Net wor k Wor ki ng Group A. Bogdanov
Request for Comments: 3018 NKO " ORS"
Cat egory: Experi nental Decenber 2000

Uni fied Menory Space Protocol Specification
Status of this Meno
This meno defines an Experinental Protocol for the Internet
community. It does not specify an Internet standard of any kind.
Di scussi on and suggestions for inprovenment are requested.
Distribution of this neno is unlimted.
Copyright Notice
Copyright (C The Internet Society (2000). Al Rights Reserved.
Abst r act

Thi s docunment specifies Unified Menory Space Protocol (UVSP), which
gives a capability of immedi ate access to nenory of the renote nodes.

Conventions used in this docunent
The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "COPTIONAL" in this
docunent are to be interpreted as described in RFC-2119 [2].

The foll owi ng syntax specification uses the augnented Backus- Naur
Form (ABNF) as described in RFC-2234 [3].

Tabl e of Contents

1. IntroducCtiON. ... 4
2. The UMBP Model e e 5
2.1 128-bit AdAress SpacCe.t 5
2.2 Conputing Model e 7
2.3 System Architecture. 9
3. Instruction FOrmat. 11
3.1 Instruction Header.......... 12
3.2 Extension Headers........... ..., 15
3.3 Instruction Operands. 17
3.4 Address FOrmat S. 17
4. Response of the Instructions......... 19
4.1 RSP, RSP _P. . . 20
4.2 SND CANCEL. . . .ot 20
5. Jobs Management 21

Bogdanov Experi ment al [Page 1]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

5.1 Job Initiate. 23
5.1.1 CONTROL_REQ . ..\ttt ettt e e e e e 24
5.1.2 CONTROL_CONFI RM . .. e e 25
5.1.3 CONTROL_REJECT. e e e e 26

5.2 Task Initiate. 26
5.2.1 TASK REG ... 26
5.2.2 TASK CONFI RM . ..o e e 27
5.2.3 TASK REJECT. . .. e 28
5.2.4 TASK CHK. ... 28

5.3 Establishnent of session connection........................ 29
5.3.1 SESSION OPEN. . ..ot e 29
5.3.2 SESSION ACCEPT. . .. 31
5.3.3 SESSION REJECT. e 31
5.3.4 Connection Profile........ 32

5.4 Session CloSiNg. 33
5.4.1 SESSION CLOSE.ttt e 34
5.4.2 SESSION ABEND.ottt e 35

5.5 Task Termnati On. e 35
5.5.1 TASK TERM NATE.o e 36
5.5.2 TASK TERM NATE INFO. i 36

5.6 Job Conpletion. 37
5.6.1 JOB COWPLETED. e e e 37
5.6.2 JOB COWPLETED INFO. e e 38

5.7 Activity Control of Nodes............ 38
5.7.1 _INACTION TINE. ..o e 39
5.7.2 STATE REQ e e e 40
5. 7.3 TASK STATE. . .. e e e 41
5.7.4 NODE RELOAD.ttt e e e e 42

5.8 Work without session connection................. ... 42

6. Instructions of Exchange between VM 44

6.1 Data Reading/Witing Instructions.......................... 45
6.1.1 REQ DATA. .. e 45
6. 1. 2 DAT A . 46
6. 1.3 MRITE ... e 46
6.1.4 MRITE EXT. ... e e e 47

6.2 Conparison INStruCtions. 47
B. 2. L OV . oo 47
6. 2.2 OVP _EXT. .. e 48
6.2.3 Response to Conparison Instructions.................... 48

6.3 Control Transfer Instructions................ 48
6.3.1 JUVP, CALL....... . e e 48
6.3.2 RETURN. e 49

6.4 Menory Control Instructions........... 50
6.4.1 MEM ALLOC. . .. 50
6.4.2 MICODE. . ..\ttt 50
6.4.3 ADDRESS. i 51
6.4.4 FREE. 51
6.4.5 MRUN. 51

Bogdanov Experi ment al [Page 2]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000
6.5 COher INStruCtions. e 52
6. 5. L SYN .. 52

6. 5. 2 NOP. .. 53

6.6 WOrk with Qbjects. 53
6.6.1 Reading/Witing of the Gbjects Data.................... 54
6.6.1.1 OBI_REQ DATA. ... 54
6.6.1.2 OBI MRITE. 55
6.6.1.3 OB WRITE EXT. ..\ttt 56

6.6.2 Conparison Instructions of the Cbjects Data............ 56
6.6.2.1 OBI DATA CVP. ... e 56
6.6.2.2 OBIJ_DATA CVP _EXT. ... i e e 57

6.6.3 Execution of the Cbjects Procedures.................... 57
6.6.3.1 CALL_BNUM 57
6.6.3.2 CALL BNAME. 58
6.6.3.3 CET_NUM PROC. e 59
6.6.3.4 PROC NUMt e 59

6.6.4 The Objects Creation....... 59
6.6.4.1 NEW SYS NEW e 60
6.6.4.2 OBIECT.t 61
6.6.4.3 DELETE. 61

6.6.5 The Objects Identification............ 61
6.6.5.1 OBJ _SEEK.t 62
6.6.5.2 OBI_CGET NAME. it e 62

7. ONaI NS, o 62
7.1 SEOUENCE. . ottt i e 63
7.2 TransactiOn. 64
7.2.1 BEA N TR ... e e 64
7.2.2 EXEC TR .. 65
7.2.3 CANCEL TR .. i e e 66

7.3 Fragnented instruction............. 66
7.4 Buffering....... e 67
7.5 Acknow edgenment of chains..........., 69
7.6 Base-displacenent Addressing............... ... 70
8. Extension Headers......... 71
8.1 ALIGNVENT. . . 71
8.2 VB G . ot 71
8.3 L NAME. . . 72
8.4 DATA ot 72
8.5 LIFE TIME .. e 72
9. Search of resoUrCes. e 73
9.1 VUM REQ . .t 75
9.2 VM LNOTI F. . 75
10. Security Consideration.......... ..., 77
11. Used Abbreviati ons........... .. 78
12, References. 79
13, Author’s Address. 80
14. Full Copyright Statement........... 81
Bogdanov Experi ment al [Page 3]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

1

I ntroduction

UMSP is the network connection-oriented protocol. |t corresponds to
session and presentation |ayers of nodel OSI. The protocol is
designed for inplementation in a wide class of systenms, fromsinple
devi ces based on the dedi cated processors, up to universal conputers
and cl usters.

For the data exchange, the protocol uses transport |layer service with
reliable delivery. It is possible to use not providing reliable
delivery protocol for the transm ssion of not requiring

acknow edgenent data. This docunent describes use TCP and UDP

The creation of network environment for the organization 128-bit
address space of nenory distributed between Internet nodes is the
basi ¢ purpose of the protocol UVSP. The protocol defines algorithm
of the connecti ons managenent and format of network primtives. It
doesn’t control |ocal nenory on the node.

As against the traditional network protocols, the user applications
on different nodes interact not by the network prinmitives exchangi ng
or working with the dataflows, but by imedi ate data reading/wite or
control transfers to the code in virtual nmenory of the renpte node
The user’s application can know not hi ng about existence of the
protocol and network, and sinply use the instructions with 128-bit
addr esses.

Firstly, it is supposed to use UVSP in systens based on the virtua
machi nes (VM , executing the pseudo-code. However, the protocol may
be used in systens executing a processor code, for exanple, in
clusters or in universal operational systens, for the organization of
the distributed virtual address space. Besides, the nmininmal profile
of the protocol may be used in sinple devices, which do not have the
operational system

The protocol gives various neans for set the connection paraneters
and allows building systens with a high protection |evel w thout
restriction applications functionalities.

UMSP can essentially sinplify the distributed systens devel opnment
process. It gives an opportunity to unite not only information, but
al so calculating resources of the |large nunber of polytypic conputers
wi t hout significant expenses for the prograns standardi zation and
devel opnent .

Bogdanov Experi ment al [Page 4]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

2 The UMSP Model
2.1 128-bit Address Space

UMSP i s based on the 128-bit distributed address nmenory space nodel .
The 128-bit address contains the information about the network type,

net wor k node address and | ocal nenory address. |t has the follow ng
format:

Cctets

0 1 16

Hom - - RS o e e e e e e e oo o S +

| Header | FREE | NODE_ADDR | MEM_ADDR

Hom oo oo e e e ek o e oo +

Conmpl ete address length is fixed and is equal to 16 octets.
Header

1 octet. Address header field conpletely defines the address
format. The header has the followi ng fornat:

Bits

0 1 2 3 4 5 6 7
+--m - - +--m - - +--m - - +--m - - +--m - - +--m - - +--m - - +--m - - +
| ADDR_LENGTH | NET_TYPE | ADDR _CODE |
+-- - - - +-- - - - +-- - - - +-- - - - +-- - - - +-- - - - +-- - - - +-- - - - +
ADDR_LENGTH

4 bits. The length of the network address. This field
contains the nunber of octets in the NODE_ADDR field. The
value 0 is not allowed.

NET_TYPE

2 bits. The network type. This field specifies a type of
network, in which the node is.

ADDR_CODE
2 bits. The length code of the |local nenory address. The
value of this field specifies the length of the |ocal nenory

address. The follow ng values of the field and appropriated to
them |l ength of the field MEM ADDR are defined:

Bogdanov Experi ment al [Page 5]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

%00 - 16 bit
%01 - 24 bit
%10 - 32 bit
%11 - 64 bit

The val ues conbination of the three fields of heading is naned
address format nunber. These fields unequivocally define a
network, in which the node is located. Format nunber wites as
fol | ows:

N <ADDR LENGTH> - <NET TYPE> - <ADDR CODE>

For exanple, N 4-0-2 defines the address with length of the node
network address 4 octets and nmenory address with the |l ength 32
bits. The network type 0 for such address format is defined for
the network 1Pv4 in the presented docunment. |If the network type
is equal to zero, it may be m ssed during the witing of the
address format nunber. For exanple, format N 4-0-2 and 4-2 are
equivalent. |If both fields NET_TYPE and ADDR CODE are set to
zero, they may be onmitted. Thus, a format nunber wites as one
figure.

One or several address format nunbers nust be assigned for each
gl obal network, included in unified system

FREE
0 - 12 octets. This field is unused by the protocol. It may
contain any additional information, which is necessary for the
control systemof the node nenory. |If this field is not used, the

zero value nust be set in all octets. Using of this field results
that the network instructions nust contain only conplete 16 -
octet address and the short address of |ocal menory cannot be
used.

NODE_ADDR

1 - 13 octets. The node address. The format of this field is
defined separately for each address format number. The field of

t he node address should not necessary precisely correspond to the
real network address. |If the real network address is |onger than
this field, it is necessary to organize in the network a subset of
supporting the protocol UMSP addresses.

Bogdanov Experi ment al [Page 6]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

MEM_ADDR

16/ 24/ 32/ 64 bits. The address of local nenory. This field is the
menory address in system which is set by a field NODE_ADDR. The
node conpletely responds for its nenory control. The protoco

does not define the order of using and format of this field.

128-bit address for the user applications is one field. The user
code cannot know about a physical arrangenent of addressed nenory.

The 128-bit menory address may be transmits between nodes, as the
data, for exanple, in the buffer of function paraneters, or in the
instruction of copying the data. Therefore, it nust identify the
gi ven node from any ot her nodes unequi vocal

Any certain algorithm connecting real network and 128-bit address,
does not exist. Al used address formats nust be known beforehand.

As UMSP has its own address space, it can unite several gl oba
networks. The nodes can have internal |ocal networks or subordinated
addr essabl e devi ces connected with the node by the not-network
communi cati ons. Any node by address format nunber nust have an
opportunity to define the gateway respond for routing of this

addr ess.

2.2 Conputing Mdel
Conmputing nmodel is three-Ilayer:

(1) Job
(2) Task
(3) Thread of contro

The job corresponds to the user application. The job is distributed
and can simultaneously be executed on nmany nodes. The job control is
carried out centralize, fromthe node naned as Job Control Point
(JCP). One JCP can control the some jobs. JCP can be |ocated on the
same node, on which the job is created, or on any other addressed net
poi nt .

The task is the job presentation on the separate node. The task
i ncl udes one or several conputing threads of control. The job has
only one task on each node.

The job is finished, when the appropriate user application is

finished. At the end of the job all tasks of this job on all nodes
are finished.

Bogdanov Experi ment al [Page 7]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

The job has its isolated 128-bit address space. The address space is
segmented. A segnent is the local nenory of one node. Besides, the
protocol allows working with objects. The objects are separate
associ ati ve nenory of the node.

The task thread represents the concrete control thread, which are
executed by VMin the certain node. The thread can read and wite to
any address of 128-bit address space of the job. The contro

transfer to the address fromother (renote) node, results to the
creation of the new thread on the renpote node. The continuous code

segnment cannot be distributed on several nodes. In addition, it is
i mpossible to receive continuous nenory area distributed on severa
nodes.

The protocol does not demand to support the different tasks of not-
crossed nmenory space fromthe separate VM node. The supporting of
multi-thread is not also the obligatory requiremnent.

The 128-bit G obal Job lIdentifier (GID) is defined by protocol. It
is assigned on JCP, which will control the job. Al active GJI D have
the unique values in the unified systemat each nonent of tine.

The job can contain VM code of different types. Different types VM
can be situated on one or different nodes. The nechani sm of
association of different VMtypes in groups on one node is
stipulated, so to the non-uniformcode can be executed on one node in
a context of one job. The groups are described in details in section
9. VM incorporated in groups, must work in common menory space (to
have a common subsystem of nmenory control).

Bogdanov Experi ment al [Page 8]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

2.3 System Architecture

System structure, based on using Virtual Machines, is given in the
followi ng figure:

Node 1 Node 2
e LT + e LT +
| User Application 1 | | User Application 1 |
o e e e e e e + o e e e e e e +
| User Application N | | User Application N |
L L TR + L L TR +
+oam - + 4o + +oam - + +oam - + 4o + +oam - +
[vwL | | VM | | VMh | [vwL | | VM | | VMh |
oo+ oo+ +--4- -+ oo+ oo+ +--4- -+
| | | | | |
T I L + T I L +
+----- + UMSP		UMS P		
	JCP			
+----- +	S o m e e oo - - +			
S B S +				
S e S e +				
oo oo + TCP				
TCP	L L +			
+----- +----- +				
R /				
e +				
/				
F--- - F--- - +				
Node N TCP				
-------- Fomm e - -+				
e e +				
oo				
	JCP	UMSP		
ESREREE: |
o e e e e e e e e oo +

Figure 1. Structure of the system based on use VM

Bogdanov Experi ment al [Page 9]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

One or several VM are working on upper level for UMSP. The VM I ayer
is not network level. Last network level is UMSP. Therefore, VM

| ayer has no its own network primtives and uses together with UVSP
the sane field of operation code.

The end services user of the protocol is the user code, which is
executed by the virtual machine. It has the instructions with the
128-bit address. VM translates these instructions to network
conmands, which are transmitted through the UMSP protocol for the
executing by the renote machine. |Internal organization VM command
system and APl can be anyone. The protocol defines only format of
primtives, which the virtual machi nes exchange through a network

The protocol does not control the jobs menory. Control of menory
should realize VM If a few VM works on one node, they may have the
common nenory space or may be conpletely isol ated

UMSP uses the transport layer with reliable delivery for the data
exchange. This docunent defines of using TCP. For the transfer of
not requiring acknow edgenment data nay be used UDP. Thus, the
connection through TCP is obligatory. Use of nultiple connections
TCP with nmultiplexing is supposed. The control of transport
connections is not the part of the UMSP protocol

The UMSP instructions do not contain network addresses of the

recei ver and sender. The protocol requires that one address UMSP
must correspond to the one transport |ayer address. Accordingly, it
i s necessary to define unequivocal the node address on transport

| ayer by the 128-bit address of nenory.

Except the TCP, it is possible to use other transport protocols or
not network comunications. The followi ng requirenments are showed to
t hem

0 Reliable delivery. The transport |ayer nust inform about
delivery or its inpossibility;

o The violation of a sequence of transnmitted segnents is all owed;

0o The duplication of segnments is not all owed;

0 At energency reload of nodes it is necessary to guarantee
identification of segnments concerning session connections,
assigned up to rel oad;

0 Use connectionl ess-node i s possible.

VM is the independent programand the interaction with the protoco

is necessary for it only when it executes the instructions with the
128-bit address, concerning to other node. VM can execute severa

Bogdanov Experi ment al [Page 10]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

user tasks. Each task can contain several threads of control. VM
must be able to interpret the application instructions with the 128-
bit address to one or several instructions of the UMSP protocol

The session connection opens between nodes for the data exchange.

One connection is relational only with one job. There nmay be severa
session connections for the different jobs sinultaneously between two
nodes. Besides, the protocol provides the connectionless data
exchange.

The exchange between UMSP nodes can include the instructions of the
foll owi ng type

| medi ate reading/wite in nmenory;

Requests of allocation/free nmenory;

Conpari son instructions;

Cal | -subroutine and unconditional junp instructions;
Synchroni zati on instructions;

Wrk with objects instructions - reading / witing in nenory of
obj ects and execution of objects procedures.

OO0OO0OO0O0O0

UMSP does not trace the user control threads. VMnust provide itself
the necessary order of perfornmance of the instructions.

The I ength of UMSP instructions does not depend on segnent |ength of
the transport layer. The segnentation is provided for transfer of
the long instructions. The packing of the short instructions in one
segment with a possibility of conpression of headings is used for its
transfer. The mnimal size of necessary for work segnent is 6
octets. For realization of all functions, it is necessary 54 octets.

3 Instruction Format

The UMSP instruction includes the basic header, extension headers and
operands. Al fields have variable | ength.

The header contains operation code and the information necessary for
the instruction interpretation

The optional extension headers contain the additional information,
not defined in basic header

The operands contain instructions data.

Bogdanov Experi ment al [Page 11]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

The instruction format all ows cal cul ati ng common instruction | ength,
wi t hout knowi ng definition of separate operation code.

The instructions headers provide for the short and extended format
for maintenance of the effective protocol work in w de range of
networ k speeds. Besides, there is a sinple algorithmof the headers
conpr essi on.

The all instructions and extension headers the identifiers are given
whi ch enter the nane by upper case synbols. The identifiers of the
instructions begin with the letter. The identifiers of the extension
headers begin with underlining synbol.

3.1 Instruction Header

The header has the follow ng format:

Cctets:
+0 +1
S
0: | OPCODE | ASK| PCK | CHN| EXT| OPR_LENGTH
B R T T T S T T ST T D
2: | OPR_LENGTH_EXT |
B e e T e T T ey g
4: | CHAI N_NUMBER
e
6: | I NSTR_NUMBER
B R T T T S T T ST T D
8: | |
+ SESSION I D +
| |
e
12:] |
+ REQ I D +
| |
B e e T e T T ey g
OPCODE

1 octet. The operation code. Value of this field is identified by
the instruction. Values of operation codes are divided into the
followi ng intervals:

1 - 112 rmanagenent instructions
113 - 127 reserved
128 - 223 instructions of exchange between VM
0, 224, 255 reserved

Bogdanov Experi ment al [Page 12]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

ASK

1 bit. The flag of response necessity. This flag defines
presence of field REQID in header. |If ASK =1, there is field
REQID in the instruction. |If EXT =0, the field REQID in the
instruction are absent.

PCK

2 bits. The Header conpression attribute. These bits are used
for packing instructions headers transmtted on one connection TCP
or for sending of the several instructions in one package UDP

Use of these bits is based on the assunption that two following in
succession instructions concern to one session connection, or one
chain, with a high probability. The PCK bits have one of the

foll owi ng val ues:

%00 - The instruction does not belong to the definite session
The fields CHAI N NUMBER, | NSTR_NUMBER and SESSION_ID are
absent in header of such instruction.

%01 - The given instruction concerns to the sanme session
connection, as previous. The field SESSION ID in the
i nstruction header is absent.

%10 - The given instruction belongs to the sane connection and
same chain, as previous. The fields CHAI N NUVBER
I NSTR_NUMBER and SESSION_ID in header of such instruction
are absent. The I NSTR_NUMBER val ue of the current
instruction cal culates by addition of one to | NSTR_NUVBER
val ue of the previous instruction

%11 - The given instruction nay does not concern to the sane
session, as previous. The field SESSION ID is present at
it. The presence of fields CHAI N NUMBER and | NSTR_NUMBER
is defined by CHN fl ag.

CHN

1 bit. The flag of chain. Transnmitted on one session connection
and concerning one job instructions, may be unified in a chain.
Chains are considered in details by section 7. If SEQ =1, the
instruction is connected with chain and there are fields

CHAI N_NUMBER and | NSTR_NUMBER (if PCK is not set to %10) at it.
If bit CHN =0, the instruction is not connected with chains and
there are no fields CHAIN NUMBER and | NSTR NUMBER in it.

Bogdanov Experi ment al [Page 13]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

EXT

1 bit. The flag of extension headers presence in the instruction
If EXT = 1, there is one or nore extension headers in the
instruction. |If EXT = 0, the extension headers in the instruction
are absent.

OPR_LENGTH

3 bits. The nunmber of 32 bit words in the operands field. The
val ue 0 defines absence of operands field. The value %111
specifies use of the extended header format. |In the extended
format, the Il ength of operands is defined by the field
OPR_LENGTH_EXT, and the field OPR_LENGTH i s not used.

OPR_LENGTH_EXT

2 octets. The nunber of 32 bit words in the operands field. The
field OPR LENGTH EXT is present in header, only if OPR LENGTH =
%b111. |f OPR LENGTH < > %111, the field OPR LENGTH EXT is
absent. |If OPR LENGTH EXT = 0, the field of operands is absent.
There are follow ng reasons, on which it is necessary to use field
OPR_LENGTH_EXT i nstead of OPR_LENGTH

(1) If operands | ength nust be nore than 24 octets
(2) If making the fields alignment of 4 octets is nore
ef fective, than conpression of header of 2 octets.

CHAI N_NUMBER

2 octets. The nunber of chain. This field contains nunber of
chain, to which the given instruction concerns. The val ues %0000
and % FFFF are reserved.

I NSTR_NUMBER

2 octets. The instruction nunber. This field contains the serial
number of instruction in a chain. The nunbering begins with zero.
Val ue % FFFF i s reserved.

SESSI ON_I D

4 octets. It is the identifier of the session connection assigned
by the instruction receiver. During the session connection

openi ng, each side sets its own identifier to connection and
informs it to other side. The zero value of this field specifies
that the instruction does not concern to the definite session

The val ue % FFFFFFFF is reserved.

Bogdanov Experi ment al [Page 14]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

REQ | D

4 octets. The request identifier. It is uses for establishnment
of correspondence between requests and responds to it.

Further, the identifier OPR LENGTH i s used at the description of the
instructions format. |t neans using of OPR LENGTH EXT field, if
OPR_LENGTH = %%111. The instruction with length of operands, which
are not exceeding 24 octets, may be transnmitted with header in the
short format (OPR_LENGTH < > %%111) or in the extended format
(OPR_LENGTH = %%111). Both forns are equival ent.

M ni mal header length in the short format is 2 octets, in the
extended fornmat - 4 octets. Maxinal header length is 16 octets.

3.2 Extension Headers

If the EXT flag in the instruction header set to 1, the instruction
contains fromone up to thirty extension headers. The extension
headers are used for the foll owi ng purposes:

o For sending of the service information which were not provided in
t he basic header.

o For sending of the data of length nore than 262240 octets in one
i nstruction.

The extension headers have the foll owi ng comon fornmat:

Cctets:
+0 +1

I T e T T e LT E
0: | HXT] HEAD_ LENGTH | HEAD_LENGTH_EXT

T e Lk Tk I e LTk T S e SR
2: | conti nued HEAD LENGITH EXT

B T ST LT T T S S T I
4: | HSL| HOB| HRZ| HEAD_CCODE | HEAD_CODE_EXT

T T e T T S e
6: | RESERVED

I e L LT I e O e L E o E Tk S
8: | |

/ DATA /

/ /

| |

I e e C s S e L L E Lk S e

Bogdanov Experi ment al [Page 15]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

HXT

1 bit. Specify length of the field of data length. |If HXT = O,
I ength of the extension header is defined by a field HEAD LENGTH.
The field HEAD LENGTH EXT in this case is absent. |If HXT = 1,

| ength of header is defined by unification of fields HEAD LENGTH
and HEAD LENGTH_EXT.

HEAD _LENGTH

7 bit. The nunber of 16 bit words in DATA field. If HXT = 0O,
this is independent field. |If HXT =1, it is the senior bits of
compl ete length field.

HEAD LENGTH_EXT

3 octets. The nunber of 16 bit words in DATA field. If HXT = 0O,
this field is absent. If HXT =1, it is the younger bits of
compl ete length field.

HSL

1 bit. The flag of last header. It is set to 1 for |ast
extensi on header in the instruction. In other extension headers,
this flag is set to O.

HOB

1 bit. The flag of obligatory processing. 1t defines the order

of the instruction processing, if the receiving node does not know
pur pose of the extension header or cannot process it by any
reason. |If HOB = 1, instruction nust not be carried out. If HOB
=0, it does not influence on the instruction processing. The
protocol must process all extension headers, irrespective of
errors presence.

HRZ
1 bit. The field is reserved for the future expansions. This
field nust not be anal yzed by the protocol on receiving. It nust
be set to 0 at sending.

HEAD_CCODE
5 bits. If HXT = 0, the field contains the extension header code.

If HXT = 1, this field joins the field HEAD CODE EXT. It is the
senior bits of the header code.

Bogdanov Experi ment al [Page 16]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

HEAD_CODE_EXT

1 octet. If HXT =0, this field is absent. |If HXT =1, it is the
younger bits of the header code.

RESERVED

2 octets. If HXT =0, this field is absent. If HXT =1, this
field is reserved for further use. The field RESERVED nust not be
anal yzed by the protocol during the receiving in the current
realization of the protocol. It nust be set to 0 at sending.

DATA
The data field of the extension header. |If HXT = 0, the length of
field is O - 254 octets, if HXT =1, the length is 0 - 4 * 109
octets. The format of this field is defined separately for each
val ue of the header code

On the receiving side, the extension headers nust be processed in

that order, in what they followin the instruction. |If the
instruction contains nore than 30 extension headers, it is considered
erroneous. It is necessary to break off the session connection, on

which it was transmtted, after the reception of such instruction

The identifiers HEAD LENGTH and HEAD CODE are used further in the
text at the description of the extended headers format. It assumnes
using of fields HEAD LENGTH + HEAD LENGTH EXT and HEAD CCDE +

HEAD CODE EXT, if HXT = 1. The headers with the code 0 - 30 can be
sent in short (HXT = 0) and in extended (HXT = 1) fornmat.

3.3 Instruction Operands

The operands field contains the instruction data. The |ength of
operands field is showed in OPR LENGTH or OPR_LENGITH EXT and it is
multiple to four octets. |If necessary, 1 - 3 zero-value octets are
padded in the end of a field. Maximal |ength of operands is 262140
octets. The extension headers are used, if the instruction nust
contain | onger data.

The format of the operands field is defined separately for each
i nstruction.

3.4 Address Formats

The followi ng address format nunbers are definite for nodes,
i medi ately connected to the gl obal |Pv4 network:

Bogdanov Experi ment al [Page 17]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

)
-1)
-2)

NP~ O
—_~~
A DD

Z22Z 2
-b-l}-b
[cNeoNe)

The appropriate formats of 128-bit addresses:

Cctets:
+0 +1 +2 +3
i T o T e e e et o S s S R R SR
0: |0O100/00]0 Of Free |
B T e o i S I i i S S N iy St S I S S
4: | Free |
e e i i e T S i S e e e R
8: | Free | | P address |
T T i i e e e e e E et e i s s SR R SR
12:| | P address | Local menory address

B S S T S S S S e T s S S S S S S S S

B Lt r s i i i o o T s ks S R S
0: |01 000 0]0 1] Free |
B s T s s e T o e S T ks et s oot ST S S S o S S 3
4: | Free |
B T S S e s e i s S i S S S S S S T S SR S S S i S S S
8: | Free | | P address |
B Lt r s i i i o o T s ks S R S
12: | | P address | Local menory address |
B s T s s e T o e S T ks et s oot ST S S S o S S 3

T T S T i s L i S S S S S S S e T s

0: |0100/00]1 0 Free |
B o i T e e T s i i T S TR S e S S i T S g e e
4: | Free |
B T e o i S I i i S S N iy St S I S S
8: | | P address |
B e i S T e i T e S R S e e e s i i T S
12: | Local menory address |

R R R R e e s o S e R S S S S S S e e e e e
Free

It is not used by the protocol.
| P address

It sets the node address in the global |Pv4 network.

Bogdanov Experi ment al [Page 18]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

Local menory address
It is described in section 2. 1.

| P-address defines the nodes of the given type unequivocally. The
TCP is used for the interaction with such nodes. For sending of not
requiring response instructions, using UDP is allowed. |ANA has
assigned ports TCP and UDP 2110. This port must be open for the
listening (receiving). TCP node, initialing the connection opening,
or the UDP node, carrying out the package sending, can use any port.
Usi ng several TCP connections with multiplexing is supposed.

4 Response of the Instructions
The protocol instructions are divided into two types:

(1) The managenent instructions transmtted on UVSP | ayer (OPCODE

=1 - 112).
(2) The instructions of the exchange between VM (OPCODE = 128 -
223).

The processing of two types of the instructions differs as foll ows:

o The field of the identifier of request REQID is forned by the
protocol in the instructions of the first type, and it is forned
by VWM for the instructions of the second type.

0 The protocol nust analyze the field REQID and conpare it with the
instructions, transnmitted earlier, after receiving of the response
instruction of the first type.

0 The protocol nust not analyze the field REQ ID after receiving of
the response instruction of the second type. This instructionis
sinply sent to VM

The response instructions have the field ASK equal to 1. It neans,
that the header have the field REQID. The value taken fromthe
confirmed instruction is witten into the field REQID. The response
i nstruction does not require response.

A few VM can be connected to the protocol on the node. Everyone VM
can work in its own address space. The identifiers of requests for
different VM can coincide. Therefore, instruction is identified by
two fields:

0 The session identifier SESSION I D, which is connected with

definite VM
0 The request identifier REQ.ID.

Bogdanov Experi ment al [Page 19]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

4.1 RSP, RSP_P
"Response" (RSP) and "Response of the protocol" (RSP_P) instructions
have the identical format. The difference is only in the operation
code:

OPCODE = 129/1 ; correspondingly to RSP/ RSP_P

ASK =1

PCK = %01/ 11
EXT = 0/1
CHN = 0

OPR_LENGTH = 0/1
SESSION I D and REQ ID - The values is taken fromthe confirnmed
i nstruction.
Oper ands:
2 octets: The basic return code.
2 octets: The additional return code.
The optional extension header:
_MSG - contains the arbitrary error description

The instruction wi thout operands is used for the positive response.
It is equivalent to zero values of the field of the basic and
addi tional return codes

The zero basic return code is used for positive response. The
additional return code nmay have non-zero val ue.

The instruction with non-zero basic return code is used for negative
response. The basic return code defines the error category. The
addi tional return code identifies an error.

The instruction RSP is fornmed upon the VMrequest. The return codes
nmust be received fromVM If the protocol cannot deliver the
requiring response instruction to VM it fornms negative response RSP
i ndependent | y.

The instruction RSP_P is always fornmed at the UMBP |l ayer. |f the
protocol cannot define on what instruction the RSP_P is transmitted,
not hi ng actions is executed.

4.2 SND_CANCEL

There can be a necessity to cancel sending after the part of the data
have been already transnitted and have occupied the buffer on the
reception side, by sending of the Iong fragnmented instructions or
transactions. The protocol provides the instruction "The sending is
cancel ed" (SND_CANCEL) for this purpose. This instruction has the
followi ng fields val ue:

Bogdanov Experi ment al [Page 20]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

OPCODE = 2

ASK = 0

PCK = %01/10/11
EXT = 0/1

CHN =1

OPR_LENGTH = 1
SESSION I D - The value is taken fromthe cancelled chain.
CHAI N_NUMBER - Number of the chain, which sending is cancell ed.
I NSTR_NUMBER - Al ways has zero-val ue
Oper ands:
2 octets: The basic return code.
2 octets: The additional return code.
The optional extension header:
_MSG - contains the arbitrary error description

The instruction SND CANCEL is used for the cancel of the partially
transmitted transaction or fragnented instruction. At the receiving
the SND CANCEL instruction, all the earlier received data in the
chain are rejected

5 Jobs Managenent
The j obs managenent includes the follow ng functions:

o Initiation and conpl etion of jobs;

o Initiation and conpl etion of tasks;

0 Opening and cl osing of session connections;
0 Activity control of nodes.

The instructions with OPCODE = 1 - 112 are used for jobs nmanagenent.
These instructions nust be sent through TCP. Use UDP is not allowed,
even if the instructions do not demand response.

UMSP bases on nodel with the centralized control of the separate job.
The reason is that the pointers control is not obviously possible in
the decentralized system Any task can be finished at any nonent or
the node can be rel oaded. There is no way guaranteeing the
notification about in the decentralized systemall other nodes, on
which the job works. As the job continues to exist - the task
concerning the job can be initiated on the same node again. This
task can allocate new dynam c resources. The addresses for the again
al | ocated resources can be crossed with addresses of resources, which
exi sted on the node before the task restart. The old pointers can be
kept on other nodes. It may be the formally correct pointers, but
they will actually specify other objects. The uncontrollable work of
the application can be consequence of such situation

Bogdanov Experi ment al [Page 21]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

UVBP sol ves this task as foll ows:

o It allows defining the node, on which the task was conpl et ed,
precisely.

o If the task on the node is finished before end of the job, al
nodes, on which the job is executed, are notified of it.

0 The repeated task initialization on the node is allowed, while all
nodes will receive the nessage about the first task end.

The protocol does not control the pointers. VM supervises the

poi nters correctness. VM nust have architecture, in which 128 - bit
pointers are stored in special nenory areas, for this purpose. The
protocol informs VM about the nodes, on which task have finished the
work. VM nust nmake all pointers concerning such tasks, invalid. It
results in exclusive situations at the access under these pointers.

If the application provides processing exceptions, it keeps the
capacity for work, or it is finished energency. Such decision allows
excl udi ng ungui ded appl i cati ons worKki ng.

For the decision of the specified questions at UVSP | evel, the
control job node is defined for each job. It nanes Job Control Point
(JCP). It may be the same node, on which the job is initiated, or it
can be another dedicated node. The basic JCP function is to trace
the initialization and the end of the job tasks. Besides, the

dedi cated JCP node may be used for the centralized users
identification and the attack protection

The following identifiers are definite for the jobs and tasks
control

0 Locally Task ldentifier (LTID) is assigned to each active task on
the node. LTID length is equal to the length of |ocal menory
address defined for the node. Al LTID on the node nust give
uni que val ues at each nmoment of tinme. It is allowed to establish
LTID, used earlier in the already conpleted tasks, for the again
initiated tasks.

0o JCP assigned the Control Task ldentifier (CTID) to each task of
the job. Its length is equal to length of the |ocal address
menory on the node JCP. Al CTID on the JCP nust give uni que
val ues at each nonment of tine. As against LTID, the CTID value is
chosen with sone restrictions.

0 Gobally Task Identifier (GIID) is assigned to each task. GIID
has the sane format, as the 128 - bit address of node nenory has.
The address of local nenory is replaced on LTIDin it.

0 Gobally Job Identifier (GID) is assigned to the each job. Q&ID
is defined on the JCP node. It has the sanme format, as the 128 -
bit address of node JCP nmenory has. The address of |ocal menory

Bogdanov Experi ment al [Page 22]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

is replaced on CTID of the first (initial) task of the job init.
GJIDis used in the procedure of session connection opening for
the definition JCP, which controls the job.

LTID and CTID are witten at the instructions in the field of length
2/ 4/ 8 octets. |If the allocated for identifier field in the
instruction is longer than identifier, LTID (CTID) wites in the |ast
octets. In the initial octets, the value O nust be witten. |If
received LTID (CTID) is shorter than the local nenory address, it is
necessary to pad it with the zero octets in the begi nning.

Gl D and GQJIID are witten at the instructions in the field of length
4-16 octets. The field FREE is not present at these identifiers (see

section 2.1). It is considered, that it contains the zero-val ue
octets. Length of the identifier is defined in header of the
addr ess.

By sending of instructions CONTROL_REQ TASK REG and SESSI ON OPEN
the protocol uses tineout. The value of tinmeout is assigned by node
and nmust be nore than three intervals of the maximal tine of delivery
at the transport layer. The timeout is not influenced the waiting
period in queue to the transport |ayer.

5.1 Job Initiate

The job concerns to the user application executed on VM The UMSP
job initialization can be made sinultaneously with the application
user start or during its working.

The task, appropriated to its job, is initialized on the node
together with the job. LTIDis binding to this task.

If the node, on which the user application was | oaded, is chosen for
JCP, the question of the job initialization |ays beyond the scope of
t he networ k protocol

O her node can be chosen as JCP for the follow ng reasons:

o The job initialization node is connected to network by sl ow speed
or overloaded channel. It is undesirable to send the managi ng
traffic.

0 The node has no conputing possibilities for conducting the
managi ng tabl es.

0 The authentication on the detailed node is necessary.

If the other node is chosen for JCP, the node, that initiates the
job, must register the job at JCP

Bogdanov Experi ment al [Page 23]

RFC 3018

Uni fied Menory Space Prot ocol Decenber 2000

5.1.1 CONTRCL_REQ

The instruction "To request a control” (CONTROL_REQ is sending from

t he node,

initial the job, to JCP of other node. The instruction has

the follow ng values of fields:

OPCODE = 3
PCK = %00
CHN =0
ASK =1
EXT = 0/1

OPR LENGTH = 2/3 ; Depends on LTID | ength.
REQ I D - The value is assigned by the sender node protocol and

then will be sent in the response.

Oper ands:
4 octets: The control paranmeters profile. This field has the

Bogdanov

followi ng format:

bits

0 1 2 3 4 5 6 7
S S S S S S S S +
| |
+ JOB_LI FE_TI ME +
| |
oo - e e e e e e e +
| CMmI | Reserved | VERSI ON

S S S S S S S S +
| Reserved |
L L L L L L L L +

JOB_LI FE_TI ME
2 octets. The job lifetine in seconds. The zero-val ue
signifies that the restriction of the job lifetine is
unused.

cMr

1 bit. The flag of several JCP using. This fieldis
reserved for the future expansion of the protocol

VERSI ON

1 octet. The nunber of the UVMBP version. It nust
contain the val ue 1.

Experi ment al [Page 24]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

Reser ved
3 + 8 bits. Al bits nust be set to O.

4/ 8 octet: LTID of task of the job, assigned on the node, which
initiate the job (by the sender of this
i nstruction).
The optional extension headers:
_JOB_NAME - This header contains the name of the Job. |Is
assigned once and nmust not change further.
_INACT_TI ME - This header contains the inaction tine (see
section 5.7).

At reception of the CONTROL_REQ instruction JCP checks the LTID val ue
fromthe received instruction and nmakes the foll ow ng:

(1) If the node, which has sent CONTROL_REQ al ready has registered
on JCP the active job with such LTID, the notification about
abnornmality end of the registered job is sent, as is described in
section 5.5.2 (it is considered, that the node was rel oaded).
After that, the sanction to an initiation of the newjob is sent.

(2) If the node has no registered job with received LTID, it allows
the new job initiation at once.

If JCP confirns the control, it will send the instruction
CONTRCOL_CONFI RM or el se CONTROL_REJECT.

5.1.2 CONTROL_CONFI RM
The instruction "To confirmthe control” (CONTROL_CONFIRM is sent

fromJCP as the positive response to CONTROL_REQ i nstructi on.
CONTROL_CONFI RM has the foll owi ng values of fields:

OPCCDE = 4

PCK = %00

CHN =0

ASK = 1 ; The instruction does not need to be responded. This flag

specifies presence of the REQID field.
EXT = 0/1
OPR _LENGTH = 1-4 ; Depends of length of the GJID.
REQ ID - The value is taken fromthe instruction CONTROL_REQ
Oper ands:
4-16 octets: The GIJID assigned to the job on the JCP.

The sending of the instruction CONTROL_REQ nmeans request of control
and request of task initiation. Assigned to the task CTIDis part
&ID (field of the |ocal nmenory address).

Bogdanov Experi ment al [Page 25]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

5.1.3 CONTRCL_REJECT

The instruction "To reject the control"™ (CONTROL_REJECT) is sent from
JCP as the negative response to CONTROL_REQ i nstruction
CONTROL_REJECT has the followi ng values of fields:

OPCCDE = 4

PCK = %00

CHN =0

ASK = 1. The instruction does not need to be responded. This flag

specifies presence of the REQID field.
EXT = 0/1
OPR LENGTH = 1/2 ; Depends on presence of the control paraneters
profile field.
REQ ID - The value is taken fromthe instructi on CONTROL_REQ
Oper ands:
2 octets: The basic error code. The zero-value is not
avai |l abl e.
2 octets: The additional error code.
4 octets: The control paraneters profile (see section 5.1.1),
that is allowed by JCP. This is optional field.
The optional extension headers:
_INACT_TI ME - This header contains the inaction tine (see
section 5.7).
_MSG - contains the arbitrary error description

52 Task Initiate

The job is executed on several nodes sinultaneously. The task
appropriate to it, nust be initialized on each node. There is
corresponding only one task to one job on the node. Each task nust
be connected only with one job.

The task is initiated together with the job on the node, which had
created the job. On the other nodes, the task is initiated during
the receiving of the first request on the opening of the session
connection, which is appropriate to the job. The request about

openi ngs of session connection contains GQJID. GJIDcontains the JCP
address. It is necessary to receive the sanction fromJCP for the
task start. |If the request about the opening of session has been
received fromJCP node, it is not necessary to request the sanction

5.2.1 TASK_REG
The instruction "To register a task" (TASK REG is sent fromthe

node, which initials the task, to JCP of the renpte node. The
instruction has the follow ng values of fields:

Bogdanov Experi ment al [Page 26]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

OPCODE = 6/7/8 ; For length CTID of 2/4/8 octets.

PCK = %00
CHN =0
ASK =1
EXT = 0/1

OPR LENGTH = 2-8 ; Depends on length of the GIID and LTID.

REQ I D - The value is assigned by the sender node protocol and
then will be sent in the response.

Oper ands:

2/ 4/ 8 octets: CTID of the task initiated the job. It CIIDis a

part GJID fromthe instruction SESSI ON_OPEN.

4-16 octets: GIID, assigned on the node, initialed session
connection. GIIDis formed of sender addresses (at
transport layer) and field LTID of the instruction
SESSI ON_OPEN.

2/ 4/ 8 octets: LTID, assigned on the node, initialed the task

(by the sender of this instruction).
The optional extension headers:
_INACT_TIME - This header contains the inaction tine (see
section 5.7).

The instructi on TASK REG nmust be sent only if the task with given
GJI D was not initiated on the node.

JCP confirnms initiation of a task at observance of the follow ng
condi tions:

(1) Task with received GTID al ready has registered on JCP.

(2) Task with LTID for the node requesting for initiation has not
regi stered.

In all other cases, JCP will not confirma task.

If JCP confirns the task, it will send the instruction TASK CONFI RM
differently TASK REJECT.

5.2.2 TASK_CONFI RM
The instruction "To confirmthe task" (TASK CONFIRM is sent from JCP

as the positive response to TASK REG TASK _CONFI RM has the foll ow ng
val ues of fields:

OPCCDE = 9

PCK = %00

CHN =0

ASK = 1. The instruction does not need to be responded. This flag

specifies the field REQID presence.
0/1

EXT

Bogdanov Experi ment al [Page 27]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

OPR LENGTH = 1/2 ; Depends on |l ength of the CTID
REQ ID - The value is taken fromthe instruction TASK REG
Oper ands:

4/ 8 octets: The CTID assigned to the task on the JCP
The optional extension headers:

_JOB_NAME - This header contains the nane of the Job

5.2.3 TASK_REJECT
The instruction "To reject the task"” (TASK REJECT) is sent from JCP

as the negative response to TASK REG i nstruction. TASK REJECT has
the follow ng values of fields:

OPCCDE = 10

PCK = %00

CHN = 0

ASK = 1. The instruction does not need to be responded. This flag

specifies presence of the REQID field.

EXT = 0/1
OPR_LENGTH = 1
REQ ID - The value is taken fromthe instructi on CONTROL_REQ
Oper ands:

2 octets: The basic error code. The zero-value is not

avai |l abl e.

2 octets: The additional error code.
The optional extension headers:

_INACT_TI ME - This header contains the inaction tinme (see

section 5.7).
_MSG - contains the arbitrary error description

5.2.4 TASK_CHK

Wth the purposes of a safety the node, which have received request
about the opening of session connection, may check up at JCP the
node, which has initialed connection, even if the task was al ready
initiated.

The instruction "To check up the task" (TASK CHK) is sent fromthe
node, which has received the instruction of the establishment of
session connection SESSION OPEN, to JCP. The task with given GIID,
must have exi sted on the node already. The instruction TASK CHK
format coincides with TASK REG OPCODE = 11. The response to the
instruction TASK CHK JCP forns instructions TASK REG simlarly.

JCP confirms the instruction TASK CHK if a task with received GIID
and LTID already has registered on JCP

The sending of the TASK CHK i s optional

Bogdanov Experi ment al [Page 28]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

5.3 Est abl i shnent of session connection

The session connection is established between two tasks of one job.
The connection is established under the VMinitiative and it is used
for the exchange of the instructions between VM

One session connection nmust be connected only with one task on the
node. The task may have several connections with different nodes.
Bet ween two nodes nust be only one session connection with one GJI D

The request about the establishnment of session connection contains
the global identifier of the job GJID. If the node receives the
request about the establishnment of connection with GQJID, which is not
presented on the given node, VM nust create a new task. |If the task
has been already initialized, the new task is not created.

The session connection needs to be established over TCP. After the
connection is established, the sending of the instructions, which are
not require of execution response, is possible through UDP. One TCP
connection may be used by several session connections. One session
connection may use several TCP connecti ons.

The protocol allows working wthout the establishnment of session
connection. The node nust have VM by default, which nust execute the
instructions without the establishment of connection

At the establishnent of session connection, the sides agree about the
used VM type and the subset of the protocol functions. The session
connection UVSP may be asymetrical. It nmeans, that two sides of one
connection can be connected with VM of the different type and provide
the different subset of the protocol functions.

If at an establishment of session connection the zero-type VMis
used, it specifies group VM (see section 9). The zero-value of
realization VMis not all owed.

The procedure of the establishnment of session connection nay contain
from2-way up to 8-way handshakes.

5.3.1 SESSI ON_OPEN
The instruction "To open a session" (SESSION OPEN) is used for the
initiation of session connection and for the specification of

connection paraneters during handshake. It has the follow ng val ues
of fields:

Bogdanov Experi ment al [Page 29]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

OPCCDE = 12

PCK = 9%00/11. In the first instruction (initial) the value of
this field is set to %00. In all subsequent -
%h11.

CHN =0

ASK = 1

EXT = 0/1

OPR LENGTH = 6 - 10 ; Depends on length GJID and LTID

SESSION_ID - In the first instruction this field is absent. In al

subsequent, it contains the identifier of sessions,
assigned by the instruction receiver.
REQ ID - This field contains the session connection identifier
assigned by the instruction sender.
Oper ands:

2 octets: The VMtype required fromthe addressee.

2 octets: The VMversion required fromthe addressee.

4 octets: The profile of connection required fromthe
i nstruction addressee.

2 octets: The VMtype of the sender

2 octets: The VMversion of the sender

4 octets: The profile of connection given by the instruction
sender.

2 octets: The nunber of 256 octet blocks in the buffer
al l ocated for session ("wi ndow'), on the side of the
sender of this instruction (see section 7.4). The
zero-val ue specifies absence of the buffer

4-16 octets: GJID.

4/ 8 octets: LTID of the sender task, assigned on the node -

sender of the instruction. It is used in the
instruction TASK REG (as a part of the field GIID).

If the VM type and version, required fromthe addressee, have the
val ue 0, the receiving node i ndependently chooses the VMtype and
reports it in the response. The establishment of connection wthout
binding to VM or VMgroup is not allowed.

Totally, it can be transmitted up to 7 instructions SESSI ON OPEN at
t he establishnent of connection. The instruction SESSI ON_ACCEPT is
used for the response of the establishment of connection. For the
refusal of connection the instruction, SESSION REJECT is used

It is possible to refuse connection on any step. It is necessary
either to confirmconnections, or to refuse it on the eighth step

During the establishment of connection the follow ng paraneters may
be changed:

Bogdanov Experi ment al [Page 30]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

o0 VMtype and VM version;
o profiles of connection

If the repeated request about opening of session connection is
received fromthe definite node, while one connection with received
@I D have been already established, the followi ng variants are
possi bl e:

(1) If the request has arrived fromthe node JCP, it is necessary:

o To finish the existing task energency and to deal |l ocate al
dynami c resources belong to it.

0o To initiates a task w thout request of the JCP sanction again.
o To confirmthe establishment of connection

(2) If the request arrived not fromthe JCP node, it is necessary to
refuse the establishment of new session connection. The existing
task does not need to be changed.

5.3.2 SESSI ON_ACCEPT
The instruction "To accept the session" (SESSI ON ACCEPT) is used for

positive response to the establishnment of session connection. It has
the follow ng values of fields:

OPCCDE = 13
ASK =1

PCK = %1
EXT = 0/1
CHN = 0

OPR_LENGTH = 0
SESSION ID - This field contains the session connection identifier
of assigned by the node of the addressee of the
i nstruction.
REQ ID - This field contains the session connection identifier
assigned by the instruction sender.

5.3.3 SESSI ON_REJECT
The instruction "To reject the session" (SESSI ON ACCEPT) is used for

negative response to the establishnment of session connection. It has
the follow ng values of fields:

OPCCDE = 14
ASK = 0

PCK = %11

EXT = 0/1

CHN = 0
OPR_LENGTH = 1

Bogdanov Experi ment al [Page 31]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

SESSION ID - This field contains the session connection identifier
of assigned by the node of the addressee of the
i nstruction.
Oper ands:
2 octets: The basic error code. The zero-value is not
avai |l abl e.
2 octets: The additional error code.
The optional extension headers:
_MSG - contains the arbitrary error description

5.3.4 Connection Profile

The profile of connection is defined in 4-octet field of flags. The
flags have identifiers SO - S31. The nunber in the identifier is
defining the serial nunber of bit. |If the flag is set to 1, the
function, connected with it, is provided. |If the flagis set to O,
the function, connected with it, is not provided (not required). The
list of functions, determined at the establishnent of session
connection, are described further

Work with chains:
SO - Use of fragnmented instructions.
S1 - Use of sequences.
S2 - Use of transactions.
Est abl i shment of connecti on:
S3 - Use the exchange of the data w thout the establishnment of
connecti on.
S4 - Use the exchange of the data with the establishment of
connecti on.

The instructions format:

S5 - Reserved. Mist have set to O.

S6 - Use of 16-octet address in the exchange instructions.

S7 - Use of the conpressed form of header of the instruction
(OPR_LENGTH < > 9%111) is all owed

S8 - Use of the extension formof header of the instruction

(OPR_LENGTH = 9%111) is all owed
S9 - Use of the extension headers with the data field up to 254
octets of |ength.
S10 - Use of the extension headers with the data field up to 4 *
1079 octets of I|ength.
S11-S15 Maxinmal length of the data field in operands in the 4
octet words. These bits are the conmon field. Maxinma
length in octets is conputed under the fornul a:

Bogdanov Experi ment al [Page 32]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

<max length> = (<value of this field> + 1) * 4.
If the value is equal %1111, maxi mal length of the data
is defined by the instruction fornmat.

S16-S19 These bits are the conmmon field. In the profile required
fromthe addressee of the instruction, this field
contains the version of the UMSP. It nust is set to the
val ue %0001. |In the profile given sender of the
instruction, this field contains priority of the job. The
nore is value of this field, the nore priority. The
priority of the job is used:

0 In queues on sending to the transport |ayer for the
i nstructions of the job.
o For set of sending priority of the transport |ayer
0 For set of computing priority of the task
S20 - meking the border multiple of 4 octets. |If S16 =1

(1) OPR_LENGTH = %111

(2) Each extension header and the field of operands begin with
the border nultiple of four octets.

(3) The necessary nunber of zero octets is added in the end of
each header.

S21 - Use of the procedures nane of objects.

S22 - Use of the objects nane.

The pernissible instructions:

S23 - The response of the execution on VM (instruction RSP) is
provi ded.

S24 - Use of data reading and conparison instructions.

S25 - Use of data witing instructions.

S26 - Use of control transfer instructions.

S27 - Use of synchronize instruction

S28 - Use of instructions of work witch objects.

S29 - Use of the imedi ate access to nmenory of object. |If this
flag is set to O, the access to object is solved only
through its procedures. |If S28=0, this flag nust be set to
0.

S30 - Use of instruction MVRUN i n zero-session

S31 - Reserved. Muist have set to O.

5.4 Session d osing

Initiate closing session connection the node nust only, which has
initiated its establishnent. It uses the SESSI ON CLCSE instruction
for this purpose. The procedure of break of connection is 3-way
handshake. The procedure of unconditional energency end of
connection is stipulated. It can be transmitted by any node.

Bogdanov Experi ment al [Page 33]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

Let node Ais the initiator of the establishnent of a session, and
the node B is the second side of connection. The node A nust send
the instruction SESSI ON_CLOSE for closing session. The node A may
recomence sending of the instructions after sending of this
instruction. It neans that it has refused cl osing connection. The
i nstructions of response (see section 6) does not influence on the
cl osi ng of connection. The node, which has sent SESSI ON CLOSE, does
not use the timeout and can be waiting for the response beyond al
bounds | ong.

The node B, after reception of the instruction SESSI ON CLOSE, sends
in the answer the instruction RSP_P. The zero basic return code
responds cl osing session. The non-zero basic return code cancels

cl osing session. After sending of positive response, the node nust
not use connection during 30-second timeout. |If the instruction
SESSI ON_ABEND or any other instruction, except response instruction,
has not been received fromthe node A after the expiration of this
tinme, the node send the instruction SESSI ON ABEND and consi ders the
sessi on connection cl osed.

The node A sends the instruction SESSI ON ABEND after reception of
positive response on the instruction SESSION CLOSE. After that, the
connection is considered closed. The node A may refuse closing of
connection. For this purpose, any instruction is sent, including
NOP. In this case, the procedure of end interrupts, and the session
connection is translated in the working state.

5.4.1 SESSI ON_CLGSE

The instruction "To close the session"” (SESSION CLOSE) initiates the
end of session connection. It has the follow ng values of fields:

OPCODE = 15

PCK = %01/ 11

CHN = 0

ASK = 0

EXT = 0/1

OPR LENGTH = 0/1

SESSION_ID - Contains the session identifier assigned by the
addr essee.

Oper ands:

2 octets: The basic term nation code.

2 octets: The additional ternination code
The optional extension header:

_MSG - contains the arbitrary nessage

The operands may be absent. It is equivalent to the zero exit code.

Bogdanov Experi ment al [Page 34]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

5.4.2 SESSI ON_ABEND

The instruction "Abend of session" SESSI ON ABEND is applied to
uncondi ti onal end of session. The node, which has sent this
instruction, finishes the exchange of the data on connection at both
sides, not waiting responses fromother node. The instruction has
the follow ng values of fields:

OPCODE = 16
PCK = %01/ 11
CHN = 0

ASK = 0

EXT = 0/1

OPR LENGTH = 0/1
SESSION_ID - Contains the session identifier assigned by the
addr essee.
Oper ands:
2 octets: The basic term nation code.
2 octets: The additional term nation code
The optional extension header:
_MSG - contains the arbitrary nessage

The operands may be absent. It is equivalent to the zero term nation
codes.
5.5 Task Termi nation

The task is finished during the process of the job finishing at the
normal end of the user application working. This procedure is
described in the following item The follow ng situations require
finishing the task irrespective of the job:

0 There are not enough of conputing resources for naintenance of the
task on the node;

o The node finishes the work;

o |If VMhas accepted such decision for the internal reasons.

The references to the resources allocated by the task can be on any
node, on which the job is carried out. Therefore, all nodes nust be
notified of the end of the task

Node, finishing the task, nust abnormally close all session

connections joining the finished task (to send the instruction
SESSI ON_ABEND) .

Bogdanov Experi ment al [Page 35]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

5.5.1 TASK_TERM NATE
The instruction "To term nate the task" (TASK_TERM NATE) is sent from
the node, on which the task is finished, to JCP. The instruction has
the follow ng values of fields:
OPCODE = 17
PCK = %00
CHN = 0
ASK = 0
EXT = 0/1
OPR LENGTH = 2/3 ; Depends on the |length of CTID.
Oper ands:
2 octets: The basic term nation code.
2 octets: The additional term nation code.
4/ 8 octets: CTID.
The optional extension header:
_MSG - contains the arbitrary nessage.
After sending of the instruction TASK TERM NATE to JCP, the node
sends the instruction of unconditional end of connection
ABEND SESSI ON on all session connections connected with a task.
After that, the task is considered conpl eted.
If the basic return code in the instruction TASK TERM NATE i s equal
to 0, it is not required to notify other nodes about the end of the
task. Such situation arises, if the task did not allocate dynanic
resources. |If the basic return code is unequal to 0, JCP nust notify
about the task end the other nodes, on which the job is carried out,
after reception of the instruction TASK TERM NATE. JCP responds for
the notification of all nodes of the job about the task end.
5.5.2 TASK_TERM NATE_| NFO

The instruction "The information on term nating of the task"

(TASK_ TERM NATE INFO) is used for the notification about the task
end. It is sent fromJCP to other nodes, on which the job is carried
out. The instruction has the follow ng values of fields:

OPCODE = 18

PCK = %00

CHN = 0

ASK = 0

EXT = 0/1

OPR _LENGTH = 2-5 ; Depends on the length of GIID.
Oper ands:

2 octets: The basic term nati on code.
2 octets: The additional term nation code.

Bogdanov Experi ment al [Page 36]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

4-16 octets: GTID of the terminated task. JCP forms GTID from
LTID (fromthe instruction TASK REG and address
of transport |ayer of the task

The optional extension header:
_MSG - contains the arbitrary message

The fields of term nation codes are taken fromthe instruction
TASK_TERM NATE. The job nust delete (to nake invalid) all references
to resources concerning the node, on which the conpleted task worked,
at reception of the instructi on TASK TERM NATE_| NFO

5.6 Job Conpl etion

The job is finished, when the appropriated to it the user application
on the node, on which it was initiated, is finished. The end of the
job occurs under the initiative of VM Besides, it can be conpleted
under the JCP initiative at ending the lifetime of the job or at end
of the JCP node worKki ng.

5.6.1 JOB_COVPLETED
The instruction "The task is conpleted" (JOB COWPLETED) is sent from

the node, which initiated the job, in the JCP side. It has the
foll owi ng val ues of fields:

OPCCDE = 19

PCK = %00

CHN =0

ASK = 0

EXT = 0/1

OPR LENGTH = 2/3 ; Depends on the CTID | ength.
Oper ands:

2 octets: The basic conpletion code.
2 octets: The additional conpletion code.
4/ 8 octets: CTID of the conpleted task of the job. CTIDis a
part GJI D of the job.
The optional extension header:
_MSG - contains the arbitrary nessage

After sending of the instruction JOB COWLETED to JCP, the node sends
on all connected with the session connections of the job the

i nstruction of unconditional end of connection ABEND SESSION. After
that, the job is considered conpl eted.

JCP must notify of the end of the job the nodes, on which the job is
carried out, after reception of the instruction JOB COWLETED. JCP
responds for the notification of all nodes of the job about end of

t he j ob.

Bogdanov Experi ment al [Page 37]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

The instructi on TASK TERM NATE | NFO may be transferred under the
initiative JCP, if node of the task has abnormal terninated work.

5.6.2 JOB_COVPLETED_I NFO

The instruction "The information on conpletion of the job"
(JOB_COVPLETED INFO) is used for the notification about end of the
job. It is sent fromJCP to other nodes, on which the job is carried
out. The instruction has the follow ng values of fields:

OPCCDE = 20

PCK = %00

CHN =0

ASK = 0

EXT = 0/1 ;

OPR _LENGTH = 2-5 ; Depends on the QJID length and presence of

fields conpletion code.
Oper ands:
2 octets: The basic conpletion code.
2 octets: The additional conpletion code.
4-16 octets: &JID of the conpleted job.
The optional extension header:
_MSG - contains the arbitrary nessage.

The fields of conpletion codes are optional.

The fields of conpletion codes are taken fromthe instruction
JOB_COVPLETED. At reception of the instruction, JOB COVPLETED | NFO
t he node nmust nake the foll ow ng:

(1) To renove all session connections, connected to the task. At
that, it is not necessary to send network primtives.

(2) To abnormally finish the task of the job and to deallocate all
dynami ¢ resources of the task.

The instruction JOB COWLETED INFO is used for the end of the job
under the JCP initiative at the end of lifetine or at end of the JCP
node working. In these cases, the node initiated the job is the
first addressee of the instruction.

JCP considers the job conpleted after sending of all instructions
JOB_COWPLETED _| NFO.

5.7 Activity Control of Nodes
UMSP unites nodes, which have any arrangenent in the network and

whi ch are not having uniformcontrols. Each of nodes can be
di sconnected or rel oaded at any nonent of tinme. However, other nodes

Bogdanov Experi ment al [Page 38]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

can be not notified about it. The fact of breaking or repeated

est abl i shnent of transport connection cannot be the indicator of

di sconnect or restart of the node. The control of transport
connections is not the part of the UMSP protocol and the presence of
transport connection is not obligatory.

Besi des the separate task on the node can be finished energency.
Procedure described in section 5.5.1 in this case nust be executed.
If this procedure cannot be executed, nust is abnormally finished
wor k of the node.

The JCP executes the functions of the control of nodes activity. The
instruction of request of the status TASK REQ is sent periodically
bet ween tasks on nodes and JCP for this purpose.

The follow ng actions JCP are possible at detection of deactivating
of the node:

(1) If the task initiated the job was finished, it is considered,
that the job is conpleted. JCP sends the instruction
JOB_COVPLETED INFO to all other nodes, on which the job was
execut ed.

(2) JCP sends the instruction TASK TERM NATE INFO to all other nodes
of the job, if the task, which has not initiated the job, is
fini shed.

The deactivating of the JCP node inposes the restriction on QJID
appropriated by it after reloading. The follow ng variants are
pr obabl e:

(1) The disconnection of the JCP node passed nornally. It
transferred to all nodes, which it has controlled, instruction
JOB_COVWPLETED_INFO. In this case, it can appropriate anyone
&I D after rel oading.

(2) There is the energency disconnect of the JCP node. It has not
informed all nodes about the deactivating. 1In this case, it
nmust guarantee after reloading, that new GJID will not concur
witch the QJID, existing up to the reload, during two naxi nal
intervals of inactivity tinme (which sets this JCP).

The rel oad of nodes, which are not being JCP, does not inpose
restrictions on LTID established on these nodes.

5.7.1 _I NACTI ON_TI ME
The extension header "The time of inaction” (_INACTION TIME) allows

setting the inaction time of the node (non JCP). It has the
foll owi ng val ues of fields:

Bogdanov Experi ment al [Page 39]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

HEAD_CODE =
HEAD_LENGTH
HOB = 1
DATA cont ai ns:
2 octets: The inaction period. The nunber of 0,5 second
intervals, through which the activity of the node - sender of
the instruction fromthe side JCP - will be checked.

2
:1,

The inaction period nmust be nore than three intervals of the naxi na
time of delivery at the transport layer. The waiting period in queue
to the transport |ayer does not influence on tinmeout.

The header _I NACTION TIME may be attached to the foll ow ng
i nstructions:

(1) To the instruction TASK REG In this case nust be satisfied
condition - on node there nust not be other active tasks, which
are controlled the JCP of addressee. The zero-val ue specifies
that the activity checking is unused. The absence of the header
specifies that the inaction period nust be set on the JCP

(2) To the instruction TASK REJECT, if the tinme fromthe instruction
TASK REG does not fit for JCP

(3) To the instruction TASK CONFIRM if instruction TASK REG had no
t hi s header.

If JCP receives the instruction TASK REG with the attached headi ng
_INACTIONLTIME, it must check up presence of active tasks with sender
node (as it can mean, that the node was reloaded). |If such tasks
exist, for each of themit is necessary to execute procedure of end
of the task described in section 5.6.2. The instruction TASK CONFI RM
nmust be sent only after that.

5.7.2 STATE_REQ
The instruction "State Request"” (STATE_REQ is sent fromJCP to the

definite task of other node. The instruction has the foll ow ng
val ues of fields:

OPCODE = 21

PCK = %00

CHN = 0

ASK = 0

EXT =0

OPR LENGTH = 1/2 ; Depends on the LTID I ength.
Oper and:

4/ 8 octets: LTID, established on the node of the instruction

addr essee.

Bogdanov Experi ment al [Page 40]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

The instruction STATE REQwill be sent in the defined task but it has
concern with node. It is sent, if between the node and JCP was not
sending of the instruction during inactive tinme. The task activated
after sending of last instruction STATE REQ does not influence the
control of activity.

The instruction TASK STATE is sent in reply to STATE REQ At
expectation of the response, the tineout equal to one inaction period
is used. After the expiration of the timeout the node is considered
switched - off.

If the node not receives of any instructions fromJCP during two
intervals of inaction tinme, it is considered, that JCP has finished
the work. The actions of the node in this case are described in
section 5.6.2 at receiving the instruction JOB_COWLETED I NFO. The
check of this condition is optional for the node.

If at JCP there are no active tasks connected with the defined node,
the control of activity of this node will not be carried out.

5.7.3 TASK_STATE
The instruction "Task State" (TASK STATE) is sent fromthe definite

task to JCP. 1t serves for the response of the instruction
STATE_REQ The instruction has the follow ng values of fields

OPCODE = 22

PCK = %00

CHN =0

ASK = 0

EXT = 0

OPR LENGTH = 1/2/3 ; Depends on the CTID I ength.
Oper ands:

1 octet: The state code of task. The follow ng values are

defined for this field:

%01 - The task is active and has active session
connecti ons.

%02 - The task is active and have no sessi on connecti ons.

%03 - The task is active, have no session connections and
have no resources, allocated on the node.

%04 - The task is conpl eted.

1/3 octets: Reserved. |If OPR LENGIH = 1, then this field has
length 1 octet, else 3 octets. JCP nmust not check
the value of this field. It is established in zero
val ue by sendi ng.

2/ 4/ 8 octets: CTID connected with LTID fromthe instruction

STATE_REQ

Bogdanov Experi ment al [Page 41]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

If OPR LENGTH = 1 that length of the reserved field is equal to one
octet and length CTID nakes two octets. In all other cases, length
of the reserved field is equal 3 octets and length CTID - not |ess
than 4 octets.

5.7. 4 NCDE_RELOAD

The instruction "The node was rel oaded" (NODE RELQOAD) is sent to JCP
as the negative response to STATE REQ instruction. NODE_RELQAD has
the follow ng values of fields:

OPCODE = 23
PCK = 9%%00
CHN = 0
ASK = 0
EXT 0
OPR_LENGTH = 1/2 ; Depends on the LTID I ength.
Oper ands:
4/ 8 octets: LTID. The value is taken fromthe instruction
STATE_REQ

The instructi on RELOAD NODE i ndi cates, that the task with given LTID
for given JCP on the node is absent. At reception of this
i nstruction, JCP nust make the foll ow ng:

(1) To send the instruction STATE REQ to all tasks of the node,
which were initiated before a sending of the penultimte
i nstruction STATE REQ

(2) To wait for ending of one inaction interval after sending of the
| ast instruction STATE REQ (on which the negative response is
recei ved).

(3) To send the instructions STATE REQ to all tasks of the node,
which were initiated between | ast and penultimate instructions
STATE_REQ (not including instructions fromitem1).

For all instructions STATE REQ the positive response (TASK STATE) or
negative response (RELOAD NODE) nust be transmitted.

5.8 Work wi t hout session connection

The protocol provides the data exchange between nodes w t hout an
establ i shment of session connection. In this case, initialization of
the job and tasks is not nmade and JCP i s not used.

The format of the instructions, transmitted without the establishnent
of connection, is conpletely correspond to the instructions
transmtted by session connections. The difference is that the field
SESSI ON | D has zero val ue or PCK = %00.

Bogdanov Experi ment al [Page 42]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

The node, supporting work without the establishnent of session
connection, nust have VM which executes by default the instructions
transmitted without the establishment of connection. |In fact, these
instructions are executed within the framework of a so-called zero-
session (or zero-task) of this VM The nenory address space of this
VM is accessible wthout a connection establishnent.

The instruction SESSION INIT with SESSIONID = 0 and REQID =0
allows to specify paraneters of its zero-session and to request the
zero-session paraneters of the addressee node. |If the node, which
has received such instruction, provides the requiring profile, it
sends the instruction SESSI ON ACCEPT. |If the profile is not

provi ded, the answerback instruction SESSION INIT will send, in which
the field SESSION ID and REQ I D al so have the value 0. Actually,
such instructions of session initialization do not establish
connection, but have the information nmeaning. The exchange of the
data by zero-session can occur irrespective of its.

There are the following restrictions at working w thout connection

0 The chain nust be sent, only if it is conpletely located in one
segrment of the transport |ayer.

o It is inmpossible to request an allocation of nenory and to create
obj ects (except instruction WRUN). This objects is not adhered
to the definite job and is not autonatically rel ease the resources
at the end of the job, which has created them

o Paraneters of functions and the returned val ues nust not contain
the pointers, because the node can be reloaded at any nmonent. It
will result that the pointers will becone invalid or will address
ot her objects.

The protocol cannot check those conditions. Their realization |ays
on VM whol I y.

The work wi thout establishment of session connection nay be used in
the follow ng systens:

0 |In sinple devices, which do not have the operational system

0 On servers which are executed a plenty of requests (for work
wi t hout connection of resources is used |ess);

0o In systenms requiring the fast response to rare requests (if
keepi ng of connection is inexpedient).

Bogdanov Experi ment al [Page 43]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

6

I nstructions of Exchange between VM

The instructions intended for an exchange between VM uses val ues
OPCCDE in range 128 - 223. Depending on |l ength of the operands
field, several formats of the instruction may be defined for one
OPCODE. The conplete instruction format is defined by aggregate of
the val ues of fields OPCODE and OPR_LENGTH

The instruction has the field REQID, if in the instruction header
flag ASK = 1. REQID is used for the response identification. The
value of this field is specifies by VM The response is formed by
VM too. The protocol does not check the response and does not

anal yze the value of the field REQID for the instructions of
exchange between VM One of the instructions RSP, DATA, RETURN
ADDRESS, OBJECT or PROC_ NUM is used for sending of the response. The
i nstructions of response have ASK = 1 and the value taken fromthe
confirmed instruction is record in REQID. The instructions of
response do not require the response.

The instructions of exchange between VM nay be sent through UDP at
observance of the follow ng conditions:

o ASK = 0;
o0 The instruction is located in one segnent UDP

The tineouts and the repeated sending are not used at UMSP | ayer for

i nstructions of exchange between VM It is explained to, that the
time of sending instructions with low priority may be very | arge
because of the output queues. Therefore, the VM nust nake a deci sion
on tinmeout, as only VM has the conplete information on type of the
transmtted data. Besides, the transport |ayer protocol nust use the
ti meout s.

A few VM may be connected to the protocol on the node. VM nmay
si mul t aneously execute several jobs. Each job may work in its
address space. The protocol deternines VMand job, which the
received instruction nmust transfer to, on field SESSION | D val ue

The | ocal nmenory address is located in the instruction in field of
length 2/4/8 octets. |If nenory address length in the instruction is
not equal to menory address |length defined for the node, the
followi ng variants are possi bl e:

o If nenory address length is set in 24 bits for the node, the
address is wites in the end of 4 - octets field. The 0 value
sets in an initial (zero) octet.

Bogdanov Experi ment al [Page 44]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

o |If the instruction fornmat assunes the nenory address | ength not
| ess than 4 octets, 2-octet address is located in the |ast octets.
The first 2 octets nust set to zero.

o If instruction is the nenber of a chain and it has the less length
of the menory address, than it is defined for the node - it is
consi dered, that the base-displacenent addressing is used. |f the
val ue of the nenory base is not assigned for the chain -
instruction is erroneous.

o If the instruction is not the nenber of a chain and has the length
of menory address less, than it is defined for the node, it is
consi dered, that the abbreviated address is used. The conplete
address length nust be received by padding in front of it the
necessary nunber of zero-value octets.

o In all other cases, the instruction is erroneous.

Conmpl ete 128-bit nenory address wites in operands in the 16-octets
field. The reason of using of the conplete address is that the
additional information, using by the nmenory control subsystemin the
node, nmay contain in its field FREE (see section 2.1). |If the FREE
of the conplete address is set to zero, it is recomended to use

| ocal address in operands.

Operands field has a length, which is an integral nunber of 32 bits.
The alignnment is making by padding, if necessary, of the zero-val ue
octets at the end of the field.

Header fields of the instructions not defined in the formats
description are used according to the description fromsection 3.

The instruction of the transfer control JUWMP, CALL, CALL BNUM and
CALL_BNAME may contain the information about VM of the sender. |If VM
type and VM version of the sender are contains in the instruction

the call paraneters are fornmed in a format VM of the sender. Else
the call paranmeters have format defined by VM of the addressee. The
code is always connected with of specific VM

Al'l instructions of the protocol work with binary data and do not
provi de operations of formats transfornation.

6.1 Data Reading/Witing Instructions

6.1.1 REQ_DATA
The instruction "To request a data" (REQ DATA) is used for the data
request fromthe renote node. Two instructions REQ DATA with |ength

of the length field 2 and 4 octets are defined. These instructions
have the follow ng val ues of fields:

Bogdanov Experi ment al [Page 45]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

OPCODE = 130/131 ; For length of the length field of 2/4
octets.
OPR _LENGTH = 1/2/3/5 ; Depends on address | ength.
Oper ands:
2/ 4 octets: The length field. The nunmber of the required data in

octets.
2/ 4/ 8/ 16 octets: The nenory address of the required data.

The instructi on DATA, containing required data, is sent in reply to
it. If the data cannot be sent, the instruction RSP with the non-
zero basic return code, cones back

6.1.2 DATA

The instruction "The data" (DATA) is sent in reply to the instruction
REQ DATA and OBJ_REQ DATA. The instruction has the follow ng val ues
of fields:

OPCODE = 132
OPR LENGTH = 0 - 65535 ; Depends on the i mediate data | ength of

t he operand.
Oper ands:

0 - 262140 octets: Inmediate data. |If OPR LENGIH = 0, this
field are absent.

Ext ensi on headers:

_DATA - Contains inmmediate data. |f OPR_LENGTH <> 0, this

header are absent.

The extension header is used, if the data are nore then an maxi num
operands field size. The data nust not be sent sinultaneously in
operands and in the extension header. To make the length of data
multiple of 4 octets, 1 - 3 zero-value octets are padded in the end
of a field.

6.1.3 VRI TE

The instruction "To wite the data" (WRITE) is used for data witing
on the renote node. The instruction has the follow ng val ues of
fields:

OPCODE = 133/134/135/136 ; For nenory address length of 2/4/8/16
octets.
OPR LENGTH = 1 - 65535 ; Depends on length of the i mediate
dat a.
Oper ands:
2/ 4/ 8/ 16 octets: The nmenory address for witing the data.
0 - 262136 octets: Immediate data for wite.

Bogdanov Experi ment al [Page 46]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

Ext ensi on headers:
_DATA - Contains immedi ate data. This header is present only,
if the data does not contain in operands.

At address length of 2 octets the data length nmust be 2 octets. In
all other cases, address |length nust be not |ess than 4 octets and
data length nust be nultiple of 4 octets. The data nust not be sent
simul taneously in operands and in the extension header

The instruction RSP is sent in reply to the instruction WRITE. The
zero basic return code defines normal executing.

6.1.4 VRI TE_EXT

The instruction "The extension witing of data" (WRI TE_EXT) is used
for the data witing on the renmbte node. Length of the data nay be 1
- 262132 octets with a step 1 octet. The instruction has the

foll owi ng val ues of fields:

OPCCDE = 137
OPR _LENGTH = 3 - 65535 ; Depends on length of the inmedi ate data.
Oper ands:

1 octets: Always set to zero

3 octets: The nunber of the wite data in octets. The zero-

val ue is not avail able.
4 - 262132 octets: Inmmediate data for wite. The data length
must be multiple of 4 octets.
4/ 8/ 16 octets: The nenory address for witing the data.

To nmake the i mediate data nultiple of four octets, the data is
padded with 1 - 3 zero-value octets at the end of a field.

The instruction RSP is sent in reply to the instructi on WRI TE_EXT.
The zero basic return code defines normal executing.

6.2 Conparison Instructions
6.2.1 CwW

The instruction "To conpare” (CWMP) is used for binary data
conmparison. It has the follow ng val ues of fields:

OPCODE = 138/139/140/141 ; For the address length of 2/4/8/16
octets.

OPR _LENGTH = 1 - 65535 ; Depends on length of the i mediate
dat a.

Bogdanov Experi ment al [Page 47]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

Oper ands:
2/ 4/ 8/ 16 octets: The nmenory address for conpared data.
2 - 262136 octets: The i mediate data for the conparison

At the address length of 2 octets the data I ength nust be 2 octets.
In all other cases length of the address nmust not be less than 4
octets and the data length is nultiple to four octets.

6.2.2 CVP_EXT

The instruction "The extension conmpare” (CMP_EXT) is used for binary
data conparison. Length of the data may be 1 - 262132 octets with a
step 1 octet. The instruction has the follow ng values of fields:

OPCCDE = 142
OPR _LENGTH = 3 - 65535 ; Depends on length of the i mediate data
and the address.
Oper ands:
1 octet: Always set to O.
3 octets: The length of conpared data in octets. The zero-val ue
is not avail able.
4 - 262132 octets: The imredi ate data for the conparison. The
length of field is nmultiple of 4 octets.
4/ 8/ 16 octets: The nenory address of conpared data.

To nake the i mediate data nultiple of four octets, the data is
padded with 1 - 3 zero-value octets at the end of a field.

6.2.3 Response to Conparison Instructions

The instruction RSP is sent in reply to the instruction CWP, CMP_EXT
and OBJ_CWP (see below). |If the conparison was executed, the basic
return code is equal to zero. The additional return code is equal to
-1, if the data at the address nenories are less then the data from
the operand; 0O, if they are equal; and 1, if they are nore. |If the
conpari son cannot be executed, the basic return code of the

i nstruction RSP nust be non-zero.

6.3 Control Transfer Instructions
6.3.1 JuwP, CALL
The "Unconditional junp" (JUWP) and "To Call-subroutine" (CALL)
i nstructi ons have an equal format and differ only by OPCODE. These

i nstructions have the follow ng val ues of fields:

OPCODE = 143/144 ; Correspondingly for the JUWP not containing
and containing the information about VM

Bogdanov Experi ment al [Page 48]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

145/ 146 ; Correspondingly the CALL not containing and
contai ning the information about VM
OPR_LENGTH = 2 - 65535 ; Depends on inclusion of the information
about VM address length and paraneters
| engt h.
Oper ands:
2 octets: The VMtype of the sender. |f OPCODE=143/145 this
field is absent.
2 octets: The VMversion of the sender. |f OPCODE=143/145 this
field is absent.
4/ 8/ 16 octets: The address of nmenory, where is necessary to
transfer control
2 octets: The nunmber of 32 bit words in the call paraneters
field.
4 - 262134 octets: The inmedi ate data are the paraneters of a
call.

On the reception side the processing of the instructions of a contro
transfer occurs as foll ows:

0o The nmenory address is checked. |If it has erroneous value, the
negative response RSP is sent. At this stage, the correctness of
paraneters of a call may be al so checked up

o |If the menory address and the paraneters of a call have correct
val ue, the positive response RSP is sent for the instruction JUW
The transnmitting side considers the instruction JUW executed
after receiving response.

o For response of an execution of the instruction CALL the
instruction RETURN is sent. The instruction RETURN may contain
the returned values. |If there is an exception condition in a
thread of control created by the CALL instruction, the instruction
RSP with a non-zero basic return code is sent instead of RETURN

6.3.2 RETURN

The instruction "Return of control” (RETURN) is used at return of
control fromthe instructions CALL, MVRUN, CALL BNUM and CALL_BNAME
(see below). Those instructions have the follow ng values of fields:

OPCODE = 147
OPR LENGTH = 0 - 65535
Oper ands:

0 - 262140 octets: Immedi ate data returned fromthe subroutine.

; Depends on length of the i mediate data.

If it is not required to send returned value, the instructi on RETURN
does not contain operands. The data format coincides with the
instruction, for which the response (format VM of the sender or
addressee) will be sent.

Bogdanov Experi ment al [Page 49]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

6.4 Menory Control Instructions

UMSP gi ves neans for division of nmenory for a code and for the data.
The protocol does not make checks of correctness of operations with
menory. The code and the data use commopn address space. The contro
of menory is conpletely realized by VM

6.4.1 MEM ALLOC

The instruction "To allocate a nenory for the data" (MEMALLCC) is
used for request of the allocation of nenory under the data. The
instruction has the follow ng values of fields:

OPCCDE = 148
OPR_LENGTH = 1
Oper ands:
4 octets: The size of required nmenory in bytes.

For the positive response on the instruction MEM ALLCC, the

i nstruction ADDRESS, for negative - RSP with the non-zero basic
return code is sent. The received address can be used by the
protocol in the instructions of reading/witing, conparison and
synchroni zati on.

6.4.2 MVCODE

The instruction "To nove the code" (MVCODE) is used for noving of the
execut abl e code from one node on another. The instruction has the
foll owi ng val ues of fields:

OPCODE = 149
OPR LENGTH = 1 - 65535 ; Depends on length of the code field.
Oper ands:
2 octets: The VMtype of addressee.
2 octets: The VM version of addressee.
0- 262136 octets: contains the executabl e code.
The extension headers:
_DATA - contains the executable code. This header is present
only, if the code does not contain in operands.

The code is always connected with VM of the definite type. The code
field is always transparent for the protocol. It is formed by the VM
of sender and nust contain all the information necessary VM of the
receiver. The code nust not sinultaneously be sent in operands and
in the extension header

Bogdanov Experi ment al [Page 50]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

For the positive response on the instruction MWCODE, the instruction
ADDRESS, for negative - RSP with the non-zero basic return code is
used. The code transferred on the instructi on MWCODE, may be
executed by the instruction JUW or CALL.

6.4.3 ADDRESS

The instruction "The nenory address" (ADDRESS) is used for the
positive response on the instruction MEM ALLOC and WCODE. ADDRESS
has the follow ng values of fields:

OPCCDE = 150
OPR _LENGTH = 1/ 2/ 4; Depends on |l ength of the address.
Oper ands:

4/ 8/ 16 octets: The address of the allocated nmenory.

For the instruction, MEMALLCC the address specifies first byte of
the allocated data area. For the instruction MVCODE the contents of
the address is defined VM by which the code is connect ed.

6.4.4 FREE

The menory allocated with the instructions MEM ALLOC and MVCODE, nust
be explicitly release. For this purpose, the instruction "To free

the menory" (FREE) is used. It has the follow ng values of fields:
OPCCDE = 151
OPR_LENGTH = 1/ 2/ 4; Depends on length of the address
Oper ands:

4/ 8/ 16 octets: the address of free nenory.

VM nust free this nmenory autonmatically at end of the task on the
node.

6.4.5 MVRUN

The instruction "To nove and run" (MVRUN) is used for sinultaneous
nove of a code and its execution. The instruction has the follow ng
val ues of fields:

OPCODE = 152
OPR LENGTH = 1 - 65535 ; Depends on length of the code field.
Oper ands:

2 octets: The addressee VM type.

2 octets: The addressee VM version

4 - 262136 octets: Contains an executabl e code.

Bogdanov Experi ment al [Page 51]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

The extension headers:
_DATA - Contains an executable code. This header is present
only, if the code does not contain in operands.

The executable code is the transparent buffer with the binary data
for the protocol. The format of this field is defined by the VM and
it must contain all the information necessary for the | oader VM of

t he addressee, including paraneters of a call

The code nust not simultaneously be sent in operands and in the
ext ensi on header.

The answer to the instruction MWRUN is forned simlarly to
instruction CALL. It is not necessary to release nenory all ocated
for a code by this instruction. The nenory nust deallocate the VM

6.5 Oher Instructions
6.5.1 SYN

The instruction "To Synchronize" (SYN) is used for the single nessage
about the data change. The instruction has the follow ng val ues of
fields:

OPCODE = 153/154/155 ; For length of the address 4/8/16 octets.
OPR LENGTH = 2 - 65535; Depends on |length of the data
Oper ands:
4/ 8/ 16 octets: The nenory address of the tracki ng data.
2 - 131068 octets: The initial data. Length of the data nust be
multiple of two octets.
2 - 131068 octets: A nmask for conparison. Length of this field
is equal to length of a field of the initial
dat a.

The tracking data is set by the nenory address in the first operand.
These data are originally conpared to the initial data value fromthe
second operand. |If the values do not coincide, it is considered,

that the data have changed. The third operand allows setting a nask
for conparison. Set to one bits of the mask specifies bits in the
data, which change nmust be traced

The followi ng variants of the answer are probable on the instruction

o |If the address of local nenory is incorrect, the instruction RSP
with the non-zero basic return code is sent for the response.

o If the data do not change, in the response nothing is sent.

o |If the data have changed, the instruction DATA with new val ue of
the traced data is sent.

Bogdanov Experi ment al [Page 52]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

6.5.2 NOP

The instruction "No operation” (NOP) has the follow ng val ues of
fields:

OPCODE = 156
OPR_LENGTH = 0 - 65535
Oper ands:
0 - 262140 octets: Encapsul ated dat a.
Ext ensi on headers:
Any Extension headers.

The instruction NOP is intended for the decision of the foll ow ng
t asks:

0 Send the control extension headers, when there are no other
instructions for sending in a session

0 Encapsulate the fragnmented instructions and transactions with the
established flag of special processing (see section 7).

6.6 Work with Qbjects

The protocol has a set of the instructions being expansion of the
protocol RPC [6]. As against RPC, UMSP all ows i mediately to address
menory on renote nodes and to send the pointers in paraneters and
returned val ues.

The UMBP object is identified by the 4-octet number. The val ues are
divided into the foll owi ng ranges

I -> 9%00000000 - 1FFFFFFF are assigned for standard objects
| -> 9%?20000000 - 3FFFFFFF are assigned for users objects

| -> 9%30000000 - 4FFFFFFF free

V -> 9%50000000 DFFFFFFF transient

V -> %EO0000000 - FFFFFFFF reserved

The objects froma range | nust be definite, as standard, and the
specifications of their interfaces nust be published. The protoco
does not suppose the private or not described interfaces of standard
obj ect s.

The objects froma range Il nust be registered, but the
specifications of their interfaces may be optional published. These
nunbers are applied in cases, when it is required to exclude the
probabl e conflict of systenms of the different nanufacturers.

Bogdanov Experi ment al [Page 53]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

The range Il can be used freely. The objects accessible on these
nunbers may be created statically or dynami cally. These objects can
have any interfaces.

Al'l objects, concerning ranges |, Il and IIl, is common for all jobs
on the node, including zero-session. Their interfaces are accessible
to all tasks on the node, depending on paraneters of authentication

The range IV is intended for objects created dynanmically within the
franmework of one job. These objects are the isolated associative
menory of the job. The access to these objects nmust be granted only
for one job. The zero-session has no access to these objects.

The protocol grants the access to the data of object, as to the

conti nuous segnent of nenory. The nenory of objects may be

overl apping or no overlapping with flat local nenory of the node.

The offset field is used in the instructions of work with the data of
object. The offset rules witing are simlar to the |ocal address
rules witing.

The address menory length of the node, definite for the UMSP

protocol, limts the maxi mal data size of one object. The
instructions definite in the given section, allowto work with
associative nenory with the theoretical limting size on one node -

2796 (7,9 * 10728) Byte.

In addition to the nunber, the object has the version, 2 octets

I ength, and realization, 2 octets length. The protocol requires
obligatory conpatibility frombottomup for all realizations of one
versi on of object. The publication of new realization of standard
obj ect may contain only added interfaces.

If for the sender of the instruction the version and/or the
realization of object do not play any role or is unknown, the
instruction may contain zero fields of the version and realization of
object or only zero field of realization. The zero field of the
version and non-zero field of realization are not allowed.

6.6.1 Readi ng/ Witing of the (bjects Data
6.6.1.1 OBJ_REQ DATA
The instruction "To request the data of object"” (OBJ_REQ DATA) is

used for request of data of the hject fromthe renote node. The
instruction has the follow ng values of fields:

Bogdanov Experi ment al [Page 54]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

OPCODE = 192/193 ; For length of the field of Iength 2/4 octets.
OPR LENGTH = 3/4/5 ; Depends on length of the offset field.
Oper ands:

4 octets: The nunber of object.

2 octets: The version of object.

2 octets: The realization of object.

2/ 4 octets: The length of the required data in octets.

2/ 4/ 8 octets: Ofset required data fromthe begi nning of object
in bytes.

At length of the length field of 2 octets the offset | ength nust be 2
octets. In all other cases, length of the length field and of fset
| ength nust be not |less than 4 octets.

The instructi on DATA, containing the required data, is sent for reply
to instruction OBJ_REQ DATA. |If the data cannot be transmitted, the
instruction RSP fromthe non-zero basic return code cones back

6.6.1.2 OBJ_WRITE

The instruction "To wite the data in object” (OBJ_WRITE) is used for
wite of the data in object. The instruction has the follow ng
val ues of fields:
OPCODE = 194/ 195/ 196 ; For length of the offset field of 2/4/8
octets.
OPR _LENGTH = 3 - 65535 ; Depends on the data |ength.
Oper ands:
4 octets: The nunber of object.
2 octets: The version of object.
2 octets: The realization of object.
2/ 4/ 8 octets: The offset in object for the data wites.
2 - 262128 octets: The inmmedi ate data for wite.
The extension headers:
_DATA - Contains i mediate data for wite. This header is
present, only if the data is not present in operands.

At length of the field-offset of 2 octets, length of the data nust be
2 octets. In all other cases, the offset |length nust be not |ess
than 4 octets and the data length is nultiple to four. The data nust
not simultaneously be sent in operands and in the extension header

The instruction RSP is sent in reply to the instructions OBJ_WRI TE.
The zero basic return code defines the normal execution

Bogdanov Experi ment al [Page 55]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

6.6.1.3 OBJ_WRI TE_EXT

The instruction "The extension witing of the data in object”
(OBJ_WRITE_EXT) is used for wite of the data in object. Length of
the data may be 1 - 262132 octets with the step 1 octet. The
instruction has the follow ng values of fields:

OPCCDE = 197

OPR _LENGTH = 3 - 65535; Depends on the data |length and the address
| engt h.

Oper ands:

4 octets: The nunber of object.

2 octets: The version of object.

2 octets: The realization of object.

1 octet: Always set to O.

3 octets: Length witten down data in octets. The zero-value is
i ncorrect.

4 - 262124 octets: The immedi ate data for wite. Length of the

data is multiple of 4 octets.
2/ 4/ 8 octets: Ofset in object for the data wite.

If the length of the witten down data is not multiple of four
octets, the data is padded with 1 - 3 zero octets at the end.

The instruction RSP is sent in reply to the instructions
OBJ_WRITE EXT. The zero basic return code defines the nornal
execution.

6.6.2 Conparison Instructions of the Objects Data
6.6.2.1 OBJ_DATA CW

The instruction "To conpare the data of object" (OBJ_DATA CWP) is
used for binary conparison of data of the object by the inmediate
data fromoperands. The instruction has the foll ow ng val ues of
fields:

OPCODE = 198/199/200 ; For length of offset field of 2/4/8
octets.
OPR _LENGTH = 3 - 65535; Depends on |ength of the data.
Oper ands:
4 octets: The nunber of object.
2 octets: The version of object.
2 octets: The realization of object.
2/ 4/ 8 octets: Ofset in object for the conpared data.
2 - 262128 octets: The i medi ate data for conparison

Bogdanov Experi ment al [Page 56]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

At length of a field of 2 octets offset the data |l ength nust be 2
octets. In all other cases the offset length nust be not less than 4
octets and the data length is nultiple to 4 octets.

The response to the instruction OBJ_DATA CWP is described in section
6.2. 3.

6.6.2.2 OBJ_DATA CMP_EXT

The instruction "The extension conpare of data of the object”
(OBJ_DATA CMP_EXT) is used for binary conparison of data of the
object by the i medi ate data from operands. Length of the data may
be 1 - 262132 octets with a step 1 octet. The instruction has

foll owi ng val ues of fields:

OPCCDE = 201
OPR _LENGTH = 5 - 65535 ; Depends on length of the i mediate data
and the address |ength.
Oper ands:
4 octets: The number of object.
2 octets: The version of object.
2 octets: The realization of object.
1 octet: Always set to O.
3 octets: The length of conpared data in octets. The zero-val ue
is incorrect.
- 262124 octets: The imedi ate data for the conparison. The
length of field is nultiple of 4 octets.
4/ 8 octets: O fset in object for the conpared data.

N

To nmake the i mediate data nultiple of four octets, the data is
padded with 1 - 3 zero-value octets at the end.

The response to the instructi on OBJ_DATA CVP_EXT is described in
section 6.2.3.

6.6.3 Execution of the hjects Procedures
6.6.3.1 CALL_BNUM
The instruction "To call the object procedure over nunber”
(CALL_BNUM transfers control to the object procedure over indication
of the nunber. The instruction has follow ng values of fields:
OPCODE = 202/ 203 ; Accordingly for the instructions not containing
and containing the informtion about VM

OPR _LENGTH = 4 - 65535 ; Depends on inclusion of the information
about VM and call paraneters |ength.

Bogdanov Experi ment al [Page 57]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

Oper ands:

2 octets: The VMtype of the sender. |f OPCODE=202 this field
i s absent.

2 octets: The VMversion of the sender. |f OPCODE=202 this
field is absent.

4 octets: The nunber of object.

2 octets: The version of object.

2 octets: The realization of object.

4 octets: The nunmber of the called procedure.

4 - 262128 octets: Paraneters of the call.

The processing on the reception side is nmade simlarly instructions
CALL (see section 6.3.1).

6.6.3.2 CALL_BNAME

The instruction "To call the object procedure over nanme" (CALL_BNANE)
transfers control to the object procedure over indication of the
nane. The instruction has follow ng val ues of fields:

OPCODE = 204/ 205 ; Accordingly for the instructions not
cont ai ni ng and contai ning the information
about VM
OPR LENGTH = 3 - 65535 ; Depends on inclusion of the information
about VM and call paraneters |ength.
Oper ands:
2 octets: The VMtype of the sender. |f OPCODE=204 this field
i s absent.
2 octets: The VMversion of the sender. |f OPCODE=204 this
field is absent.
octets: The nunber of object.
octets: The version of object.
octets: The realization of object.
- 262128 octets: Paranmeters of the call.
The extension header:
_NAME - Contains the nane of the called procedure.

4
2
2
4

The processing on the reception side is made sinilarly instructions
CALL (see section 6.3.1).

The nanes may have the procedures of the objects belonging to ranges
Il and IV. The procedures of the objects belonging to ranges | and
Il nust not have a nane on the UMSP | ayer. They nust have the nunber
only.

Bogdanov Experi ment al [Page 58]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

6.6.3.3 GET_NUM PROC

The instruction "To get the nanme of object procedure" (GET_NUM PRCC)
al | ows receiving nunber of the procedure for objects in ranges II
and IV over procedure nanme. The instruction has follow ng val ues of
fields:

OPCCDE = 206
OPR_LENGTH = 2
Oper ands:
4 octets: The nunber of object.
2 octets: The version of object.
2 octets: The realization of object.
The extension header:
_NAME - Contains procedure nane

For the positive response on the instruction GET_NUM PRCC, the
instructi on PROC_ NUM for negative - RSP with the non-zero basic
return code is sent.

6.6.3.4 PROC_NUM

The instruction "The procedure nunmber” (PROC_NUM is sent in reply to
the instruction GET_NUM PROC. The instructi on PROC_ NUM has fol |l owi ng
val ues of fields:

OPCCDE = 207
OPR_LENGTH = 3
Oper ands:
4 octets: The nunber of object.
2 octets: The version of object.
2 octets: The realization of object.
4 octets: The number of procedure.

6.6.4 The bjects Creation

The objects fromthe ranges | and Il (standard and assigned for the
user) cannot be created on the renote node through the UMSP
interface. These objects nmust be created only through APl of the VM
The objects fromthe ranges IIl and IV can be created on the renote
node by the protocol instructions.

The realization of objects fromthe ranges | - Ill (not connected
with the certain job) is difficult enough. The reason is that the
different jobs can have the different address spaces of menory. The
poi nters must be processed in the context of the job, fromwhich they
are received. Besides, these objects nust trace the end of the jobs

Bogdanov Experi ment al [Page 59]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

for deallocation of dynam c resources. The specified requirenents
i mpose essential restrictions on these objects. The protocol does
not inpose any restrictions on objects fromthe range |IV.

Uni que key identifying object on node, is nunber of object. To
objects fromthe ranges, Ill and IV the nane may be assigned. The
objects fromrange | and Il nust not have nanes on the UMSP | ayer
Wthin the framework of one task nust not be two objects having one
number or one nane.

6.6.4.1 NEW SYS_NEW

The format of both instructions "New object” (NEW and "New system
object" (NEWSYS) is simlar. First instruction creates object in
the range 1V, second - in the range IIl. These instructions have the
foll owi ng val ues of fields:

OPCODE = 208/ 209; Accordingly for NEW NEW SYS
OPR_LENGTH = 3
Oper ands:
octets: The addressee VM type.
2 octets: The addressee VM version
2 octets: The version of object.
2 octets: The realization of object.
4 - 262136 octets: Immedi ate data necessary for creation of
obj ect.
The extension headers:

_DATA - Contains inmedi ate data, necessary for creation of
object. This header is present, only if the data is not
present in operands.

_NAME - Contains the nane of object. This header is optional

N

The instruction NEWSYS is used for the creation of object accessible
fromany job, NEW- for creation of object accessible only fromits
job. If the object is created, the instruction OBJECT is sent for
the response. |f the object cannot be created, the instruction RSP
with the non-zero basic return code is sent.

The inmmediate data field is transparent for the protocol. It is
fornmed by the sender VM and it rmust contain the information, which is
necessary to the addressee VM for the creation of object. Data nust
not sinultaneously be sent in operands and in the extension header

The field SESSION_ID of the instruction cannot have the zero val ue.
The dynami c object nust be created only in the context of the
definite job. The object is always created on VM w th which the
session i s connected.

Bogdanov Experi ment al [Page 60]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

The zero values of the version and the realizations of object neans,
that the object have no these val ues.

It is possible to register the name of object simultaneously with its
creation. The nanme contains in the NAME extension header

Al'l objects created upon the instructions NEWand NEW SYS nust be
obviously deleted. VM nust autonmatically delete all dynami c objects,
created and not deleted by the task, at the end of the task.

6.6.4.2 OBJECT

The instruction "The Object" (OBJECT) is used for the positive
response on the instruction NEWand NEWSYS. The instruction OBJECT
has foll owi ng val ues of fields:

OPCCDE = 210
OPR_LENGTH = 2
Oper ands:
4 octets: The number of object.
2 octets: The version of object.
2 octets: The realization of object.

6.6.4.3 DELETE

The instruction "To delete the object"” (DELETE) is used for the
del eting of object created on the instruction NEWor NEWSYS. The
i nstructi on DELETE has the follow ng val ues of fields:

OPCCDE = 211
OPR_LENGTH = 1
Oper ands:
4 octets: number of object

The object may be deleted only fromthe job, which has created it.
The instruction RSP is sent inreply to this instruction

6.6.5 The ojects ldentification

At registration of object on the node, it nmay be identify by the
nane, the length of 4 - 254 octets. The nane contains the synbols
ASCII. The follow ng versions of the protocol nmay define other types
of the name.

The nanme identifies with the nunber of object and is its synonym

The nanes of all active objects in one task on the node nust be
uni que. Thus, all active objects fromthe range of nunber | - 111

Bogdanov Experi ment al [Page 61]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

nmust have the uni que nanes for all tasks on the node. The protoco
al l ows receiving the nunber of object by the nanme and t he nane of
obj ect by the nunber

6.6.5.1 OBJ_SEEK

The instruction "To seek the object" (OBJ_SEEK) is used for seek of

nunber of the object by the nane. It has the follow ng val ues of
fields:
OPCCDE = 212

OPR_LENGTH = 0
The extension header:
_NAME - contains the nane of object for search.

If the object is found - the instruction OBJECT is sent in the
answer. |If the object is not found - the instruction RSP with the
non-zero basic return code is sent for the response.

The instruction OBJ_SEEK nmay be sent broadcast through UDP. 1In this
case, it concerns to zero-session. The instruction nmay contain the
field REQ ID for identification of answers. The positive responses
in this case nust be sent only. The response may be transmtted

t hr ough UDP

6.6.5.2 OBJ_GET_NAME

The instruction "To get a name of the object"” (OBJ_GET_NAME) is used

for get of the name of object by nunmber. It has the foll owi ng val ues
of fields:

OPCCDE = 213

OPR_LENGTH = 1

Oper ands:

4 octets: nunmber of object for getting

If the object is present - the instruction OBJECT with the extension

header _NAME is sent for the response. |f the object is not present

- the instruction RSP with the non-zero basic return code is sent for
t he response.

7 Chains

The instructions, which will be sent on one session connection, can
be unified in a chain. The chain is a group of the instructions
relational with each other. |In one session, several chains

si mul t aneously can be transferred. The chains can be the follow ng

types:

Bogdanov Experi ment al [Page 62]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

o The sequence.
0 The transaction
o The fragmented instruction.

If the instruction is included into a chain, the flag CHN shoul d be
equal 1. The field CHAIN NUMBER of header contains nunber of a
chain, I NSTR NUMBER - serial instruction nunber in a chain, since O.
The nunbering of chains is conducted by the protocol. In one session
simul t aneously can be transferred up to 65533 chains. Val ues of
nunbers of chains %0000 and % FFFF reserved by the protocol. One
chain can contain up to 65535 instructions.

The instruction with a zero serial nunber | NSTR NUMBER shoul d contain
t he extension header describing a chain. Each type of a chain has
own initiating extension header

_END CHAIN. The extension header "End of the chain" is transferred
in last instruction of chain, irrespective of type of the chain. It
has the follow ng values of fields:

HEAD_CODE =
HEAD_LENGTH
HOB = 1

6
=0

Nunber of a finished chain contains in a field CHAI N NUMBER of the
instruction header, to which the extension header is attached.

The instructions, included in chains, can be transferred through UDP
only if all chain is located in one segment.

7.1 Sequence

The sequence is a type of a chain, which unites the instructions
dependent from each other. The follow ng instruction of a sequence
can be executed on VM only if have been executed previous. |If the
current instruction cannot be executed, all other instructions of the
gi ven sequence (al ready sent or expecting sending) sinply cancel

Due to this, it is possible for one conmputing control thread not to
wait for the current instruction positive end and to transfer

foll owi ng at once.

_BEG N SQ The extension header "To begin a sequence" is transferred
inthe first instruction of the sequence. It has the follow ng
val ues of fields:

HEAD CODE =
HEAD_LENGTH
HOB = 1

3
=0

Bogdanov Experi ment al [Page 63]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

Nunmber of created chain is established in field CHAI N NUMBER of the
instruction header, to which the extension header is attached. The
field I NSTR_NUMBER nust have val ue 0.

The initiator of creation of a sequence is VM It is not obligatory

that the sequence shoul d have known | ength beforehand. It can be
completed in any nonent. |If it is necessary to finish a sequence and
there are no instructions for sending, the instructi on NOP can be
gener at ed.

7.2 Transaction

The transaction is a type of the chain uniting sone possibly not
connected with each other instructions. Al transaction instructions

must be executed all at once or nmust not be executed. It is possible
to cancel or to confirmtransaction execute. The transaction
cancel | ation after execution is not stipulated. If it is necessary,

such nechani sm should be realized at VM| evel, because there can be
instructions in transaction, which are inpossible to cancel, for
exanpl e a control transfer.

The initiator of transaction creation is VM The transaction |length
must be known beforehand. The length will define a way of
transaction transfer. It is connected with buffering described in
section 7. 4.

7.2.1 _BEG N_TR

The extension header "To begin a transaction' BEGANTR s
transferred in the first transaction instruction. It has the
foll owi ng val ues of fields:

HEAD CODE = 4

HEAD LENGTH = 1

HOB = 1

DATA - Has the follow ng format:

g S S S S

| TRE| TRR| TRS]| Reserve |
B T S S S T =

| TIME_TR |
S

TRE
1 bit. The flag of obligatory execution. This flag relates

only to completely transferred, but have not yet executed
transaction. If TRE = 1, the transaction nust be executed at

Bogdanov Experi ment al [Page 64]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

the expiration of existence tinme, established by field TIME TR
or at energency session end. If TRE = 0, at end of existence
time the transaction nust be cancelled and the negative

acknow edgenment must be transferred, and at energency session
end - nust be sinply cancell ed.

TRR

1 bit. The flag of execution after sending. If TRR = 1, the
transacti on nmust be executed after sending of all instructions,
of which it is consists, at once. Such transaction is executed
after reception of the instruction with the extension header
_END CHAIN. If TRR =0, it is necessary to transfer the
special instruction EXEC TR of transacti on acknow edgenent for
its execution.

TRT

1 bit. The flag of special processing. It is entered for a
possibility of the further expansion of the protocol. |If TRT =
1, before transaction execution it is necessary to make sone
addi ti onal actions above the instructions, of which it is
consists, for exanple to decipher. These actions can be
definite in the additional extension headers transmitted in the
transaction instructions. The given docunent will not define
cases of use of this flag. The value TRT nust be zero.

Reserve
Must be set to O.

TI ME_TR
1 octet. Tinme of transaction |life in 2 - second intervals
(maximal lifetine - 8 mnutes). The receiving side begins
readout of this time after receiving all transaction
instructions. The value %00 sets transaction w t hout
restriction of lifetine.

In the last instruction of transaction the header, END CHAIN is
al ways sent.

7.2.2 EXEC_TR
This instruction "To execute the transaction" (EXEC TR) is

transferred for execution transaction early transferred. It has the
foll owi ng val ues of fields:

Bogdanov Experi ment al [Page 65]

RFC 3018 Uni fied Menory Space Prot ocol Decenber
OPCCDE = 158
ASK =1
PCK = %01/10/11
CHN = 1
EXT = 0/1

2000

CHAI N_NUMBER - Contains the nunber of chain, which is necessary to

execute.
| NSTR_NUMBER = 0
OPR_LENGTH = 0

7.2.3 CANCEL_TR

The instruction "To cancel transaction" (CANCEL_TR) is transmitted

for a cancell ation of execution transaction transmtted before.
has the follow ng values of fields:

OPCCODE = 159
ASK = 0

PCK = 9%01/10/11
CHN =1

EXT = 0/1

It

CHAI N_NUMBER - Contai ns the nunber of chain, which is necessary to

cancel .
I NSTR_NUMBER = 0
OPR LENGTH = 0

The instructions, of which the cancelled transaction consists, delete

wi thout a possibility of restoration
7.3 Fragnented instruction

UVSP is designed for work with the transport protocol with the

limted size of transnmitted data segnent. The fragnentation of the

instructions is made in the followi ng two cases:

(1) If the instruction is longer than the naxi mal segnent size of

transport |ayer or,

(2) If the segnent is formed of the several instructions and | ast

instruction is not located in it conpletely.
The decision on fragmentation is taken to UVSP | evel

The fragnented instruction is encapsulated in several NOP
instructions. Then all instructions NOP are transnmitted, as one
chain of special type. The following algorithmis used during
encapsul ati on:

Bogdanov Experi ment al [Page 66]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

(1) The fields SESSION ID and REQ ID fromthe fragnented instruction
are witten in the first NOP instruction. |If field REQIDI s
not present in the initial instruction, it nust not be in the
NOP instruction. The field SESSION ID always is present in the
fragmented instructions.

(2) Then these fields delete fromthe initial instruction. The
value of all other fields of the header does not change.

(3) After that, the initial instruction is divided into fragnents of
necessary length. Each fragnent is located in a field of
operands of the NOP instruction. Oher data should not be
entered in operand field.

_BEG N FRG The extension header "The first fragnment" is transnitted
to the NOP instruction, which contains the first fragnent. It has
the follow ng values of fields:

HEAD CCDE = 5
HEAD LENGTH = 0/2 ; Depends on subordination of the chain.
HOB = 1
Dat a:
2 octets: Number of the parental chain. Fragmented instruction
may be a part of the sequence or transaction
2 octets: The instruction nunber in the parental chain.

The header _END CHAIN is transmitted in NOP instruction, which
contains |last fragnent.

7.4 Buffering

In the given item the buffering used by the protocol on receiving of
data is described. The question of buffering on sending |lies beyond
t he scope of the protocol

If the instruction is not include in a chain, it is transmtted to VM
for execution at once and does not require buffering at the protoco

I evel. The interface UMBP - VM nust provi de asynchronous
instructions sending. It is recomended, that the productivity of
UMSP systens, should allow to process the instructions accepted from
network, w th that speed, with what they were received. All
instructions are designed so that carries out the known and linited
conmputing | oading. Exception is the instruction of contro
transfers, which nust be processed in two stages. The instruction
correctness is checked firstly and its scheduling is made. Then the
instruction is executed. At that nust be guaranteed that the
protocol can receive such part of processor tine, which would allow
it to wrk in stationary node. Therefore, the questions of node
overl oad are deduced on VM | ayer and user applications |ayer, where
they can be sensible controll ed.

Bogdanov Experi ment al [Page 67]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

For chains, the protocol provides two schenes of buffering during the
receiving:

(1) At the session connection establishnment, the sides agree about
the allocated buffer ("w ndow') size. The w ndow always is nore
than the maxi mal segnent of a transport layer. The transmitting
side can expect for this buffer without the prelimnnary
coordination with the receiving side. The w ndow size is
establ i shed single for each session connection, and cannot be
changed in subsequent. UMSP is designed for using of transport
| ayer, which infornms about the data delivery. Therefore
transmitting side traces the current free size of the w ndow on
the reception side for each connection wi thout assistance. |If
the reception side finds out, that the data have been received,
whi ch cannot be placed in the wi ndow, the connection is broken
of f.

(2) For transactions and fragnmented instructions, which size exceeds
the window, it is necessary to request the reception node the
sanctions to sending. The theoretical limting size of chain
transmtting so is 4 Goytes.

REQ BUF. The instruction "To request the buffer” requests at VMthe
buffer allocation for sending of transaction or large fragnented

instruction ("Wndow'). It has the follow ng values of fields:
OPCCDE = 24
ASK = 1
PCK = b01/11
CHN =0
EXT = 0/1
OPR_LENGTH = 1
Oper ands:
4 octets: The buffer required size in octets. The value is
equal to the total size of all instructions of the

chain, including the size of the subordinated chai ns.

The instruction is formed under the initiative of the protocol and it
uses the instruction RSP_P as acknow edgenent. However, on the
reception side the buffer is allocated at VMl evel, as VM has the
nmost conplete information about the task. The interface between UMVSP
and VM nust give possibility of asynchronous request of such buffer

The instructi on REQ BUF can be used irrespective of the possibility
to place the chain in the buffer, allocated for session (w ndow). It
is necessary to take into account, that the negative acknow edgenent
can be transmitted on this instruction, but using of a "w ndow'
guar ant ees sendi ng.

Bogdanov Experi ment al [Page 68]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

The subordi nated chain on reception uses the buffer of the parenta
chai n.

The sequence sending will not require about the buffer allocation in
di fference of transaction or fragnented instruction. |If the single
connection TCP is used for sending, the sequence buffering is not
necessary. |If the nmultiple connections TCP with nultiplexing are
used, the sequence requires buffering for the disorder instructions.
In this case, it is necessary to use the buffer, allocated for

sessi on.

Transactions, at which flag TRR = 0, always nust request the sanction
for sending by instruction REQ BUF, even if they can be placed in one
segment of transport |ayer.

The buffering of the fragmented instructions and transactions, at
which flag TRR = 1, depends on their size:

o If the transaction is located in one segnent of transport |ayer
it is transmtted without buffering.

o If length of a chain is no nore then "window', it can be
transmtted without request of the buffer of w ndow allocation
Thus, the place in the buffer nust be reserved before the sending
begi ns. The sending cannot be begun, if it is not enough pl aces
in the buffer. 1In this case, it is possible to wait the w ndow
deal | ocation or to use the request instruction of the buffer
al l ocation at VM REQ BUF.

o If length exceeds the session window size it is necessary to use
the instructi on REQ BUF.

7.5 Acknow edgenent of chains

The field REQ ID in chains of any type is established only in the
first instruction and concerns to all chain. The all follow ng
instructions, including last, do not contain REQ ID.

The transport protocol used for chains sending, nust informabout the
end of data transfer, because it is necessary for the transnitting
side to know the free size of the allocated session wi ndow on the
reception side.

If the chain uses the allocated VM buffer (the sanction to sending
REQ BUF was requested), or the chain conpletely |l ocates in transport
| ayer segment, the protocol on the transnitting side does not trace
acknow edgenent .

Bogdanov Experi ment al [Page 69]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

If the sequence is transmtted, the transmitting side receives the

i nformati on about free place of the buffer on the reception side by
acknow edgenent of transport layer delivery. It can be made, as the
regul ated sequence instructions are transnmtted VM at once after
recei ving and rel ease the buffer.

The fragnented instructions and transactions are not transnitted VM
until its will be conpletely accepted. |f session windowis use, the
occupation of places in the buffer can be cal cul ated upon

acknow edgenment of transport |layer sending. To trace free of places
it is necessary to check execution acknow edgenent by VM The
followi ng algorithmof sending is used for this purpose:

0o The value of field REQID, which has given VMfor chain sending,
is kept and it is enters the value established by the protocol
instead of it

0 The newvalue REQID is transnmitted in the first instruction of
chain

0 The chain conpletely collected in the session w ndow on the
reception side. After linking, it is transmitted for execution on
VM At that, the chain can continue to occupy a place in the
buf f er.

0 After execution, VMinfornms about it to the reception side
pr ot ocol .

0 The protocol clears place in the allocated buffer.

0 Then the protocol fornms and transnits on chai n acknow edgenent
RSP_P, instead of RSP, as in other cases.

o0 The transnmitting side protocol corrects size of free place in the
reception side buffer after reception of acknow edgenent RSP_P.

0 Then the old value REQID is restored and the acknow edgenent is
transmtted to VM

7.6 Base-displ acenment Addressing

The menory base address for the rel ative addressing can be
established for the instructions fromone chain. Thus, it is
possi ble to use the abbreviated address nenory fields in the

i nstructions of chain. The abbrevi ated addresses are used, as
di spl acement from base.

SET_MBASE. The extension header "To set nenory base" establishes

the val ue of base address for chain. It has the foll owi ng val ues of
fields:

HEAD CCDE = 7

HEAD LENGTH = 2/4/8 ; Depends on address | ength.

HOB = 1

DATA cont ai ns:

Bogdanov Experi ment al [Page 70]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

4/ 8/ 16 octets: The base address.

The length of address is 3 octets, enters the nane in |last octets of
4-octets data field. The initial octet is set to 0. The base-

di spl acenent addressing is not used for nodes with address length 2
octets.

The val ue of nmenory base for a sequence nay change. The base nust be
established once in any instruction for all transaction instructions.
The repeated establishnment of transaction base is a m stake, which
results refusal of transaction execution

8 Extension Headers

This section contains the description of the extension headers, which
are not connected with the definite instruction. The description of
the specialized extension headers describes in the appropriate
sections of this docunent.

8.1 _ALI GNVENT

The extension header "Alignnment" (_ALI GNVENT) allows to make any

ext ensi on header or field of operands nultiple of 4 - 16 octets with
the step of two octets. The protocol does not give any rul es of use
gi ven extension header. 1t can be used arbitrarily. The header has
the follow ng values of fields:

HEAD CCODE = 8

HEAD LENGTH =

HOB = 0

DATA cont ai ns:
2 - 14 octets: Al octets of the field have the zero-val ue.

1-7 ; Depends on length of the data field.

The format of the protocol instructions provides the alignnent of two
octets field wi thout any additional neans.

8.2 _MBG

The extension header "The any nmessage" (_MSG@ allows sending the
textual nessage in synbols ASCII. The order of this header
processing at receiving can be anyone. The nessage can be witten in
a log-file, be shown on the console or be ignored. The header has
the follow ng values of fields:

HEAD CODE = 9

HEAD LENGTH = 1 - 127 ; Depends on data length of field.
HOB = 0

DATA cont ai ns:

Bogdanov Experi ment al [Page 71]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

2 - 254 octets: The any text of the nmessage.
The instruction may contain several headi ngs _MSG
8.3 _NAME

The extension header "The Nane" (_NAME) allows specifying the job
nane, name of object or nanme of object procedure. The header has the
foll owi ng val ues of fields:

HEAD CODE = 10
HEAD LENGTH = 1 - 127 ; Depends on length of a field of data.
HOB = 0
DATA cont ai ns:
2 - 254 octets: The text of the name in synmbols ASCII.

8.4 _DATA

The extension header "The Data" (_DATA) is used for data transfer in
the instructions of exchange between VM if the data cannot be placed
in operands. It allows transferring up to 4 Goytes of data in one
instruction. The header has the follow ng values of fields:

HEAD CODE = 11
HEAD LENGTH = 1 - 2 147 483 647 ; Depends on length of the data
field.
HOB = 1
DATA cont ai ns:
2 - 4 294 967 294 octets : Binary data in an any format.

8.5 LIFE_TIME

The extension header "The lifetine" (_LIFE_TIME) contains val ue of
time. It has the follow ng val ues of fields:

HEAD CODE = 12
HEAD LENGTH = 1/2; Dependi ng on | ength of data.
HOB = 1
DATA cont ai ns:
2/ 4 octets: The tinme in 1,024 mlliseconds intervals.

The header LIFE TIME allows to set limting tinme of sending of the
instruction to VM of the addressee.

Bogdanov Experi ment al [Page 72]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

The instruction lifetime is calcul ated as foll ows:

0 On the transnmitting side the tine of waiting in a queue to the
transport layer is taken into account. The value of the lifetine
decreases on the waiting tine value now of the transport |ayer
package fornmation.

0 On the reception side the lifetine is taken into account only for
the fragmented instructions. The value of the lifetine decreases
on time of the instruction assenbly value. This header is ignored
at receiving for no-fragmented instructions. Its value nust be
sent to VM

o The tine of sending at the transport |layer is not taken into
account. For the fragnented instructions, only the tine of
sending of the first fragment is not taken into account.

The end of lifetime at the instruction relating to sequence finishes
t he sequence sending. The header _LIFE TIME nust not be used at
transacti ons sendi ng.

If the instruction is fragmented, the header _LIFE TIME is sent only
in the instruction NOP, containing the first fragnent. This header
deletes fromthe initial fragnmented instruction. |If the tine is
over, when the fragnented instruction part has not been transmtted
yet, the stayed part of the instruction is cleared.

The instruction lifetinme is established by the sender VM and nust be
sent together with data to the addressee VM If the tinme of life
expires, the instruction is rejected and the negative response (if
ASK = 1) is sent toit. |If ASK = 0, the response is not sent.

The header _LIFE TIME nmay be used in the nultinmedia systens and in
the real time systems. The protocol may raise the priority of
sending for data with coming to the end lifetine

9 Search of resources

Virtual Machines are the identified resources of the protocol. The
VM st andardi zation is not function of UVMBP. The protocol gives
transparent environment for transportation of the code and data of

any type.

For VM connected to the protocol, the followi ng val ues are
est abl i shed:

o The VMtype. The range of values 1 - 65534.
o The VMversion. The range of values 1 - 65534.

Bogdanov Experi ment al [Page 73]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

The protocol requires obligatory conpatibility frombottomup for VM
of one type and different nunbers of the versions (VMwith |arger
nunber of version nust be able to execute the VM code with any
smal | er number of version).

Nunmbers of VM types are broken on the foll ow ng ranges:

1 - 1023 Assi gned for standard VM
1024 - 49151 Assigned for registered VM of the users
49152 - 65534 Free (defined for dynam c and/or private VM

Nunbers of types and versions %0000 and % FFFF are reserved by the
pr ot ocol

Several VM of different types nay be united in a group. Al VM
included in a group, must work in the common space of |ocal menory
and have the common subsystem of the jobs control. It neans, that if
the sane 128-bit address is net in anyone VM code for one task, it
nmust specify one physical cell of nmenory. The perfornmance of the
specified conditions all ows executing nultivendor user code
(containing procedures for different VM on one node. Al VM
included in a group, must have the different types. The group can

i nclude no nore than 65534 VM One nunber of group on different
nodes nmay identify groups with different structure VM

To each group VM on the node the code of group of 2 octets length is
assigned. So long as the node has even one session connection, the
codes of groups nmust not change. It is recommended to change the
code of group only at reconfiguration of the node. The group VMis
identified, as well as one VM Thus, the type VMis set to 0, and

t he nunber of group is assigned to VM version

The support of association VMin groups is optional requirenment of
the protocol. The nultivendor user code can be executed, even if the
association in groups is not provided. For this purpose, the
procedures containing a different type of a code nust be executed on
di f ferent nodes.

UMSP gives the instructions of search of the VM which all ow
defining, what VM and the groups VM are connected at the given nonment
to the protocol on the definite node.

The instructions of search of the VM can be sent upon TCP or UDP

The broadcasting dispatch can be used. The node can independently
notify about VM available onit, for exanple at start, or to respond
on others VM requests. The answerback instructions nmust be sent
under the sane protocol, on which the request was received.

Bogdanov Experi ment al [Page 74]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

VM from ranges of nunbers 49152 - 65534 or any group VM nay be
identified on names. VMw th nunbers 1 - 49151 nust not have nanes
at a layer of the instructions UVSP.

9.1 VM REQ
The instruction "To request the VM (VM REQ allows finding out VM

connected on the renote node. The instruction has the follow ng
val ues of fields:

OPCCDE = 25

PCK = %00

CHN =0

ASK = 0/1

EXT = 0/1

OPR _LENGTH = 0 - 65534 ; Depending on quantity VM in operands.
Oper ands:

2 octets: The type required VM The value 0 is not all owed.
2 octets: The version required VM The value 0 is not all owed.
The val ue %FFFF requests the nobst senior version.

2 octets: The type required VM
2 octets: The version required VM
The optional extension header:
_NAME - This header contains the name of required VMor VM

group.

The instruction without operands is used for request of all types VM
connected on the node. The instruction with one VMin operands
requests the information on one VM If it is contained several VMin
operands, the group VM containing all specified VMis requested. The
type and version in list VMnust be indexed on increase.

To request VM used at work w thout session connection, the VMtype
and VM version nmust have the val ue %FFFF.

The header _NAME is not connected with value of operands. For it,
the separate answer mnust be transmtted.

9.2 VM NOTI F
The instruction "To notify about VM (VM NOTIF) is used for the

notification of one VM or one VM group attached on the node. The
instruction has the follow ng values of fields:

Bogdanov Experi ment al [Page 75]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

OPCCDE = 26
PCK = %00
CHN = 0
ASK = 0/1
EXT = 0/1
OPR LENGTH = 1 - 65534 ; Depending on quantity VMin operands.
Oper ands:
2 octets: The used transport protocol. The follow ng val ues of

this field are definite:
x0100 - Single TCP connection through the port 2110.
x0101 - Multiple TCP connection through the port 2110.
x0102 - Single TCP connection through ports 2110 and UDP
t hrough ports on receiving 2110.
x0103 - Multiple TCP connection through ports 2110 and UDP
t hrough port on receiving 2110.
The port 2110 nust be opened on the one side or both side at
each TCP connection
2 octets: Reserved. This field nust not be analyzed by the
protocol during the receiving in the current
realization of the protocol. It nust be set to 0 at
sendi ng.
2 octets: The type VM
2 octets: The version VM

2 octets: The type VM
2 octets: The version VM

The optional extension header:
_NAME - This header contains the nanme by separate VM or group VM
from operands of the instruction

It is necessary to generate several instructions, if it is required
to informabout several VMor groups. It is necessary to formthe
separate instructions for each protocol, if the node provi des severa
transport protocols.

If the instruction is used for the response to VM REQ request, it can
contain ASK = 1 and REQ ID, established in value fromthe instruction
of request. |If the VM group was requested, the instruction nust
contain several VM First VM nust have the type set to 0 and the
version nmust contain the nunmber of group. Ohers VM nust define
structure of group. The type and version in VMIlist nust be indexed
on increase.

Bogdanov Experi ment al [Page 76]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

The protocols, contained in the instruction VM NOTIF, nmay differ from
the protocol, through which this instruction is transferred.

10 Security Considerations

The present docunent contains the description of the functions,
mnimally necessary for the realization of the declared task -

i medi ate access to nenory of the renpbte node. To reduce initia
conmpl exity of the protocol, the decision of safety questions is not
i ncluded in the docunent. All reasons of the given unit are the
recomendations to the further expansion of the protocol

For the description three nodes are used - node A and node B are
exchanges the data. The node Gis JCP

Protection agai nst sniffing, spoofing and hijacking:

(1) The neans specifies in TCP/IP can be used.

(2) There is a possibility to create chains with the speci al
processing. To create such chain, it is necessary to transfer
t he extension header, determ ning the special processing, in
the first instruction of the chain. The instructions of chain
can be encapsulated in the NOP instructions. The algorithns
of the control of instructions sequence integrity or the
encryption can be realized in such a way.

Protection agai nst the man-in-the-m ddl e:

The protection is based on the fact, that the routes between nodes
A- B A- Gand G- Bis not crossed. Such schene all ows
organi zi ng the additional nanagi ng dataflow, allow ng revealing
such type of attack. |If the specified routes pass through one
gateway, this protection is | ess effective.

Aut henti cati on

The protocol working is based on a principle of the centralized
control. It allows using several schenes of authentication. The
paraneters of authentication are sent in the extension headers.
The establishnment of session connection can contain up to eight
handshakes. It also raises flexibility at a choice of

aut hentication algorithm The realization of authentication is
possi bl e between three pairs nodes A- B, A- Gand G- B. Al
pairs can be used in any conbination. The node G can be specially
al l ocated for realization of authentication

Bogdanov Experi ment al [Page 77]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

Prot ecti on agai nst deni al - of -service

The instructions of the protocol have definite conputing |oading.
It allows projecting the node so, that it can process the
instructions with such speed, with what they are accepted fromthe
network. A possible reason of an overload is the instructions
JUW and CALL. VM nust solve this problem 1t has the conplete

i nformation about the user task and can nake a decision on the
amount of allocated resources. The decision of a problemis the
failure in service for lowpriority traffic.

Protection at the applications architecture |evel

The protocol allows creating the applications of any architecture.
It is possible due to an asymetric structure of connection. It
is possible to allocate three basic groups:

(1) The client who is carrying out term nal functions and
client/server technologies. The security of such systens is
compl etely defined by the server. Such architecture is
represented nost protected.

(2) The client, loading an active code fromthe server. It is the
| east protected architecture, fromthe client point of view
On the server side, there are no special requirenents upon
protection.

(3) The client, who is executing his code on the server. This
architecture is safe for the client. It is necessary to
strengthen the protection on the server. The functionalities
of such architecture do not differ fromarchitecture of
| oading by the client of an active code. |If ones take into
account, that the server is the specially allocated conputer,
the given architecture is optinum

Al'l given technol ogi es may be used sinultaneously in any
conbi nati on.

11 Used Abbreviations

API

CTl

Application Progranm ng |Interface.

D JCP assigned the Control Task IDentifier to each task of the
job. Its length is equal to length of the |ocal address
menory on the node JCP

Bogdanov Experi ment al [Page 78]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

&QID dobally Job IDentifier is assigned for the each job. GQJIDis
defined on the JCP node. It has the sane format, as the 128 -
bit address of node JCP nmenory has. The address of |oca
menory is replaced on CTID of the first (initial) task of the
job init.

GIID dobally Task IDentifier is assigned to each task. GIID has
the sane format, as the 128 - bit address of node nenory has.
The address of local nenory is replaced on LTIDin it.

JCP Job Control Point. This node will control the job.

LTID Locally Task IDentifier is assigned to each active task on the
node. LTID length is equal to the |ocal menory address |ength
defined for the node.

VM Vi rtual Machi ne.

12 References

[1] Bradner, S., "The Internet Standards Process -- Revision 3", BCP
9, RFC 2026, Cctober 1996.

[2] Bradner, S., "Key words for use in RFCs to |Indicate Requirenent
Level s", RFC 2119, March 1997.

[3] Crocker, D., and P. Overell. "Augnmented BNF for Syntax
Speci fications: ABNF', RFC 2234, Novenber 1997.

[4] Postel, J., "Transmi ssion Control Protocol - DARPA |nternet
Pr ogram Prot ocol Specification", STD 7, RFC 793, Septenber 1981.

[5] Postel, J., "User Datagram Protocol", STD 6, RFC 768, August
1980.

[6] Srinivasan, R, "RPC. Renpte Procedure Call Protoco
Speci fication Version 2", RFC 1831, August 1995.

Bogdanov Experi ment al [Page 79]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

13 Aut hor’s Address
Al exander Y. Bogdanov

NKO " ORS"

22, Snol naya St.
Moscow, Russia 125445
RU

Phone: +7 901 732 9760
EMai | : a_bogdanov@ nane. ru

Bogdanov Experi ment al [Page 80]

RFC 3018 Uni fied Menory Space Prot ocol Decenber 2000

14 Full Copyright Statenent
Copyright (C) The Internet Society (2000). Al Rights Reserved.

Thi s docunent and translations of it nmay be copied and furnished to
others, and derivative works that comment on or otherwi se explain it
or assist in its inplenentation may be prepared, copied, published
and distributed, in whole or in part, w thout restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncluded on all such copies and derivative works. However, this
docunent itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other
I nternet organi zati ons, except as needed for the purpose of
devel opi ng Internet standards in which case the procedures for
copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into | anguages other than
Engl i sh.

The linited perm ssions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

Thi s docunent and the information contained herein is provided on an
"AS | S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENG NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LIM TED TO ANY WARRANTY THAT THE USE OF THE | NFORMATI ON
HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Acknowl edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

Bogdanov Experi ment al [Page 81]

