
Network Working Group W. Almesberger
Request for Comments: 2170 J. Le Boudec
Category: Informational P. Oechslin
 LRC, DI-EPFL, Switzerland
 July 1997

 Application REQuested IP over ATM (AREQUIPA)

Status of this Memo

 This memo provides information for the Internet community. This memo
 does not specify an Internet standard of any kind. Distribution of
 this memo is unlimited.

IESG Note:

 This RFC has not had the benefit of the rigorous peer review that is
 part of the process in an IETF working group. The technology it
 describes has been implemented and is now undergoing testing. It
 would be wise to analyze the results of this testing as well as to
 understand alternatives before committing to this approach for IP
 over ATM with QoS guarantees.

Abstract

 This document specifies a method for allowing ATM-attached hosts that
 have direct ATM connectivity to set up end-to-end IP over ATM
 connections within the reachable ATM cloud, on request from
 applications, and for the exclusive use by the requesting
 applications. This allows the requesting applications to benefit in a
 straightforward way from ATM’s inherent ability to guarantee the
 quality of service (QoS).

 Given a mapping from service classes, as defined by INTSERV[6], to
 ATM traffic descriptors, Arequipa can be used to implement integrated
 services over ATM link layers. Usage of Arequipa to provide
 integrated services even if ATM is only available for intermediate
 links is not discussed in this document but should be straight-
 forward.

 The major advantage of using an approach like Arequipa is that it
 needs to be implemented only on the hosts using it. It requires no
 extra service (eg. NHRP or RSVP) to be deployed on the switches or
 routers of the ATM cloud.

Almesberger, et. al. Informational [Page 1]

RFC 2170 AREQUIPA July 1997

 We discuss the implementation of Arequipa for hosts running IPv4 and
 IPv6. As an illustration, we also discuss how World-Wide-Web
 applications can use Arequipa to deliver documents with a guaranteed
 quality of service.

 In particular we show how

 - Arequipa can be implemented in IPv4 by slightly modifying the
 - Arequipa can be implemented in IPv6[3] by the appropriate use of
 flow labels and the extension of the neighbour cache,
 - Arequipa can be used in the Web by adding extra information in
 the headers of HTTP requests and responses.

 Finally, we address safety and security implications.

1. Introduction

 QoS guarantees are important for delivery of multi-media data and
 commercial services on the Internet. When two applications on
 machines running IP over ATM need to transfer data, all the necessary
 gears to guarantee QoS can be found in the ATM layer. We consider
 the case where it is desired to use end-to-end ATM connections
 between applications residing on ATM hosts that have end-to-end ATM
 connectivity.

 Opening direct ATM connections between two applications is possible,
 but then the already available transport protocols, like TCP, can not
 be reused.

 This is why we propose Application REQuested IP over ATM (AREQUIPA).
 Arequipa allows applications to request that two machines be
 connected by a direct ATM connection with given QoS at the link
 level. Arequipa makes sure that only data from the applications that
 requested the connection actually goes through that connection. After
 setup of the Arequipa connection, the applications can use the
 standard IP protocol suite to exchange data.

2. API semantics

 We now define a semantical API for Arequipa. Note that an actual API
 may perform additional functions (eg. mapping of a given service
 specification to ATM traffic descriptors)

 We define the three new API functions for the TCP/IP stack:

 Arequipa_preset (socket_descriptor, destination IP address,
 destination protid/port, destination ATM Address,
 ATM service and QoS parameters)

Almesberger, et. al. Informational [Page 2]

RFC 2170 AREQUIPA July 1997

 Arequipa_preset establishes or prepares establishment of a new ATM
 connection to the given address with the given ATM service and QoS.
 It makes sure that any further data sent on the specified socket
 will use the new ATM connection.

 Arequipa_preset is invoked before a TCP/IP connection is
 established or before sending data(grams), respectively. (Active
 open.)

 Arequipa_expect (socket_descriptor, allow)

 Arequipa_expect prepares the system to use an expected incoming
 Arequipa connection for outgoing traffic of a given socket. If
 allow equals TRUE then, as soon as the socket receives data from an
 incoming Arequipa connection, all its return traffic is sent over
 that Arequipa connection. If allow equals FALSE the traffic from
 that socket is always sent over the standard IP route. Note that
 Arequipa_expect is only applicable to connection oriented sockets,
 eg. TCP sockets or connected UDP sockets.

 Arequipa_expect is invoked by the peer which is expecting
 data(grams) or accepting connections. (Passive open.) It is
 typically called immediately after a socket has been created. It
 may also be called when a data transfer is already going on.

 Arequipa_close (socket_descriptor)

 Closes the corresponding ATM connection. Any further traffic
 between the endpoints is routed like other traffic. Arequipa_close
 is implied when closing the socket.

 Note that the use of Arequipa_expect or _preset only reflects the
 direction of the initial dialog in the Arequipa connection. Actual
 data can flow in both directions.

 An actual implementation may use less arguments for Arequipa_preset
 if some of the information is already passed by other networking
 operations.

3. Implementation with IPv4

 To implement Arequipa with IPv4, ATMARP must be able not only to
 handle associations of ATM addresses and IP addresses, but also
 associations of one ATM address with an IP address plus endpoint
 (socket). This allows to dedicate an ATM connection for the traffic
 between two endpoints.

Almesberger, et. al. Informational [Page 3]

RFC 2170 AREQUIPA July 1997

 For the active open, a destination ATM address must be associated
 with a socket. In systems using per-socket route and ARP caching,
 this can be done by presetting the caches with the appropriate
 values. Establishment of the SVC is delegated to ATMARP. Care must be
 taken that routing and ARP information obtained through Arequipa does
 not leak to other parts of the system.

 For the passive open, an incoming SVC must be associated with the
 socket that terminates the corresponding connection or data flow.
 Most of this functionality is already available in the existing
 protocol stack. To avoid an incoming Arequipa SVC to be mistaken for
 an IP-over-ATM SVC, the setup message uses a specific Broadband High
 Layer Identifier (BHLI), see below. Seeing the BHLI, ATMARP knows
 that the SVC is of the dedicated type. The socket to which it has to
 be associated is identified as soon as a datagram is received through
 the SVC. If an Arequipa_expect has been done for that socket, then
 the SVC is used for all return traffic of that socket.

 If application A1 on host H1 wants a direct ATM connection to
 application A2 on host H2 it does the following:

 Both applications first get in contact using the standard IP over ATM
 to exchange the ATM address of the receiver (atm2) and the endpoints
 (S1, S2) (i.e. protocol and port number; we assume that a protocol
 with ports, such as TCP or UDP, is used) at both hosts between which
 communication will occur. How this is performed depends on the
 application protocols. In Section 5 we give an example for HTTP.

 A2 invokes Arequipa_expect to indicate that it wants to make use of
 an expected incoming ATM connection.

 A1 invokes Arequipa_preset to open or prepare opening of an ATM
 connection to H2 using ATM address atm2 and the QoS desired by A1 as
 soon as data is sent through S1. The connection is associated with S1
 such that no other traffic (e.g. generated by other applications)
 uses the new ATM connection.

Almesberger, et. al. Informational [Page 4]

RFC 2170 AREQUIPA July 1997

 An Arequipa connection shall be signaled by using the procedures and
 codings described in RFC1755 [7], with the addition that the BHLI
 information element be included in the SETUP message, with the
 following coding:

 --
 | bb_high_layer_information |
 --
 | high_layer_information_type 3 (vendor-specific |
 | application id.) |
 | high_layer_information 00-60-D7 (EPFL OUI) |
 | 01-00-00-01 (Arequipa) |
 --

 As soon as data arrives from H1:S1 at H2:S2, the ATM connection the
 data has arrived on is identified as the dedicated connection for
 this data flow and S2 is changed to exclusively send on that
 connection.

 From this point on all traffic exchanged between S1 of A1 and S2 of
 A2 will use the new ATM connection with the desired QoS.

 Note that it is possible for H1 and H2 to belong to the same LIS [2]
 and still decide to use an Arequipa connection between applications,
 in addition to one or several other, non-Arequipa ATM connections
 between hosts H1 and H2. There may also exist several Arequipa
 connections between two hosts.

4. Implementation with IPv6

 With IPv6, sources take advantage of the Flow Label field in the IPv6
 header [3].

 We assume as in [4] that the conceptual host model uses, among
 others, a neighbour cache and a destination cache. The destination
 cache holds entries about destinations to which traffic has been sent
 recently, while the neighbour cache holds entries about neighbours to
 which traffic has been sent recently. With the classical IP over ATM
 model [1], entries in the neighbour cache can only refer to systems
 in the same LIS; we propose to go beyond this limitation and allow
 systems beyond the LIS to appear there and be treated as neighbours,
 in the case where a direct link level connection (here, an ATM
 connection) can be established.

 The destination is keyed in [4] by the IP (destination) address. We
 replace this by the IP (destination) address and flow label.

Almesberger, et. al. Informational [Page 5]

RFC 2170 AREQUIPA July 1997

 We assume that with IPv6, a mechanism will be provided for
 applications to request flow labels which, at the host, form a unique
 flow-label/destination-address pair. This will prevent two different
 flows which go to the same destination from accidentally using the
 same flow label. Such a uniqueness requirement is also desirable for
 other applications which rely on flow-label/destination-address
 pairs, like for example RSVP.

 A typical scenario is:

 Application A1 on host H1 and application A2 on host H2 first get in
 contact using the standard IP over ATM to exchange their ATM address
 (atm1, atm2) and to define a protocol, port number pair (S1, S2) and
 flow labels (L1, L2) for the communication over the ATM connection.
 (We assume that a protocol with ports, such as TCP or UDP, is used).
 How this is performed depends on the application protocols. In
 Section 5 we give an example for HTTP.

 A2 tells its networking entity that it wants to send its outgoing
 packets with flow label L2 over an expected incoming ATM connection.
 A1 tells its data link entity to open an ATM connection to H2 using
 ATM address atm2, with the QoS desired by A1. The connection is
 associated with L1 and L2 as explained below so that no other traffic
 generated by other applications uses the new ATM connection.

 From this point on all traffic exchanged between applications A1 on
 H1 and application A2 on H2 will use this ATM connection.

 An example of destination and neighbour cache entries at H1 is given
 below.

 Destination Cache
 IPAddr flowLabel neighbourCache pathMTU
 H2 L1 ptr1 (1)
 H2 * ptr2 (2)

 Neighbour Cache
 IPAddr linkLayerAddr isRouter reachabilityState invalidationTimer
 H2 v2 no (3) t2
 R3 v3 yes REACHABLE t3

 In the example, the route to destination H2 for all traffic other
 than the one using the ATM connection requested between application
 A1 and A2 uses the default route (perhaps set up by the classical IP
 model), with router R3 as the next hop; v2 is a pointer to an ATM
 interface and a VPCI/VCI that identifies the Arequipa connection.
 Similarly, v3 points to the ATM connection to router R3. ptr1 points

Almesberger, et. al. Informational [Page 6]

RFC 2170 AREQUIPA July 1997

 to the first line in Neighbour Cache, and ptr2 to the second one.
 Path MTUs (1) and (2) are obtained by ATM signaling; they may be
 different. Reachability state (3) is determined as usual by the
 reachability protocol [4].

 Host H1 must restrict the use of this ATM connection to datagrams
 with flow label L1. Other traffic from H1 to H2 must use the generic
 entry in the destination table (flow label = "*"). Host H1 must
 restrict the use of flow label L1 for destination H2 to traffic
 generated by application A1 on port S1. (The same holds by analogy
 for host H2).

 On the receiving side, host H2 may use label L1 for routing
 internally the IP packets to the appropriate entity.

5. Example: Arequipa for the Web

 This is a brief explanation of how Web [5] servers and browsers can
 use Arequipa to transmit documents with a guaranteed QoS.

 What we describe below does not violate the standards of HTML and
 HTTP but makes use of their built-in extensibility. The server and
 client we describe can thus interact seamlessly with non-modified
 servers or clients. A similar extension could be used if Web
 documents were to be exchanged using RSVP.

 Browsers add one extra field in all their requests or responses to
 indicate their ATM address. Web documents are extended with meta
 information to describe the ATM service and corresponding QoS needed
 to transmit them. Note that this information could be in form of an
 intserv flowspec and mapped to ATM traffic descriptors.

 If a browser always wants documents with QoS meta-information to be
 delivered using Arequipa, it adds an additional field in its request
 to indicate the port on which it is expecting the data.

 If a browser wants to decide whether Arequipa should be used or not,
 it does not give the port on which the server should send the data.

 When a server gets a request with an ATM address, it checks whether
 the requested document has QoS meta-information. If this is not the
 case, it delivers the document like a standard server. If the
 document has QoS meta-information, the server looks for a port
 information in the request. If it finds a port, it opens an Arequipa
 socket (Arequipa_preset) to the ATM address of the client with the
 QoS given in the document. It sends the reply through this new
 connection. If the server finds no port information, it sends only
 the header of the reply (which includes meta-information) over the

Almesberger, et. al. Informational [Page 7]

RFC 2170 AREQUIPA July 1997

 standard HTTP connection, as if the client had issued a HEAD or GET-
 IF-MODIFIED request.

 When a client receives the header of a document it can decide whether
 it wants the document to be transmitted using Arequipa or not. A
 client without a priori knowledge about the document, may therefore
 always want to retrieve the header before requesting the full
 document.

 Illustration:

 A client requests some documents but wants to decide if QoS sensitive
 documents should be sent using Arequipa or not. Thus it adds to its
 requests its ATM address but not the socket information.

 GET batman.mpeg
 UserAgent: MyAgent/1.0
 ATM-address: my_public_address.my_private_address

 The server checks batman.mpeg for QoS meta info. It finds the meta
 info and sees an ATM address, but no socket pragma in the request. It
 only returns the header of the document, which includes the meta-
 information:

 HTTP/1.0 200 OK
 Server: MyAgent/1.0
 ATM-Service: CBR
 ATM-QoS-PCR: 2000
 Content-type: video/mpeg

 The client sees the QoS info and decides that it wants to download
 the document using Arequipa. It opens a TCP socket for listening,
 makes the Arequipa_expect call and sends the following request:

 GET batman.mpeg
 UserAgent: MyAgent/1.0
 ATM-address: my_public_address.my_private_address
 Pragma: socket=TCP.8090

Almesberger, et. al. Informational [Page 8]

RFC 2170 AREQUIPA July 1997

 Again the server checks batman.mpeg for QoS meta info. It finds the
 meta info and sees the ATM address and the socket pragma in the
 request. It creates a TCP socket, makes the Arequipa_preset call,
 connects its TCP socket to the one of the client and sends the
 response over the new TCP connection:

 HTTP/1.0 200 OK
 Server: MyAgent/1.0 ATM.address
 ATM-Service: CBR
 ATM-QoS-PCR: 2000
 Content-type: video/mpeg

 <mpeg data>

 When the server sends the data over the new TCP connection it also
 sends a copy of the response header over the TCP connection on which
 the request was made. For example, this allows a browser to spawn a
 viewer before requesting the data, to give the Arequipa connection to
 the viewer and to still get the status of the request over the normal
 TCP connection.

6. Safety considerations (loops)

 A major concern about ATM shortcuts in IP networks are routing loops.
 Arequipa is not prone to such dangers since it establishes
 connections between applications and not between hosts. All datagrams
 traveling through an Arequipa connection are destined for a given
 socket on the machine at the end of the connection and don’t need to
 be forwarded by the IP layer. Therefore, neither hosts nor routers
 implementing Arequipa as described in this document must ever forward
 IP packets received over Arequipa connections.

7. Security considerations

 The main security problem we see with Arequipa is that it could be
 used to bypass IP firewalls.

 IP firewalls are used to protect private networks connected to
 untrusted IP networks. The network is configured such that all
 traffic going into or coming from the protected network has to go
 through the machine(s) acting as a firewall.

 If hosts in a network protected by a firewall are able to establish
 direct ATM connections to hosts outside the protected network, then
 Arequipa could be used to bypass the firewall. To avoid this, hosts
 inside a protected network should not be given direct connectivity to
 the outside of the network.

Almesberger, et. al. Informational [Page 9]

RFC 2170 AREQUIPA July 1997

 Arequipa can be used in a safe way by machines inside and outside a
 protected network, if an application proxy is installed on the
 firewall. In the Web, this is a typical scenario. Proxy HTTP servers
 are often found on firewalls, not only for security reasons, but also
 for caching. If an application proxy is used, each host can establish
 an Arequipa connection to the proxy which can then relay and monitor
 the traffic across the firewall.

 Note that hosts can easily identify (and refuse) unsolicited Arequipa
 connections by the BHLI identifier that is passed at connection
 setup.

8. References

 [1] Laubach, M., Classical IP and ARP over ATM, RFC1577,
 January 1994.

 [2] Cole, R. G., D. H. Shur, C. Villamizar, IP over ATM: A Framework
 Document, RFC1932, April 1996.

 [3] Hinden, R. and S. Deering, Internet Protocol Version (IPv6)
 Addressing Architecture, RFC1884, December 1995.

 [4] Narten, T., E. Nordmark and W.A. Simpson, Neighbour Discovery for
 IPv6 (IPv6), RFC1970, August 1996.

 [5] Berners-Lee, T., R. Fielding, H. Nielsen, Hypertext Transfer
 Protocol -- HTTP/1.0, RFC1945, May 1996.

 [6] Shenker, S./J. Wroclawski, Network Element Service Specification
 Template, Work in Progess, November, 1995.

 [7] Perez, M., F.-C. Liaw, A. Mankin, E. Hoffman, D. Grossman, A.
 Malis, ATM Signaling Support for IP over ATM, RFC1755, February
 1995.

9. Authors’ Address

 Werner Almesberger,
 Jean-Yves Le Boudec,
 Philippe Oechslin (contact author)

 Laboratoire de Reseaux de Communication
 Swiss Federal Institute of Technology (EPFL)
 1015 Lausanne
 Switzerland

 email: {almesber, leboudec, oechslin}@di.epfl.ch

Almesberger, et. al. Informational [Page 10]

