specifies that the file is not to be opened at all, but sinply
checked for existence. |f the file does not exist or is not
accessible, the error indications and actions are identical to
those that would be given for an I NPUT opening. |If the file does

exi st, the successful command response contains the same
information as it would have if the file had been opened for
INPUT. If it isalink, the link is followed to its target.

PROBE- LI NK
Li ke PROBE, with one difference. PROBE-LINK specifies that if the

pat hnanme is found to refer to a link, that link is not to be
followed, and information about the link itself is to be returned.

Greenberg & Keene [Page 37]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

PROBE- DI RECTORY

PROBE- DI RECTORY requests information about the directory
designated by the pathname argunment. In the PROBE- D RECTORY case,
t he pat hnane argunment refers to the directory on which information
is requested. In all other cases, the pathnane refers to a file
to be opened. |f pathnane contains a file nane and file type,
these parts of the pathnanme are ignored for PROBE- DI RECTORY
openings as long as they are syntactically valid.

THE bi nary-p OPEN ARGUVENT

The val ue of binary-p affects the node in which the server opens the
file, as well as infornming it whether or not character set
transl ati on nmust be perforned.

If binary-p is supplied as the enpty token list, the opening is said
to be a character opening. The server perforns character set

transl ation between its native character set and the NFILE character
set. The data is transferred over the data connection one character
per eight-bit byte. See the section "NFILE Character Set", section
6.

If binary-p is supplied as Boolean truth, the opening is said to be a
bi nary opening. The user side supplies the byte size via the BYTE-

SI ZE option; if not supplied, the default byte size is 16 bits. |If
byte size is less than 9, the file data is transferred byte by byte.
If the byte size is 9 or greater, the server transfers each byte of
the file as two eight-bit bytes, |oworder first.

bi nary-p can al so be supplied as the keyword DEFAULT. DEFAULT
specifies that the server itself is to determ ne whether to transfer
bi nary or character data. DEFAULT is nmeaningful only for input
openings; it is an error for OUTPUT, | QO or probe-type openings. For
file systens that maintain the innate binary or character nature of a
file, the server sinply asks the file systemwhich case is in force
for the file specified by pathnane.

When binary-p is supplied as DEFAULT, on file systens that do not
mai ntain thisinformation, the server is required to performa
heuristic check for Synbolicsobject fileson the first two 16-bit
bytes of the file. |If the file isdeternmined to be aSynbolics object
file, the server perfornms a BlI NARY openi ngwi th BYTE- SI ZE of 16;
otherwi se, it performs a CHARACTER openi ng.

Greenberg & Keene [Page 38]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

The details of the check are as follows: if the first 16-bit byte is
the octal nunmber170023 and the second 16-bit byte is any nunber
between 0 and 77 octal (inclusive), the file is recognized as a
Synbolics object file. |In any othercase, it is not.

8.20.1 NFILE OPEN Optional Keyword/Value Pairs

The OPEN conmand has nmany optional keyword/val ue pairs that encode
conceptual argunments to the file systemfor the OPEN operation

The follow ng options are used often
BYTE- S| ZE

Must be followed by an integer between 1 and 16, inclusive, or the
enpty token list. BYTE-SIZE is meaningful only for binary

openi ngs. BYTE-SI ZE can be ignored for probe-type openings. It
can be onmtted entirely for character openings, but if supplied,
must be followed by the enpty token list. If binary-p is supplied
as DEFAULT, BYTE-SIZE can be onitted entirely, or followed by the
enpty token I|ist.

If a binary opening is requested and BYTE-SI ZE i s not supplied,
the assuned value is 16 for output openings. For input binary
openi ngs, the default is the host file systenmis stored conception
of the file's byte size (for those hosts that natively support
byte size). For file systens that do not natively support
natively byte size, the default byte-size on binary input is 16.

For file systens that nmintain the innate byte-size of each file,
the server should supply this nunber to the appropriate operating
systeminterface that perfornms the semantics of opening the file.
For other operating systens, a file witten with a given byte size
must produce the sanme bytes in the sane order when read with that
byte size. In this case, the server or host operating system can
choose any packing schene that conplies with this rule.

Operating systens that do not support byte size nust ensure that
binary files witten fromuser ends of the current protocol can be
read back correctly. However, the server can choose packing
schenes that allow all bits of the server host’s word to be
accessed and concur with other packing schenes used by native host
sof t war e

For exanple, Miltics supports 36 bit words and 9 bit bytes. A
packi ng schene appropriate for a Miltics NFILE server is:

Greenberg & Keene [Page 39]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

Byte Size Packi ng Schere
7, 8, or 9 bits four per 36-bit word
10, 11, or 12 bits three per 36-bit word

13, 14, 15, or 16 bits two per 36-bit word

In the first packing schenme in the table, native Miltics
character-oriented software can access each | ogical byte
sequentially. 1In the |ast packing scheme, each Synbolics byte is
in a hal fword, easily accessible and visible in an octa
representation. To achieve nmaxi numdata transfer rate and access
all bits of a Multics word, a byte size of 12 nust be specified.

DELETED

If supplied as Bool ean truth, DELETED specifies that del eted"
files are to be treated as though they were not "del et ed"
DELETED i s neani ngful only for operating systens that support
"soft deletion" and subsequent "undel etion" of files. Oher
operating systens nust ignore this option. Nornmally, deleted
files are not visible to the OPEN operation; this option makes
t hem vi si bl e.

DELETED can al so be followed by the enpty token list, which has
the sane effect as onitting the DELETED keyword/val ue pair
entirely. For output openings, DELETED i s neani ngl ess and an
error if supplied.

DI RECT- FI LE-1 D

If supplied, the DIRECT-FILE-1D indicates that the opening is to
be a direct access node opening. |If not supplied, the opening is
a data stream opening. The value of DIRECT-FILE-ID is a string
generated by the user, that has not been used as a DI RECT-FILE-ID

in this dialogue, and does not designate any data channel. The
DIRECT-FILE-IDis a unique identifier for the direct access
opening. It is used for all operations that identify an opening

rather than a data channel. The DIRECT-FILE-ID is used to
identify a direct access opening, just as a file handle is used to
identify a data stream opening. The PROPERTIES, CLOSE, and RENAME
commands use the DIRECT-FILE-ID in this way. There are only two
NFI LE conmands applicable to direct access openings (ABORT and
CONTI NUE) that do not use the D RECT-FILE-1D, but use a data
channel handl e i nstead.

PRESERVE- DATES

I f supplied as Bool ean truth, PRESERVE-DATES specifies that the

Greenberg & Keene [Page 40]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

server is to attenpt to prevent the operating systemfrom updating
the "reference date" or date-tinme used" of the file. This is
meani ngful only for input openings, and is an error otherw se.

The Synbolics operating systeminvokes this option for operations
such as View File in the editor, where it wishes to assert that
the user did not "read" the file, but just "looked at it".
Servers on operating systens that do not support reference dates
or users revising or suppressing update of the reference dates
nmust ignore this option

ESTI MATED- LENGTH

The val ue of ESTI MATED-LENGTH is an integer estimating the |length
of the file to be transferred. This option is neaningful and
permitted only for output openings. ESTI MATED- LENGIH enabl es the
user end to suggest to the server’s file systemhow long the file
is going to be. This can be useful for file systens that nust
preallocate files or file maps or that accrue perfornmance benefits
fromknowing this information at nthe tinme the file is first
opened. This estimate, if supplied, is not required to be exact.
It is ignored by servers to which it is not useful or interesting.
The units of the estimate are characters for character openings,
and bytes of the agreed-upon byte size for binary openings. The
character units should be server units, if possible, but since
this is only an estimate, NFILE character units are acceptable.
See the section "NFILE Character Set", section 6.

EXI STS

Meani ngful only for output openings, ignhored otherw se, but not

di agnosed as an error. The value of IF-EXISTS is a keyword that
specifies the action to Be taken if a file of the given nane

al ready exists. The semantics of the values are derived fromthe
Common Li sp specification and repeated here for conpl eteness. |If
the file does not already exist, the | F-EXISTS option and its

val ue are ignored.

If the user side does not give the | F-EXI STS option, The action to
be taken if a file of the given nanme already exists depends on
whet her or not the file system supports file versions. [If it

does, the default is ERROR (if an explicit version is given in the
file pathnane) or NEWVERSION (if the version in the file pathname
is the newest version). For file systens not supporting versions,
the default is SUPERSEDE. These actions are described bel ow

Greenberg & Keene [Page 41]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

| F- EXI STS provi des the nechanismfor overwiting or appending to
files. Wth the default setting of |F-EXISTS, new files are
created by every output opening.

Operating systenms supporting soft deletion can take different
actions if a "deleted" file already exists with the sane nane (and
type and version, where appropriate) as a file to be created. The
Synbolics file system (LMFS) effectively uses SUPERSEDE, even if
not asked to do so. Oher servers and file systens are urged to
do simlarly. Recomended action is to not allow deleted files to
prevent successful file creation (with specific version nunber)
even if an | F-EXI STS option weaker than SUPERSEDE, RENAME, or
RENAME- AND- DELETE is specified or inplied.

Here are the possible values and their meanings:
ERRCR

Reports an error.
NEW VERSI ON

Creates a newfile with the sane file nane but with a | arger
version nunber. This is the default when the version conponent
of the filenane is newest. File systens w thout version
nunbers can inplenment this by effectively treating it as
SUPERSEDE

RENAME

Renanes the existing file to sone other nane and then creates a
new file with the specified name. On nost file systens, this
renani ng happens at the tinme of a successful close.

RENAME- AND- DELETE

Renanes the existing file to sone other nane and then del etes
it (but does not expunge it, on those systens that distinguish
deletion fromexpunging). Then it creates a new file with the
specified nane. On nost file systens, this renam ng happens at
the tinme of a successful close.

OVERWRI TE

Qut put operations on the opening destructively nodify the
existing file. New data replaces old data at the begi nning of
the file; however, the file is not truncated to length zero
upon openi ng.

Greenberg & Keene [Page 42]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

TRUNCATE

Qut put operations on the opening destructively nodify the
existing file. The file pointer is initially positioned at the
beginning of the file; at that tine, TRUNCATE truncates the
file to length zero and frees di sk storage occupied by it.

APPEND

Qut put operations on the opening destructively nodify the
existing file. New data is placed at the current end of the
file.

SUPERSEDE

Supersedes the existing file. This nmeans that the old file is
renoved or del eted and expunged. The new file takes its place.
If possible, the file system does not destroy the old file
until the new file is closed, against the possibility that the
file will be close-aborted. This differs from NEWVERSION in

t hat SUPERSEDE creates a new file with the sane name as the old
one, rather than a file name with a higher version nunber.

There are currently no standards on what a server can do if it
cannot i npl enent sone of these actions.

| F- DOES- NOT- EXI ST
Meani ngf ul for input openings, never neani ngful for probe-type
openi ngs, and soneti nes neani ngful for output openings. |F- DOES-
NOT- EXI ST takes a val ue token, which specifies the action to be
taken if the file does not already exist. Like IF-EXISTS, it is a
derivative of Common Lisp. The default is as follows: If this is
a probe-type opening or read opening, or if the |IF-EXISTS option
is specified as OVERWRI TE, TRUNCATE, or APPEND, the default is
ERROR. O herwise, the default is CREATE
These are the values for |F-DOES- NOT- EXI ST
ERRCR

Reports an error.

CREATE

Creates an enpty file with the specified nane and then proceeds
as if it already existed.

Greenberg & Keene [Page 43]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

The follow ng optional keyword/value pairs are rarely used, if ever

RAW

If supplied as Bool ean truth, RAWspecifies that character set
translation is not to be perfornmed, but that characters are to be
transferred intact, w thout inspection. This option is nmeaningfu
only for character openings; it is an error otherwise. It is also
an error to supply RAWas Bool ean truth for probe-type openings.
RAW can al so be foll owed by the enpty token list, which has the
same effect as if the RAW keyword/value pair were onitted
entirely. See the section "RAW Transl ati on Mdde", Appendi x B

SUPER- | MAGE

If supplied as Bool ean truth, SUPER-IMAGE specifies that Rubout
quoting is not to be perforned. This operation is neaningful only
for character openings; it is an error otherwise. It is also an
error for probe-type openings. SUPER-IMAGE can al so be foll owed
by the enmpty token list, which has the sane effect as if the
SUPER- | MAGE keyword/ val ue pair were omitted entirely.

SUPER- | MAGE nbde causes the server to read or wite character
files where ASCII Rubout characters are a significant part of the
file content, not where they are an escape for this protocol
However, other translations nust still be perfornmed: See the
section SUPER-I MACE Transl ati on Mode", Appendix C

TEMPORARY

Used by the TOPS-20 server only. TEMPORARY says to use GI%IMP in
the GTJFN. This is useful mainly when witing files, and

i ndi cates that the foreign operating systemis to treat the file
as tenmporary. See TOPS-20 docunmentation for nore about the
inplications of this option. Qher servers can ignore it. This
option is neaningless and an error for input or probe-type

openi ngs. TEMPORARY can al so be followed by the enpty token list,
whi ch has the sane effect as if the TEMPORARY keyword/val ue pair
were onmitted entirely.

SUBM T

SUBM T is neaningful for output only. |f supplied as Bool ean
truth, SUBM T causes the server to submit the contents of the file
being witten to the operating systemas a job, after the file is
closed. VMS is an exanple of an operating systemthat could
conveni ently support SUBMT. SUBMT can also be followed by the
enpty token list, which has the sane effect as if the SUBMT

Greenberg & Keene [Page 44]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

keyword/ val ue pair were onmtted entirely. Servers that do not
i mpl enent this option should give an error response if requested
to subnit a file to the operating system

8.20.2 NFILE OPEN Response Return Val ues
The results of a successful OPEN operation are reported in the
command response. Here is the specification of the OPEN response
format:
Response Format:

(OPEN tid truenane binary-p other-properties)

The return val ues for OPEN and CLOSE are syntactically identical, but
the val ues can change in the tinme interval between open and cl ose.

truenane is a string representing the pathnanme of the file in the
full pathnane syntax of the server host. It should be determ ned by
the server once it has opened the file, via sone request to its
operating system The request can be of the form "Wat file

corresponds to this JFN, file nunmber, pointer, etc.?" |f the
operating system supports version nunbers, this string al ways
contains an explicit version nunber. 1t always contains a directory

nane, a file nane, and so on.

Some operating systens m ght not know the truenane of an output file
until it is closed. It is permissible not to supply an explicit
versi on nunber in the pathnanme in the OPEN response in this specific
case. On these systens the truenane when the file is opened is
different than the truenanme after it has been cl osed.

The return val ue binary-p indicates whether the opening is a binary
or character opening. For binary openings, binary-p is supplied as
Bool ean truth; for character openings it is the enpty token |ist.

other-properties is a list of keyword/value pairs. other-properties
must contai n CREATI ON DATE and LENGTH. AUTHOR shoul d be included if
the server operating systemhas a conveni ent nechani sm for

determ ning the author of the sfile. The other properties described
here can be included if desired.

AUTHOR
The value of AUTHOR is a string representing the name of the author
of the file. This is sone kind of user identifier, whose format is

systemspecific. As with CREATI ON- DATE (see below), AUTHOR is
supposed to represent the |ogical determinor of the current data

Greenberg & Keene [Page 45]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

content of the file, not necessarily the agency that actually created
the file.

BYTE- SI ZE

The byte-size agreed upon via the rules described for the BYTE-SI ZE
option. The value of BYTE-SIZE is an integer. For details on the
ram fications of BYTE-SIZE: See the section "NFILE OPEN Opti onal
Keywor d/ Val ue Pairs", section 8.20.1. This paraneter is only

meani ngf ul for BI NARY openi ngs. However, if FILEPOS is returned in
the other-properties list, BYTE-SIZE should al so be included, even
for character openings.

CREATI ON- DATE

The creation date of the file. The date is expressed in Universa
Time format, which neasures a tine as the nunber of seconds since
January 1, 1900, at nmidnight GMI. Creation date does not necessarily
mean the tinme the file systemcreated the directory entry or records
of the file. For systens that support nodification or appending to
files, it is usually the nodification date of the file. Creation
date can nean the date that the bit count or byte count of the file
was set by an application program

Sonme types of file systems support a user-settable quantity

(CREATI ON- DATE) which the user can set to an arbitrary tine, to
indicate that the contents of this file were witten a long tine ago
by soneone el se on another computer. The default value of this
quantity, if the user has not set it, is the tinme sonmeone | ast

nodi fied the information in the file. This quantity, in the OPEN
response for an output file, is disregarded by the user side, but
nevert hel ess nust be present.

The Synbolics conputer system software uses this quantity as a uni que
identifier of file contents, for a given file nanme, type, and
version, to prove that a file has not changed since it |ast recorded
this quantity for a file.

FI LEPCS

An integer giving the position of the logical file pointer, in
characters or bytes as appropriate for the type of opening. This is
al ways zero for an input opening and for an output opening creating a
new file. For an output opening appending to an existing file,

FI LEPCS is the nunber of characters or bytes, as appropriate,
currently in the file. This nunber, for character openings, is
measured in server units: See the section "NFILE Character Set",
section 6.

Greenberg & Keene [Page 46]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

LENGTH

An integer reporting the length of the file, in characters for
character openings and in bytes of the agreed-upon size for binary
openi ngs. LENGTH shoul d be reported as zero for output openings,
even if appending to an existing file. The server usually only knows
the length for a character opening in server units; thus, it reports
length in server units.

8.21 PROPERTIES Command

Command: (PROPERTIES tid handl e pat hname control - keywor ds
properties)

Response: (PROPERTIES tid property-el ement settabl e-properties)

PROPERTI ES requests the property information about one file. The
file is identified by the pathnane argunment or the handl e argunent,
but not both. |If pathnane is supplied, it is a string in the ful

pat hnanme syntax of the server host. See the section "Syntax of File
and Directory Pathnanme Argunents", section 7.4.

If handle is supplied, its value is a string identifying an openi ng,
which inplicitly identifies a file. For direct access npde openings,
handl e nust be a direct file identifier

control -keywords is reserved in the current design. However, it is a

requi red argunent, and nust be supplied as the enpty token list. |Its
presence in the NFILE specification allows for future expansion. In
the future the value of control -keywords night affect the listing
node.

properties is a token list of keywords indicating the properties the
user wants returned. (In conmmand argunents, properties cannot be
specified with integers, such as indices into the Property Index
Table). For a list of keywords associated with file properties: See
the section "Format of NFILE File Property/Value Pairs", section 7.5.

The server is always free to return nore properties than those
requested in the properties argunment. |If properties is supplied as
the enpty token list, the server transmts all known properties of
the file.

Greenberg & Keene [Page 47]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

PROPERTI ES COVWVAND RESPONSE

The server returns the property information for the given file in the
command response. The PROPERTI ES command does not use any data
channels. If the specified file does not exist or is not accessible,
the server signals an error and includes an appropriate three-letter
error code in the conmand error response. See the section "NFILE
Errors and Notifications", section 10.

The return val ue property-elenent is a token list. The first el enent
in that token list is the pathnane of the file, in the full pathnane
syntax of the server host. The follow ng elenents of the property-
el ement token list are property/value pairs. The server is expected
to return several property/value pairs; the nunber of pairs is not
constrained. For further details on file properties and their

associ ated values: See the section "Format of NFILE File
Property/Val ue Pairs", section 7.5.

The return val ue settable-properties is a token lIist of keywords.
The nunber of keywords is not constrained. (Note that integers
cannot be used in settable-properties to indicate the file property;
keywords are to be used instead.) Each keyword supplied in

settabl e-properties identifies a property considered settable by the
server. The server is inplicitly guaranteeing a nechani smfor
changi ng the properties reported as settable. The user can change
any of the settable properties for this file by using the CHANGE-
PROPERTI ES conmand. See the section "CHANGE- PROPERTI ES Comrand”
section 8. 2.

The followi ng exanple shows the format of the PROPERTIES conmand
response. Renenber that the nunber of property/value pairs and

keywords is not constrained; this exanple has two property/val ue
pairs and three settabl e-properties keywords returned:

Greenberg & Keene [Page 48]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

TOP- LEVEL- LI ST-BEGA N

PROPERTI ES - name of the comrand

tid - transaction identifier

LI ST- BEG N

pat hnane of file

propl val uel - file's property/value pairs
prop2 val ue2

LI ST- END

LI ST- BEG N

keywor d- 1 - file's settable properties
keywor d- 2

keywor d- 3

LI ST- END

TOP- LEVEL- LI ST- END

The followi ng exanple is designed to better show the structure of the
top-1level token list by depicting TOP-LEVEL-LIST-BEG N and TOP-
LEVEL- LI ST- END by parentheses and LI ST-BEA N and LI ST-END by square
brackets. The indentation and newlines in the exanple are not part
of the token list, but are used here to make the structure of the
token list clear.

(PROPERTIES tid [pathname propl val uel prop2 value2 ...]
[keywordl keyword2 keyword3 ...]

8.22 READ Comand
Command: (READ tid direct-file-id input-handl e count FILEPOS)
Response: (READ tid)

READ requests input data flow for direct access openings. The
direct-file-id is the same as the DI RECT-FI LE-1D argunent that was

gi ven when opening the file; it designates the opening fromwhich the
characters or bytes are to be transferred. The input-handle

speci fies which data channel should be used for the transfer of data
fromserver to user. The data channel shoul d have been al ready
establ i shed, cannot have been disestablished, and nust not currently
be in use.

count is an integer specifying how nmany bytes (or NFILE characters,
as appropriate) to read. count can be supplied as the enpty token
list, nmeaning read to the end of the file. |If the user specifies the
enpty token list or a count greater than the nunber of bytes
remaining in the file, the server sends the keyword EOF to nark the
end of the file.

Greenberg & Keene [Page 49]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

FILEPCS is an optional keyword/value pair. |If the keyword FILEPCS is
supplied, it nmust be followed by an integer. Before data is
transferred, the opening is positioned to the point specified by the
val ue of FILEPOS. The position of the point is neasured in server
units for character openings; for binary openings it is neasured in
binary bytes. See the section "FILEPOCS NFlI LE Comand"

Upon receiving the READ command, the server binds the data channel to
the opening and i mredi ately begins transferring data. The server
stops when all data has been transferred. After the server sends the
| ast requested byte, it unbinds the data channel, freeing it for
other use. Wen the user side has processed the |ast byte, the user
side assunmes that the data channel can now be reused for another data
transfer.

8.23 RENAME Conmand
Command: (RENAME tid handl e pat hnane to-pat hnane)
Response: (RENAME tid from pat hnane to- pat hnane)

RENAME requests the server to give a file a newnane. This is
NFILE s interface to the systenis native renane operation, with al
of its systemspecific senantics and constraints.

Either a handl e or a pathname (but not both) specifies the file that
is to receive a new name. The argunment to-pathnane desi gnates that
new nanme. The return value from pathname gives the full origina
nane of the file, and to-pathnane gives the full new name of the
file. For systens that support version nunbers, the return val ues
can differ in version nunber fromthe values of the argunents given
t o RENAME.

The argunents pat hname and to-pathnanme and the return values from
pat hnane and to-pathnanme are strings in the full pathname syntax of
the server host. See the section "Syntax of File and Directory

Pat hname Argunents", section 7.4.

If the file to be renanmed is specified by a pathnane, the file should
be renaned imediately. |If the file is specified by handle, it is
acceptable to wait until close-tinme to renane the file.

Sonme operating systens can renanme only within a directory.
Nevert hel ess, the to-pathname of the RENAME nust be fully specified;
the server on these systenms nust check for and reject an attenpted
cross-directory renane.

Greenberg & Keene [Page 50]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

8.24 RESYNCHRONI ZE- DATA- CHANNEL Commrand

The conmand and response format for this comrand varies, depending on
whet her the handl e argunent indicates an input or output data
channel

For an | nput Handl e:

Command: (RESYNCHRONI ZE- DATA- CHANNEL tid handl e)

Response: (RESYNCHRONI ZE- DATA- CHANNEL tid identifier)

For an CQut put Handl e:

Conmand: (RESYNCHRONI ZE- DATA- CHANNEL tid handl e identifier)
Response: (RESYNCHRONI ZE- DATA- CHANNEL ti d)

RESYNCHRONI ZE- DATA- CHANNEL begi ns a prescri bed procedure between user
and server over the unsafe data channel specified by handle. The
resynchroni zati on procedure clears the data channel of any unwanted
data, and restores the data channel to a safe state, ready to
transfer data again.

Al'l argunents to RESYNCHRONI ZE- DATA- CHANNEL are required.

For a detailed description of how the user and server coordinate the
resynchroni zation of data channels: See the section "NFILE Data
Connecti on Resynchroni zation", section 9. 2.

8.24.1 Inplenentation H nts for RESYNCHRON ZE- DATA- CHANNEL Conmand

In general, both the user and server should should be inplenmented
with the know edge that a transm ssion can be aborted. That is, the
recei ving side nust be careful not to act upon a transm ssion (that
is, to performany action or side effect) until the transnission has
been successfully received in entirety. This protects the user
program fromthe possibility that an abort can occur after a
transm ssi on has been partially sent.

Greenberg & Keene [Page 51]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

RESYNCHRONI ZI NG AN OQUTPUT DATA CHANNEL

The server will probably want to dispatch the | ooping and reading to
the | ogi cal data process. Looping reading for the resynchronization
identifier in the control connection handler is not a viable option
If the user side fails to send the resynchroni zation identifier (for
exanpl e, due to a user abort) the control connection handl er can
never be broken out of this |oop

Shoul d the user side send the control connection handl er command
first, or send the marks and identifiers first?

Sending the nmarks first is problematic, because the data channel at
the other end night not be reading them (for it has not yet been so
instructed by the control connection handler). The user night then
becone bl ocked for output, thus prohibiting sending of the
RESYNCHRONI ZE- DATA- CHANNEL commrand.

On the other hand, sending the control connection handl er conmand
first requires that the user side can send the marks and identifiers
bet ween sendi ng the control connection handl er comrmand and receiving
a response for it. The response will never conme until the marks and
identifiers have been successfully received. The user inplenentation
nmust allow for this one case of a command where a subroutine that
"sends a comand and waits for a response" is inapplicable.

RESYNCHRONI ZI NG AN | NPUT DATA CHANNEL

The server control process should dispatch the data process to send
the mark, and not wait, |est the data process becone bl ocked for

out put due to a user abort. The control process nmust go back to its
command | oop, to possibly receive a conmand that might break the data
process out of that bl ock.

8.25 UNDATA- CONNECTI ON Conmand
Command: (UNDATA- CONNECTI ON tid i nput-handl e out put - handl e)
Response: (UNDATA- CONNECTI ON ti d)
UNDATA- CONNECTI ON explicitly disestablishes a data connection from
the user side. The user side has the option of disestablishing data
connections at its discretion. There is no place in the protoco

wher e di sestablishnent of data connections is required, other than at
the end of the session, where it is inplicit.

Greenberg & Keene [Page 52]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

The data connection to be disestablished is the one designated by the
i nput - handl e and out put - handl e argunents. These two handl es nust
refer to the sane data connection

It is not permitted to explicitly disestablish a data connection

ei ther of whose channels is active. |I|f the session is terminated by
the breaking of the control connection, all file handl es becone
nmeani ngl ess, and the server nust close all data connections known to
it and close-abort all files opened on behalf of the user during the
di al ogue.

In the Synbolics inplenentation, the user side disestablishes data
connections that have not been used for a long tine, such as twenty
m nutes or so

For nore informati on about data connections: See the section "NFILE
Control and Data Connections", section 4.

9. NFI LE RESYNCHRONI ZATI ON PROCEDURE

Odinarily, the user side sends NFILE comrands to the server side
over the control connection; the server side responds to every user
command, and file data is transmtted over the data channels. This
section describes a resynchronization procedure that takes place when
sonet hi ng di sturbs the usual course of events.

First, if the server side aborts while sending or receiving data,
not hi ng can be done to sal vage t he connecti on between the two hosts.
The control connection and any data channels associated with this
connection are broken. This happens rarely, if at all

It is not unusual for the user side to abort file operations, either
commands or data transfer. On a Synbolics conmputer, the user can do
this by pressing CONTROL- ABORT. An inportant aspect of any file
protocol is the way it handl es the situation when the user side
aborts file operations.

An NFI LE user side reacts to user side aborts by i medi ately nmarking
the connection unsafe. When a control connection is unsafe, it nust
be resynchroni zed before it can be used again. Data channels can

al so be marked unsafe, and nust also be resynchroni zed before further
use. The resynchronization process rids the connection (whether
control or data connection) of bytes of data that are now unwanted,
and thus cleans up the channel so it can be used again.

The resynchroni zation procedure is sonewhat conplex, but it fulfills

a genui ne need. For those interested, a brief design discussion is
i ncluded as note <3>.

Greenberg & Keene [Page 53]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

9.1 NFILE Control Connection Resynchronization

NFI LE requires any unsafe control connection to undergo a
resynchroni zation procedure before further use. Therefore, the
resynchroni zati on does not necessarily occur immediately after the
control connection is marked unsafe. The user side initiates the
control connection resynchronizati on when anot her operation on the
control connection is attenpted.

A "mark" is defined in the context of Byte Streamw th Mark: See the
section "Discussion of Byte Streamw th Mark", section 12.1.

USER SI DE STEPS: CONTRCL CONNECTI ON RESYNCHRONI ZATI ON

1. The user side sends a nark over the control connection to
t he server.

2. The user side sends the ASCI| characters USER- RESYNC- DUMW
(as a data token) to the server.

3. The user side sends a second nark to the server

4. The user side declares the control connection safe (at the
token list |evel).

5. The user side generates and sends a uni que data token to
the server.

6. The user side then waits, expecting to detect a mark
foll owed by the uni que data token. The user side reads and
di scards all tokens and marks until the desired match is
f ound.

Once the user side detects the mark and uni que data token, the
control connection has been fully resynchroni zed, and can be used
agai n.

SERVER S| DE STEPS: CONTRCL CONNECTI ON RESYNCHRONI ZATI ON
1. The server side detects a mark. The server is thus alerted
that the control connection is unsafe, and that
resynchroni zation is in progress.
2. The server continues to read data conming fromthe user side

until it detects the second mark, and the token follow ng
it.

Greenberg & Keene [Page 54]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

3. The server checks to see if the token following the mark is
USER- RESYNC- DUMW. This rare situation occurs if the user
aborts during the course of the resynchronization itself.

If so, the server side discards the USER- RESYNC- DUMW
token. The control connection is still unsafe, and the
user side restarts the resynchronization procedure; the
server side therefore begins at Step 2 again.

4. |If the token following the mark is not USER- RESYNC- DUMWY
(this is the expected circunstance), the server should have
received a single data token that is the unique data token
generated by the user side.

a. The server sends a mark to the user side.

b. The server declares the control connection safe (at
the token list level).

c. The server sends the unique data token to the user
si de.

5. If the server detects sonething followi ng the mark that was
nei t her USER- RESYNC- DUMW nor a single data token, a
protocol error has occurred.

9.2 NFILE Data Connection Resynchronization

The NFI LE data channel resynchronization procedure is sinilar to the
NFI LE control connection resynchroni zation. Both procedures are
based on a mark signalling the unsafe condition, then a second nark
followed by a unique identifier. One inportant difference between
the two procedures is the circunstances in which they occur. Contro
connections are put into unsafe states only when the user aborts
during control connection |I/O operations. Data channels are nade
unsafe by a | arger set of circunstances:

Greenberg & Keene [Page 55]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

- User aborts occur during the file protocol operations that
assign and deassign data channels. This is the nost comon
cause of data channel s becom ng unsafe.

- A server receives a CLOSE conmand (with abort-p supplied as
Bool ean truth) specifying an open file that has not finished
transmitting data. That is, file reading is aborted.

- The ABORT command is issued, causing data channels to be
made unsafe.

- The FILEPOS command is issued, causing the input data
channel to becone unsafe.

The resynchroni zation clears the data channel of unwanted data from
aborted operations and puts the data channel in a known state. The
dat a channel resynchroni zation procedure is i nvoked when the user

si de gives the RESYNCHRONI ZE- DATA- CHANNEL conmand over the contro
connecti on.

The followi ng policies can be used to inprove response tine, but are
not required by the NFILE protocol: The user side can initiate
resynchroni zation only if it needs the data channel, having first
tried to use a free data channel that does not require

resynchroni zation. Al so, the user side can periodically
resynchroni ze all unsafe data channels.

In giving the RESYNCHRONI ZE- DATA- CHANNEL command, the user side

i ndi cates whi ch data channel should be resynchronized. Data channels
are unidirectional, which neans that depending on the direction
(either input or output) of the data channel, either the user side or
the server side sends the resynchronization data. This is another

di fference fromthe resynchronization of the control connection, in
whi ch the resynchronization data is always sent by the user side.

The resynchroni zation steps for input data channels are different
than the steps for output data channels.

Greenberg & Keene [Page 56]

RFC 1037

NFI LE - A File Access Protocol Decenber

| NPUT DATA CHANNEL RESYNCHRONI ZATI ON

1

The user side gives the RESYNCHRON ZE- DATA- CHANNEL conmand
on the control connection, with only one argument, the
handl e of the data channel to be resynchronized.

The server side of the data channel generates a uni que
identifier, and sends that data token in its regul ar
command response to the user side.

The server side sends a mark over the data channel

The server side sends the unique identifier token over the
dat a channel

The user side reads until it detects a mark foll owed by the
uni que identifier token. The resynchronization is then
conplete. The data channel is no longer in an unsafe
state.

OUTPUT DATA CHANNEL RESYNCHRONI ZATI ON

1

The user side gives the RESYNCHRONI ZE- DATA- CHANNEL conmand
on the control connection, with two argunents: the handl e
of the data channel to be resynchroni zed, and a uni que
identifier that it has just generated.

The user side of the data channel sends a nark.

The user side of the data channel sends a dummy identifier
token. The dunmy identifier can be any token that the
server could not interpret as being the unique identifier
One suggestion is the data token DUMWY-1 DENTI FI ER

The server side of the data channel was alerted by the
RESYNCHRONI ZE- DATA- CHANNEL conmand t hat resynchroni zation
is in progress. The server side now reads the data,
seeking the first mark.

The server side reads and discards the first mark and the
dunmmy identifier.

The user side sends a second nark.
The user side sends the unique identifier

The server side recognizes the mark and the uni que
identifier that follows, and the resynchronization is

Greenberg & Keene [Page

1987

57]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

complete. The data channel is no longer in the unsafe
state.

10. NFI LE ERRORS AND NOTI FI CATI ONS

NFI LE recogni zes two types of errors: comuand response errors and
asynchronous errors. In addition to errors, NFlILE supports
notifications.

Command response errors:

- Signify an error that prevented the successful conpletion of
t he conmand; when such an error occurs, a comuand response
error is sent instead of a nornmal command response.

- Occur frequently in normal operations

Asynchronous errors:

- Are not related to any specific conmmand

- Are associated with an erring data channe

Typically indicate a problemin the transfer, such as
runni ng out of disk space or allocation, or an unreadabl e
di sk record

- Cccur rarely in nornal operations

Noti fi cati ons:

- Are not associated with an error

- Are sent at the server’s discretion

- Provide general information, such as a warning that the
systemis goi ng down

10.1 Notifications Fromthe NFILE Server

The NFILE server can send asynchronous notifications to the user side
over the control connection. The text of the notification contains
informati on of interest to the person using NFILE, such as a warning
that the server’s operating systemw || be going down soon
Notifications can come fromthe server side at any tinme that the
server is not sending sonething else.

The format of NFILE notifications is:
(NOTI FI CATION "" text)

The enpty string takes the place of a transaction identifier.
Notifications are initiated by the server, and are not associ ated
with any transaction originated by the user side.n

Greenberg & Keene [Page 58]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

10.2 NFILE Command Response Errors

Wien an error prevents the successful conpletion of an NFILE command,
a conmand response error is sent instead of the normal command
response. A normal command response indicates success; a conmand
response error indicates failure of the conmand.

NFI LE conmand response errors are sent fromthe server to the user
across the control connection as top-level token lists, in this
format:

(ERROR tid three-letter-code error-vars nessage)

ERROR is a keyword. The tid is the transaction identifier of the
conmand that encountered this error. The argunents three-letter-
code, error-vars, and nessage are all required

The three-letter-code provides the information on what kind of an
error was encountered. For a table of the three-letter codes and
their meanings: See the section "NFILE Three-letter Error Codes"
section 10. 4.

message is a string that is displayed to the human user of the
pr ot ocol

error-vars is a keyword/value list. The three possible keywords are:
PATHNAME, OPERATI ON, and NEW PATHNAME. Before transnmitting an error
the server |ooks at the type of error to see if it can easily
determ ne the value of any of the keywords. |If so, the server

i ncludes the keyword/value pair inits error. |If not, the
keyword/value pair is onmtted. The value associated w th OPERATI ON
is the keyword nam ng the NFILE command that failed. The val ues
associ ated wi th PATHNAME and NEW PATHNAMVE are strings in the ful

pat hnanme syntax of the server host.

For exanpl e, suppose the server on a file systemwi th hierarchica
directories could not access a file because its containing directory
did not exist. The command error response would use the PATHNAME
keyword to indicate the first directory level that did not exist,

i nstead of the full pathnanme which was supplied as the conmand
argunent. This gives the user side valuable information that it

ot herwi se woul d not have known.

Greenberg & Keene [Page 59]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

10.3 NFILE Asynchronous Errors

When a data channel process, in either direction, encounters an error
condition, the server sends an asynchronous error description. An
asynchronous error description consists of a top-level token list.
Typi cal ly, asynchronous errors indicate error conditions in the
transfer, such as running out of disk space or allocation, or a

unr eadabl e di sk record

The format of asynchronous error descriptions is:
(ASYNC- ERROR handl e three-letter-code error-vars nessage)

ASYNC- ERROR is a keyword. The handle argunent identifies the erring
data channel. The argunments three-letter-code, error-vars, and
message are all required. Their neanings are the sane as in NFILE
command error responses: See the section "NFILE Command Response
Errors", section 10. 2.

When the server detects an asynchronous error on an input data
channel , the server sends an asynchronous error description on that
data channel itself. \Wen an asynchronous error occurs on an out put
dat a channel, the asynchronous error description is sent on the
control connecti on.

Some asynchronous errors are restartable. In this context,
restartable neans it makes sense to try to resune the operation. One
exanple of a restartable error is an attenpt to wite a file to a
file systemthat is out of room The server side indicates whether
an asynchronous error is restartable by prepending the keyword
RESTARTABLE and the associ ated val ue Bool ean truth to the error-vars
list. To proceed froma restartable error, the user side sends a
CONTI NUE conmand over the control connection

On any asynchronous error, either input or output, the data channe
on the server side enters an "asynchronous error outstandi ng" state.
The server can exit that state in one of two ways: by receiving a
CONTI NUE comand or a CLOSE conmand with the abort-p argunent
supplied as Boolean truth

On a normal CLOSE (not a close-abort), the server side checks the
channel it was requested to close. |If an asynchronous error
description has been sent on the data channel, but not yet processed
by CONTINUE, the server side does not close the channel, but sends a
conmand error response. The sanme thing happens on a FI Nl SH conmand
recei ved on a channel that has an asynchronous error pending. In
both cases, the three-letter code included in the command error
response is EPC, for Error Pending on Channel

Greenberg & Keene [Page 60]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

10.4 NFILE Three-letter Error Codes

Usual |y the server’s operating system provides sonme description of an
error that occurs. NFILE has a nechani smfor conveying that
information to the user side. Upon detecting an error, the NFILE
server should characterize the error by choosing the three-letter
code that best describes the error. The three-letter code is an
argunent in both the command response error and asynchronous error
nmessages fromthe server to the user

Each of the NFILE three-letter codes represents sone system error
The set of codes enables all operating systems to use one error-
reporting nechanism Sone operating systenms will never encounter
certain of the error conditions.

Some errors fit logically into two error codes. For exanple, suppose
the server could not delete a file because the file was not found.
This error could be considered either CDF (Cannot Delete File) or FNF
(File Not Found). |In this case, File Not Found gives nore specific
and val uabl e information than Cannot Delete File. Since the protoco
does not allow nore than one error code to be reported when an error
occurs, the server nust choose the nost appropriate error code, given
the information available to it fromthe operating system

This is the set of three-letter codes:
ACC Access error. This indicates a protection-violation error
ATD Incorrect access to directory. A directory could not be
accessed because the user’s access rights to it did not
pernmt this type of access.
ATF Incorrect access to file. A file could not be accessed
because the user’s access rights to it did not pernmit this

type of access.

BUG File systembug. This includes all protocol violations
detected by the server, as well as by the host file system

CCD Cannot create directory. An error occurred in attenpting to
create a directory.

CDF Cannot delete file. The file systemreported that it cannot
delete a file.

CCL Cannot create link. An error occurred in attenpting to
create a link.

Greenberg & Keene [Page 61]

RFC 1037

DAE

DAT

DND

DNF

EPC

FAE

FNF

FOO

FOR

NFI LE - A File Access Protocol Decenber 1987

Circular link. An operation was attenpted on a pathnanme that
designates a link that eventually links back to itself.

Cannot rename file. An error occurred in attenpting to
rename a file.

Cannot set property. An error occurred in attenpting to
change the properties of a file. This could mean that you
tried to set a property that only the file systemis all owed
to set, or a property that is not defined on this type of
file system

Directory already exists. A directory could not be created
because a directory or file of this name already exists.

Data error. The file system contains unreadable data. This
could nean data errors detected by hardware or inconsistent
data inside the file system

Devi ce not found. The device of the file was not found or
does not exi st.

"Do Not Delete" flag set. An attenpt was nade to delete a
file that is marked by a "Do Not Delete" flag.

Directory not enpty. An invalid deletion of a nonenpty
directory was attenpted.

Directory not found. The directory was not found or does not
exist. This refers specifically to the containing directory;
if you are trying to access a directory, and the actua
directory you are trying to access is not found, FNF (for
File Not Found) should be indicated instead.

Error pending on channel. The server cannot close the
channel in attenpting to close or finish the channel

File already exists. The file could not be created because a
file or directory of this nanme already exists.

File not found. The file was not found in the containing
directory. The TOPS-20 and TENEX "no such file type" and "no
such file version" errors should also report this condition

File open for output. Opening a file that was al ready opened
for output was attenpted.

Fil epos out of range. Setting the file pointer past the

Greenberg & Keene [Page 62]

RFC 1037

FTB

HNA

I BS

| P?

I PS

| PV

LCK

LI P

MsC

NAV

NFI LE - A File Access Protocol Decenber 1987

end-of -file position or to a negative position was attenpted.

File too big. File is larger than the maximumfile size
supported by the file system

Host not available The file server or file systemis
intentionally denying service to user. This does not nean
that the network connection failed; it neans that the file
systemis explicitly not avail able.

Invalid byte size. The value of the "byte size" option was
not valid.

I nconsi stent options. Sone of the options given in this
operation are inconsistent with others.

Invalid operation for directory. The specified operation is
invalid for directories, and the given pathnane specifies a
directory, in directory pathnane as file fornat.

Invalid operation for link. The specified operation is
invalid for links, and this pathnanme is the name of a link

I nvalid password. The specified password was invalid.

I nvalid pathname syntax. This includes all invalid pathnane
syntax errors.

Invalid property value. The new val ue provided for the
property is invalid.

Invalid wildcard. The pathnane is not a valid wldcard
pat hname

File locked. The file is locked. It cannot be accessed,
possi bly because it is in use by sone other process.

Logi n problens. A problemwas encountered while trying to
log in to the file system

M scel | aneous probl ens.

Not available. The file or device exists but is not
avai l able. Typically, the disk pack is not nounted on a
drive, the drive is broken, or the like. Operator
intervention is probably required to fix the problem but
retrying the operation is likely to succeed after the problem
i s sol ved.

Greenberg & Keene [Page 63]

RFC 1037

NER

NET

NFS

NLI

NVR

RAD

REF

UKC

UKP

UNK

uuo

NFI LE - A File Access Protocol Decenber 1987

Not enough resources. For exanple, a systemlimt on the
number of open files or network connections has been reached.

Net work problem The file server had sonme sort of trouble
trying to create a new data connection, or perform sone other
networ k operation, and was unable to do so.

No file system The file systemwas not avail able. For
exanpl e, this host does not have any file systens, or this
host’s file systemcannot be initialized or accessed for sone
reason, or the file systemsinply does not exist.

Not logged in. A file operation was attenpted before |ogging
in. Normally the file systeminterface always |logs in before
doi ng any operation, but this problemcan occur in certain
unusual cases in which logging in has been aborted.

No nore room The file systemis out of room This can nean
any of several things:

- The entire file systemis full

- The particular volune involved is full

- The particular directory involved is full.

- The user’s all ocated quota has been exceeded.

Renane across directories. The devices or directories of the
initial and target pathnanes are not the sane, but on this
file systemthey are required to be.

Renane to existing file. The target nane of a renane
operation is the name of a file that already exists.

Unknown operation. An unsupported file system operation was
attenpted, or an unsupported comrand was attenpt ed.

Unknown property. The property is unknown.

Unknown user. The specified user nane is unknown to this
host .

Uni npl emented option. An option to a conmand i s not
i mpl enent ed.

Wong kind of file. This includes errors in which an invalid
operation for a file, directory, or link was attenpted.

W | dcard not all owed.

Greenberg & Keene [Page 64]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

11. TOKEN LI ST TRANSPCORT LAYER

PURPCSE: The Token List Transport Layer is a protocol that
facilitates the transm ssion of sinple structured data, such as
lists.

11.1 Introduction to the Token List Transport Layer

The Token List Transport Layer is a general -purpose protocol. The
Token List Transport Layer sends "tokens" through its underlying
stream Each token usually represents a sinple quantity, such as a
string or integer.

Tokens can be organized into "token lists". Special tokens are
provided to denote the starting and ending point of lists. The token
list transport |ayer differentiates between "top-level token lists"
whi ch are not contained in other lists, and "enbedded token |ists"
which are contained in other lists. Using lists makes it conveni ent
to send structured records, such as conmands and conmand responses of
the client protocol. The top-level token lists provide robustness.

The Token List Transport Layer is a general termthat includes two
separate but related subjects: the "token list streant and the
"token list data streant'. The token list streamis conmonly used for
applications that can easily organize the infornmation to be
transmitted into tokens and lists. The token Iist data streamis
nore appropriate for transmitting a | arge volume of data that cannot
easily be structured into tokens and lists, such as file data, which
is sinply a sequence of characters or bytes.

The following table illustrates the nain differences between token
list streans and token |ist data streans:

Token List Data Stream Token List Stream
Built on: token list stream Byte Streamw th Mark
Transmits: stream dat a t okens, token lists
Exanpl e
of use: NFI LE data channel s NFI LE contro

connection

Greenberg & Keene [Page 65]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

11.

11.

NFI LE uses the the Token List Transport Layer, and provides an
excel l ent exanple of its usefulness. The NFILE conmands and conmmand
responses are sent over the control connection in a token |ist
stream File data is sent across each data channel in a token |ist
data stream

2 Token List Stream
2.1 Types of Tokens and Token Lists

Al'l nunbers in the token |ist docunentation are represented in
decinal notation. Bytes are 8 bits |ong.

TYPES OF TOKENS
Tokens are of the follow ng types:
1. Atonmic tokens.
Atomi c tokens are of the follow ng subtypes:

- Data tokens. A data token consists of a sequence of
bytes with an effectively infinite maxi mumlength. In
sonme contexts a data token represents a string; in
other contexts, a data token is other arbitrary data.

Each data token is preceded in the token list stream
by a representation of its length in bytes.

Dat a tokens that are under 200 bytes |ong are preceded
by one byte containing their length in bytes. That

is, a data token of 34 bytes is preceded by one byte
of val ue 34.

Dat a tokens 200 bytes or over are preceded by the byte
known as PUNCTUATI ON-LONG, of value 201. After the
201 cones a four-byte-long nunber (least significant
byte first) containing the length of the data token
that follows.

- Nuneric tokens. A sequence of bytes that represent
and encode a nonnegative binary integer. The |argest
valid integer is 2763 - 1.

Nurmeric tokens are either short integers (less than
256) or long integers (greater than or equal to 256).
Short integers are preceded by the byte known as
PUNCTUATI ON- SHORT- | NTEGER, of val ue 206.

Greenberg & Keene [Page 66]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

Long integers are begun by PUNCTUATI ON- LONG | NTEGER,

of value 207. One byte follows, containing the |length
(in bytes) of the long integer. The integer itself is
next, least significant byte first.

- Keyword tokens. A sequence of bytes that represent
and encode a nanmed identifier of the inplenented
protocol. Keyword tokens are used by the client
protocol to convey a nane; the only significance of a
keyword token is in its nane.

Each keyword is preceded by the byte known as
PUNCTUATI ON- KEYWORD, of val ue 208. The data token
foll owi ng PUNCTUATI ON- KEYWORD represents the nanme of
the keyword as a string. The characters are in
upper - case standard ASCI |

- Boolean truth. A special token that represents the
Bool ean truth value. This token is known as
BOOLEAN- TRUTH, of val ue 209 <4>

2. Control tokens.

The token list stream supports four control tokens to delimt token
lists, and one paddi ng t oken

TOP- LEVEL- LI ST-BEG N 202 This control token
appears at the start of
each top-level token list.

TOP- LEVEL- LI ST- END 203 This control token
appears at the end of
each top-level token list.
LI ST-BEA N 204 This control token
appears at the start of
each enbedded token Iist.

LI ST- END 205 This control token
appears at the end of
each enbedded token |ist.

PUNCTUATI ON- PAD 200 Thi s paddi ng token shoul d
be i gnored by the token
list stream |t can be
sent to fill buffers.

Greenberg & Keene [Page 67]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

TOKEN LI STS

A token list consists of a sequence of atomic tokens or token lists.
Token lists are begun and ended by control tokens that delimt the
token lists. There are three types of token lists:

1. Top-level token lists.

Top-1evel token lists begin with TOP-LEVEL-LIST-BEG N and
end with TOP-LEVEL-LI ST-END. Top-level token lists are not
contained in other lists.

2. Enbedded token lists.

These token lists occur inside other token lists. They
begin with LIST-BEG N and end with LI ST- END.

3. The enpty token list.

This is a special exanple of the enbedded token list. In
some contexts, the enpty token list represents Bool ean
falsity. An enbedded enpty token list is conposed of a

LI ST-BEG N fol l owed inmedi ately by a LIST-END. A top-I|evel
enpty token list is conposed of TOP-LEVEL-LIST-BEG N

foll owed i medi ately by TOP-LEVEL- LI ST- END.

11.2.2 Token List Stream Exanpl e

This section contains an exanple of some data that can appear on a
token list stream The exanple is a top-level token list encoding an
NFl LE DELETE comand.

The DELETE comrand is conposed of the follow ng pieces: a TOP-
LEVEL- LI ST-BEA@ N, the keyword DELETE, a data token containing the
transaction identifier, a LIST-BEG N, a LIST-END, a data token
containing a pathnane of a file to be deleted, and a TOP- LEVEL-LI ST-
END. This exanple uses t105 as the transaction identifier, and
/usr/ max/tenp as the pat hnane.

Al'l nunbers in this section are expressed in decimal notation.

The pieces of the command are di splayed here in order

1. TOP-LEVEL-LI ST-BEG N

2. The keyword token whose nanme is DELETE

3. The data token containing the characters: t105
4. LIST-BEGA N

5. LI ST-END

Greenberg & Keene [Page 68]

RFC 1037

NFI LE - A File Access Protocol Decenber 1987

6. The data token containing the characters: /usr/nmax/tenp
7. TOP- LEVEL- LI ST- END

Now, let’s translate each piece of the command into the bytes that
are transmtted through the token |ist stream

1

TOP- LEVEL- LI ST-BEG N
202 represents TOP-LEVEL-LI ST-BEG N
The keyword t oken whose nane is DELETE.

A keyword token is introduced by PUNCTUATI ON- KEYWORD, whi ch
is represented in the token list streamas the byte 208.

A data token follows, containing the string "DELETE'. A
dat a token under 200 bytes long is introduced by one byte
containing its length in bytes. The length of this data
token is 6 bytes.

The data token continues with the standard ASCI| character
set representation of each character in the string DELETE

208 represents PUNCTUATI ON- KEYWORD

006 represents the length of this data token
068 represents "D

069 represents "E"

076 represents "L"

069 represents "E"

084 represents "T"

069 represents "E"

The data token containing the characters: t105

This data token is begun by its length in bytes (4), and
continues with the NFILE character set representation of
each character in the string

004 represents the length of this data token
116 represents "t"
049 represents "1"
048 represents "0"
053 represents "5"

4. LIST-BEG N

204 represents LIST-BEG N

Greenberg & Keene [Page 69]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

5. LI ST- END
205 represents LI ST-END

6. The data token containing the characters: /usr/max/tenp

013 represents length of this data token
047 represents "/"
117 represents "u"
115 represents "s"
114 represents "r"
047 represents "/"
109 represents "nt
097 represents "a"
120 represents "x"
047 represents "/"
116 represents "t"
101 represents "e"
109 represents "nt
112 represents "p"

7. TOP-LEVEL- LI ST-END
203 represents TOP- LEVEL- LI ST- END
11.2.3 Mapping of Lisp Objects to Token List Stream Representation

The Synbolics interface to the token |ist stream sends Lisp objects
t hrough the underlying Byte Streamw th Mark and produces Lisp

objects on the other end. Not all Lisp objects can be sent in this
way. For exanple, conpound objects other than lists are not handl ed.
An appropriate analogy is the sending and reconstruction of |ist

structure via printed representation. These are the types of objects

that can be sent, and their representations:

- Lisp strings are represented as data tokens in the NFILE
character set. Only 8-bit strings can be sent <5>.

- Keyword synbols are represented as keyword tokens. Although
identifiable and reconstructable as keyword synbols, only
their nanes are sent. Any properties, bindings, and the
i ke are not sent.

- T is represented as BOOLEAN TRUTH.

- NIL is represented as the enpty token list.

- Lists are represented as token lists. Circular lists cannot

Greenberg & Keene [Page 70]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

be sent. See the footnote related to the anbiguity between

NIL and the enpty list: See the section "Types of Tokens
and Token Lists", section 11.2.1.

- Integers are represented as nuneric tokens. Only
nonnegative integers |l ess than 2763 can be sent.

11.2.4 Aborting and the Token List Stream

A token list stream accrues the benefits of the abort managenent
policy of the Byte Streamwith Mark on which it is built. [In order
to fully realize this benefit, sone sinple rules nust be obeyed by
any inplementation of the token list stream

The term "transm ssion" neans either an atom c token or a conplete
top-level token list. Atransm ssion starts with the control token
TOP- LEVEL-BEG N and ends with TOP-LEVEL-END. The top-1evel token

list can contain enbedded token Iists.

The interface that wites to the token list stream nust be capabl e of
writing the representation of entire transmi ssions. Wen this
interface is called, it nust effectively lock the token list stream
and exclude access by other processes until the entire transm ssion
has been encoded and sent.

If the sending is aborted while the streamis |ocked, the stream
enters an "unsafe" state. Trying to send data while the streamis
unsafe signals an error. The application and the token list stream
nmust send a mark to cause resynchroni zation, and allow the token I|ist
streamto be used again. Wen the reading side encounters this nark,
it resynchroni zes itself according to whatever client protocol is in
use.

Simlarly, the interface that reads fromthe token list stream nust

be capabl e of reading entire transm ssions. Wen this interface is

called, it nmust lock the stream excluding access by other processes
until the entire transm ssion has been read.

If the reading is aborted while the streamis |ocked, the stream
enters an unsafe state. The only exit fromthis unsafe state is by
means of receiving a mark. Wen the streamis unsafe, the only valid
operation that can be perfornmed upon it is "read and discard al
tokens until a mark is encountered; read and discard that mark;

decl are the stream safe again".

Greenberg & Keene [Page 71]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

Dependi ng on the client protocol, the receipt of a mark nmight cause
the reading side to read for further marks. NFILE inplenments the
resynchroni zati on of token |list streams, and serves as a usefu
exanpl e: See the section "NFILE Control Connection
Resynchroni zati on", section 9.1.

The Synbolics inplenentation provides the two mark-handling
primtives in this way:

1. Send token (or list) preceded by a mark. Wen the stream
is in the unsafe state (on the output side), this is the
only permitted output operation (other than closing).

2. Read through to a mark and read the token (or list)
followi ng the mark. When the streamis in the unsafe state
(on the input side), this is the only permtted input
operation (other than closing).

11.3 Token List Data Stream

The token list data streamis a facility to transnit stream data
through a token list stream The token |ist data streaminposes the
followi ng protocol on the data transmtted:

- Data is sent in the format of | oose data tokens, not
contained in token |ists.

- The keyword token ECF indicates that the end of data has
been reached.

- Token lists can be transnitted through the token I|ist
data stream

- No | oose tokens other than data tokens or the keyword
token EOF can be sent.

- Boundaries between data tokens are not signification.
The data is considered to be a continuous stream with
t he possi bl e exception of marks.

The token list data streamis nost appropriate for sending file data.
It is expected (but not required) that its typical node of use is to
send a | arge nunber of data tokens, with an occasional token list.
The design intent was that token lists would be used by the
application programto indicate exceptional situations.

Dat a tokens, the keyword token EOF, and token lists are defined in

Greenberg & Keene [Page 72]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

the token list stream docunentation: See the section "Types of
Tokens and Token Lists", section 11.2.1.

The NFILE file protocol provides a good exanpl e of the use of token
list data streans. NFILE sends file data through token |ist data
streanms; each NFILE data channel is a token list data stream Errors
such as disk errors during the reading of a file are conveyed as
token lists through the token list data stream

12. BYTE STREAM W TH MARK

PURPCSE: Byte Streamwith Mark is a sinple |ayer of protocol that
guarantees that an out-of-band signal can be transnmitted in the case
of programinterruption. Byte Streamwith Mark is designed to
provi de end-to-end stream consistency in the face of user program
aborts.

12.1 Discussion of Byte Streamw th Mark
| NTRODUCTI ON

Byte Streamwith Mark is a reliable, bidirectional byte streamw th
one out-of-band (but not out-of-sequence) signal called a "mark"

The design of Byte Streamwith Mark ensures that the mark is al ways
recogni zabl e on the receiving end. The Byte Streamwith Mark is
built on an underlying stream which nust support the transm ssion of
8-bit bytes. Byte Streamwith Mark has been inplenented to run on
TCP and Chaos. Marks are inplenmented differently on the two

pr ot ocol s.

Marks are used to resynchroni ze the stream when sonet hi ng has
occurred to interrupt normal operations. For exanple, an application
| ayer sending data over the Byte Streamwith Mark can abort in the

m ddl e of sending that data. Recovery is handl ed by sending a mark.

In the context of this docunent, "aborting" is defined as foll ows:
Aborting the current execution of a programnmeans to halt that
execution and to abandon it, never to conplete it. The data
representing the state of the execution are irrevocably di scarded.

EXAMPLE OF USE

Byte Streamwith Mark is the |ayer of protocol underlying NFlLE

NFI LE uses the marks inplenmented in Byte Streamwith Mark to
resynchroni ze control connections or data channel s whose
synchroni zati on has been lost. For a description of NFILE s use of
mar ks to resynchroni ze streans: See the section "NFILE
Resynchroni zati on Procedure", section 9.

Greenberg & Keene [Page 73]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

BYTE STREAM W TH MARK ON CHAGCSNET

A mark is recognized on Chaosnet by a packet bearing the opcode 201
(octal). There is no data in a mark packet, so the data portion of
the packet is ignored. Byte Streamwith Mark transmts all data in
packets bearing opcode 200 (octal).

If Byte Streamwith Mark is inplenmented on another (non-Chaos) stream
t hat supports opcode-bearing packets, the recomrended inplenentation
is the reservation of an opcode for the mark.

BYTE STREAM W TH MARK ON TCP: RECORD MODE

The purpose of Byte Streamwith Mark is to guarantee that marks can
al ways be unanbi guously identified. Therefore, for TCP (and for any
transport layer that does not inplenent packets natively) a sinple
record streamis inposed on the stream The record boundaries serve
only to distinguish where a mark can occur. A record consists of a
two- byte byte count, nost significant byte first, followed by that
many bytes of data. A byte count of zero is recognized as a mark.

Both the sending side and the receiving side nust rigorously maintain
the integrity of the record boundaries. A witer to the stream nust
never output a byte count w thout that nunber of data bytes
following. Sinlarly, a reader of the stream after reading a byte
count, has effectively contracted to read that many bytes fromthe
encapsul ated stream regardl ess of whether those bytes are requested
by the application |ayer.

MAI NTAI NI NG RECORD | NTEGRI TY

This subsection deals with naintaining record integrity on non-Chaos
networks. Since Chaos inplenents packets natively, no special care
is required to maintain record integrity on the Chaos network

The design di scussed here guarantees record integrity; the underlying
stream nust guarantee data integrity.

The basic design of Byte Streamw th Mark on TCP (and other transport
| ayers that do not inplenment packets natively) is to preserve record
integrity by putting clearly demarcated, byte-counted records in the
natural records of the encapsul ated stream Therefore, when the
outer streamrequests a buffer’s worth of file data fromthe

encapsul ated stream it expects to receive a buffer containing one
entire, ntegral, record of that stream conplete with byte count.

Because of diverse network inplementations on different operating
systens, the software that inplenents the encapsul ated stream ni ght

Greenberg & Keene [Page 74]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

12.

not be able to provide integral record buffers to the Byte Stream
with Mark inplenentation. For exanple, the witing streamcould have
written records that are rmuch |onger than available buffers on the
receiving system |In this case, a request to read fromthe

encapsul ated streamreturns sone buffer or some anmpbunt of data
representing |l ess than an entire Byte Streamwith Mark record. The

i nput subroutine of the Byte Streamwi th Mark inpl enentation nust
therefore return a region of this (srmaller) buffer, representing | ess
than the full Byte Streamwith Mark record. Neverthel ess, the Byte
Streamwi th Mark nust extract the count of the full Byte Streamw th
Mark record fromthe first such buffer of each Byte Streamw th Mark
record, and maintain and update this count as succeedi ng conponent
buffers are read.

In this case, if the programreading fromthe Byte Streamw th Mark
aborts while reading data, the inplenmentation of Byte Streamwi th
Mark nust continue to read through the remaining buffers of the Byte
Streamwith Mark record that has been subdivided in this fashion.

The user side programwi ||l have determ ned that an abort has
occurred, and will request the Byte Streamwith Mark to read up to
and t hrough the next mark. The Byte Streamwith Mark will have
processed a fractional record, and nust discard the remaining buffers
of the record now bei ng read.

2 Byte Streamwith Mark Abortable States

Byte Streamwith Mark is designed to provide end-to-end stream

consi stency in the face of user programaborts. This section

descri bes user program aborts, and how Byte Stream w th Mark handl es
them |In the context of this docunent, "aborting" is defined as
follows: Aborting the current execution of a program neans to halt
that execution and to abandon it, never to conplete it. The data
representing the state of the execution are irrevocably discarded.

USER PROGRAM ABORTS AND |/ O STREAMS

Aborting the execution of the code that nanipulates |I/O streans, in
general, poses significant problems. Gven that a streamis a static
data object, and is intended to be used over and over again, aborting
the execution of any routine manipulating a streamcan |leave it in an
i nconsi stent, unusabl e state.

Many operating systens solve this problem by nanipulating a |arge
subset of streams within the confines of the supervisor or executive
program which is not vulnerable to aborts, short of system or
network failure. Nevertheless, the need still exists to inplenent
streans outside of the boundaries of the supervisor. Furthernore,

Greenberg & Keene [Page 75]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

the Synbolics conputer environment has no supervisor or executive
program and is thus vul nerable to aborts everywhere.

BYTE STREAM W TH MARK HANDLI NG OF USER PROGRAM ABORTS

Byte Streamwith Mark is designed to be nearly inpervious to the
aborting of prograns using it. |Its design is based on careful
analysis of all possible states of the stream and of the effect of
aborts of the prograns using the streamin each of these states.
This section provides that analysis.

A "transmi ssion" is a collection of user data sent by the application
| evel through the Byte Streamwi th Mark whose end is well-defined,
once its start has been recognized. For instance, the token |ist
stream when using Byte Streamwi th Mark, sends token lists. Wen a
TOP- LEVEL- LI ST-BEG N has been sent, the containing transnission is
not considered conplete until the corresponding TOP-LEVEL-LIST-END is
read. See the section "Token List Transport Layer", section 11

The followi ng cases are possible states of the stream when an abort
occurs:

1. Abort occurs when the user programis not manipul ating the
stream

Thi s case presents no problem

2. Abort occurs after a transm ssion has been partially sent,
at a packet or record boundary.

This inplies that the datumthat would indicate the
successful conplete sending of that transn ssion has been
not yet been sent.

The Byte Streamwi th Mark state is consistent, but the
application level state is not. The application |evel nust
deternmine that the execution of the code conposing and
sending its transm ssion was, in fact, aborted, and
initiate resynchronization via narks.

The receiving side nust be careful not to act upon a
transmission (that is, to performany action or side
effect) until the transm ssion has been successfully
received in entirety. This protects the user program from
the possibility that an abort can occur after a
transm ssi on has been partially sent.

Greenberg & Keene [Page 76]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

3. Abort occurs during the sending or receiving of a record.

This is the nost vul nerable state of the nechanism This
case does not occur on packet-oriented nmedia; it is
subsumed by the next case.

This case is handled by mninizing the extent of this

wi ndow, and killing the connection when and if the
situation is detected. Depending on the operating system
i nvol ved, this wi ndow could be ninimzed by using

i nterrupt-di sabling nechanisns, auxiliary processes or
tasks, or sone other technique.

For buffered streans, input and output waiting can be done
in consistent states, thus mininizing the amount of tine
mani pul ati ng the actual encapsul ated stream For
unbuffered streanms, a lot of tinme can be spent in this

wi ndow. It is expected that unbuffered streans will be
exceedi ngly uncommon. Nevert hel ess, the inpl enentation of
Byte Streamwi th Mark nust detect this case

4. Abort occurs during the sending or receiving of fundamenta
units of the | owest-Ilevel underlying stream (packets,
buffers, or bytes).

This case is usually handled by inhibiting interrupts, or
other forms of masking, in the code inplenmenting the
encapsul ated stream since no waiting is possible at
unexpected tines.

13. POSSI BLE FUTURE EXTENSI ONS
NFI LE was designed to be extended as the needs of its clients grow,

or as newclients with different needs appear. Currently it neets
the needs of the Synbolics Genera 7.0 operating system although its

design is intentionally general. |If users of other operating systens
identify new features that would be useful, they could be added to
NFILE. This section illustrates sonme areas areas where the design of

NFI LE i ntentionally accommopdat es extensi ons.

- The NFILE protocol encodes commands and responses as text,
rat her than using prearranged nunbers. This neans that new
comrands and responses can be added wi thout having to obtain
a new nunber froma central registry.

- The Token List Transport Layer provides a general substrate

for the value-transm ssion portion of network protocols. 1In
fact, it has been used at Synbolics for other protocols

Greenberg & Keene [Page 77]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

besi des NFILE. The Token List Transport Layer could
conveniently be extended to support transm ssion of other
types of values besides those it currently supports.

- The character set to be used for file transfer could be nade
negot i abl e.

- The command character set could be nade negoti abl e.
Currently there is no negotiation sequence, but one could be
added.

- Greater support for nore conplex file organizations could be
added, such as record files, databases, and so on. This
coul d be an extension to the direct access node facility.

- Currently, the LO@ N conmand all ows the user side to inform
the server which version of NFILE it is running. This
feature is included in NFILE so that a server can continue
to support ol der versions of the protocol even after new,
ext ended versi ons have been inpl enented. However, the
specification is currently somewhat vague as to how the
server can make use of the version.

- NFILE is not restricted to using TCP or Chaos as its
underlying protocol. NFILE can be built on any byte stream
protocol that supports reliable transmni ssion of 8-bit bytes
and nultiple connections.

In addition to the possible future extensions, we would like to
mention a known linmitation of NFILE

Currently NFILE requires multiple connections for a single session.
That is, the control connection nust be separate fromthe data
connections. If NFILE is to be used over a tel ephone, this

requi renent poses an inconvenient restriction. It is possible to

i mpl ement a nul tiplexing schenme as a | evel between NFILE and the
comuni cati on nedi um

Greenberg & Keene [Page 78]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

APPENDI X A
NORVAL TRANSLATI ON MODE

NORMAL translation node guarantees the foll ow ng:

- Afile containing characters in the NFILE character set can
be witten to any NFILE server and read back intact
(contai ning the sane characters).

- Afile witten by NFILE should not appear as "foreign" to a
server operating systemunless the file contains NFILE s
extended characters. That is, a server file that uses only
t he subset of the NFILE character set linmted to standard
ASCI| characters (the 95 printing characters, and the native
representation of return, |inefeed, page, backspace, rubout,
and tab) can be read and witten, with the result being the
sane data in NFILE characters as exists in server
characters.

In this section, all nunbers designating values of character codes
are to be interpreted in octal. The notation "x in cl..c2" means
"for all character codes x such that cl <= x <= c2."

The NFILE character set is an extension of standard ASCII. The 95
ASCI | printing characters have the sane nunerical codes in the NFILE
character set. Five ASCII non-printing characters have counterparts
in the NFILE character set, as shown in the followi ng table. The
NFI LE character set includes a single Return character, rather than
the carriage-return line-feed sequence typically used in ASCII. The
NFI LE character set does not include the ASCII control characters
other than the five shown in the followi ng table, but does include
some additional printing and formatting characters that have no
counterparts in ASClI

NFI LE St andard ASCI

Rubout : 207 177

Backspace: 210 10

Tab: 211 11

Li nef eed: 212 12

Page: 214 14
Note that the NFILE Return character is of code 215. This character
i ncludes "going to the next Iine". This is a notable difference from
the convention used in PDP-10 ASCII in which lines are ended by a
pair of characters, "carriage return" and "line feed"

Greenberg & Keene [Page 79]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

NORVAL TRANSLATI ON TO UNI X SERVERS

The translation given in this table is appropriate for use by UN X
servers, or other servers that use 8-bit bytes to store ASCI
characters. Machines with 8-bit bytes usually place the extra NFILE
characters in the top half of their character set.

TABLE 1. TRANSLATI ONS FROM NFI LE CHARACTERS TO UNI X CHARACTERS

NFI LE char act er UNI X char acter
X in 000..007 X

x in 010..015 X + 200
x in 016..176 X

177 377

X in 200..207 X

X in 210..211 x - 200
212 015

X in 213..214 X - 200
215 012

X in 216..376 X

377 177

TABLE 2. TRANSLATI ONS FROM UNI X CHARACTERS TO NFI LE CHARACTERS

UNI X char act er NFI LE char act er
X in 000..007 X

X in 010..011 x + 200
012 215

x in 013..014 X + 200
015 212

X in 016..176 X

177 377

X in 200..207 X

X in 210..215 X - 200
X in 216..376 X

377 177

NORVAL TRANSLATI ON TO PDP-10 FAM LY SERVERS

The translation given in this table is appropriate for use by PDP-10
fam |y servers, or other servers that use 7-bit bytes to store ASCl
characters. On the PDP-10 the sequence CRLF, 015 012, represents a
new | i ne.

Greenberg & Keene [Page 80]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

The mechanismfor this translation on machines with 7-bit bytes is to
use the RUBQUT character (octal code 177) as an escape character

TABLE 3. TRANSLATI ONS FROM NFI LE TO PDP-10 CHARACTERS

NFI LE char acter PDP- 10 character(s)
x in 000..007 X

X in 010..012 177 x

013 013

X in 014..015 177 x

X in 016..176 X

177 177 177

X in 200..207 177 x - 200

X in 210..212 x - 200

213 177 013

214 014

215 015 012

X in 216..376 177 x - 200

377 no correspondi ng code

These tables might seem confusing at first, but there are sone
general rules about it that should nmake it clearer. First, NFILE
characters in the range 000..177 are generally represented as

t hemsel ves, and x in 200..377 is generally represented as 177
followed by x - 200. That is, 177 is used to quote the second 200
NFI LE characters. It was deened that 177 is a nore useful and common
character than 377, so 177 177 means 177, and there is no way to
describe 377 with PDP-10 ASCI| characters. |n the NFILE character
set, the formatting control characters appear offset up by 200 with
respect to standard ASCII. This explains why the preferred node of
expressing 210 (backspace) is 010, and 010 turns into 177 010. The
same reasoni ng applies to 211 (Tab), 212 (Linefeed), 214 (Fornfeed),
and 215 (Return).

More special care is needed for the Return character, which is the
mappi ng of the system dependent representation of "the start of a new
line". The NFILE Return (215) is equivalent to 015 012 (CRLF) in
some ASCI|I systenms. |In the NFILE character set there is no
representation

Greenberg & Keene [Page 81]

RFC 1037 NFI LE -

TABLE 4. TRANSLATI ONS

PDP- 10 char acter

X in 000..007

X in 010..012

013

014

015 012

015 not-012

X in 016..176

177 x in 000..007
177 x in 010..012
177 013

177 x in 014..015
177 x in 016..176
177 177

of a carriage that doesn’t
server file, it nmust be tr
converting ASCI | character
an 012 therefore turns int

A File Access Protocol Decenber 1987

FROM PDP- 10 CHARACTERS TO NFI LE CHARACTERS

NFI LE char act er

X

x + 200
013

214

215

115

X

x + 200
X

213

X

X + 200
177

gotoanewline, soif there is one in a
ansl ated to sonething else. Wen

s to NFILE characters, an 015 foll owed by
0 a 215. A stray CRis arbitrarily

translated into a single M (115).

Greenberg & Keene

[Page 82]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

APPENDI X B
RAW TRANSLATI ON MODE

RAW node nmeans no transl ation should be performed. In RAW node the
server operating systemshould treat the file as a character file and
use the sane data formatting that woul d be appropriate for a
character file, but transfer the actual binary values of the
character codes.

Greenberg & Keene [Page 83]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

APPENDI X C
SUPER- | MAGE TRANSLATI ON MCDE

SUPER- | MAGE node is intended for use by PDP-10 fam |y machi nes only.
It is included largely as an illustration of a system dependent
extension. A server nmachine that has 8-bit bytes should treat
SUPER- | MACE node the same as NORMAL node.

In this section, all nunbers designating values of character codes
are to be interpreted in octal. The notation "x in cl..c2" means
"for all character codes x such that cl <= x <= c2."

SUPER- | MAGE node suppresses the use of the 177 character as an escape
character. Character translation should be done as in NORMAL node,

wi th one exception. Wen a two-character sequence beginning with 177
is detected, the 177 should not be output at all

In this section, all nunbers designating values of character codes
are to be interpreted in octal. SUPER-IMAGE node is intended for use
by PDP-10 machi nes only.

SUPER- | MAGE suppresses the use of Rubout for quoting. That is, for
each entry beginning with a 177 in the PDP-10 character colum in the
NORMAL translation table, the NFILE character has the 177 renoved.

TABLE 5. SUPER- | MAGE TRANSLATI ON FROM NFI LE TO ASC

NFI LE char acter PDP-10 character(s)

X in 000..177 X

X in 200..214 <x - 200>

215 015 012

X in 216..376 <x - 200>

377 no correspondi ng code

Greenberg & Keene [Page 84]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

TABLE 6. SUPER- | MAGE TRANSLATI ON FROM ASCI | TO NFI LE

PDP- 10 character NFILE character

X in 000..007 X

x in 010..012 X + 200
013 013

014 214

015 012 215

015 not-012 115

X in <016..176> X

177 177

Greenberg & Keene [Page 85]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

NOTES

1. NFILE s requirenment for using the NFILE character set is
recogni zed as a drawback for non-Synbolics machines. A usefu
extension to NFILE would be a provision to nake the character set
negot i abl e.

2. Inmplementation note: Care nust be taken that the freeing is done
before the control connection is allowed to process another
command, or else the control connection may find the data channe
to be falsely indicated as being in use.

3. The Synbolics operating system has the policy that whenever the
user side is waiting for the server side, a user abort can occur
This user side waiting can occur in any context, such awaiting a
response, waiting in the mddle of reading network input, or
waiting in the mddle of transmtting network output. Thus there
are no "hung" states.

4. Note that the Token List Transport Layer supplies a special token
to indicate Boolean truth, but no corresponding token to indicate
Bool ean falsity. NFILE uses an enpty token list to indicate
Bool ean falsity. The historical reason for this asymetry is the
inability of the Lisp language to differentiate between the enpty
list and NIL, which is traditionally used to nean Bool ean falsity.
If the flexibility of both a Boolean falsity and an enpty token
list were allowed, it would create problens for an operating
systemt hat cannot distinguish between the two. This aspect of
the protocol is recognized as a concession to the Lisp | anguage.
The unfortunate effect is to disallow operating systens to
di stingui sh between Bool ean falsity and an enpty |ist.

5. No so-called "fat strings" can be sent.

Greenberg & Keene [Page 86]

