
Network Working Group J. Veizades
Request for Comments: 2165 @Home Network
Category: Standards Track E. Guttman
 C. Perkins
 Sun Microsystems
 S. Kaplan
 June 1997

 Service Location Protocol

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 The Service Location Protocol provides a scalable framework for the
 discovery and selection of network services. Using this protocol,
 computers using the Internet no longer need so much static
 configuration of network services for network based applications.
 This is especially important as computers become more portable, and
 users less tolerant or able to fulfill the demands of network system
 administration.

Table of Contents

 1. Introduction 3
 2. Terminology 3
 2.1. Notation Conventions 5
 2.2. Service Information and Predicate Representation 5
 2.3. Specification Language 6
 3. Protocol Overview 6
 3.1. Protocol Transactions 7
 3.2. Schemes . 8
 3.2.1. The "service:" URL scheme 9
 3.3. Standard Attribute Definitions 9
 3.4. Naming Authority . 10
 3.5. Interpretation of Service Location Replies 10
 3.6. Use of TCP, UDP and Multicast in Service Location 10
 3.6.1. Multicast vs. Broadcast 11
 3.6.2. Service-Specific Multicast Address 11
 3.7. Service Location Scaling, and Multicast Operating Modes . 12

Veizades, et. al. Standards Track [Page 1]

RFC 2165 Service Location Protocol June 1997

 4. Service Location General Message Format 14
 4.1. Use of Transaction IDs (XIDs) 15
 4.2. URL Entries . 16
 4.3. Authentication Blocks 17
 4.4. URL Entry Lifetime 19
 5. Service Request Message Format 19
 5.1. Service Request Usage 22
 5.2. Directory Agent Discovery Request 23
 5.3. Explanation of Terms of Predicate Grammar 24
 5.4. Service Request Predicate Grammar 26
 5.5. String Matching for Requests 27
 6. Service Reply Message Format 28
 7. Service Type Request Message Format 29
 8. Service Type Reply Message Format 31
 9. Service Registration Message Format 32
10. Service Acknowledgement Message Format 35
11. Service Deregister Message Format 37
12. Attribute Request Message Format 38
13. Attribute Reply Message Format 40
14. Directory Agent Advertisement Message Format 42
15. Directory Agents 43
 15.1. Introduction . 43
 15.2. Finding Directory Agents 43
16. Scope Discovery and Use 45
 16.1. Protected Scopes . 46
17. Language and Character Encoding Issues 47
 17.1. Character Encoding and String Issues 48
 17.1.1. Substitution of Character Escape Sequences . . . 49
 17.2. Language-Independent Strings 49
18. Service Location Transactions 50
 18.1. Service Location Connections 50
 18.2. No Synchronous Assumption 51
 18.3. Idempotency . 51
19. Security Considerations 51
20. String Formats used with Service Location Messages 52
 20.1. Previous Responders’ Address Specification 53
 20.2. Formal Definition of the "service:" Scheme 53
 20.2.1. Service Type String 54
 20.3. Attribute Information 54
 20.4. Address Specification in Service Location 55
 20.5. Attribute Value encoding rules 55
21. Protocol Requirements 56
 21.1. User Agent Requirements 56
 21.2. Service Agent Requirements 58
 21.3. Directory Agent Requirements 59
22. Configurable Parameters and Default Values 61
 22.1. Service Agent: Use Predefined Directory Agent(s) 62
 22.2. Time Out Intervals 63

Veizades, et. al. Standards Track [Page 2]

RFC 2165 Service Location Protocol June 1997

23. Non-configurable Parameters 63
24. Acknowledgments 64
 A. Appendix: Technical contents of ISO 639:1988 (E/F): "Code for
 the representation of names of languages" 65
 B. SLP Certificates 66
 C. Example of deploying SLP security using MD5 and RSA 68
 D. Example of use of SLP Certificates by mobile nodes 68
 E. Appendix: For Further Reading 69

1. Introduction

 Traditionally, users find services by using the name of a network
 host (a human readable text string) which is an alias for a network
 address. The Service Location Protocol eliminates the need for a
 user to know the name of a network host supporting a service.
 Rather, the user names the service and supplies a set of attributes
 which describe the service. The Service Location Protocol allows the
 user to bind this description to the network address of the service.

 Service Location provides a dynamic configuration mechanism for
 applications in local area networks. It is not a global resolution
 system for the entire Internet; rather it is intended to serve
 enterprise networks with shared services. Applications are modeled
 as clients that need to find servers attached to the enterprise
 network at a possibly distant location. For cases where there are
 many different clients and/or services available, the protocol is
 adapted to make use of nearby Directory Agents that offer a
 centralized repository for advertised services.

2. Terminology

 User Agent (UA)
 A process working on the user’s behalf to acquire
 service attributes and configuration. The User Agent
 retrieves service information from the Service Agents or
 Directory Agents.

 Service Agent (SA)
 A process working on the behalf of one or more services
 to advertise service attributes and configuration.

 Service Information
 A collection of attributes and configuration information
 associated with a single service. The Service Agents
 advertise service information for a collection of
 service instances.

Veizades, et. al. Standards Track [Page 3]

RFC 2165 Service Location Protocol June 1997

 Service The service is a process or system providing a facility
 to the network. The service itself is accessed using a
 communication mechanism external to the the Service
 Location Protocol.

 Directory Agent (DA)
 A process which collects information from Service Agents
 to provide a single repository of service information in
 order to centralize it for efficient access by User
 Agents. There can only be one DA present per given
 host.

 Service Type
 Each type of service has a unique Service Type string.
 The Service Type defines a template, called a "service
 scheme", including expected attributes, values and
 protocol behavior.

 Naming Authority
 The agency or group which catalogues given Service Types
 and Attributes. The default Naming Authority is IANA,
 the Internet Assigned Numbers Authority.

 Keyword
 A string describing a characteristic of a service.

 Attribute
 A (class, value-list) pair of strings describing a
 characteristic of a service. The value string may be
 interpreted as a boolean, integer or opaque value if it
 takes specific forms (see section 20.5).

 Predicate
 A boolean expression of attributes, relations and
 logical operators. The predicate is used to find
 services which satisfy particular requirements. See
 section 5.3.

 Alphanumeric
 A character within the range ’a’ to ’z’, ’A’ to ’Z’, or

 Scope A collection of services that make up a logical group.
 See sections 3.7 and 16.

Veizades, et. al. Standards Track [Page 4]

RFC 2165 Service Location Protocol June 1997

 Site Network
 All the hosts accessible within the Agent’s multicast
 radius, which defaults to a value appropriate for
 reaching all hosts within a site (see section 22). If
 the site does not support multicast, the agent’s site
 network is restricted to a single subnet.

 URL A Universal Resource Locator - see [6].

 Address Specification
 This is the network layer protocol dependent mechanism
 for specifying an Agent. For Internet systems this is
 part of a URL.

2.1. Notation Conventions

 CAPS Strings which appear in all capital letters are protocol
 literal. All string comparison is case insensitive,
 however, (see section 5.5). Some strings are quoted in
 this document to indicate they should be used literally.
 Single characters inside apostrophes are included
 literally.

 <> Values set off in this manner are fully described in
 section 20. In general, all definitions of items in
 messages are described in section 20 or immediately
 following their first use.

 | |
 \ \ Message layouts with this notation indicate a variable
 | | length field.

2.2. Service Information and Predicate Representation

 Service information is represented in a text format. The goal is
 that the format be human readable and transmissible via email. The
 location of network services is encoded as a Universal Resource
 Locator (URL) which is human readable. Only the datagram headers are
 encoded in a form which is not human readable. Strings used in the
 Service Location Protocol are NOT null-terminated.

 Predicates are expressed in a simple boolean notation using keywords,
 attributes, and logical connectives, as described in Section 5.4.

 The logical connectives and subexpressions are presented in prefix-
 order, so that the connective comes first and the expressions it
 operates on follow afterwards.

Veizades, et. al. Standards Track [Page 5]

RFC 2165 Service Location Protocol June 1997

2.3. Specification Language

 In this document, several words are used to signify the requirements
 of the specification [8]. These words are often capitalized.

 MUST This word, or the adjective "required", means that
 the definition is an absolute requirement of the
 specification.

 MUST NOT This phrase means that the definition is an absolute
 prohibition of the specification.

 SHOULD This word, or the adjective "recommended", means
 that, in some circumstances, valid reasons may exist to
 ignore this item, but the full implications must be
 understood and carefully weighed before choosing a
 different course. Unexpected results may result
 otherwise.

 MAY This word, or the adjective "optional", means that this
 item is one of an allowed set of alternatives. An
 implementation which does not include this option MUST
 be prepared to interoperate with another implementation
 which does include the option.

 silently discard
 The implementation discards the datagram without
 further processing, and without indicating an error to
 the sender. The implementation SHOULD provide the
 capability of logging the error, including the contents
 of the discarded datagram, and SHOULD record the event
 in a statistics counter.

3. Protocol Overview

 The basic operation in Service Location is that a client attempts to
 discover the location of a Service. In smaller installations, each
 service will be configured to respond individually to each client.
 In larger installations, services will register their services with
 one or more Directory Agents, and clients will contact the Directory
 Agent to fulfill requests for Service Location information. Clients
 may discover the whereabouts of a Directory Agent by
 preconfiguration, DHCP [2, 11], or by issuing queries to the
 Directory Agent Discovery multicast address.

Veizades, et. al. Standards Track [Page 6]

RFC 2165 Service Location Protocol June 1997

3.1. Protocol Transactions

 The diagram below illustrates the relationships described below:

 +---------------+ we want this info: +-----------+
 | Application | - - - - - - - - - - - -> | Service |
 +---------------+ +-----------+
 /|\ | |
 | +-------------+ |
 | | |
 \|/ \|/ \|/
 +---------------+ +-----------+ +----------------+
 | User Agent |<-------->| Service | | Service |
 +---------------+ | Agent | | Agent which |
 | +-----------+ | does not reply |
 | | | to UA requests |
 | \|/ +----------------+
 | +-------------+ |
 +------------------>| Directory |<----------+
 | Agent |
 +-------------+ ___________
 /|\ / Many other\
 +------------>| SA’s |
 ___________/

 The following describes the operations a User Agent would employ to
 find services on the site’s network. The User Agent needs no
 configuration to begin network interaction. The User Agent can
 acquire information to construct predicates which describe the
 services that match the user’s needs. The User Agent may build on
 the information received in earlier network requests to find the
 Service Agents advertising service information.

 A User Agent will operate two ways: If the User Agent has already
 obtained the location of a Directory Agent, the User Agent will
 unicast a request to it in order to resolve a particular request.
 The Directory Agent will unicast a reply to the User Agent. The User
 Agent will retry a request to a Directory Agent until it gets a
 reply, so if the Directory Agent cannot service the request (say it
 has no information) it must return an response with zero values,
 possibly with an error code set.

 If the User Agent does not have knowledge of a Directory Agent or if
 there are no Directory Agents available on the site network, a second
 mode of discovery may be used. The User Agent multicasts a request
 to the service-specific multicast address, to which the service it
 wishes to locate will respond. All the Service Agents which are
 listening to this multicast address will respond, provided they can

Veizades, et. al. Standards Track [Page 7]

RFC 2165 Service Location Protocol June 1997

 satisfy the User Agent’s request. A similar mechanism is used for
 Directory Agent discovery; see section 5.2. Service Agents which
 have no information for the User Agent MUST NOT respond.

 When a User Agent wishes to obtain an enumeration of ALL services
 which satisfy the query, a retransmission/convergence algorithm is
 used. The User Agent resends the request, together with a list of
 previous responders. Only those Service Agents which are not on the
 list respond. Once there are no new responses to the request the
 accumulation of responses is deemed complete. Depending on the
 length of the request, around 60 previous responders may be listed in
 a single datagram. If there are more responders than this, the
 scaling mechanisms described in section 3.7 should be used.

 While the multicast/convergence model may be important for
 discovering services (such as Directory Agents) it is the exception
 rather than the rule. Once a User Agent knows of the location of a
 Directory Agent, it will use a unicast request/response transaction.

 The Service Agent SHOULD listen for multicast requests on the
 service-specific multicast address, and MUST register with an
 available Directory Agent. This Directory Agent will resolve
 requests from User Agents which are unicasted using TCP or UDP. This
 means that a Directory Agent must first be discovered, using DHCP,
 the DA Discovery Multicast address, the multicast mechanism described
 above, or manual configuration. See section 5.2.

 A Service Agent which does not respond to multicast requests will not
 be useful in the absence of Directory Agents. Some Service Agents
 may not include this functionality, if an especially lightweight
 implementation is required.

 If the service is to become unavailable, it should be deregistered
 with the Directory Agent. The Directory Agent responds with an
 acknowledgment to either a registration or deregistration. Service
 Registrations include a lifetime, and will eventually expire.
 Service Registrations need to be refreshed by the Service Agent
 before their Lifetime runs out. If need be, Service Agents can
 advertise signed URLs to prove that they are authorized to provide
 the service.

3.2. Schemes

 The Service Location Protocol, designed as a way for clients to
 access resources on the network, is a natural application for
 Universal Resource Locators (URLs). It is intended that by re-using
 URL specification and technology from the World Wide Web, clients and
 servers will be more flexible and able to be written using already

Veizades, et. al. Standards Track [Page 8]

RFC 2165 Service Location Protocol June 1997

 existing code. Moreover, it is hoped that browsers will be written
 to take advantage of the similarity in locator format, so that a
 client can dynamically formulate requests for services that are
 resolved differently depending upon the circumstances.

3.2.1. The "service:" URL scheme

 The service URL scheme is used by Service Location. It is used to
 specify a Service Location. Many Service Types will be named by
 including a scheme name after the "service:" scheme name. Service
 Types are used by SAs to register and deregister Services with DAs.
 It is also used by SAs and DAs to return Service Replies to UAs. The
 formal definition of the "service:" URL scheme is in section 20.2.
 The format of the information which follows the "service:" scheme
 should as closely as possible follow the URL structure and semantics
 as formalized by the IETF standardization process.

 Well known Service Types are registered with the IANA and templates
 are available as RFCs. Private Service Types may also be supported.

3.3. Standard Attribute Definitions

 Service Types used with the Service Location Protocol must describe
 the following:

 Service Type string of the service
 Attributes and Keywords
 Attribute Descriptions and interpretations

 Service Types not registered with IANA will use their own Naming
 Authority string. The registration process for new Service Types is
 defined in [13].

 Services which advertise a particular Service Type must support the
 complete set of standardized attributes. They may support additional
 attributes, beyond the standardized set. Unrecognized attributes
 MUST be ignored by User Agents.

 Service Type names which begin with "x-" are guaranteed not to
 conflict with any officially registered Service Type names. It is
 suggested that this prefix be used for experimental or private
 Service Type names. Similarly, attribute names which begin with "x-"
 are guaranteed not to be used for any officially registered attribute
 names.

 A service of a given Service Type should accept the networking
 protocol which is implied in its definition. If a Service Type can
 accept multiple protocols, configuration information SHOULD be

Veizades, et. al. Standards Track [Page 9]

RFC 2165 Service Location Protocol June 1997

 included in the Service Type attribute information. This
 configuration information will enable an application to use the
 results of a Service Request and Attribute Request to directly
 connect to a service.

 See section 20.2.1 for the format of a Service Type String as used in
 the Service Location Protocol.

3.4. Naming Authority

 The Naming Authority of a service defines the meaning of the Service
 Types and attributes registered with and provided by Service
 Location. The Naming Authority itself is a string which uniquely
 identifies an organization. If no string is provided IANA is the
 default. IANA stands for the Internet Assigned Numbers Authority.

 Naming Authorities may define Service Types which are experimental,
 proprietary or for private use. The procedure to use is to create a
 ’unique’ Naming Authority string and then specify the Standard
 Attribute Definitions as described above. This Naming Authority will
 accompany registration and queries, as described in sections 5 and 9.

3.5. Interpretation of Service Location Replies

 Replies should be considered to be valid at the time of delivery.
 The service may, however, fail or change between the time of the
 reply and the moment an application seeks to make use of the service.
 The application making use of Service Location MUST be prepared for
 the possibility that the service information provided is either stale
 or incomplete. In the case where the service information provided
 does not allow a User Agent to connect to a service as desired, the
 Service Request and/or Attribute Request may be resubmitted.

 Service specific configuration information (such as which protocol to
 use) should be included as attribute information in Service
 Registrations. These configuration attributes will be used by
 applications which interpret the Service Location Reply.

3.6. Use of TCP, UDP and Multicast in Service Location

 The Service Location Protocol requires the implementation of UDP
 (connectionless) and TCP (connection oriented) transport protocols.
 The latter is used for bulk transfer, only when necessary.
 Connections are always initiated by an agent request or registration,
 not by a replying Directory Agent. Service Agents and User Agents
 use ephemeral ports for transmitting information to the service
 location port, which is 427.

Veizades, et. al. Standards Track [Page 10]

RFC 2165 Service Location Protocol June 1997

 The Service Location discovery mechanisms typically multicast
 messages to as many enterprise networks as needed to establish
 service availability. The protocol will operate in a broadcast
 environment with limitations detailed in section 3.6.1.

3.6.1. Multicast vs. Broadcast

 The Service Location Protocol was designed for use in networks where
 DHCP is available, or multicast is supported at the network layer.
 To support this protocol when only network layer broadcast is
 supported, the following procedures may be followed.

3.6.1.1. Single Subnet

 If a network is not connected to any other networks simple network
 layer broadcasts will work in place of multicast.

 Service Agents SHOULD and Directory Agents MUST listen for broadcast
 Service Location request messages to the Service Location port. This
 allows UAs which lack multicast capabilities to still make use of
 Service Location on a single subnet.

3.6.1.2. Multiple Subnets

 The Directory Agent provides a central clearing house of information
 for User Agents. If the network is designed so that a Directory
 Agent address is statically configured with each User Agent and
 Service Agent, the Directory Agent will act as a bridge for
 information that resides on different subnets. The Directory Agent
 address can be dynamically configured with Agents using DHCP. The
 address can also be determined by static configuration.

 As dynamic discovery is not feasible in a broadcast environment with
 multiple subnets and manual configuration is difficult, deploying DAs
 to serve enterprises with multiple subnets will require use of
 multicast discovery with multiple hops (i.e., TTL > 1 in the IP
 header).

3.6.2. Service-Specific Multicast Address

 This mechanism is used so that the number of datagrams any one
 service agent receives is minimized. The Service Location General
 Multicast Address MAY be used to query for any service, though one
 SHOULD use the service-specific multicast address if it exists.

 If the site network does not support multicast then the query SHOULD
 be broadcast to the Service Location port. If, on the other hand,
 the underlying hardware will not support the number of needed

Veizades, et. al. Standards Track [Page 11]

RFC 2165 Service Location Protocol June 1997

 multicast addresses the Service Location General Multicast Address
 MAY be used. Service Agents MUST listen on this multicast address as
 well as the service-specific multicast addresses for the service
 types they advertise.

 Service-Specific Multicast Addresses are computed by calculating a
 string hash on the Service Type string. The Service Type string MUST
 first be converted to an ASCII string from whatever character set it
 is represented in, so the hash will have well-defined results.

 The string hash function is modified from a code fragment attributed
 to Chris Torek:

 /*
 * SLPhash returns a hash value in the range 0-1023 for a
 * string of single-byte characters, of specified length.
 */
 unsigned long SLPhash (const char *pc, unsigned int length)
 unsigned long h = 0;
 while (length-- != 0) {
 h *= 33;
 h += *pc++;
 }
 return (0x3FF & h); /* round to a range of 0-1023 */
 }

 This value is added to the base range of Service Specific Discovery
 Addresses, to be assigned by IANA. These will be 1024 contiguous
 multicast addresses.

3.7. Service Location Scaling, and Multicast Operating Modes

 In a very small network, with few nodes, no DA is required. A user
 agent can detect services by multicasting requests. Service Agents
 will then reply to them. Further, Service Agents which respond to
 user requests must be used to make service information available.
 This does not scale to environments with many hosts and services.

 When scaling Service Location systems to intermediate sized networks,
 a central repository (Directory Agent) may be added to reduce the
 number of Service Location messages transmitted in the network
 infrastructure. Since the central repository can respond to all
 Service and Attribute Requests, fewer Service and Attribute Replies
 will be needed; for the same reason, there is no need to
 differentiate between Directory Agents.

 A site may also grow to such a size that it is not feasible to
 maintain only one central repository of service information. In this

Veizades, et. al. Standards Track [Page 12]

RFC 2165 Service Location Protocol June 1997

 case more Directory Agents are needed. The services (and service
 agents) advertised by the several Directory Agents are collected
 together into logical groupings called "Scopes".

 All Service Registrations that have a scope must be registered with
 all DAs (within the appropriate multicast radius) of that scope which
 have been or are subsequently discovered. Service Registrations
 which have no scope are only registered with unscoped DAs. User
 Agents make requests of DAs whose scope they are configured to use.

 Service Agents MUST register with unscoped DAs even if they are
 configured to specifically register with DAs which have a specific
 scope or set of scopes. User Agents MAY query DAs without scopes,
 even if they are configured to use DAs with a certain scope. This is
 because any DA with no scope will have all the available service
 information.

 Scoped user agents SHOULD always use a DA which supports their
 configured scope when possible instead of an unscoped DA. This will
 prevent the unscoped DAs from becoming overused and thus a scaling
 problem.

 It is possible to specially configure Service Agents to register only
 with a specific set of DAs (see Section 22.1). In that case,
 services may not be available to User Agents via all Directory
 Agents, but some network administrators may deem this appropriate.

 There are thus 3 distinct operating modes. The first requires no
 administrative intervention. The second requires only that a DA be
 run. The last requires that all DAs be configured to have scope and
 that a coherent strategy of assigning scopes to services be followed.
 Users must be instructed which scopes are appropriate for them to
 use. This administrative effort will allow users and applications to
 subsequently dynamically discover services without assistance.

 The first mode (no DAs) is intended for a LAN. The second mode (using
 a DA or DAs, but not using scopes) scales well to a group of
 interconnected LANs with a limited number of hosts. The third mode
 (with DAs and scopes) allows the SLP protocol to be used in an
 internetworked campus environment.

 If scoped DAs are used, they will not accept unscoped registrations
 or requests. UAs which issue unscoped requests will discover only
 unscoped services. They SHOULD use a scope in their requests if
 possible and SHOULD use a DA with their scope in preference to an
 unscoped DA. In a large campus environment it would be a bad idea to
 have ANY unscoped DAs: They attract ALL registrations and will thus
 present a scaling problem eventually.

Veizades, et. al. Standards Track [Page 13]

RFC 2165 Service Location Protocol June 1997

 A subsequent protocol document will describe mechanisms for
 supporting a service discovery protocol for the global Internet.

4. Service Location General Message Format

 The following header is used in all of the message descriptions below
 and is abbreviated by using "Service Location header =" followed by
 the function being used.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Version | Function | Length |
 +-+
 |O|M|U|A|F| rsvd| Dialect | Language Code |
 +-+
 | Char Encoding | XID |
 +-+

 Version This protocol document defines version 1 of the Service
 Location protocol.

 Function Service Location datagrams can be identified as to their
 operation by the function field. The following are the
 defined operations:

 Message Type Abbreviation Function Value

 Service Request SrvReq 1
 Service Reply SrvRply 2
 Service Registration SrvReg 3
 Service Deregister SrvDereg 4
 Service Acknowledge SrvAck 5
 Attribute Request AttrRqst 6
 Attribute Reply AttrRply 7
 DA Advertisement DAAdvert 8
 Service Type Request SrvTypeRqst 9
 Service Type Reply SrvTypeRply 10

 Length The number of bytes in the message, including the Service
 Location Header.

 O The ’Overflow’ bit. See Section 18 for the use of this
 field.

Veizades, et. al. Standards Track [Page 14]

RFC 2165 Service Location Protocol June 1997

 M The ’Monolingual’ bit. Requests with this bit set
 indicate the User Agent will only accept responses in the
 language (see section 17) that is indicated by the
 Service or Attribute Request.

 U The ’URL Authentication Present’ bit. See sections 4.2,
 4.3, 9, and 11 for the use of this field.

 A The ’Attribute Authentication Present’ bit. See
 sections 4.2, 4.3, and 13 for the use of this field.

 F If the ’F’ bit is set in a Service Acknowledgement, the
 directory agent has registered the service as a new
 entry, not as an updated entry.

 rsvd MUST be zero.

 Dialect Dialect tags will be used by future versions of the
 Service Location Protocol to indicate a variant of
 vocabulary used. This field is reserved and MUST be set
 to 0 for compatibility with future versions of the
 Service Location Protocol.

 Language Code
 Strings within the remainder of the message which follows
 are to be interpreted in the language encoded (see
 section 17 and appendix A) in this field.

 Character Encoding
 The characters making up strings within the remainder of
 the message may be encoded in any standardized encoding
 (see section 17.1).

 Transaction Identifier (XID)
 The XID (transaction ID) field allows the requester to
 match replies to individual requests (see section 4.1).

 Note that, whenever there is an Attribute Authentication
 block, there will also be a URL Authentication block.
 Thus, it is an error to have the ’A’ bit set without also
 having the ’U’ bit set.

4.1. Use of Transaction IDs (XIDs)

 Retransmission is used to ensure reliable transactions in the Service
 Location Protocol. If a User Agent or Service Agent sends a message
 and fails to receive an expected response, the message will be sent
 again. Retransmission of the same Service Location datagram should

Veizades, et. al. Standards Track [Page 15]

RFC 2165 Service Location Protocol June 1997

 not contain an updated XID. It is quite possible the original request
 reached the DA or SA, but reply failed to reach the requester. Using
 the same XID allows the DA or SA to cache its reply to the original
 request and then send it again, should a duplicate request arrive.
 This cached information should only be held very briefly
 (CONFIG_INTERVAL_0.) Any registration or deregistration at a
 Directory Agent, or change of service information at a SA should
 flush this cache so that the information returned to the client is
 always valid.

 The requester creates the XID from an initial random seed and
 increments it by one for each request it makes. The XIDs will
 eventually wrap back to zero and continue incrementing from there.

 Directory Agents use XID values in their DA Advertisements to
 indicate their state (see section 15.2).

4.2. URL Entries

 When URLs are registered, they have lifetimes and lengths, and may be
 authenticated. These values are associated with the URL for the
 duration of the registration. The association is known as a "URL-
 entry", and has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Lifetime | Length of URL |
 +-+
 | |
 \ URL \
 | |
 +-+
 | (if present) URL Authentication Block
 +-+

 Lifetime The length of time that the registration is valid, in
 the absence of later registrations or deregistration.

 Length of URL
 The length of the URL, measured in bytes and < 32768.

 URL Authentication Block
 (if present) A timestamped authenticator (section 4.3)

Veizades, et. al. Standards Track [Page 16]

RFC 2165 Service Location Protocol June 1997

 The URL conforms to RFC 1738 [6]. If the ’U’ bit is set in the
 message header, the URL is followed by an URL Authentication Block.
 If the scheme used in the URL does not have a standardized
 representation, the minimal requirement is:

 service:<srvtype>://<addr-spec>

 "service" is the URL scheme of all Service Location Information
 included in service registrations and service replies. Each URL
 entry contains the service:<srvtype> scheme name. It may also
 include an <addr-spec> except in the case of a reply to a Service
 Type request (see section 7).

4.3. Authentication Blocks

 Authentication blocks are used to authenticate service registrations
 and deregistrations. URLs are registered along with an URL
 Authentication block to retain the authentication information in the
 URL entry for subsequent use by User Agents who receive a Service
 Reply containing the URL entry. Service attributes are registered
 along with an Attribute Authentication block. Both authentication
 blocks have the format illustrated below.

 If a service registration is accompanied by authentication which can
 be validated by the DA, the DA MUST validate any subsequent service
 deregistrations, so that unauthorized entities cannot invalidate such
 registered services. Likewise, if a service registration is
 accompanied by an Attribute Authentication block which can be
 validated by the DA, the DA MUST validate any subsequent attribute
 registrations, so that unauthorized entities cannot invalidate such
 registered attributes.

 To avoid replay attacks which use previously validated
 deregistrations, the deregistration or attribute registration message
 must contain a timestamp for use by the DA. To avoid replay attacks
 which use previously validated registrations to nullify a valid
 deregistration, registrations must also contain a timestamp.

Veizades, et. al. Standards Track [Page 17]

RFC 2165 Service Location Protocol June 1997

 An authentication block has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 + Timestamp +
 | |
 +-+
 | Block Structure Descriptor | Length |
 +-+
 | Structured Authenticator ...
 +-+

 Timestamp A 64-bit value formatted as specified by the Network
 Time Protocol (NTP) [16].

 Block Structure Descriptor (BSD)
 A value describing the structure of the Authenticator.
 The only value currently defined is 1, for
 Object-Identifier.

 Length The length of the Authenticator

 Structured Authenticator
 An algorithm specification, and the authentication data
 produced by the algorithm.

 The Structured Authenticator contains a digital signature of the
 information being authenticated. It contains sufficient information
 to determine the algorithm to be used and the keys to be selected to
 verify the digital signature.

 The digital signature is computed over the following ordered stream
 of data:

 CHARACTER ENCODING OF URL (2 bytes in network byte order)
 LIFETIME (2 bytes in network byte order)
 LENGTH OF URL (2 bytes in network byte order)
 URL (n bytes)
 TIMESTAMP (8 bytes in SNTP format [16])

Veizades, et. al. Standards Track [Page 18]

RFC 2165 Service Location Protocol June 1997

 When producing a URL Authentication block, the authentication data
 produced by the algorithm identified within the Structured
 Authenticator calculated over the following ordered stream of data:

 ATTRIBUTE CHARACTER ENCODING (2 bytes in network byte order)
 LENGTH OF ATTRIBUTES (2 bytes in network byte order)
 ATTRIBUTES (n bytes)
 TIMESTAMP (8 bytes in SNTP format [16])

 Every Service Location Protocol entity (User Agent, Service Agent, or
 Directory Agent) which is configured for use with protected scopes
 SHOULD implement "md5WithRSAEncryption" [4] and be able to associate
 it with BSD value == 1.

 In the case where BSD value == 1 and the OID "md5WithRSAEncryption"
 is selected, the Structured Authenticator will start with the ASN.1
 Distinguished Encoding (DER) [9] for "md5WithRSAEncryption", which
 has the as its value the bytes (MSB first in hex):

 "30 0d 06 09 2a 86 48 86 f7 0d 01 01 04 05 00"

 This is then immediately followed by an ASN.1 Distinguished Encoding
 (as a "Bitstring") of the RSA encryption (using the Scope’s private
 key) of a bitstring consisting of the OID for "MD5" concatenated by
 the MD5 [22] message digest computed over the fields above. The
 exact construction of the MD5 OID and digest can be found in RFC 1423
 [4].

4.4. URL Entry Lifetime

 The Lifetime field is set to the number of seconds the reply can be
 cached by any agent. A value of 0 means the information must not be
 cached. User Agents MAY cache service information, but if they do,
 they must provide a way for applications to flush this cached
 information and issue the request directly onto the network.

 Services should be registered with DAs with a Lifetime, the suggested
 value being CONFIG_INTERVAL_1. The service must be reregistered
 before this interval elapses, or the service advertisement will no
 longer be available. Thus, services which vanish and fail to
 deregister eventually become automatically deregistered.

5. Service Request Message Format

 The Service Request is used to obtain URLs from a Directory Agent or
 Service Agents.

Veizades, et. al. Standards Track [Page 19]

RFC 2165 Service Location Protocol June 1997

 The format of the Service Request is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Service Location header (function = SrvReq) |
 +-+
 |length of prev resp list string|<Previous Responders Addr Spec>|
 +-+
 | |
 \ <Previous Responders Addr Spec> \
 | |
 +-+
 | length of predicate string | Service Request <predicate> |
 +-+
 | |
 \ Service Request <predicate>, contd. \
 | |
 +-+

 If a UA issues a request which will result in a reply which is too
 large, the SA or DA will return an abbreviated response (in a
 datagram the size of the site’s MTU) which has the ’Overflow’ bit
 flag set. The UA must then issue the request again using TCP.

 The <Previous Responders Addr Spec> is described in sections 7 and
 20.1.

 After a User Agent restarts (say, after rebooting of a system,
 loading of the network kernel), Service Requests should be delayed
 for some random time uniformly distributed within a one second
 interval centered about a configured delay value (by default,
 CONFIG_INTERVAL_4).

 The Service Request allows the User Agent to specify the Service Type
 of the service and a Predicate in a specific language. The general
 form of a Service Request is shown below:

 <srvtype>[.<na>]/[<scope>]/[<where>]/

 The punctuation is necessary even where the fields are omitted.

 - The <srvtype> refers to the Service Type. For each type of
 service available, there is a unique Service type name string.
 See section 20.2.1.

Veizades, et. al. Standards Track [Page 20]

RFC 2165 Service Location Protocol June 1997

 - The <na> is the Naming Authority. This string determines the
 semantic interpretation of the attribute information in the
 <where> part of the Service Request.

 - The <scope> is a string used to restrict the range of the query.
 Scope is determined administratively, at a given site. It is not
 necessarily related to network topology (see Section 16).
 Leaving this field out means that the request can be satisfied
 only by unscoped service advertisements.

 - The <where> string is the Where Clause of the request. It
 contains a query which allows the selection of those service
 instances which the User Agent is interested in. The query
 includes attributes, boolean operators and relations. (See
 section 5.3.)

 In the case of a multicast service request, a list of previous
 responders is sent. This list will prevent those in the list from
 responding, to be sure that responses from other sources are not
 drowned out. The request is multicast repeatedly (with a recommended
 wait interval of CONFIG_INTERVAL_2) until there are no new responses,
 or a certain time (CONFIG_INTERVAL_3) has elapsed. Different timing
 values are applied to a Service Request used for Directory Agent
 Discovery, see Section 5.2.

 In order for a request to succeed in matching registered information,
 the following conditions must be met:

 1. The result must have the same Service Type as the request.

 2. It must have the same Naming Authority.

 3. It must have the same scope. (If the scope of the request
 as omitted, the request will only match services which were
 registered with no scope. Note that a scoped request WILL match
 all unscoped Services).

 4. The conditions specified in the Where Clause must match the
 attributes and keywords registered for the service.

Veizades, et. al. Standards Track [Page 21]

RFC 2165 Service Location Protocol June 1997

5.1. Service Request Usage

 The User Agent may form Service Requests using preconfigured
 knowledge of a Service Type’s attributes. It may also issue
 Attribute Requests to obtain the attribute values for a Service Type
 before issuing Service Requests (see Section 13). Having obtained
 the attributes which describe a particular kind of service from an
 Attribute Request, or using configured knowledge of a service’s
 attributes, the User Agent can build a predicate that describes the
 service needs of the user.

 Service Requests may be sent directly to a Directory Agent. Suppose
 a printer supporting the lpr protocol is needed on the 12th floor
 which has UNRESTRICTED_ACCESS and prints 12 pages per minute.
 Suppose further that a Attribute Request indicates that there is a
 printer on the 12th floor, a printer that prints 12 pages per minute,
 and a printer that offers UNRESTRICTED_ACCESS. To check whether they
 are same printer, issue the following request:

 lpr//(& (PAGES PER MINUTE==12)
 (UNRESTRICTED_ACCESS)
 (LOCATION==12th FLOOR))/

 Suppose there is no such printer. The Directory Agent responds with
 a Service Reply with 0 in the number of responses and no reply
 values.

 The User Agent then tries a less restrictive query to find a printer,
 using the 12th floor as "where" criteria.

 lpr//(LOCATION==12th FLOOR)/

 In this case, there is now only one reply:

 Returned URL: service:lpr://igore.wco.ftp.com:515/draft

 The Address Specification for the printer is: igore.wco.ftp.com:515,
 containing the name of the host managing the requested printer.
 Files would be printed by spooling to that port on that host. The
 word ’draft’ refers to the name of the print queue the lpr server
 supports.

Veizades, et. al. Standards Track [Page 22]

RFC 2165 Service Location Protocol June 1997

 In the absence of a Directory Agent, the request above could be
 multicast. In this case it would be sent to the Service Specific
 Multicast Address for "service:printer" and not to the Directory
 Agent. Service Agents that can satisfy the predicate will reply.
 Service Agents which cannot support the character set of the request
 MUST return CHARSET_NOT_UNDERSTOOD in the SrvRply. In all other
 circumstances, Service Agents which cannot satisfy the reply do not
 send any reply at all.

 The only way a User Agent can be sure there are no services which
 match the query is by retrying the request (CONFIG_INTERVAL_8). If
 no response comes, the User Agent gives up and assumes there are no
 such printers.

 Another form of query is a simpler ’join’ query. Its syntax has no
 parentheses or logical operators. Each term is conjoined (AND-ed
 together.) Rewriting the initial query provides an example:

 lpr//PAGES PER MINUTE==12,
 UNRESTRICTED_ACCESS,
 LOCATION==12th FLOOR/

5.2. Directory Agent Discovery Request

 Normally a Service Request returns a Service Reply. The sole
 exception to this is a Service Request for the Service Type
 "directory-agent". This Service Request is answered with a DA
 Advertisement.

 Without configured knowledge of a Directory Agent (DA), a User Agent
 or Service Agent uses a Service Request to discover a DA. (See
 section 15.1 for mechanisms by which a client may be configured to
 have knowledge of a DA.) Such a Service Request used for Directory
 Agent Discovery includes a predicate of the form:

 directory-agent///

 This query is always sent to the Directory Agent Discovery multicast
 address. The Service Type of a Directory Agent is "directory-agent",
 hence it is the Service Type used in the request. No scope is
 included in the request, so all Directory Agents will reply. This is
 the only request which omits a scope which all Directory Agents MUST
 respond to. Normally, a Directory Agent with a scope ONLY responds
 to requests with that scope. No Naming Authority is included, so
 "IANA" is assumed. We want to reach all the available directory
 agents. If the scope were supplied, only DAs supporting that scope
 would reply.

Veizades, et. al. Standards Track [Page 23]

RFC 2165 Service Location Protocol June 1997

 DA Advertisement Replies may arrive from different sources, similar
 in form to:

 URL returned: service:directory-agent://slp-resolver.catch22.com
 Scope returned: ACCOUNTING

 URL returned: service:directory-agent://204.182.15.66 Scope
 returned: JANITORIAL SERVICES

 The DA Advertisement format is defined in Section 14.

 If the goal is merely to discover any Directory Agent, the first
 reply will do. If the goal, however, is to discover all reachable
 DAs, the request must be retransmitted after an interval (the
 recommended time is CONFIG_INTERVAL_5). This retransmitted request
 will include a list of DAs which have already responded. See
 sections 7 and 20.1. Directory Agents which receive the request will
 only respond if they are not on this list. After there are no new
 replies, all DAs are presumed to have been discovered.

 If a DA fails to respond after CONFIG_INTERVAL_6 seconds, the UA or
 Service Agent should use a different DA. DA addresses may be cached
 from previous discovery attempts, preconfigured, or by use of DHCP
 (see section 15.2). If no such DA responds, DA discovery should be
 used to find a new DA. Only after CONFIG_INTERVAL_7 seconds should it
 be assumed that no DA exists and multicast based Service Requests
 should be used.

5.3. Explanation of Terms of Predicate Grammar

 A predicate has a simple structure, which depends on parentheses,
 commas and slashes to delimit the elements. Examples of proper usage
 are given throughout this document. The terms used in the grammar
 are as follows:

 predicate:

 Placed in a Service Request, this is interpreted by a Service
 Agent or Directory Agent to determine what information to
 return.

 scope:

 If this is absent in a Service Request, the request will match
 only services registered without a scope. If it is present,
 only services registered under that scope or are unscoped will
 match the request.

Veizades, et. al. Standards Track [Page 24]

RFC 2165 Service Location Protocol June 1997

 where-clause:

 This determines which services the request matches. An empty
 where-clause will match all services. The request will be
 limited to services which have the specified Service Type, so
 the where-clause is not the sole factor in picking out which
 services match the request.

 where-list:

 The where-list is a logical expression. It can be a single
 expression, a disjunction or a conjunction. A single
 expression must apply for the where-clause to match. A
 disjunction matches if any expression in the OR list matches.
 A conjunction matches only if all elements in the AND list
 match.

 Note that there is no logical negation operator: This is
 because there is no notion of returning "everything except"
 what matches a given criteria.

 A where-list can be nested and complex. For example, the
 following requires that three subexpressions must all be true:

 (& (| <query-item> <query-item>)
 <query-item>
 (& <query-item> <query-item> <query-item>)
)

 Notice that white space, tabs or carriage returns can be added
 anywhere outside query-items. Each list has 2 or more items in
 it, and lists can be nested. Services which fulfill the entire
 logical expression match the where-clause.

 degenerate expressions but they should be tolerated. They are
 equivalent to <query-item>.

 query-item:

 A query item has the form:

 ’(’ <attr-tag> <comp-op> <attr-val> ’)’

 or

 ’(’ <keyword> ’)’

Veizades, et. al. Standards Track [Page 25]

RFC 2165 Service Location Protocol June 1997

 Examples of this would be:

 (SOME ATTRIBUTE == SOME VALUE)
 (RESERVED)
 (QUEUE LENGTH <= 234)

 query-join:

 The query-join is a comma delimited list of conditions which
 the service must satisfy in order to match the query. The
 items are considered to be logically conjoined. Thus the
 query-join:

 ATTR1=VALUE1, KEYWORD1, KEYWORD2, ATTR2>=34

 is equivalent to the where-list:

 (& (ATTR1=VALUE1) (KEYWORD1) (KEYWORD2) (ATTR2>=34))

 The query-join cannot be mixed with a where-list. It is
 provided as a convenient mechanism to provide a statement of
 necessary conditions without building a logical expression.

5.4. Service Request Predicate Grammar

 Service Requests can precisely describe the services they need by
 including a Predicate the body of the Request. This Predicate must
 be constructed according to the grammar below.

 <predicate> ::= <srvtype>[’.’<na>]’/’<scope>’/’<where>’/’

 <srvtype> ::= string representing type of service. Only
 alphanumeric characters, ’+’, and ’-’ are allowed.

 <na> ::= string representing the Naming Authority.
 Only alphanumeric characters, ’+’,
 and ’-’ are allowed. If this field is
 omitted then "IANA" is assumed.

 <scope> ::= string representing the directory agent scope.
 ’/’, ’,’ (comma) and ’:’ are not allowed in
 this string. The scopes "LOCAL" and "REMOTE"
 are reserved.

 <attr-tag> ::= class name of an attribute of a given Service
 Type. This tag cannot include the following
 characters: ’(’, ’)’, ’,’, ’=’, ’!’, ’>’,
 ’<’, ’/’, ’*’, except where escaped (see 17.1.)

Veizades, et. al. Standards Track [Page 26]

RFC 2165 Service Location Protocol June 1997

 <keyword> ::= a class name of an attribute which will have
 no values. This string has the same limits
 as the <attr-tag>, except that white space
 internal to the keyword is illegal.

 <where> ::= <where-any> |
 <where-list> |
 <query-join>

 <where-any> ::=
 That is NOTHING, or white space.

 <where-list> ::= ’(’ ’&’ <where-list> <query-list> ’)’ |
 ’(’ ’|’ <where-list> <query-list> ’)’ |
 ’(’ <keyword> ’)’
 ’(’ <attr-tag> <comp-op> <attr-val> ’)’

 <query-list> ::= <where-list> |
 <where-list> <query-list>
 <query-join> ::= <keyword> |
 <join-item> |
 <query-join> ’,’ <keyword> |
 <query-join> ’,’ <join-item>

 <join-item> ::= <attr-tag> <comp-op> <attr-val>

 <comp-op> ::= "!=" | "==" | ’<’ | "<=" | ’>’ | ">="

 <attr-val> ::= any string (see Section 20.5 for the ways
 in which attr-vals are interpreted.)
 Value strings may not contain ’/’, ’,’
 ’=’, ’<’, ’>’, or ’*’ except where escaped
 (see 17.1.).

 ’(’ and ’)’ may be used in attribute values
 for the purpose of encoding a binary values.
 Binary encodings (See 20.5) may
 include the above reserved characters.

5.5. String Matching for Requests

 All strings are case insensitive, with respect to string matching on
 queries. All preceding or trailing blanks should not be considered
 for a match, but blanks internal to a string are relevant.

 For example, " Some String " matches "SOME STRING", but not "some
 string".

Veizades, et. al. Standards Track [Page 27]

RFC 2165 Service Location Protocol June 1997

 String matching may only be performed over the same character sets.
 If a request cannot be satisfied due to a lack of support for the
 character set of the request a CHARSET_NOT_UNDERSTOOD error is
 returned.

 String comparisons (using comparison operators such as ’<’ or
 registration, not using any language specific rules. The ordering is
 strictly by the character value, i.e. "0" < "A" is true when the
 character set is US-ASCII, since "0" has the value of 48 and "A" has
 the value 65.

 The special character ’*’ may precede or follow a string in order to
 allow substring matching. If the ’*’ precedes a string, it matches
 any attribute value which ends with the string. If the string ends
 with a ’*’, it matches any attribute value which begins with the
 string. Finally, if a string begins and ends with a ’*’, the string
 will match any attribute value which contains the string.

 Examples:

 "bob*" matches "bob", "bobcat", and "bob and sue" "*bob" matches
 "bob", "bigbob", and "sue and bob" "*bob*" matches "bob",
 "bobcat", "bigbob", and "a bob I know"

 String matching is done after escape sequences have been substituted.
 See sections 17, 5.3, 17.1.

6. Service Reply Message Format

 The format of the Service Reply Message is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Service Location header (function = SrvRply) |
 +-+
 | Error Code | URL Entry count |
 +-+
 | <URL Entry 1> ...
 +-+
 | . |
 \ . \
 | . |
 +-+
 | <URL Entry N> ...
 +-+

 Each Service Reply message is composed of a list of URL Entries.

Veizades, et. al. Standards Track [Page 28]

RFC 2165 Service Location Protocol June 1997

 The Error Code may have one of the following values:

 0 Success

 LANGUAGE_NOT_SUPPORTED
 A SA or DA returns this when a request is received from a
 UA which is in a language for which there is no
 registered Service Information and the request arrived
 with the Monolingual bit set. See Section 17.

 PROTOCOL_PARSE_ERROR
 A SA or DA returns this error when a SrvRply is received
 which cannot be parsed or the declared string lengths
 overrun the message.

 SCOPE_NOT_SUPPORTED
 A DA will return this error if it receives a request
 which has a scope not supported by the DA. An SA will not
 return this error; it will simply not reply to the
 multicast request.

 CHARSET_NOT_UNDERSTOOD
 If the DA or SA receives a request or registration in a
 character set which it does not support, it will return
 this error.

 Each <URL Entry> in the list has the form defined in Section 4.2.
 The URL entries in the reply have no delimiters between them, other
 than the length fields. The URL length fields indicate where the URL
 strings end. If the presence of an URL Authenticator block is
 signalled by the ’U’ bit, the length of the authenticator block is
 determined by information within the block as discussed in section
 4.3. A User Agent MAY use the authentication block to determine
 whether the Service Agent advertising the URL is, in fact, authorized
 to offer the indicated service. If, in a list of URL entries, some
 of the URLs indicate services which are in protected scopes (see
 section 16.1) while other URLs in the list indicate services which
 are not in protected scopes, the latter must still have
 Authentication Blocks, but the length of the authentcitor is shown as
 zero, and no authentication need be done.

7. Service Type Request Message Format

 The Service Type Request is used to determine all the types of
 services supported on a network.

Veizades, et. al. Standards Track [Page 29]

RFC 2165 Service Location Protocol June 1997

 The request should be sent directly to a DA (though it may also be
 sent to the Service Location General Multicast Address), in order to
 find out all services available on the site network (which are
 advertised by Directory Agents and Service Agents.) If no DA is
 available, a User Agent MAY issue more than one request to insure
 that all replies have been received. In each subsequent request, a
 User Agent includes those Service Types that it is aware of. When no
 new replies arrive within CONFIG_INTERVAL_3 from a request, the User
 Agent can presume that it has acquired a complete set of available
 Service Types.

 The format of a Service Type Request is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Service Location header (function = SrvTypeRqst) |
 +-+
 | length of prev resp string |<Previous Responders Addr Spec>|
 +-+
 | |
 \ <Previous Responders Addr Spec> \
 | |
 +-+
 | length of naming authority | <Naming Authority String> |
 +-+
 | |
 \ <Naming Authority String>, continued \
 | |
 +-+
 | length of Scope String | <Scope String> |
 +-+
 | |
 \ <Scope String>, continued \
 | |
 +-+

 Note that the <Previous Responders Addr Spec> is a comma delimited
 list. (See section 20.1.) The ’length of prev responder list’ field
 indicates the length of the comma delimited list string. A previous
 responder list with 3 elements takes this form:

 <addr-spec>,<addr-spec>,<addr-spec>

Veizades, et. al. Standards Track [Page 30]

RFC 2165 Service Location Protocol June 1997

 The Naming Authority, if included, will limit the replies to Service
 Type Requests to Service Types which have the specified Naming
 Authority. If this field is omitted (i.e., the length field is
 zero), the default Naming Authority ("IANA") is assumed. If the
 length field is -1, service types from all naming authorities are
 requested.

 The Scope String Field, if included, will limit replies to Service
 Types which have the specified scope or are unscoped. If this field
 is omitted, all Service Types (from the specified Naming Authority)
 are returned.

8. Service Type Reply Message Format

 The Service Type Reply has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Service Location header (function = SrvTypeRply) |
 +-+
 | Error Code | number of service types |
 +-+
 | |
 \ <Service Type Item 1> \
 | |
 +-+
 | . . . |
 +-+
 | |
 \ <Service Type Item N> \
 | |
 +-+

 The format of a Service Type Item is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | length of Service Type String | <Service Type String> |
 +-+
 | |
 \ <Service Type String>, continued \
 | |
 +-+

Veizades, et. al. Standards Track [Page 31]

RFC 2165 Service Location Protocol June 1997

 The Error Code may have one of the following values:

 0 Success

 PROTOCOL_PARSE_ERROR
 A SA or DA returns this error when a SrvTypeRqst is
 received which cannot be parsed.

 SCOPE_NOT_SUPPORTED
 A DA which is configured to have a scope will return this
 error if it receives a SrvTypeRqst which is set to have a
 scope which it does not support. An SA will not return
 this error, it will simply silently discard the multicast
 request.

 CHARSET_NOT_UNDERSTOOD
 If the DA receives a SrvTypeRqst in a character set which
 it does not support, it MUST use this error.

 The service type’s name is provided in the <Service Type String>. If
 the service type has a naming authority other than "IANA" it should
 be returned following the service type string and a "." character.
 See section 20.2.1 for the formal definition of this field. User
 Agents calculate Service Specific Multicast addresses based on a hash
 of the Service Type (see Section 3.6.2). This multicast address may
 then be used for issuing Service and Attribute Requests directly to
 SAs.

 The following are examples of Service Type Strings which might be
 found in Service Type Replies:

 service:lpr://
 service:http://
 service:nfs://

9. Service Registration Message Format

 After a Service Agent has found a Directory Agent, it begins to
 register its advertised services one at a time. A Service Agent must
 wait for some random time uniformly distributed within the range
 specified by CONFIG_INTERVAL_11 before registering again.
 Registration is done using the Service Registration message
 specifying all attributes for a service. If the service registration
 in a protected scope 16.1, then the service MUST include both a URL
 Authentication block and an Attribute Authentication block (see
 section 4.3). In that case, the service agent MUST set both the ’U’
 bit and the ’A’ bit (see section 4).

Veizades, et. al. Standards Track [Page 32]

RFC 2165 Service Location Protocol June 1997

 A Directory Agent must acknowledge each service registration request.
 If authentication blocks are included, the Directory Agent MUST
 verify the authentication before registering the service. This
 requires obtaining key information, either by preconfiguration,
 maintenance of a security association with the service agent, or
 acquiring the appropriate certificate.

 The format of a Service Registration is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Service Location header (function = SrvReg) |
 +-+
 | |
 \ <URL-Entry> \
 | |
 +-+
 | Length of Attr List String | <attr-list> |
 +-+
 | |
 \ <attr-list>, Continued. \
 | |
 +-+
 | (if present) Attribute Authentication Block ...
 +-+

 The <URL-Entry> is defined at the end of Section 4.2. The <attr-
 list> is defined in Section 20.3. The Attribute Authentication
 Block, which is only present if the ’A’ bit is set in the message
 header, is defined in section 4.3.

 Service registration may use a connectionless protocol (e.g. UDP),
 or a connection oriented protocol (e.g. TCP). If the registration
 operation may contain more information than can be sent in one
 datagram, the Service Agent MUST use a connection oriented protocol
 to register itself with the DA. When a Service Agent registers the
 same attribute class more than once for a service instance, the
 Directory Agent overwrites the all the values associated with that
 attribute class for that service instance. Separate registrations
 must be made for each language that the service is to be advertised
 in.

 If a SA attempts to register a service with a DA and the registration
 is larger than the site path MTU, then the DA will reply with a
 SrvAck, with the error set to INVALID_REGISTRATION and the ’Overflow’
 byte set.

Veizades, et. al. Standards Track [Page 33]

RFC 2165 Service Location Protocol June 1997

 An example of Service Registration information is:

 Lifetime (seconds): 16-bit unsigned integer
 URL (at least): service:<srvtype>://<addr-spec>
 Attributes (if any): (ATTR1=VALUE),KEYWORD,(ATTR2 = VAL1, VAL2)

 In order to offer continuously advertised services, Service Agents
 should start the reregistration process before the Lifetime they used
 in the registration expires.

 An example of a service registration (valid for 3 hours) is as
 follows:

 Lifetime: 10800
 URL: service:lpr://igore.wco.ftp.com:515/draft
 Attributes: (SCOPE=DEVELOPMENT),
 (PAPER COLOR=WHITE),
 (PAPER SIZE=LETTER),
 UNRESTRICTED_ACCESS,
 (LANGUAGE=POSTSCRIPT, HPGCL),
 (LOCATION=12 FLOOR)

 The same registration could be done again, as shown below, in German;
 however, note that "lpr", "service", and "SCOPE" are reserved terms
 and will remain in the language they were originally registered
 (English).

 Lifetime: 10800
 URL: service:lpr://igore.wco.ftp.com:515/draft
 Attributes: (SCOPE=ENTWICKLUNG),
 (PAPIERFARBE=WEISS),
 (PAPIERFORMAT=BRIEF),
 UNBEGRENTZTER_ZUGANG,
 (DRUECKERSPRACHE=POSTSCRIPT,HPGCL),
 (STANDORT=11 ETAGE)

 Scoped registrations must contain the SCOPE attribute. Unscoped
 registrations must be registered with all unscoped Directory Agents.

 Registrations of a previously registered service are considered an
 update. If such an attribute registration is performed in a
 protected scope (see section 16.1), a new Attribute Authentication
 block must also be included, and the ’A’ bit set in the registration
 message header.

 The new registration’s attributes replace the previous
 registration’s, but do not effect attributes which were included
 previously and are not present in the update.

Veizades, et. al. Standards Track [Page 34]

RFC 2165 Service Location Protocol June 1997

 For example, suppose service:x://a.org has been registered with
 attributes A=1, B=2, C=3. If a new registration comes for
 service:x://a.org with attributes C=30, D=40, then the attributes for
 the service after the update are A=1, B=2, C=30, D=40.

 In the example above, the SCOPE is set to DEVELOPMENT (in English)
 and ENTWICKLUNG (in German). Recall that all strings in a message
 must be in one language, which is specified in the header. The
 string SCOPE is *not* translated, as it is one of the reserved
 strings in the Service Location Protocol (see section 17.2.)

 The Directory Agent may return a server error in the acknowledgment.
 This error is carried in the Error Codes field of the service
 location message header. A Directory Agent MUST decline to register
 a service if it is specified with an unsupported scope. In this case
 a SCOPE_NOT_SUPPORTED error is returned in the SrvAck. A Directory
 Agent MUST NOT accept Service Registrations which have an unsupported
 scope unless it is an unscoped Directory Agent, in which case it MUST
 accept all Service Registrations.

 An unscoped Service Registration will match all requests. A request
 which specifies a certain scope will therefore return services which
 have that scope and services which are unscoped. It is strongly
 suggested that one should use scopes in all registrations or none.
 See Sections 16 and 3.7 for details.

 When the URL entry accompanying a registration also contains an
 authentication block (section 4.3), the DA MUST perform the indicated
 authentication, and subsequently indicate the results in the Service
 Acknowledgement message.

10. Service Acknowledgement Message Format

 A Service Acknowledgement is sent as the result of a DA receiving and
 processing a Service Registration or Service Deregistration. An
 acknowledgment indicating success must have the error code set to
 zero. Once a DA acknowledges a service registration it makes the
 information available to clients.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Service Location header (function = SrvAck) |
 +-+
 | Error Code |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Veizades, et. al. Standards Track [Page 35]

RFC 2165 Service Location Protocol June 1997

 The Error Code may have one of the following values:

 0 Success

 PROTOCOL_PARSE_ERROR
 A DA returns this error when the SrvReg or SrvDereg is
 received which cannot be parsed or the declared string
 lengths overrun the message.

 INVALID_REGISTRATION
 A DA returns this error when a SrvReg or SrvDeReg is
 invalid. For instance, an invalid URL, unknown or
 malformed attributes, or deregistering an unregistered
 service all cause this error to be reported.

 SCOPE_NOT_SUPPORTED
 A DA which is configured to have a scope will return this
 error if it receives a SrvReq which is set to have a
 scope which it does not support.

 CHARSET_NOT_UNDERSTOOD
 If the DA receives a SrvReg or SrvDereg in a character
 set which it does not support, it will return this error.

 AUTHENTICATION_ABSENT
 If DA has been configured to require an authentication
 for any service registered in the requested scope, and
 there are no authentication blocks in the registration,
 the DA will return this error.

 AUTHENTICATION_FAILED
 If the registration contains an authentication block
 which fails to match the correct result as calculated
 (see section 4.3) over the URL or attribute data to be
 authenticated, the DA will return this error.

 If the Directory Agent accpets a Service Registration, and already
 has an existing entry, it updates the existing entry with the new
 lifetime information and possibly new attributes and new attribute
 values. Otherwise, if the registration is acceptable (including all
 necessary authentication checks) the Directory Agent creates a new
 entry, and sets the ’F’ bit in the Service Acknowledgement returned
 to the Service Agent.

Veizades, et. al. Standards Track [Page 36]

RFC 2165 Service Location Protocol June 1997

11. Service Deregister Message Format

 When a service is no longer available for use, the Service Agent must
 deregister itself from Directory Agents that it has been registered
 with. A service uses the following PDU to deregister itself.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Service Location header (function = SrvDereg) |
 +-+
 | length of URL | URL |
 +-+
 | |
 \ URL of Service to Deregister, contd. \
 | |
 +-+
 | (if present) authentication block
 +-+
 | length of <tag spec> string | <tag spec> |
 +-+
 | |
 \ <tag spec>, continued \
 | |
 +-+

 The Service Agent should retry this operation if there is no response
 from the Directory Agent. The Directory Agent acknowledges this
 operation with a Service Acknowledgment message. Once the Service
 Agent receives an acknowledgment indicating success, it can assume
 that the service is no longer advertised by the Directory Agent. The
 Error Code in the Acknowledgment of the Service Deregistration may
 have the same values as described in section 10.

 The Service Deregister Information sent to the directory agent has
 the following form:

 service:<srvtype>://<addr-spec>
 Attribute tags (if any): ATTR1,KEYWORD,ATTR2

 This will deregister the specified attributes from the service
 information from the directory agent. If no attribute tags are
 included, the entire service information is deregistered in every
 language and every scope it was registered in. To deregister the
 printer from the preceding example, use:

 service:lpr://igore.wco.ftp.com:515/draft

Veizades, et. al. Standards Track [Page 37]

RFC 2165 Service Location Protocol June 1997

 If the service was originally registered with a URL entry containing
 a URL authentication block, then the Service Deregistration message
 header MUST have the ’U’ bit set, and the URL entry is then followed
 by the authentication block, with the authenticator calculated over
 the URL data, the timestamp, and the length of the authenticator as
 explained in section 4.3. In this calculation, the lifetime of the
 URL data is considered to be zero, no matter what the current value
 for the remaining lifetime of the registered URL.

12. Attribute Request Message Format

 The Attribute Request is used to obtain attribute information. The
 UA supplies a request and the appropriate attribute information is
 returned.

 If the UA supplies only a Service Type, then the reply includes all
 attributes and all values for that Service Type. The reply includes
 only those attributes for which services exist and are advertised by
 the DA or SA which received the Attribute Request. Since different
 instances of a given service can, and very likely will, have
 different values for the attributes defined by the Service Type, the
 User Agent must form a union of all attributes returned by all
 service Agents. The Attribute information will be used to form
 Service Requests.

 If the UA supplies a URL, the reply will contain service information
 corresponding to that URL.

 Attribute Requests include a ’select clause’. This may be used to
 limit the amount of information returned. If the select clause is
 empty, all information is returned. Otherwise, the UA supplies a
 comma delimited list of attribute tags and keywords. If the
 attribute or keyword is defined for a service, it will be returned in
 the Attribute Reply, along with all registered values for that
 attribute. If the attribute selected has not been registered for
 that URL or Service Type, the attribute or keyword information is
 simply not returned.

Veizades, et. al. Standards Track [Page 38]

RFC 2165 Service Location Protocol June 1997

 The Attribute Request message has the following form:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Service Location header (function = AttrRqst) |
 +-+
 |length of prev resp list string|<Previous Responders Addr Spec>|
 +-+
 | |
 \ <Previous Responders Addr Spec>, continued \
 | |
 +-+
 | length of URL | URL |
 +-+
 | |
 \ URL, continued \
 | |
 +-+
 | length of <Scope> | <Scope> |
 +-+
 | |
 \ <Scope>, continued \
 | |
 +-+
 | length of <select-list> | <select-list> |
 +-+
 | |
 \ <select-list>, continued \
 | |
 +-+

 The <Previous Responder Address List> functions exactly as introduced
 in Section 7. See also Section 20.1.

 The URL can take two forms: Either it is simply a Service Type, such
 as "service:http:", or it can be a URL, such as
 "service:lpr://igore.wco.ftp.com:515/draft". In the former case, all
 attributes and the full range of values for each attribute for the
 Service Type is returned. In the latter case, only the attributes
 for the service whose URL is defined are returned.

 The Scope String is provided so that Attribute Requests for Service
 Types can be made so that only the Attribute information pertaining
 to a specific scope will be returned. This field is ignored in the
 case when a full URL is sent in the Attribute Request. The rules for
 encoding of the Scope String are given in Section 5.4.

Veizades, et. al. Standards Track [Page 39]

RFC 2165 Service Location Protocol June 1997

 The select list takes the form:

 <select-list> ::= <select-item> |
 <select-item> ’,’ <select-list>

 <select-item> ::= <keyword> | <attr-tag> | <partial-tag> ’*’

 <partial-tag> ::= the partial class name of an attribute
 If followed by an ’*’, it matches all class names
 which begin with the partial tag. If preceded by
 a partial tag. If both preceded and followed by
 ’*’ it matches all class names which contain the
 partial tag.

 For definitions of <attr-tag> and <keyword> see 5.4.

 An example of a select-list following the printer example is:

 PAGES PER MINUTE, UNRESTRICTED_ACCESS, LOCATION

 If sent to a Directory Agent, the number of previous responders is
 zero and there are no Previous Responder Address Specification.
 These fields are only used for repeated multicasting, exactly as for
 the Service Request.

13. Attribute Reply Message Format

 An Attribute Reply Message takes the form:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Service Location header (function = AttrRply) |
 +-+
 | Error Code | length of <attr-list> string |
 +-+
 | |
 \ <attr-list> \
 | |
 +-+

 The Error Code may have the following values:

 0 Success

Veizades, et. al. Standards Track [Page 40]

RFC 2165 Service Location Protocol June 1997

 LANGUAGE_NOT_SUPPORTED
 A SA or DA returns this when a request is received from a
 UA which is in a language for which there is no
 registered Service Information and the request arrived
 with the Monolingual bit set. See Section 17.

 PROTOCOL_PARSE_ERROR
 A DA or SA returns this error when a AttrRqst is received
 which cannot be parsed or the declared string lengths
 overrun the message.

 SCOPE_NOT_SUPPORTED
 A DA which is configured to have a scope will return this
 error if it receives an AttrRqst which is set to have a
 scope which it does not support. SAs will silently
 discard multicast AttrRqst messages for scopes they do
 not support.

 CHARSET_NOT_UNDERSTOOD
 If the DA receives an AttrRqst in a character set which
 it does not support, it will return this error. SAs will
 silently discard multicast AttrRqst messages which arrive
 using character sets they do not support.

 The <attr-list> (attribute list) has the same form as the attribute
 list in a Service Registration, see Section 20.3 for a formal
 definition of this field.

 An Attribute Request for "lpr" might elicit the following reply
 (UNRESTRICTED_ACCESS is a keyword):

 (PAPER COLOR=WHITE,BLUE),
 (PAPER SIZE=LEGAL,LETTER,ENVELOPE,TRACTOR FEED),
 UNRESTRICTED_ACCESS,
 (PAGES PER MINUTE=1,3,12),
 (LOCATION=12th, NEAR ARUNA’S OFFICE),
 (QUEUES=LEGAL,LETTER,ENVELOPE,LETTER HEAD)

 If the message header has the ’A’ bit set, the Attribute Reply will
 have an Attribute Authentication block set. In this case, the
 Attribute Authenticator must be returned with the entire list of
 attributes, exactly as it was registered by an SA in a protected
 scope. In this case, the URL was registered in a protected scope and
 the UA included a URL but not a select clause. If the AttrRqst
 specifies that only certain attributes are to be returned, the DA
 does not (typically cannot) compute a new Authenticator so it simply
 returns the attributes without an authenticator block.

Veizades, et. al. Standards Track [Page 41]

RFC 2165 Service Location Protocol June 1997

 A UA which wishes to obtain authenticated attributes for a service in
 a protected scope MUST therefore must include a particular URL and no
 select list with the AttrRqst.

14. Directory Agent Advertisement Message Format

 Directory Agent Advertisement Messages have the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Service Location header (function = DAAdvert) |
 +-+
 | Error Code | Length of URL |
 +-+
 | |
 \ URL \
 | |
 +-+
 | Length of <Scope-list> | <Scope-list> |
 +-+
 | |
 \ <Scope-list>, continued \
 | |
 +-+

 The Error Code is set when a DA Advertisement is returned as the
 result of a Service Request. It will always be set to 0 in the case
 of an unsolicited DA Advertisement. The Error Code may take the
 values specified in Section 6.

 The URL corresponds to the Directory Agent’s location. The <Scope-
 list> is a comma delimited list of scopes which the DA supports, in
 the following format:

 <Scope-list> ::= <Scope> | <Scope-list> ’,’ <Scope>
 <Scope> ::= String representing a scope

 See Section 5.4 for the lexical rules regarding <Scope>.

 DA Advertisements sent in reply to a Directory Agent Discovery
 Request has the same format as the unsolicited DA Advertisement, for
 example:

 URL: service:directory-agent://SLP-RESOLVER.CATCH22.COM
 SCOPE List: ADMIN

Veizades, et. al. Standards Track [Page 42]

RFC 2165 Service Location Protocol June 1997

 The Directory Agent can be reached at the Address Specification
 returned, and supports the SCOPE called "ADMIN".

15. Directory Agents

15.1. Introduction

 A Directory Agent acts on behalf of many Service Agents. It acquires
 information from them and acts as a single point of contact to supply
 that information to User Agents.

 The queries that a User Agent multicasts to Service Agents (in an
 environment without a Directory Agent) are the same as queries that
 the User Agent might unicast to a Directory Agent. A User Agent may
 cache information about the presence of alternate Directory Agents to
 use in case a selected Directory Agent fails.

 Aside from enhancing the scalability of the protocol (see section
 3.7), running multiple DAs provides robustness of operation. The DAs
 may have replicated service information which remain accessible even
 when one of the DAs fail. Directory Agents, in the future, may use
 mechanisms outside of this protocol to coordinate the maintenance of
 a distributed database of Service Location information, and thus
 scale to enterprise networks or larger administrative domains.

 Each Service Agent must register with all DAs they are configured to
 use. UAs may choose among DAs they are configured to use.

 Locally, Directory Agent consistency is guaranteed using mechanisms
 in the protocol. There isn’t any Directory to Directory Agent
 protocol yet. Rather, passive detection of DAs by SAs ensures that
 eventually service information will be registered consistently
 between DAs. Invalid data will age out of the Directory Agents
 leaving only transient stale registrations even in the case of a
 failure of a Service Agent.

15.2. Finding Directory Agents

 A User or Service Agent may be statically configured to use a
 particular DA. This is discouraged unless the application resides on
 a network where any form of multicast or broadcast is impossible.

 Alternatively, a host which uses DHCP [2, 11] may use it to obtain a
 Directory Agent’s address. DHCP options 78 and 79 have been assigned
 for this purpose [21].

 The third way to discover DAs is dynamically. This is done by
 sending out a Directory Agent Discovery request (see Section 5.2).

Veizades, et. al. Standards Track [Page 43]

RFC 2165 Service Location Protocol June 1997

 Lastly, the agent may be informed passively as follows:

 When a Directory Agent first comes on-line it sends an unsolicited DA
 Advertisement to the Service Location general multicast address. If
 a DA supports a particular scope or set of scopes these are placed in
 the reply. The class for this attribute is ’SCOPE’.

 Every CONFIG_INTERVAL_9 a Directory Agent will send an unsolicited DA
 Advertisement. This will ensure that eventually it will be
 discovered by all applications which are concerned.

 When a Directory Agent first comes up it begins with 0 as its XID,
 and increments this by one each time it sends an unsolicited DA
 Advertisement. When the counter wraps, it should go from 0xFFFF to
 0x0100, not 0.

 If the Directory Agent has stored all of the service information in a
 nonvolatile store, it should initially set the XID to 0x100, as it is
 not coming up ’stateless.’ If it stores service registrations in
 memory only, it will restart without any state. It should indicate
 this by resetting its XID to 0.

 All Service Agents which receive the unsolicited DA Advertisement
 should examine its XID. If the Directory Agent has never before been
 heard from or if the XID is less than it was previously and less than
 256, the Service Agent should assume the DA does not have its service
 registration, even if it once did. If this is the case and the DA
 has the proper scope, the SA should register all service information
 with the Directory Agent, after waiting a random interval
 CONFIG_INTERVAL_10.

 When a Service Agent or User Agent first comes on-line it must issue
 a Directory Agent Discovery Request unless it is using static or DHCP
 configuration, as described in 5.2.

 A Service Agent registers information with ALL newly discovered
 Directory Agents when either of the above two events take place.
 When scopes are being used, a Service Agent SHOULD choose a set of
 scopes to be advertised in and need only register with Directory
 Agents that support the scopes in which they wish to be registered.
 Services MUST be registered with DAs that support their scope and
 those which have no scope, unless specifically configured not to do
 so (see section 22.1.)

Veizades, et. al. Standards Track [Page 44]

RFC 2165 Service Location Protocol June 1997

 Once a User Agent becomes aware of a Directory Agent it will unicast
 its queries there. In the event that more than one Directory Agent
 is detected, it will select one to communicate with. When scopes are
 supported, the User Agent will direct its queries to different
 Directory Agents depending on which scopes are appropriate domains
 for the query to be answered in.

 The protocol will cause all DAs (of the same scope) to eventually
 obtain consistent information. Thus one DA should be as good as any
 other for obtaining service information. There may be temporary
 inconsistencies between DAs.

16. Scope Discovery and Use

 The scope mechanism in the Service Location Protocol enhances its
 scalability. The primary use of scopes is to provide the capability
 to organize a site network along administrative lines. A set of
 services can be assigned to a given department of an organization, to
 a certain building or geographical area or for a certain purpose.
 The users of the system can be presented with these organizational
 elements as a top level selection, before services within this domain
 are sought.

 A site network that has grown beyond a size that can be reasonably
 serviced by a few DAs can use the scope mechanism. DAs have the
 attribute class "SCOPE". The values for this attribute are a list of
 strings that represent the administrative areas for which this
 Directory Agent is configured. The semantics and language of the
 strings used to describe the scope are almost entirely the choice of
 the administrative entity of the particular domain in which these
 scopes exist. The values of SCOPE should be configurable, so the
 system administrator can set its value. The scopes "LOCAL" and
 "REMOTE" are reserved and SHOULD NOT be used. Use of these reserved
 values is to be defined in a future protocol document.

 Services with the attribute SCOPE should only be registered with DAs
 which support the same scope or DAs which have no scope.

 Directory Agents advertise their available scopes. A Service Agent
 may then choose a scope in which to register, and SHOULD register
 with all Directory Agents in that scope, as well as all DAs which
 have no scope. Failure to be comprehensive in registration according
 to this rule will mean that the service advertisement may not be
 available to all User Agents.

Veizades, et. al. Standards Track [Page 45]

RFC 2165 Service Location Protocol June 1997

 A Directory Agent which has a scope will return advertisements in
 response to Directory Agent Discovery requests with the scope
 information included. Note that the "service:directory-agent" scheme
 is registered with the IANA naming authority (which is automatically
 selected by leaving the Naming Authority field empty.)

 The query:

 directory-agent/MATH DEPT//

 Could receive the following DA Advertisement:

 Returned URL: service:directory-agent://diragent.blah.edu
 Returned SCOPE: MATH DEPT

 The same Directory Agent if it had no scope value would reply:

 Returned URL: service:directory-agent://diragent.void.com
 Returned SCOPE:

 If a Directory Agent supported more than one scope it would reply as:

 Returned URL: service:directory-agent://srv.domain.org
 Returned SCOPE: MATH DEPT,ENGLISH DEPT,CS DEPT

 A DA which has no scope will reply to any Directory Agent Discovery
 Request.

 Being a member of a scope means that an agent SHOULD use those
 Directory Agents that support its scope. User Agents send all
 requests to DAs which support the indicated scope. Services are
 registered with the DA(s) in their scope. For a UA to find a service
 that is registered in a particular scope it must send requests to a
 DA which supports the indicated scope. There is no limitation on
 scope membership built into the protocol; that is to say, a User
 Agent or Service Agent may be a member of more than one scope.
 Membership is open to all, unless some external authorization
 mechanism is added to limit access.

16.1. Protected Scopes

 Scope membership MAY also define the security access and
 authorization for services in the scope; such scopes are called
 protected scopes. If a User Agent wishes to be sure that Service
 Agents are authorized to provide the service they advertise, then the
 User Agent should request services from a protected scope which has
 been configured to have the necessary authentication mechanism and
 keys distributed to the Service Agents within the scope. A directory

Veizades, et. al. Standards Track [Page 46]

RFC 2165 Service Location Protocol June 1997

 agent distributing URLs for services in a protected scope will reject
 any registrations or deregistrations for service agents which cannot
 provide cryptographically strong authentication to prove their
 authorization to provide the services.

 For instance, if a campus registrar wishes to find a working printer
 to produce student grade information for mailing, the registrar would
 require the printing user agent to transmit the printable output only
 to those printing Service Agents which have been registered in the
 appropriate protected scope. Notice that each service agent is,
 under normal circumstances, validated two times: once when
 registering with the directory agent, and once when the user agent
 validates the URL received with the Service Reply. This protects
 against the possibilities of malicious Directory Agents as well as
 malicious Service Agents.

 Note that services in protected scopes provide separate
 authentication for their URL entry, and for their attributes. This
 follows naturally from the needs of the protocol operation. User
 Agents which specify a service type and attributes needed for service
 in that service type will not receive attribute information from the
 directory agent; they will only receive the appropriate URL entries.
 Only the information returned needs to be authenticated.

 User agents which receive attribute information for a particular URL
 (see section 12), on the other hand, need to authenticate the
 attributes when they are returned (see section 13). In this case,
 there may be much more data to authenticate, but this operation is
 also performed much less often, usually only while the user is
 browsing the available network resources.

17. Language and Character Encoding Issues

 All Service Registrations declare the language in which the strings
 in the service attributes are written by specifying the appropriate
 code in the message header. For each language the Service advertises
 a separate registration takes place. Each of these registrations
 uses the same URL to indicate that they refer to the same service.

 If a Service is fully deregistered (the URL is given in the Service
 Deregister request, without any attribute information) then the
 Service needs to be deregistered only once. This will effectively
 deregister the service in all languages it has been registered in.

Veizades, et. al. Standards Track [Page 47]

RFC 2165 Service Location Protocol June 1997

 If, on the other hand, attribute information is included in the
 Service Deregistration request, a separate Service Deregistration of
 selected attributes must be undertaken in each language in which
 service information has been provided to the DA by a Service Agent.
 Service Registrations in different languages are mutually
 unintelligible. They share no information except for their service
 type and URL with which they were registered. No attempt is made to
 match queries with "language independence." Instead, queries are
 handled using string matching against registrations in the same
 language as the query.

 Service Types which are standardized will have definitions for all
 attributes and value strings. Official translations to other
 languages of the attribute tags and values may be created and
 submitted as part of the standard; this is not feasible for all
 languages. For those languages which are not defined as part of the
 Service Type, a best effort translation of the standard definitions
 of the Service type’s attribute strings MAY be used.

 All Service Requests specify a requested language in the message
 header. The Directory Agent or Service Agent will respond in the
 same language as the request, if it has a registration in the same
 language as the request. If this language is not supported, and the
 Monolingual bit is not specified, a reply can be sent in the default
 language (which is English.) If the ’monolingual bit’ flag in the
 header is set and the requested language is not supported, a SrvRply
 is returned with the error field set to LANGUAGE_NOT_SUPPORTED.

 If a query is in a supported language on a SA or DA, but has a
 different dialect than the available service information, the query
 MUST be serviced on a best-effort basis. If possible, the query
 should be matched against the same dialect. If that is not possible,
 it MAY be matched against any dialect of the same language.

17.1. Character Encoding and String Issues

 Values for character encoding can be found in IANA’s database
 http://www.isi.edu/in-notes/iana/assignments/character-sets
 and have the values referred by the MIBEnum value.

 The encoding will determine the interpretation of all character data
 which follows the Service Location Protocol header. There is no way
 to mix ASCII and UNICODE, for example. All responses must be in the
 character set of the request, or use US-ASCII. If a request is sent
 to a DA or SA or a registration is sent to a DA, which is unable to
 manipulate or store the character set of the incoming message, the
 request will fail. The SA or DA returns a CHARSET_NOT_UNDERSTOOD
 error in a SrvAck message in this case. Requests using US-ASCII will

Veizades, et. al. Standards Track [Page 48]

RFC 2165 Service Location Protocol June 1997

 never fail for this reason, since all SAs and DAs must be able to
 accept this character set.

 Certain characters are illegal in certain contexts of the protocol.
 Since the protocol is largely character string based, in some
 contexts characters are used as protocol delimiters. In these cases
 the delimiting characters must not be used as ’data text.’

17.1.1. Substitution of Character Escape Sequences

 The Service Location Protocol has an ’escape mechanism’ which is
 consistent with HTTP 2.0 [5] and SGML [15]. If the character
 sequence "&#" is followed by one or more digits, followed by a
 semicolon ’;’ the entire sequence is interpreted as a single
 character. The digits are interpreted as a decimal value in the
 character set of the request, as specified by the header. Thus, in
 US-ASCII , would be interpreted as a comma. Substitution of
 these escape strings must be done in all <attr-list> and strings
 present in SrvReq and AttrRqst messages. Only numerical character
 references are accepted, not ’Entity References,’ as defined in HTML.
 These escape values should only be used to provide a mechanism for
 including reserved characters in attribute tag and value strings.

 The interpretation of these escape values is different than in HTML
 in one respect: In HTML the escape values are considered to be in
 the ISO Latin-1 character set. In Service Location they are
 interpreted in the character set defined in the header of the
 message.

 This escape mechanism allows characters like commas to be included in
 attribute tags and values, which would otherwise be illegal as the
 comma is a protocol delimiter.

 Attribute tags and values of different languages are considered to be
 mutually unintelligible. A query in one language SHOULD use service
 information registered in that language.

17.2. Language-Independent Strings

 Some strings, such as Service Type names, have standard definitions.
 These strings should be considered as tokens and not as words in a
 language to be translated.

Veizades, et. al. Standards Track [Page 49]

RFC 2165 Service Location Protocol June 1997

 Reserved String Section xDefinition
 --------------- ------- --------------------------------------
 SCOPE 3, 15 Used to limit the matching of requests.
 SERVICE 6, 9 The URL scheme of all Service Location
 information registered with a DA or
 returned from a Service Request.
 <srvtype> 20.2.1 Used in all service registrations
 and replies.
 domain names 20.4 A fully qualified domain name, used
 in registrations and replies.
 IANA 3.3 The default naming authority.
 LOCAL 16 Reserved.
 REMOTE 16 Reserved.
 TRUE 20.5 Boolean true.
 FALSE 20.5 Boolean false.

18. Service Location Transactions

18.1. Service Location Connections

 When a Service Location Request or Attribute Request results in a UDP
 reply from a Service or Directory Agent that will overflow a
 datagram, the User Agent can open a connection to the Agent and
 reissue the request over the connection. The reply will be returned
 with the overflow bit set (see section 4). The reply will contain as
 much data as will fit into a single datagram. If no MTU information
 is available for the route, assume that the MTU is 1400; this value
 is configurable (see section 22).

 When a request results in overflowed data that cannot be correctly
 parsed (say, because of duplicate or dropped IP datagrams), a User
 Agent that wishes to reliably obtain the overflowed data must
 establish a TCP connection with the Directory Agent or Service Agent
 with the data. When the request is sent again with a new XID, the
 reply is returned over the connection.

 When registration data exceeds one datagram in length, the Service
 Registration should be made by establishing a connection with a
 Directory Agent and sending the registration over the connection
 stream.

Veizades, et. al. Standards Track [Page 50]

RFC 2165 Service Location Protocol June 1997

 Directory Agents and Service Agents must respond to connection
 requests; services whose registration data can overflow a datagram
 must be able to use TCP to send the registration. User Agents should
 be able to make Service and Attribute Requests using TCP. If they
 fail to implement this, they must be able to interpret partial
 replies and/or reissue requests with more selective criteria to
 reduce the size of the replies.

 A connection initiated by an Agent may be used for a single
 transaction. It may also be used for multiple transactions. Since
 there are length fields in the message headers, the Agents may send
 multiple requests along a connection and read the return stream for
 acknowledgments and replies.

 The initiating agent is responsible for closing the TCP connection.
 The DA should wait at least CONFIG_INTERVAL_12 before closing an idle
 connection. DAs and SAs SHOULD eventually close idle connections to
 ensure robust operation, even when the agent which opened a
 connection neglects to close it.

18.2. No Synchronous Assumption

 There is no requirement that one transaction complete before a given
 host begins another. An agent may have multiple outstanding
 transactions, initiated either using UDP or TCP.

18.3. Idempotency

 All Service Location actions are idempotent. Of course registration
 and deregistration will change the state of a DA, but repeating these
 actions with the same XID will have exactly the same effect each
 time. Repeating a registration with a new XID has the effect of
 extending the lifetime of the registration.

19. Security Considerations

 The Service Location Protocol provides for authentication of Service
 Agents as part of the scope mechanism, and consequently, integrity of
 the data received as part of such registrations. Service Location
 does not provide confidentiality. Because the objective of this
 protocol is to advertise services to a community of users,
 confidentiality might not generally be needed when this protocol is
 used in non-sensitive environments. Specialized schemes might be
 able to provide confidentiality, if needed in the future. Sites
 requiring confidentiality should implement the IP Encapsulating
 Security Payload (ESP) [3] to provide confidentiality for Service
 Location messages.

Veizades, et. al. Standards Track [Page 51]

RFC 2165 Service Location Protocol June 1997

 Using unprotected scopes, an adversary might easily use this protocol
 to advertise services on servers controlled by the adversary and
 thereby gain access to users’ private information. Further, an
 adversary using this protocol will find it much easier to engage in
 selective denial of service attacks. Sites that are in potentially
 hostile environments (e.g. are directly connected to the Internet)
 should consider the advantages of distributing keys associated with
 protected scopes prior to deploying the sensitive directory agents or
 service agents.

 Service Location is useful as a bootstrap protocol. It may be used
 in environments in which no preconfiguration is possible. In such
 situations, a certain amount of "blind faith" is required: Without
 any prior configuration it is impossible to use any of the security
 mechanisms described above. Service Location will make use of the
 mechanisms provided by the Security Area of the IETF for key
 distribution as they become available. At this point it would only
 be possible to gain the benefits associated with the use of protected
 scopes if some cryptographic information can be preconfigured with
 the end systems before they use Service Location. For User Agents,
 this could be as simple as supplying the public key of a Certificate
 Authority. See Appendix B.

20. String Formats used with Service Location Messages

 The following section supplies formal definitions for fields and
 protocol elements introduced in the sections indicated.

 Protocol Element Defined in Used in
 ----------------------------------- ------------ ------------
 <Previous Responders’ Addr Spec> 20.1 SrvReq
 Service Request <predicate> 5.4 SrvReq
 URL 20.2 SrvReg,
 SrvDereg,
 SrvRply
 <attr-list> 20.3 SrvReg,
 SrvRply,
 AttrRply
 <Service Registration Information> 9 SrvReg
 <Service Deregister Information> 11 SrvDereg
 <Service Type String> 20.2.1 AttrRqst

Veizades, et. al. Standards Track [Page 52]

RFC 2165 Service Location Protocol June 1997

20.1. Previous Responders’ Address Specification

 The previous responders’ Address Specification is specified as

 <Previous Responders’ Address Specification> ::=
 <addr-spec> |
 <addr-spec>, <Previous Responders’ Address Specification>

 i.e., a list separated by commas with no intervening white space.
 The Address Specification is the address of the Directory Agent or
 Service Agent which supplied the previous response. The format for
 Address Specifications in Service Location is defined in section
 20.4. The comma delimiter is required between each <addr-spec>. The
 use of dotted decimal IP address notation should only be used in
 environments which have no Domain Name Service.

 Example:

 RESOLVO.NEATO.ORG,128.127.203.63

20.2. Formal Definition of the "service:" Scheme

 A URL with a "service:" scheme is used in the SrvReg, SrvDereg,
 SrvRply and AttrRqst messages in Service Location. URLs are defined
 in RFC 1738 [6]. A URL with the "service:" scheme must contain at
 least:

 <url> ::= service:<srvtype>://<addr-spec>

 where:

 service the URL scheme for Service Location, to return
 Replies.

 <srvtype> a string; Service Types may be standardized
 by developing a specification for the "service
 type"-specific part and registering it with IANA.
 See sections 20.2.1 and 3.3.

 <addr-spec> the service access point of the service. It is the
 network address or domain name where the service can
 be accessed. See section 20.4.

 The "service:" scheme may be followed by any legal URL. The a
 particular service. The protocol used to access the service at the
 given service access <addr-spec> may be implicit in the Service Type
 name. If this is not the case, the Service Type MUST be defined in
 such a way that attribute information will include all necessary

Veizades, et. al. Standards Track [Page 53]

RFC 2165 Service Location Protocol June 1997

 configuration and protocol information. A User Agent MUST therefore
 be able to use either a "service:" URL alone or a "service:" URL in
 conjunction with service attributes to make use of a service.

20.2.1. Service Type String

 The Service Type is a string describing the type of service. These
 strings may only be comprised of alphanumeric characters, ’+’, and
 Type names.

 If the Service Type name is followed by a ’.’ and a string (which
 has the same limitations) the ’suffix’ is considered to be the Naming
 Authority of the service. If the Naming Authority is omitted, IANA
 is assumed to be the Naming Authority.

 Service Types developed for in-house or experimental use may have any
 name and attribute semantics provided that they do not conflict with
 the standardized Service Types.

20.3. Attribute Information

 The <attr-list> is returned in the Attribute Reply if the Attribute
 Request does not result in an empty result.

 <attr-list> ::= <attribute> | <attribute>, <attr-list>
 <attribute> ::= (<attr-tag>=<attr-val-list>) | <keyword>
 <attr-val-list> ::= <attr-val> | <attr-val>, <attr-val-list>

 An <attr-list> must be scanned prior to evaluation for all
 occurrences of the string "&#" followed by one or more digit followed
 by ’;’. See Section 17.1.1.

 A keyword has only an <attr-tag>, and no values.

 A comma cannot appear in an <attr-val>, as the comma is used as the
 multiple value delimiter. Examples of an <attr-list> are:

 (SCOPE=ADMINISTRATION)
 (COLOR=RED, WHITE, BLUE)
 (DELAY=10 MINS),BUSY,(LATEST BUILD=10-5-95),(PRIORITY=L,M,H)

 The third example has three attributes in the list. Color can take
 on the values red, white and blue. There are several other examples
 of replies throughout the document.

Veizades, et. al. Standards Track [Page 54]

RFC 2165 Service Location Protocol June 1997

20.4. Address Specification in Service Location

 The address specification used in Service Location is:

 <addr-spec> ::= [<user>:<password>@]<host>[:<port>]

 <host> ::= Fully qualified domain name |
 dotted decimal IP address notation

 When no Domain Name Server is available, SAs and DAs must use dotted
 decimal conventions for IP addresses. Otherwise, it is preferable to
 use a fully qualified domain name wherever possible as renumbering of
 host addresses will make IP addresses invalid over time.

 Generally, just the host domain name (or address) is returned. When
 there is a non-standard port for the protocol, that should be
 returned as well. Some applications may make use of the
 <user>:<password>@ syntax, but its use is not encouraged in this
 context until mechanisms are established to maintain confidentiality.

 Address specification in Service Location is consistent with standard
 URL format [6].

20.5. Attribute Value encoding rules

 Attribute values, and attribute tags are CASE INSENSITIVE for
 purposes of lexical comparison.

 Attribute values are strings containing any characters with the
 exception of ’(’, ’)’, ’=’, ’>’, ’<’, ’/’, ’*’, and ’,’ (the comma)
 except in the case described below where opaque values are encoded.
 These characters may be included using the character value escape
 mechanism described in section 17.1.1.

 While an attribute can take any value, there are three types of
 values which differentiate themselves from general strings:
 Booleans, Integers and Opaque values.

 - Boolean values are either "TRUE" or "FALSE". This is the case
 regardless of the language (i.e. in French or Telugu, Boolean
 TRUE is "TRUE", as well as in English.) Boolean attributes can
 take only one value.

Veizades, et. al. Standards Track [Page 55]

RFC 2165 Service Location Protocol June 1997

 - Integer values are expressed as a sequence of numbers. The
 range of allowable values for integers is "-2147483648" to
 "2147483647". No other form of numeric representation is
 interpreted as such except integers. For example, hexadecimal
 numbers such as "0x342" are not interpreted as integers, but as
 strings.

 - Opaque values (i.e. binary values) are expressed in radix-64
 notation. The syntax is:

 <opaque-val> ::= (<len>:<radix-64-data>)
 <len> ::= number of bytes of the original data
 <radix-64-data> ::= radix-64 encoding of the original data

 <len> is a 16-bit binary number. Radix-64 encodes every 3 bytes
 of binary data into 4 bytes of ASCII data which is in the range
 of characters which are fully printable and transferable by mail.
 For a formal definition of the Radix-64 format see RFC 1521 [7],
 MIME Part One, Section 5.2 Base64 Content Transfer Encoding, page
 21.

21. Protocol Requirements

 In this section are listed various protocol requirements for User
 Agents, Service Agents, and Directory Agents.

21.1. User Agent Requirements

 A User Agent MAY:

 - Provide a way for the application to configure the default DA, so
 that it can be used without needing to find it each initially.

 - Be able to request the address of a DA from DHCP, if configured
 to do so.

 - Ignore any unauthenticated Service Reply.

 - Be able to issue requests in any language or character set
 provided that it can switch to the default language and character
 set if the request can not be serviced by DAs and SAs at the
 site.

 - Require an authentication block in any URL entry returned as
 part of a Service Request, before making use of the advertised
 service.

Veizades, et. al. Standards Track [Page 56]

RFC 2165 Service Location Protocol June 1997

 A User Agent SHOULD:

 - Try to contact DHCP to obtain the address of a DA.

 - Use a scope in all requests, if possible.

 - Issue requests to scoped DAs if the UA has been configured with a
 scope.

 - Listen on the Service Location General Multicast address for
 unsolicited DA Advertisements. This will increase the set of
 Directory Agents available to it for making requests. See
 Section 15.2.

 - Be able to be configured to require an authentication block in
 any received URL entry advertised as belonging to a protected
 scope, before making use of the service.

 If the UA does not listen for DA Advertisements, new DAs will not be
 passively detected. A UA which does not have a configured DA and has
 not yet discovered one and is not listening for unsolicited DA
 Advertisements will remain ignorant of DAs. It may then do a DA
 discovery before each query performed or it may simply use multicast
 queries to Service Agents.

 A User Agent MUST:

 - Be able to unicast requests and receive replies from a DA.
 Transactions should be made reliable by using retransmission of
 the request if the reply does not arrive within a timeout
 interval.

 - Be able to detect DAs using a Directory Agent Discovery request
 issued when the UA starts up.

 - Be able to send requests to a multicast address. Service
 Specific Multicast addresses are computed based on a hash of the
 Service Type. See Section 3.6.2.

 - Be able to handle numerous replies after a multicast request.
 The implementation may be configurable so it will either return
 the first reply, all replies until a timeout or keep trying till
 the results converge.

 - Ignore any unauthenticated Service Reply or Attribute Reply when
 an appropriate IPSec Security Association for that Reply exists.

Veizades, et. al. Standards Track [Page 57]

RFC 2165 Service Location Protocol June 1997

 - Whenever it obtains its IP address from DHCP in the first place,
 also attempt to obtain scope information, and the address of a
 DA, from DHCP.

 - Use the IP Authentication Header or IP Encapsulating Payload in
 all Service Location messages, whenever an appropriate IPSec
 Security Association exists.

 - Be able to issue requests using the US-ASCII character set.

 - If configured to use a protected scope, be able to use
 "md5WithRSAEncryption" [4] to verify the signed data.

21.2. Service Agent Requirements

 A Service Agent MAY be able to:

 - Get the address of a local Directory Agent by way of DHCP.

 - Accept requests in non-US-ASCII character encodings. This is
 encouraged, especially for UNICODE [1] and UTF-8 [24] encodings.

 - Register services with a DA in non-US-ASCII character encodings.
 This is encouraged, especially for UNICODE [1] and UTF-8 [24]
 encodings.

 A Service Agent SHOULD be able to:

 - Listen to the service-specific multicast address of the service
 it is advertising. The incoming requests should be filtered: If
 the Address Specification of the SA is in the Previous Responders
 Address Specification list, the SA SHOULD NOT respond.
 Otherwise, a response to the multicast query SHOULD be unicast to
 the UA which sent the request.

 - Listen for and respond to broadcast requests and TCP connection
 requests, to the Service Location port.

 - Be configurable to calculate authentication blocks and thereby
 be enabled to register in protected scopes. This requires that the
 service agent be configured to possess the necessary keys to
 calculate the authenticator.

 A Service Agent MUST be able to:

 - Listen to the Service Location General Multicast address for
 queries (e.g., Service Type Requests). If the query can be
 replied to by the Service Agent, the Service Agent MUST do so.

Veizades, et. al. Standards Track [Page 58]

RFC 2165 Service Location Protocol June 1997

 It MUST check first to make sure it is not on the list of
 ’previous responders.’

 - Listen to the Service Location General Multicast address for
 unsolicited DA Advertisements. If one is detected, and the DA
 has the right scope, (or has no scope), all services which are
 currently being advertised MUST be registered with the DA (unless
 configured to only use a single DA (see section 22.1), or the DA
 has already been detected, subject to certain rules (see section
 15.2)).

 - Whenever it obtains its IP address from DHCP in the first place,
 also attempt to obtain scope information, and the address of a
 DA, from DHCP.

 - Unicast registrations and deregistrations to a DA. Transactions
 should be made reliable by using retransmission of the request if
 the reply does not arrive within a timeout interval.

 - Be able to detect DAs using a Directory Agent Discovery request
 issued when the SA starts up (unless configured to only use a
 single DA, see section 22.1.)

 - Use the IP Authentication Header or IP Encapsulating Payload in
 all Service Location messages, whenever an appropriate IPSec
 Security Association exists.

 - Be able to register service information with a DA using US-ASCII
 character encoding. It must also be able to reply to requests
 from UAs which use US-ASCII character encoding.

 - Reregister with a DA before the Lifetime of registered service
 information elapses.

 - If configured to use a protected scope, be able to use
 "md5WithRSAEncryption" [4] to produce the signed data.

21.3. Directory Agent Requirements

 A Directory Agent MAY:

 - Accept registrations and requests in non-US-ASCII character
 encodings. This is encouraged, especially for UNICODE [1] and
 UTF-8 [24] encodings.

Veizades, et. al. Standards Track [Page 59]

RFC 2165 Service Location Protocol June 1997

 A Directory Agent SHOULD:

 - Be able to configure certain scopes as protected scopes, so that
 registrations within those scopes require the calculation of
 cryptographically strong authenticators. This requires that the
 DA be able to possess the keys needed for the authentication, or
 that the DA be able to acquire a certificate generated by a
 trusted Certificate Authority [23], before completing Service
 Registrations for protected scopes.

 A Directory Agent MUST be able to:

 - Send an unsolicited DA Advertisements to the Service Location
 General Multicast address on startup and repeat it periodically.
 This reply has an XID which is incremented by one each time. If
 the DA starts with state, it initializes the XID to 0x0100. If
 it starts up stateless, it initializes the XID to 0x0000.

 - Ignore any unauthenticated Service Registration or Service
 Deregistration from an entity with which it maintains a security
 association.

 - Listen on the Directory Agent Discovery Multicast Address for
 Directory Agent Discovery requests. Filter these requests if the
 Previous Responder Address Specification list includes the DA’s
 Address Specification.

 - Listen for broadcast requests to the Service Location port.

 - Listen on the TCP and UDP Service Location Ports for unicast
 requests, registrations and deregistrations and service them.

 - Provide a way in which scope information can be used to configure
 the Directory Agent.

 - Expire registrations when the service registration’s lifetime
 expires.

 - When a Directory Agent has been configured with a scope, it MUST
 refuse all requests and registrations which do not have this
 scope. The DA replies with a SCOPE_NOT_SUPPORTED error. There
 is one exception: All DAs MUST respond to DA discovery requests
 which have no scope.

 - When a Directory Agent has been configured without a scope, it
 MUST accept ALL registrations and requests.

Veizades, et. al. Standards Track [Page 60]

RFC 2165 Service Location Protocol June 1997

 - Ignore any unauthenticated Service Location messages when an
 appropriate IPSec Security Association exists for that request.

 - Use the IP Authentication and IP Encapsulating Security Payload
 in Service Location messages whenever an appropriate IPSec
 Security Association exists.

 - Accept requests and registrations in US-ASCII.

 - If configured with a protected scope, be able to authenticate (at
 least by using "md5WithRSAEncryption" [4]) Service Registrations
 advertising services purporting to belong to such configured
 protected scopes.

22. Configurable Parameters and Default Values

 There are several configuration parameters for Service Location.
 Default values are chosen to allow protocol operation without the
 need for selection of these configuration parameters, but other
 values may be selected by the site administrator. The configurable
 parameters will allow an implementation of Service Location to be
 more useful in a variety of scenarios.

 Multicast vs. Broadcast
 All Service Location entities must use multicast by
 default. The ability to use broadcast messages must be
 configurable for UAs and SAs. Broadcast messages are to
 be used in environments where not all Service Location
 entities have hardware or software which supports
 multicast.

 Multicast Radius
 Multicast requests should be sent to all subnets in a
 site. The default multicast radius for a site is 32.
 This value must be configurable. The value for the
 site’s multicast TTL may be obtained from DHCP using an
 option which is currently unassigned.

 Directory Agent Address
 The Directory Agent address discovery mechanism must be
 configurable. There are three possibilities for this
 configuration: A default address, no default address and
 the use of DHCP to locate a DA as described in section
 15.2. The default value should be use of DHCP, with "no
 default address" used if DHCP does not respond. In this
 case the UA or SA must do a Directory Agent Discovery
 query.

Veizades, et. al. Standards Track [Page 61]

RFC 2165 Service Location Protocol June 1997

 Directory Agent Scope Assignment
 The scope or scopes of a DA must be configurable. The
 default value for a DA is to have no scope if not
 otherwise configured.

 Path MTU
 The default path MTU is assumed to be 1400. This value
 may be too large for the infrastructure of some sites.
 For this reason this value MUST be configurable for all
 SAs and DAs.

 Keys for Protected Scopes

 If the local administration designates certain scopes as
 "protected scopes", the agents making use of those scopes
 have to be able to acquire keys to authenticate data sent
 by services along with their advertised URLs for services
 within the protected scope. For instance, service agents
 would use a private key to produce authentication data.
 By default, service agents use "md5WithRSAEncryption" [4]
 to produce the signed data, to be be included with
 service registrations and deregistrations (see appendix
 B, 4.3). This authentication data could be verified by
 user agents and directory agents that possess the
 corresponding public key.

22.1. Service Agent: Use Predefined Directory Agent(s)

 A Service Agent’s default configuration is to do passive and active
 DA discovery and to register with all DAs which are properly scoped.

 A Service Agent SHOULD be configurable to allow a special mode of
 operation: They will use only preconfigured DAs. This means they
 will *NOT* actively or passively detect DAs.

 If a Service Agent is configured this way, knowledge of the DA must
 come through another channel, either static configuration or by the
 use of DHCP.

 The availability of the Service information will not be consistent
 between DAs. The mechanisms which achieve eventual consistency
 between DAs are ignored by the SA, so their service information will
 not be distributed. This leaves the SA open to failure if the DA
 they are configured to use fails.

Veizades, et. al. Standards Track [Page 62]

RFC 2165 Service Location Protocol June 1997

22.2. Time Out Intervals

 These values should be configurable in case the site deploying
 Service Location has special requirements (such as very slow links.)

 Interval name Section Default Value Meaning
 ----------------- ------- ------------- -----------------------
 CONFIG_INTERVAL_0 4.1 1 minute Cache replies by XID.
 CONFIG_INTERVAL_1 4.4 10800 seconds registration Lifetime,
 (ie. 3 hours)after which ad expires
 CONFIG_INTERVAL_2 5 each second, Retry multicast query
 backing off until no new values
 gradually arrive.
 CONFIG_INTERVAL_3 5 15 seconds Max time to wait for a
 complete multicast query
 response (all values.)
 CONFIG_INTERVAL_4 9 3 seconds Wait to register on
 reboot.
 CONFIG_INTERVAL_5 5.2 3 seconds Retransmit DA discovery,
 try it 3 times.
 CONFIG_INTERVAL_6 5.2 5 seconds Give up on requests sent
 to a DA.
 CONFIG_INTERVAL_7 5.2 15 seconds Give up on DA discovery
 CONFIG_INTERVAL_8 5.1 15 seconds Give up on requests
 sent to SAs.
 CONFIG_INTERVAL_9 15.2 3 hours DA Heartbeat, so that SAs
 passively detect new DAs.
 CONFIG_INTERVAL_10 15.2 1-3 seconds Wait to register services
 on passive DA discovery.
 CONFIG_INTERVAL_11 9 1-3 seconds Wait to register services
 on active DA discovery.
 CONFIG_INTERVAL_12 18.1 5 minutes DAs and SAs close idle
 connections.

 A note on CONFIG_INTERVAL_9: While it might seem advantageous to
 have frequent heartbeats, this poses a significant risk of generating
 a lot of overhead traffic. This value should be kept high to prevent
 routine protocol operations from using any significant bandwidth.

23. Non-configurable Parameters

 IP Port number for unicast requests to Directory Agents:

 UDP and TCP Port Number: 427

Veizades, et. al. Standards Track [Page 63]

RFC 2165 Service Location Protocol June 1997

 Multicast Addresses

 Service Location General Multicast Address: 224.0.1.22
 Directory Agent Discovery Multicast Address: 224.0.1.35

 A range of 1024 contiguous multicast addresses for use as Service
 Specific Discovery Multicast Addresses will be assigned by IANA.

 Error Codes:

 No Error 0
 LANGUAGE_NOT_SUPPORTED 1
 PROTOCOL_PARSE_ERROR 2
 INVALID_REGISTRATION 3
 SCOPE_NOT_SUPPORTED 4
 CHARSET_NOT_UNDERSTOOD 5
 AUTHENTICATION_ABSENT 6
 AUTHENTICATION_FAILED 7

24. Acknowledgments

 This protocol owes some of the original ideas to other service
 location protocols found in many other networking protocols. Leo
 McLaughlin and Mike Ritter (Metricom) provided much input into early
 version of this document. Thanks also to Steve Deering (Xerox) for
 providing his insight into distributed multicast protocols. Harry
 Harjono and Charlie Perkins supplied the basis for the URL based wire
 protocol in their Resource Discovery Protocol. Thanks also to
 Peerlogic, Inc. for supporting this work. Lastly, thanks to Jeff
 Schiller for his help in shaping the security architecture specified
 in this document.

Veizades, et. al. Standards Track [Page 64]

RFC 2165 Service Location Protocol June 1997

 A. Appendix: Technical contents of ISO 639:1988 (E/F): "Code for the
 representation of names of languages"

 Two-letter lower-case symbols are used. The Registration Authority
 for ISO 639 [14] is Infoterm, Osterreiches Normungsinstitut (ON),
 Postfach 130, A-1021 Vienna, Austria. Contains additions from ISO
 639/RA Newsletter No.1/1989. See also RFC 1766.

 aa Afar ga Irish mg Malagasy
 ab Abkhazian gd Scots Gaelic mi Maori
 af Afrikaans gl Galician mk Macedonian
 am Amharic gn Guarani ml Malayalam
 ar Arabic gu Gujarati mn Mongolian
 as Assamese mo Moldavian
 ay Aymara ha Hausa mr Marathi
 az Azerbaijani he Hebrew ms Malay
 hi Hindi mt Maltese
 ba Bashkir hr Croatian my Burmese
 be Byelorussian hu Hungarian
 bg Bulgarian hy Armenian na Nauru
 bh Bihari ne Nepali
 bi Bislama ia Interlingua nl Dutch
 bn Bengali; Bangla in Indonesian no Norwegian
 bo Tibetan ie Interlingue
 br Breton ik Inupiak oc Occitan
 is Icelandic om (Afan) Oromo
 ca Catalan it Italian or Oriya
 co Corsican ja Japanese
 cs Czech jw Javanese pa Punjabi
 cy Welsh pl Polish
 ka Georgian ps Pashto, Pushto
 da Danish kk Kazakh pt Portuguese
 de German kl Greenlandic
 dz Bhutani km Cambodian qu Quechua
 rw Kinyarwanda
 el Greek kn Kannada rm Rhaeto-Romance
 en English ko Korean rn Kirundi
 eo Esperanto ks Kashmiri ro Romanian
 es Spanish ku Kurdish ru Russian
 et Estonian ky Kirghiz
 eu Basque
 la Latin
 fa Persian ln Lingala
 fi Finnish lo Laothian
 fj Fiji lt Lithuanian
 fo Faeroese lv Latvian, Lettish
 fr French
 fy Frisian

Veizades, et. al. Standards Track [Page 65]

RFC 2165 Service Location Protocol June 1997

 sa Sanskrit ta Tamil ug Uigar
 sd Sindhi te Telugu uk Ukrainian
 sg Sangro tg Tajik ur Urdu
 sh Serbo-Croatian th Thai uz Uzbek
 si Singhalese ti Tigrinya
 sk Slovak tk Turkmen vi Vietnamese
 sl Slovenian tl Tagalog vo Volapuk
 sm Samoan tn Setswana
 sn Shona to Tonga wo Wolof
 so Somali tr Turkish
 sq Albanian ts Tsonga xh Xhosa
 sr Serbian tt Tatar
 ss Siswati tw Twi yi Yiddish
 st Sesotho yo Yoruba
 su Sundanese
 sv Swedish za Zhuang
 sw Swahili zh Chinese
 zu Zulu

B. SLP Certificates

 Certificates may be used in SLP in order to distribute the public
 keys of trusted protected scopes. Assuming public keys, this
 appendix discusses the use of such certificates in the Service
 Location Protocol.

 Possession of the private key of a protected scope is equivalent to
 being a trusted SA. The trustworthiness of the protected scope
 depends upon all of these private keys being held by trusted hosts,
 and used only for legitimate service registrations and
 deregistrations.

 With access to the proper Certificate Authority (CA), DAs and UAs do
 not need (in advance) hold public keys which correspond to these
 protected scopes. They do require the public key of the CA. The CA
 produces certificates using its unique private key. This private key
 is not shared with any other system, and must remain secure. The
 certificates declare that a given protected scope has a given public
 key, as well as the expiration date of the certificate.

 The ASCII (mail-safe) string format for the certificate is the
 following list of tag and value pairs:

 "certificate-alg=" 1*ASN1CHAR CRLF
 "scope-charset=" 1*DIGIT CRLF
 "scope=" 1*RADIX-64-CHAR CRLF
 "timestamp=" 16HEXDIGIT CRLF

Veizades, et. al. Standards Track [Page 66]

RFC 2165 Service Location Protocol June 1997

 "public-key=" 1*RADIX-64-CHAR CRLF
 "cert-digest=" 1*RADIX-64-CHAR CRLF

 ASN1CHAR = DIGIT | ’.’
 HEXDIGIT = DIGIT | ’a’..’f’ | ’A’..’F’
 RADIX-64-CHAR = DIGIT | ’a’..’z’ | ’A’..’Z’ | ’+’ | ’/’ | ’=’

 The radix-64 notation is described in RFC 1521 [7]. Spaces are
 ignored in the computation of the binary value corresponding to a
 Radix-64 string. If the value for scope, public-key or cert-digest
 is greater than 72 characters, the Radix-64 notation may be broken up
 on to separate lines. The continuation lines must be preceded by one
 or more spaces. Only the tags listed above may start in the first
 column of the certificate string. This removes ambiguity in parsing
 the Radix-64 values (since the tags consist of legal Radix-64
 values.)

 The certificate-alg is the ASN.1 string for the Object Identifier
 value of the algorithm used to produce the "cert-digest". The
 scope-charset is a decimal representation of the MIBEnum value for
 the character set in which the scope is represented.

 The radix-64 encoding of the scope string will allow the ASCII
 rendering of a scope string any character set.

 The 8 byte NTP format timestamp is represented as 16 hex digits.
 This timestamp is the time at which the certificate will expire.

 The format for the public key will depend on the type of cryptosystem
 used, which is identified by the certificate-alg. When the CA
 generated the certificate holding the public key being obtained, it
 used the message digest algorithm identified by certificate-alg to
 calculate a digest D on the string encoding of the certificate,
 excepting the cert-digest. The CA then encrypted this value using
 the CA’s private key to produce the cert-digest, which is included in
 the certificate.

 The CA generates the certificate off-line. The mechanism to
 distibute certificates is not specified in the Service Location
 Protocol, but may be in the future. The CA specifies the algorithms
 to use for message digest and public key decryption. The DA or SA
 need only obtain the certificate, have a preconfigured public key for
 the CA and support the algorithm specified in the certificate-alg in
 order to obtain certified new public keys for protected scopes.

 The DA or UA may confirm the certificate by calculating the message
 digest D, using the message digest algorithm identified by the
 certificate-alg. The input to the message digest algorithm is the

Veizades, et. al. Standards Track [Page 67]

RFC 2165 Service Location Protocol June 1997

 string encoding of the certificate, excepting the cert-digest. The
 cert-digest is decrypted using the CA’s public key to produce D’. If
 D is the same as D’, the certificate is legitimate. The public-key
 for the protected scope may be used until the expiration date
 indicated by the certificate timestamp.

 The certificate may be distributed along untrusted channels, such as
 email or through file transfer, as it must be verified anyhow. The
 CA’s public key must be delivered using a trusted channel.

C. Example of deploying SLP security using MD5 and RSA

 In our site, we have a protected scope "CONTROLLED". We generate a
 private key - public key pair for the scope, using RSA. The private
 key is maintained on a secret key ring by all SAs in the protected
 scope. The public key is available to all DAs which support the
 protected scope and to all UAs which will use it.

 In order to register or deregister a URL, the data required to be
 authenticated (as described in section 4.3) is digestified using MD5
 [22] to create a digital signature, then encrypted by RSA with the
 protected scope’s private key. The output of RSA is used in the
 authenticator data field of the authenticator block.

 The DA or UA discovers the appropriate method for verifying the
 authentication by looking inside the authentication block. Suppose
 that the "md5WithRSAEncryption" [4] algorithm has to be used to
 verify the signed data. The DA or UA calculates the message digest
 of the URL Entry by using md5, exactly as the SA did. The
 authenticator block is decrypted using the public key for the
 "CONTROLLED" scope, which is stored in the public key ring of the UA
 or DA under the name "CONTROLLED". If the digest calculated by the
 UA or DA matches that of the SA, the URL Entry has been validated.

D. Example of use of SLP Certificates by mobile nodes

 Say a mobile node needs to make use of protected scopes. The mobile
 node is first preconfigured by adding a single public key to its
 public key ring: We will call it the CA-Key. This key will be used
 to obtain SLP certificates in the format described in Appendix B.
 The corresponding private key will be used by the CA to create the
 certificates in the necessary format.

 The CA might be operated by a system administrator using a computer
 which is not connected to any networks. The certificate’s duration
 will depend on the policy of the site. The duration, scope, and
 public key for the protected scope, are used as input to ’md5sum’.
 This sum is then encrypted with RSA using the CA’s private key. The

Veizades, et. al. Standards Track [Page 68]

RFC 2165 Service Location Protocol June 1997

 radix 64 encoding of this is added to the mail-safe string based
 certificate encoding defined in Appendix B.

 The certificate, say for the protected scope "CONTROLLED" could be
 made available to the mobile node. For example, it might be on a web
 page. The mobile node could then process the certificate in order to
 obtain the public key for the CONTROLLED scope. There is still no
 reason to *trust* this key is really the one to use (as in Appendix
 C). To trust it, calculate the md5 checksum of the ascii encoded
 certificate, excluding the cert-digest. Next, decrypt the cert-
 digest using the CA’s public key and RSA. If the cert-digest matches
 the output of MD5, the certificate may be trusted (until it expires).

 The mobile node requires only one key (CA-key) in order to obtain
 others dynamically and make use of protected scopes. Notice that we
 do not define any method for access control by arbitrary UAs to SAs
 in protected scopes.

E. Appendix: For Further Reading

 Three related resource discovery protocols are NBP and ZIP which are
 part of the AppleTalk protocol family [12], the Legato Resource
 Administration Platform [25], and the Xerox Clearinghouse system
 [20]. Domain names and representation of addresses are used
 extensively in the Service Location Protocol. The references for
 these are RFCs 1034 and 1035 [17, 18]. Example of a discovery
 protocol for routers include Router Discovery [10] and Neighbor
 Discovery [19].

Veizades, et. al. Standards Track [Page 69]

RFC 2165 Service Location Protocol June 1997

References

 [1] Unicode Technical Report #4. The unicode standard, version 1.1
 (volumes 1 and 2). Technical Report (ISBN 0-201-56788-1) and
 (ISBN 0-201-60845-6), Unicode Consortium, 1994.

 [2] Alexander, S. and R. Droms. DHCP Options and BOOTP Vendor
 Extensions. RFC 2131, March 1997.

 [3] Atkinson, R. IP Encapsulating Security Payload. RFC 1827,
 August 1995.

 [4] Balenson, D. Privacy Enhancement for Internet Electronic
 Mail: Part III: Algorithms, Modes, and Identifiers. RFC 1423,
 February 1993.

 [5] Berners-Lee, T. and D. Connolly. Hypertext Markup Language -
 2.0. RFC 1866, November 1995.

 [6] Berners-Lee, T., L. Masinter, and M. McCahill. Uniform Resource
 Locators (URL). RFC 1738, December 1994.

 [7] Borenstein, N. and N. Freed. MIME (Multipurpose Internet Mail
 Extensions) Part One: Mechanisms for Specifying and Describing
 the Format of Internet Message Bodies. RFC 2045, November 1996.

 [8] Bradner, Scott. Key words for use in RFCs to Indicate
 Requirement Levels. BCP 14, RFC 2119, March 1997.

 [9] CCITT. Specification of the Abstract Syntax Notation One
 (ASN.1). Recommendation X.208, 1988.

 [10] Deering, Stephen E., editor. ICMP Router Discovery Messages.
 RFC 1256, September 1991.

 [11] Droms, Ralph. Dynamic Host Configuration Protocol. RFC 2131,
 March 1997.

 [12] Gursharan, S., R. Andrews, and A. Oppenheimer. Inside
 AppleTalk. Addison-Wesley, 1990.

 [13] Guttman, E. The service: URL scheme, November 1996.
 Work In Progress.

 [14] Geneva ISO. Code for the representation of names of languages.
 ISO 639:1988 (E/F), 1988.

Veizades, et. al. Standards Track [Page 70]

RFC 2165 Service Location Protocol June 1997

 [15] ISO 8879, Geneva. Information Processing -- Text and Office
 Systems - Standard Generalized Markup Language (SGML).
 <URL:http://www.iso.ch/cate/d16387.html>, 1986.

 [16] Mills, D. Simple Network Time Protocol (SNTP) Version 4 for
 IPv4, IPv6 and OSI. RFC 2030, October 1996.

 [17] Mockapetris, P. Domain Names - Concepts and Facilities. STD 13,
 RFC 1034, November 1987.

 [18] Mockapetris, P. DOMAIN NAMES - IMPLEMENTATION AND
 SPECIFICATION. STD 13, RFC 1035, November 1987.

 [19] Narten, T., E. Nordmark, and W. Simpson. Neighbor Discovery for
 IP version 6 (IPv6). RFC 1970, August 1996.

 [20] Oppen, D. and Y. Dalal. The clearinghouse: A decentralized
 agent for locating named objects in a distributed environment.
 Technical Report Tech. Rep. OPD-78103, Xerox Office Products
 Division, 1981.

 [21] Perkins, C. DHCP Options for Service Location Protocol, August
 1996. Work In Progress.

 [22] Rivest, Ronald. The MD5 Message-Digest Algorithm. RFC 1321,
 April 1992.

 [23] Schneier, Bruce. Applied Cryptography: Protocols, Algorithms,
 and Source Code in C. John Wiley, New York, NY, USA, 1994.

 [24] X/Open Preliminary Specification. File System Safe UCS
 Transformation Format (FSS_UTF). Technical Report Document
 Number: P316, X/Open Company Ltd., 1994.

 [25] Legato Systems. The Legato Resource Administration Platform.
 Legato Systems, 1991.

Veizades, et. al. Standards Track [Page 71]

RFC 2165 Service Location Protocol June 1997

Authors’ Addresses

 Questions about this memo can be directed to:

 John Veizades Erik Guttman
 @Home Network Sun Microsystems
 385 Ravendale Dr. Gaisbergstr. 6
 Mountain View, CA 94043 69115 Heidelberg Germany

 Phone: +1 415 944 7332 Phone: +1 415 336 6697
 Fax: +1 415 944 8500

 Email: veizades@home.com Email: Erik.Guttman@eng.sun.com

 Charles E. Perkins Scott Kaplan
 Sun Microsystems
 2550 Garcia Avenue 346 Fair Oaks St.
 Mountain View, CA 94043 San Francisco, CA 94110

 Phone: +1 415 336 7153 Phone: +1 415 285 4526
 Fax: +1 415 336 0670

 EMail: cperkins@Corp.sun.com Email: scott@catch22.com

Veizades, et. al. Standards Track [Page 72]

