
Network Working Group M. Rose
Request for Comments: 3117 Dover Beach Consulting, Inc.
Category: Informational November 2001

 On the Design of Application Protocols

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2001). All Rights Reserved.

Abstract

 This memo describes the design principles for the Blocks eXtensible
 eXchange Protocol (BXXP). BXXP is a generic application protocol
 framework for connection-oriented, asynchronous interactions. The
 framework permits simultaneous and independent exchanges within the
 context of a single application user-identity, supporting both
 textual and binary messages.

Rose Informational [Page 1]

RFC 3117 On the Design of Application Protocols November 2001

Table of Contents

 1. A Problem 19 Years in the Making 3
 2. You can Solve Any Problem... 6
 3. Protocol Mechanisms . 8
 3.1 Framing . 8
 3.2 Encoding . 9
 3.3 Reporting . 9
 3.4 Asynchrony . 10
 3.5 Authentication . 12
 3.6 Privacy . 12
 3.7 Let’s Recap . 13
 4. Protocol Properties . 14
 4.1 Scalability . 14
 4.2 Efficiency . 15
 4.3 Simplicity . 15
 4.4 Extensibility . 15
 4.5 Robustness . 16
 5. The BXXP Framework . 17
 5.1 Framing and Encoding . 17
 5.2 Reporting . 19
 5.3 Asynchrony . 19
 5.4 Authentication . 21
 5.5 Privacy . 21
 5.6 Things We Left Out . 21
 5.7 From Framework to Protocol 22
 6. BXXP is now BEEP . 23
 7. Security Considerations 23
 References . 24
 Author’s Address . 26
 Full Copyright Statement . 27

Rose Informational [Page 2]

RFC 3117 On the Design of Application Protocols November 2001

1. A Problem 19 Years in the Making

 SMTP [1] is close to being the perfect application protocol: it
 solves a large, important problem in a minimalist way. It’s simple
 enough for an entry-level implementation to fit on one or two screens
 of code, and flexible enough to form the basis of very powerful
 product offerings in a robust and competitive market. Modulo a few
 oddities (e.g., SAML), the design is well conceived and the resulting
 specification is well-written and largely self-contained. There is
 very little about good application protocol design that you can’t
 learn by reading the SMTP specification.

 Unfortunately, there’s one little problem: SMTP was originally
 published in 1981 and since that time, a lot of application protocols
 have been designed for the Internet, but there hasn’t been a lot of
 reuse going on. You might expect this if the application protocols
 were all radically different, but this isn’t the case: most are
 surprisingly similar in their functional behavior, even though the
 actual details vary considerably.

 In late 1998, as Carl Malamud and I were sitting down to review the
 Blocks architecture, we realized that we needed to have a protocol
 for exchanging Blocks. The conventional wisdom is that when you need
 an application protocol, there are four ways to proceed:

 1. find an existing exchange protocol that (more or less) does what
 you want;

 2. define an exchange model on top of the world-wide web
 infrastructure that (more or less) does what you want;

 3. define an exchange model on top of the electronic mail
 infrastructure that (more or less) does what you want; or,

 4. define a new protocol from scratch that does exactly what you
 want.

 An engineer can make reasoned arguments about the merits of each of
 the these approaches. Here’s the process we followed...

 The most appealing option is to find an existing protocol and use
 that. (In other words, we’d rather "buy" than "make".) So, we did a
 survey of many existing application protocols and found that none of
 them were a good match for the semantics of the protocol we needed.

 For example, most application protocols are oriented toward
 client/server behavior, and emphasize the client pulling data from
 the server; in contrast with Blocks, a client usually pulls data from

Rose Informational [Page 3]

RFC 3117 On the Design of Application Protocols November 2001

 the server, but it also may request the server to asynchronously push
 (new) data to it. Clearly, we could mutate a protocol such as FTP
 [2] or SMTP into what we wanted, but by the time we did all that, the
 base protocol and our protocol would have more differences than
 similarities. In other words, the cost of modifying an off-the-shelf
 implementation becomes comparable with starting from scratch.

 Another approach is to use HTTP [3] as the exchange protocol and
 define the rules for data exchange over that. For example, IPP [4]
 (the Internet Printing Protocol) uses this approach. The basic idea
 is that HTTP defines the rules for exchanging data and then you
 define the data’s syntax and semantics. Because you inherit the
 entire HTTP infrastructure (e.g., HTTP’s authentication mechanisms,
 caching proxies, and so on), there’s less for you to have to invent
 (and code!). Or, conversely, you might view the HTTP infrastructure
 as too helpful. As an added bonus, if you decide that your protocol
 runs over port 80, you may be able to sneak your traffic past older
 firewalls, at the cost of port 80 saturation.

 HTTP has many strengths: it’s ubiquitous, it’s familiar, and there
 are a lot of tools available for developing HTTP-based systems.
 Another good thing about HTTP is that it uses MIME [5] for encoding
 data.

 Unfortunately for us, even with HTTP 1.1 [6], there still wasn’t a
 good fit. As a consequence of the highly-desirable goal of
 maintaining compatibility with the original HTTP, HTTP’s framing
 mechanism isn’t flexible enough to support server-side asynchronous
 behavior and its authentication model isn’t similar to other Internet
 applications.

 Mapping IPP onto HTTP 1.1 illustrates the former issue. For example,
 the IPP server is supposed to signal its client when a job completes.
 Since the HTTP client must originate all requests and since the
 decision to close a persistent connection in HTTP is unilateral, the
 best that the IPP specification can do is specify this functionality
 in a non-deterministic fashion.

 Further, the IPP mapping onto HTTP shows that even subtle shifts in
 behavior have unintended consequences. For example, requests in IPP
 are typically much larger than those seen by many HTTP server
 implementations -- resulting in oddities in many HTTP servers (e.g.,
 requests are sometimes silently truncated). The lesson is that
 HTTP’s framing mechanism is very rigid with respect to its view of
 the request/response model.

Rose Informational [Page 4]

RFC 3117 On the Design of Application Protocols November 2001

 Lastly, given our belief that the port field of the TCP header isn’t
 a constant 80, we were immune to the seductive allure of wanting to
 sneak our traffic past unwary site administrators.

 The third choice, layering the protocol on top of email, was
 attractive. Unfortunately, the nature of our application includes a
 lot of interactivity with relatively small response times. So, this
 left us the final alternative: defining a protocol from scratch.

 To begin, we figured that our requirements, while a little more
 stringent than most, could fit inside a framework suitable for a
 large number of future application protocols. The trick is to avoid
 the kitchen-sink approach. (Dave Clark has a saying: "One of the
 roles of architecture is to tell you what you can’t do.")

Rose Informational [Page 5]

RFC 3117 On the Design of Application Protocols November 2001

2. You can Solve Any Problem...

 ...if you’re willing to make the problem small enough.

 Our most important step is to limit the problem to application
 protocols that exhibit certain features:

 o they are connection-oriented;

 o they use requests and responses to exchange messages; and,

 o they allow for asynchronous message exchange.

 Let’s look at each, in turn.

 First, we’re only going to consider connection-oriented application
 protocols (e.g., those that work on top of TCP [7]). Another branch
 in the taxonomy, connectionless, consists of those that don’t want
 the delay or overhead of establishing and maintaining a reliable
 stream. For example, most DNS [8] traffic is characterized by a
 single request and response, both of which fit within a single IP
 datagram. In this case, it makes sense to implement a basic
 reliability service above the transport layer in the application
 protocol itself.

 Second, we’re only going to consider message-oriented application
 protocols. A "message" -- in our lexicon -- is simply structured
 data exchanged between loosely-coupled systems. Another branch in
 the taxonomy, tightly-coupled systems, uses remote procedure calls as
 the exchange paradigm. Unlike the connection-oriented/connectionless
 dichotomy, the issue of loosely- or tightly-coupled systems is
 similar to a continuous spectrum. Fortunately, the edges are fairly
 sharp.

 For example, NFS [9] is a tightly-coupled system using RPCs. When
 running in a properly-configured LAN, a remote disk accessible via
 NFS is virtually indistinguishable from a local disk. To achieve
 this, tightly-coupled systems are highly concerned with issues of
 latency. Hence, most (but not all) tightly-coupled systems use
 connection-less RPC mechanisms; further, most tend to be implemented
 as operating system functions rather than user-level programs. (In
 some environments, the tightly-coupled systems are implemented as
 single-purpose servers, on hardware specifically optimized for that
 one function.)

 Finally, we’re going to consider the needs of application protocols
 that exchange messages asynchronously. The classic client/server
 model is that the client sends a request and the server sends a

Rose Informational [Page 6]

RFC 3117 On the Design of Application Protocols November 2001

 response. If you think of requests as "questions" and responses as
 "answers", then the server answers only those questions that it’s
 asked and it never asks any questions of its own. We’ll need to
 support a more general model, peer-to-peer. In this model, for a
 given transaction one peer might be the "client" and the other the
 "server", but for the next transaction, the two peers might switch
 roles.

 It turns out that the client/server model is a proper subset of the
 peer-to-peer model: it’s acceptable for a particular application
 protocol to dictate that the peer that establishes the connection
 always acts as the client (initiates requests), and that the peer
 that listens for incoming connections always acts as the server
 (issuing responses to requests).

 There are quite a few existing application domains that don’t fit our
 requirements, e.g., nameservice (via the DNS), fileservice (via NFS),
 multicast-enabled applications such as distributed video
 conferencing, and so on. However, there are a lot of application
 domains that do fit these requirements, e.g., electronic mail, file
 transfer, remote shell, and the world-wide web. So, the bet we are
 placing in going forward is that there will continue to be reasons
 for defining protocols that fit within our framework.

Rose Informational [Page 7]

RFC 3117 On the Design of Application Protocols November 2001

3. Protocol Mechanisms

 The next step is to look at the tasks that an application protocol
 must perform and how it goes about performing them. Although an
 exhaustive exposition might identify a dozen (or so) areas, the ones
 we’re interested in are:

 o framing, which tells how the beginning and ending of each message
 is delimited;

 o encoding, which tells how a message is represented when exchanged;

 o reporting, which tells how errors are described;

 o asynchrony, which tells how independent exchanges are handled;

 o authentication, which tells how the peers at each end of the
 connection are identified and verified; and,

 o privacy, which tells how the exchanges are protected against
 third-party interception or modification.

 A notable absence in this list is naming -- we’ll explain why later
 on.

3.1 Framing

 There are three commonly used approaches to delimiting messages:
 octet-stuffing, octet-counting, and connection-blasting.

 An example of a protocol that uses octet-stuffing is SMTP. Commands
 in SMTP are line-oriented (each command ends in a CR-LF pair). When
 an SMTP peer sends a message, it first transmits the "DATA" command,
 then it transmits the message, then it transmits a "." (dot) followed
 by a CR-LF. If the message contains any lines that begin with a dot,
 the sending SMTP peer sends two dots; similarly, when the other SMTP
 peer receives a line that begins with a dot, it discards the dot,
 and, if the line is empty, then it knows it’s received the entire
 message. Octet-stuffing has the property that you don’t need the
 entire message in front of you before you start sending it.
 Unfortunately, it’s slow because both the sender and receiver must
 scan each line of the message to see if they need to transform it.

 An example of a protocol that uses octet-counting is HTTP. Commands
 in HTTP consist of a request line followed by headers and a body. The
 headers contain an octet count indicating how large the body is. The
 properties of octet-counting are the inverse of octet-stuffing:

Rose Informational [Page 8]

RFC 3117 On the Design of Application Protocols November 2001

 before you can start sending a message you need to know the length of
 the whole message, but you don’t need to look at the content of the
 message once you start sending or receiving.

 An example of a protocol that uses connection-blasting is FTP.
 Commands in FTP are line-oriented, and when it’s time to exchange a
 message, a new TCP connection is established to transmit the message.
 Both octet-counting and connection-blasting have the property that
 the messages can be arbitrary binary data; however, the drawback of
 the connection-blasting approach is that the peers need to
 communicate IP addresses and TCP port numbers, which may be
 "transparently" altered by NATS [10] and network bugs. In addition,
 if the messages being exchanged are small (say less than 32k), then
 the overhead of establishing a connection for each message
 contributes significant latency during data exchange.

3.2 Encoding

 There are many schemes used for encoding data (and many more encoding
 schemes have been proposed than are actually in use). Fortunately,
 only a few are burning brightly on the radar.

 The messages exchanged using SMTP are encoded using the 822-style
 [11]. The 822-style divides a message into textual headers and an
 unstructured body. Each header consists of a name and a value and is
 terminated with a CR-LF pair. An additional CR-LF separates the
 headers from the body.

 It is this structure that HTTP uses to indicate the length of the
 body for framing purposes. More formally, HTTP uses MIME, an
 application of the 822-style to encode both the data itself (the
 body) and information about the data (the headers). That is,
 although HTTP is commonly viewed as a retrieval mechanism for HTML
 [12], it is really a retrieval mechanism for objects encoded using
 MIME, most of which are either HTML pages or referenced objects such
 as GIFs.

3.3 Reporting

 An application protocol needs a mechanism for conveying error
 information between peers. The first formal method for doing this
 was defined by SMTP’s "theory of reply codes". The basic idea is
 that an error is identified by a three-digit string, with each
 position having a different significance:

 the first digit: indicating success or failure, either permanent or
 transient;

Rose Informational [Page 9]

RFC 3117 On the Design of Application Protocols November 2001

 the second digit: indicating the part of the system reporting the
 situation (e.g., the syntax analyzer); and,

 the third digit: identifying the actual situation.

 Operational experience with SMTP suggests that the range of error
 conditions is larger than can be comfortably encoded using a three-
 digit string (i.e., you can report on only 10 different things going
 wrong for any given part of the system). So, [13] provides a
 convenient mechanism for extending the number of values that can
 occur in the second and third positions.

 Virtually all of the application protocols we’ve discussed thus far
 use the three-digit reply codes, although there is less coordination
 between the designers of different application protocols than most
 would care to admit. (A variation on the theory of reply codes is
 employed by IMAP [14] which provides the same information using a
 different syntax.)

 In addition to conveying a reply code, most application protocols
 also send a textual diagnostic suitable for human, not machine,
 consumption. (More accurately, the textual diagnostic is suitable
 for people who can read a widely used variant of the English
 language.) Since reply codes reflect both positive and negative
 outcomes, there have been some innovative uses made for the text
 accompanying positive responses, e.g., prayer wheels [39].
 Regardless, some of the more modern application protocols include a
 language localization parameter for the diagnostic text.

 Finally, since the introduction of reply codes in 1981, two
 unresolved criticisms have been raised:

 o a reply code is used both to signal the outcome of an operation
 and a change in the application protocol’s state; and,

 o a reply code doesn’t specify whether the associated textual
 diagnostic is destined for the end-user, administrator, or
 programmer.

3.4 Asynchrony

 Few application protocols today allow independent exchanges over the
 same connection. In fact, the more widely implemented approach is to
 allow pipelining, e.g., command pipelining [15] in SMTP or persistent
 connections in HTTP 1.1. Pipelining allows a client to make multiple
 requests of a server, but requires the requests to be processed
 serially. (Note that a protocol needs to explicitly provide support
 for pipelining, since, without explicit guidance, many implementors

Rose Informational [Page 10]

RFC 3117 On the Design of Application Protocols November 2001

 produce systems that don’t handle pipelining properly; typically, an
 error in a request causes subsequent requests in the pipeline to be
 discarded).

 Pipelining is a powerful method for reducing network latency. For
 example, without persistent connections, HTTP’s framing mechanism is
 really closer to connection-blasting than octet-counting, and it
 enjoys the same latency and efficiency problems.

 In addition to reducing network latency (the pipelining effect),
 asynchrony also reduces server latency by allowing multiple requests
 to be processed by multi-threaded implementations. Note that if you
 allow any form of asynchronous exchange, then support for parallelism
 is also required, because exchanges aren’t necessarily occurring
 under the synchronous direction of a single peer.

 Unfortunately, when you allow parallelism, you also need a flow
 control mechanism to avoid starvation and deadlock. Otherwise, a
 single set of exchanges can monopolize the bandwidth provided by the
 transport layer. Further, if a peer is resource-starved, then it may
 not have enough buffers to receive a message and deadlock results.

 Flow control is typically implemented at the transport layer. For
 example, TCP uses sequence numbers and a sliding window: each
 receiver manages a sliding window that indicates the number of data
 octets that may be transmitted before receiving further permission.
 However, it’s now time for the second shoe to drop: segmentation. If
 you do flow control then you also need a segmentation mechanism to
 fragment messages into smaller pieces before sending and then re-
 assemble them as they’re received.

 Both flow control and segmentation have an impact on how the protocol
 does framing. Before we defined framing as "how to tell the
 beginning and end of each message" -- in addition, we need to be able
 to identify independent messages, send messages only when flow
 control allows us to, and segment them if they’re larger than the
 available window (or too large for comfort).

 Segmentation impacts framing in another way -- it relaxes the octet-
 counting requirement that you need to know the length of the whole
 message before sending it. With segmentation, you can start sending
 segments before the whole message is available. In HTTP 1.1 you can
 "chunk" (segment) data to get this advantage.

Rose Informational [Page 11]

RFC 3117 On the Design of Application Protocols November 2001

3.5 Authentication

 Perhaps for historical (or hysterical) reasons, most application
 protocols don’t do authentication. That is, they don’t authenticate
 the identity of the peers on the connection or the authenticity of
 the messages being exchanged. Or, if authentication is done, it is
 domain-specific for each protocol. For example, FTP and HTTP use
 entirely different models and mechanisms for authenticating the
 initiator of a connection. (Independent of mainstream HTTP, there is
 a little-used variant [16] that authenticates the messages it
 exchanges.)

 A large part of the problem is that different security mechanisms
 optimize for strength, scalability, or ease of deployment. So, a few
 years ago, SASL [17] (the Simple Authentication and Security Layer)
 was developed to provide a framework for authenticating protocol
 peers. SASL let’s you describe how an authentication mechanism
 works, e.g., an OTP [18] (One-Time Password) exchange. It’s then up
 to each protocol designer to specify how SASL exchanges are
 generically conveyed by the protocol. For example, [19] explains how
 SASL works with SMTP.

 A notable exception to the SASL bandwagon is HTTP, which defines its
 own authentication mechanisms [20]. There is little reason why SASL
 couldn’t be introduced to HTTP, although to avoid certain race-
 conditions, the persistent connection mechanism of HTTP 1.1 must be
 used.

 SASL has an interesting feature in that in addition to explicit
 protocol exchanges to authenticate identity, it can also use implicit
 information provided from the layer below. For example, if the
 connection is running over IPsec [21], then the credentials of each
 peer are known and verified when the TCP connection is established.

 Finally, as its name implies, SASL can do more than authentication --
 depending on which SASL mechanism is in use, message integrity or
 privacy services may also be provided.

3.6 Privacy

 HTTP is the first widely used protocol to make use of a transport
 security protocol to encrypt the data sent on the connection. The
 current version of this mechanism, TLS [22], is available to all
 application protocols, e.g., SMTP and ACAP [23] (the Application
 Configuration Access Protocol).

Rose Informational [Page 12]

RFC 3117 On the Design of Application Protocols November 2001

 The key difference between the original mechanism and TLS, is one of
 provisioning not technology. In the original approach to
 provisioning, a world-wide web server listens on two ports (one for
 plaintext traffic and the other for secured traffic); in contrast, by
 today’s conventions, a server implementing an application protocol
 that is specified as TLS-enabled (e.g., [24] and [25]) listens on a
 single port for plaintext traffic, and, once a connection is
 established, the use of TLS on that connection is negotiable.

 Finally, note that both SASL and TLS are about "transport security"
 not "object security". What this means is that they focus on
 providing security properties for the actual communication, they
 don’t provide any security properties for the data exchanged
 independent of the communication.

3.7 Let’s Recap

 Let’s briefly compare the properties of the three main connection-
 oriented application protocols in use today:

 Mechanism ESMTP FTP HTTP1.1
 -------------- ----------- --------- -------------
 Framing stuffing blasting counting

 Encoding 822-style binary MIME

 Reporting 3-digit 3-digit 3-digit

 Asynchrony pipelining none pipelining
 and chunking

 Authentication SASL user/pass user/pass

 Privacy SASL or TLS none TLS (nee SSL)

 Note that the username/password mechanisms used by FTP and HTTP are
 entirely different with one exception: both can be termed a
 "username/password" mechanism.

 These three choices are broadly representative: as more protocols are
 considered, the patterns are reinforced. For example, POP [26] uses
 octet-stuffing, but IMAP uses octet-counting, and so on.

Rose Informational [Page 13]

RFC 3117 On the Design of Application Protocols November 2001

4. Protocol Properties

 When we design an application protocol, there are a few properties
 that we should keep an eye on.

4.1 Scalability

 A well-designed protocol is scalable.

 Because few application protocols support asynchrony, a common trick
 is for a program to open multiple simultaneous connections to a
 single destination. The theory is that this reduces latency and
 increases throughput. The reality is that both the transport layer
 and the server view each connection as an independent instance of the
 application protocol, and this causes problems.

 In terms of the transport layer, TCP uses adaptive algorithms to
 efficiently transmit data as networks conditions change. But what
 TCP learns is limited to each connection. So, if you have multiple
 TCP connections, you have to go through the same learning process
 multiple times -- even if you’re going to the same host. Not only
 does this introduce unnecessary traffic spikes into the network,
 because TCP uses a slow-start algorithm when establishing a
 connection, the program still sees additional latency. To deal with
 the fact that a lack of asynchrony in application protocols causes
 implementors to make sloppy use of the transport layer, network
 protocols are now provisioned with increasing sophistication, e.g.,
 RED [27]. Further, suggestions are also being considered for
 modification of TCP implementations to reduce concurrent learning,
 e.g., [28].

 In terms of the server, each incoming connection must be dispatched
 and (probably) authenticated against the same resources.
 Consequently, server overhead increases based on the number of
 connections established, rather than the number of remote users. The
 same issues of fairness arise: it’s much harder for servers to
 allocate resources on a per-user basis, when a user can cause an
 arbitrary number of connections to pound on the server.

 Another important aspect of scalability to consider is the relative
 numbers of clients and servers. (This is true even in the peer-to-
 peer model, where a peer can act both in the client and server role.)
 Typically, there are many more client peers than server peers. In
 this case, functional requirements should be shifted from the servers
 onto the clients. The reason is that a server is likely to be
 interacting with multiple clients and this functional shift makes it
 easier to scale.

Rose Informational [Page 14]

RFC 3117 On the Design of Application Protocols November 2001

4.2 Efficiency

 A well-designed protocol is efficient.

 For example, although a compelling argument can be made than octet-
 stuffing leads to more elegant implementations than octet-counting,
 experience shows that octet-counting consumes far fewer cycles.

 Regrettably, we sometimes have to compromise efficiency in order to
 satisfy other properties. For example, 822 (and MIME) use textual
 headers. We could certainly define a more efficient representation
 for the headers if we were willing to limit the header names and
 values that could be used. In this case, extensibility is viewed as
 more important than efficiency. Of course, if we were designing a
 network protocol instead of an application protocol, then we’d make
 the trade-offs using a razor with a different edge.

4.3 Simplicity

 A well-designed protocol is simple.

 Here’s a good rule of thumb: a poorly-designed application protocol
 is one in which it is equally as "challenging" to do something basic
 as it is to do something complex. Easy things should be easy to do
 and hard things should be harder to do. The reason is simple: the
 pain should be proportional to the gain.

 Another rule of thumb is that if an application protocol has two ways
 of doing the exact same thing, then there’s a problem somewhere in
 the architecture underlying the design of the application protocol.

 Hopefully, simple doesn’t mean simple-minded: something that’s well-
 designed accommodates everything in the problem domain, even the
 troublesome things at the edges. What makes the design simple is
 that it does this in a consistent fashion. Typically, this leads to
 an elegant design.

4.4 Extensibility

 A well-designed protocol is extensible.

 As clever as application protocol designers are, there are likely to
 be unforeseen problems that the application protocol will be asked to
 solve. So, it’s important to provide the hooks that can be used to
 add functionality or customize behavior. This means that the
 protocol is evolutionary, and there must be a way for implementations
 reflecting different steps in the evolutionary path to negotiate
 which extensions will be used.

Rose Informational [Page 15]

RFC 3117 On the Design of Application Protocols November 2001

 But, it’s important to avoid falling into the extensibility trap: the
 hooks provided should not be targeted at half-baked future
 requirements. Above all, the hooks should be simple.

 Of course good design goes a long way towards minimizing the need for
 extensibility. For example, although SMTP initially didn’t have an
 extension framework, it was only after ten years of experience that
 its excellent design was altered. In contrast, a poorly-designed
 protocol such as Telnet [29] can’t function without being built
 around the notion of extensions.

4.5 Robustness

 A well-designed protocol is robust.

 Robustness and efficiency are often at odds. For example, although
 defaults are useful to reduce packet sizes and processing time, they
 tend to encourage implementation errors.

 Counter-intuitively, Postel’s robustness principle ("be conservative
 in what you send, liberal in what you accept") often leads to
 deployment problems. Why? When a new implementation is initially
 fielded, it is likely that it will encounter only a subset of
 existing implementations. If those implementations follow the
 robustness principle, then errors in the new implementation will
 likely go undetected. The new implementation then sees some, but not
 widespread deployment. This process repeats for several new
 implementations. Eventually, the not-quite-correct implementations
 run into other implementations that are less liberal than the initial
 set of implementations. The reader should be able to figure out what
 happens next.

 Accordingly, explicit consistency checks in a protocol are very
 useful, even if they impose implementation overhead.

Rose Informational [Page 16]

RFC 3117 On the Design of Application Protocols November 2001

5. The BXXP Framework

 Finally, we get to the money shot: here’s what we did.

 We defined an application protocol framework called BXXP (the Blocks
 eXtensible eXchange Protocol). The reason it’s a "framework" instead
 of an application protocol is that we provide all the mechanisms
 discussed earlier without actually specifying the kind of messages
 that get exchanged. So, when someone else needs an application
 protocol that requires connection-oriented, asynchronous
 interactions, they can start with BXXP. It’s then their
 responsibility to define the last 10% of the application protocol,
 the part that does, as we say, "the useful work".

 So, what does BXXP look like?

 Mechanism BXXP
 -------------- --
 Framing counting, with a trailer

 Encoding MIME, defaulting to text/xml

 Reporting 3-digit and localized textual diagnostic

 Asynchrony channels

 Authentication SASL

 Privacy SASL or TLS

5.1 Framing and Encoding

 Framing in BXXP looks a lot like SMTP or HTTP: there’s a command line
 that identifies the beginning of the frame, then there’s a MIME
 object (headers and body). Unlike SMTP, BXXP uses octet-counting,
 but unlike HTTP, the command line is where you find the size of the
 payload. Finally, there’s a trailer after the MIME object to aid in
 detecting framing errors.

 Actually, the command line for BXXP has a lot of information, it
 tells you:

 o what kind of message is in this frame;

 o whether there’s more to the message than just what’s in this frame
 (a continuation flag);

Rose Informational [Page 17]

RFC 3117 On the Design of Application Protocols November 2001

 o how to distinguish the message contained in this frame from other
 messages (a message number);

 o where the payload occurs in the sliding window (a sequence number)
 along with how many octets are in the payload of this frame; and,

 o which part of the application should get the message (a channel
 number).

 (The command line is textual and ends in a CR-LF pair, and the
 arguments are separated by a space.)

 Since you need to know all this stuff to process a frame, we put it
 all in one easy to parse location. You could probably devise a more
 efficient encoding, but the command line is a very small part of the
 frame, so you wouldn’t get much bounce from optimizing it. Further,
 because framing is at the heart of BXXP, the frame format has several
 consistency checks that catch the majority of programming errors.
 (The combination of a sequence number, an octet count, and a trailer
 allows for very robust error detection.)

 Another trick is in the headers: because the command line contains
 all the framing information, the headers may contain minimal MIME
 information (such as Content-Type). Usually, however, the headers
 are empty. That’s because the BXXP default payload is XML [30].
 (Actually, a "Content-Type: text/xml" with binary transfer encoding).

 We chose XML as the default because it provides a simple mechanism
 for nested, textual representations. (Alas, the 822-style encoding
 doesn’t easily support nesting.) By design, XML’s nature isn’t
 optimized for compact representations. That’s okay because we’re
 focusing on loosely-coupled systems and besides there are efficient
 XML parsers available. Further, there’s a fair amount of anecdotal
 experience -- and we’ll stress the word "anecdotal" -- that if you
 have any kind of compression (either at the link-layer or during
 encryption), then XML encodings squeeze down nicely.

 Even so, use of XML is probably the most controversial part of BXXP.
 After all, there are more efficient representations around. We
 agree, but the real issue isn’t efficiency, it’s ease of use: there
 are a lot of people who grok the XML thing and there are a lot of XML
 tools out there. The pain of recreating this social infrastructure
 far outweighs any benefits of devising a new representation. So, if
 the "make" option is too expensive, is there something else we can
 "buy" besides XML? Well, there’s ASN.1/BER (just kidding).

Rose Informational [Page 18]

RFC 3117 On the Design of Application Protocols November 2001

 In the early days of the SNMP [31], which does use ASN.1, the same
 issues arose. In the end, the working group agreed that the use of
 ASN.1 for SNMP was axiomatic, but not because anyone thought that
 ASN.1 was the most efficient, or the easiest to explain, or even well
 liked. ASN.1 was given axiomatic status because the working group
 decided it was not going to spend the next three years explaining an
 alternative encoding scheme to the developer community.

 So -- and we apologize for appealing to dogma -- use of XML as the
 favored encoding scheme in BXXP is axiomatic.

5.2 Reporting

 We use 3-digit error codes, with a localized textual diagnostic.
 (Each peer specifies a preferred ordering of languages.)

 In addition, the reply to a message is flagged as either positive or
 negative. This makes it easy to signal success or failure and allow
 the receiving peer some freedom in the amount of parsing it wants to
 do on failure.

5.3 Asynchrony

 Despite the lessons of SMTP and HTTP, there isn’t a lot of field
 experience to rely on when designing the asynchrony features of BXXP.
 (Actually, there were several efforts in 1998 related to application
 layer framing, e.g., [32], but none appear to have achieved orbit.)

 So, here’s what we did: frames are exchanged in the context of a
 "channel". Each channel has an associated "profile" that defines the
 syntax and semantics of the messages exchanged over a channel.

 Channels provide both an extensibility mechanism for BXXP and the
 basis for parallelism. Remember the last parameter in the command
 line of a BXXP frame? The "part of the application" that gets the
 message is identified by a channel number.

 A profile is defined according to a "Profile Registration" template.
 The template defines how the profile is identified (using a URI
 [33]), what kind of messages get exchanged, along with the syntax and
 semantics of those messages. When you create a channel, you identify
 a profile and maybe piggyback your first message. If the channel is
 successfully created, you get back a positive response; otherwise,
 you get back a negative response explaining why.

 Perhaps the easiest way to see how channels provide an extensibility
 mechanism is to consider what happens when a session is established.
 Each BXXP peer immediately sends a greeting on channel zero

Rose Informational [Page 19]

RFC 3117 On the Design of Application Protocols November 2001

 identifying the profiles that each support. (Channel 0 is used for
 channel management -- it’s automatically created when a session is
 opened.) If you want transport security, the very first thing you do
 is to create a channel that negotiates transport security, and, once
 the channel is created, you tell it to do its thing. Next, if you
 want to authenticate, you create a channel that performs user
 authentication, and, once the channel is created, you tell it to get
 busy. At this point, you create one or more channels for data
 exchange. This process is called "tuning"; once you’ve tuned the
 session, you start using the data exchange channels to do "the useful
 work".

 The first channel that’s successfully started has a trick associated
 with it: when you ask to start the channel, you’re allowed to specify
 a "service name" that goes with it. This allows a server with
 multiple configurations to select one based on the client’s
 suggestion. (A useful analogy is HTTP 1.1’s "Host:" header.) If the
 server accepts the "service name", then this configuration is used
 for the rest of the session.

 To allow parallelism, BXXP allows you to use multiple channels
 simultaneously. Each channel processes messages serially, but there
 are no constraints on the processing order for different channels.
 So, in a multi-threaded implementation, each channel maps to its own
 thread.

 This is the most general case, of course. For one reason or another,
 an implementor may not be able to support this. So, BXXP allows for
 both positive and negative replies when a message is sent. So, if
 you want the classic client/server model, the client program should
 simply reject any new message sent by the server. This effectively
 throttles any asynchronous messages from the server.

 Of course, we now need to provide mechanisms for segmentation and
 flow control. For the former, we just put a "continuation" or "more
 to come" flag in the command line for the frame. For the latter, we
 introduced the notion of a "transport mapping".

 What this means is that BXXP doesn’t directly define how it sits of
 top of TCP. Instead, it lists a bunch of requirements for how a
 transport service needs to support a BXXP session. Then, in a
 separate document, we defined how you can use TCP to meet these
 requirements.

 This second document pretty much says "use TCP directly", except that
 it introduces a flow control mechanism for multiplexing channels over
 a single TCP connection. The mechanism we use is the same one used

Rose Informational [Page 20]

RFC 3117 On the Design of Application Protocols November 2001

 by TCP (sequence numbers and a sliding window). It’s proven, and can
 be trivially implemented by a minimal implementation of BXXP.

 The introduction of flow control is a burden from an implementation
 perspective -- although TCP’s mechanism is conceptually simple, an
 implementor must take great care. For example, issues such as
 priorities, queue management, and the like should be addressed.
 Regardless, we feel that the benefits of allowing parallelism for
 intra-application streams is worth it. (Besides, our belief is that
 few application implementors will actually code the BXXP framework
 directly -- rather, we expect them to use third-party packages that
 implement BXXP.)

5.4 Authentication

 We use SASL. If you successfully authenticate using a channel, then
 there is a single user identity for each peer on that session (i.e.,
 authentication is per-session, not per-channel). This design
 decision mandates that each session correspond to a single user
 regardless of how many channels are open on that session. One reason
 why this is important is that it allows service provisioning, such as
 quality of service (e.g., as in [34]) to be done on a per-user
 granularity.

5.5 Privacy

 We use SASL and TLS. If you successfully complete a transport
 security negotiation using a channel, then all traffic on that
 session is secured (i.e., confidentiality is per-session, not per-
 channel, just like authentication).

 We defined a BXXP profile that’s used to start the TLS engine.

5.6 Things We Left Out

 We purposefully excluded two things that are common to most
 application protocols: naming and authorization.

 Naming was excluded from the framework because, outside of URIs,
 there isn’t a commonly accepted framework for naming things. To our
 view, this remains a domain-specific problem for each application
 protocol. Maybe URIs are appropriate in the context of a
 particularly problem domain, maybe not. So, when an application
 protocol designer defines their own profile to do "the useful work",
 they’ll have to deal with naming issues themselves. BXXP provides a
 mechanism for identifying profiles and binding them to channels. It’s
 up to you to define the profile and use the channel.

Rose Informational [Page 21]

RFC 3117 On the Design of Application Protocols November 2001

 Similarly, authorization was explicitly excluded from the framework.
 Every approach to authorization we’ve seen uses names to identify
 principals (i.e., targets and subjects), so if a framework doesn’t
 include naming, it can’t very well include authorization.

 Of course, application protocols do have to deal with naming and
 authorization -- those are two of the issues addressed by the
 applications protocol designer when defining a profile for use with
 BXXP.

5.7 From Framework to Protocol

 So, how do you go about using BXXP? To begin, call it "BEEP", not
 "BXXP" (we’ll explain why momentarily).

 First, get the BEEP core specification [35] and read it. Next,
 define your own profile. Finally, get one of the open source SDKs
 (in C, Java, or Tcl) and start coding.

 The BEEP specification defines several profiles itself: a channel
 management profile, a family of profiles for SASL, and a transport
 security profile. In addition, there’s a second specification [36]
 that explains how a BEEP session maps onto a single TCP connection.

 For a complete example of an application protocol defined using BEEP,
 look at reliable syslog [37]. This document exemplifies the formula:

 application protocol = BEEP + 1 or more profiles
 + authorization policies
 + provisioning rules (e.g., use of SRV RRs [38])

Rose Informational [Page 22]

RFC 3117 On the Design of Application Protocols November 2001

6. BXXP is now BEEP

 We started work on BXXP in the fall of 1998. The IETF formed a
 working group on BXXP in the summer of 2000. Although the working
 group made some enhancements to BXXP, three are the most notable:

 o The payload default is "application/octet-stream". This is
 primarily for wire-efficiency -- if you care about wire-
 efficiency, then you probably wouldn’t be using "text/xml"...

 o One-to-many exchanges are supported (the client sends one message
 and the server sends back many replies).

 o BXXP is now called BEEP (more comic possibilities).

7. Security Considerations

 Consult Section [35]’s Section 8 for a discussion of BEEP-related
 security issues.

Rose Informational [Page 23]

RFC 3117 On the Design of Application Protocols November 2001

References

 [1] Postel, J., "Simple Mail Transfer Protocol", STD 10, RFC 821,
 August 1982.

 [2] Postel, J. and J. Reynolds, "File Transfer Protocol", STD 9,
 RFC 959, October 1985.

 [3] Berners-Lee, T., Fielding, R. and H. Nielsen, "Hypertext
 Transfer Protocol -- HTTP/1.0", RFC 1945, May 1996.

 [4] Herriot, R., "Internet Printing Protocol/1.0: Encoding and
 Transport", RFC 2565, April 1999.

 [5] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message Bodies",
 RFC 2045, November 1996.

 [6] Fielding, R., Gettys, J., Mogul, J., Nielsen, H., Masinter, L.,
 Leach, P. and T. Berners-Lee, "Hypertext Transfer Protocol --
 HTTP/1.1", RFC 2616, June 1999.

 [7] Postel, J., "Transmission Control Protocol", STD 7, RFC 793,
 September 1981.

 [8] Mockapetris, P., "Domain names - concepts and facilities", STD
 13, RFC 1034, November 1987.

 [9] Microsystems, Sun., "NFS: Network File System Protocol
 specification", RFC 1094, March 1989.

 [10] Srisuresh, P. and M. Holdrege, "IP Network Address Translator
 (NAT) Terminology and Considerations", RFC 2663, August 1999.

 [11] Crocker, D., "Standard for the format of ARPA Internet text
 messages", STD 11, RFC 822, August 1982.

 [12] Berners-Lee, T. and D. Connolly, "Hypertext Markup Language -
 2.0", RFC 1866, November 1995.

 [13] Freed, N., "SMTP Service Extension for Returning Enhanced Error
 Codes", RFC 2034, October 1996.

 [14] Myers, J., "IMAP4 Authentication Mechanisms", RFC 1731,
 December 1994.

 [15] Freed, N., "SMTP Service Extension for Command Pipelining", RFC
 2197, September 1997.

Rose Informational [Page 24]

RFC 3117 On the Design of Application Protocols November 2001

 [16] Rescorla, E. and A. Schiffman, "The Secure HyperText Transfer
 Protocol", RFC 2660, August 1999.

 [17] Myers, J., "Simple Authentication and Security Layer (SASL)",
 RFC 2222, October 1997.

 [18] Newman, C., "The One-Time-Password SASL Mechanism", RFC 2444,
 October 1998.

 [19] Myers, J., "SMTP Service Extension for Authentication", RFC
 2554, March 1999.

 [20] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A. and L. Stewart, "HTTP Authentication:
 Basic and Digest Access Authentication", RFC 2617, June 1999.

 [21] Kent, S. and R. Atkinson, "Security Architecture for the
 Internet Protocol", RFC 2401, November 1998.

 [22] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0", RFC
 2246, January 1999.

 [23] Newman, C. and J. Myers, "ACAP -- Application Configuration
 Access Protocol", RFC 2244, November 1997.

 [24] Hoffman, P., "SMTP Service Extension for Secure SMTP over TLS",
 RFC 2487, January 1999.

 [25] Newman, C., "Using TLS with IMAP, POP3 and ACAP", RFC 2595,
 June 1999.

 [26] Myers, J. and M. Rose, "Post Office Protocol - Version 3", STD
 53, RFC 1939, May 1996.

 [27] Braden, B., Clark, D., Crowcroft, J., Davie, B., Deering, S.,
 Estrin, D., Floyd, S., Jacobson, V., Minshall, G., Partridge,
 C., Peterson, L., Ramakrishnan, K., Shenker, S., Wroclawski, J.
 and L. Zhang, "Recommendations on Queue Management and
 Congestion Avoidance in the Internet", RFC 2309, April 1998.

 [28] Touch, J., "TCP Control Block Interdependence", RFC 2140, April
 1997.

 [29] Postel, J. and J. Reynolds, "Telnet Protocol Specification",
 STD 8, RFC 854, May 1983.

Rose Informational [Page 25]

RFC 3117 On the Design of Application Protocols November 2001

 [30] World Wide Web Consortium, "Extensible Markup Language (XML)
 1.0", W3C XML, February 1998, <http://www.w3.org/TR/1998/REC-
 xml-19980210>.

 [31] Case, J., Fedor, M., Schoffstall, M. and C. Davin, "Simple
 Network Management Protocol (SNMP)", STD 15, RFC 1157, May
 1990.

 [32] World Wide Web Consortium, "SMUX Protocol Specification",
 Working Draft, July 1998, <http://www.w3.org/TR/1998/WD-mux-
 19980710>.

 [33] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform
 Resource Identifiers (URI): Generic Syntax", RFC 2396, August
 1998.

 [34] Waitzman, D., "IP over Avian Carriers with Quality of Service",
 RFC 2549, April 1999.

 [35] Rose, M., "The Blocks Extensible Exchange Protocol Core", RFC
 3080, March 2001.

 [36] Rose, M., "Mapping the BEEP Core onto TCP", RFC 3081, March
 2001.

 [37] New, D. and M. Rose, "Reliable Delivery for syslog", RFC 3195,
 November 2001.

 [38] Gulbrandsen, A., Vixie, P. and L. Esibov, "A DNS RR for
 specifying the location of services (DNS SRV)", RFC 2782,
 February 2000.

 [39] <http://mappa.mundi.net/cartography/Wheel/>

Author’s Address

 Marshall T. Rose
 Dover Beach Consulting, Inc.
 POB 255268
 Sacramento, CA 95865-5268
 US

 Phone: +1 916 483 8878
 EMail: mrose@dbc.mtview.ca.us

Rose Informational [Page 26]

RFC 3117 On the Design of Application Protocols November 2001

Full Copyright Statement

 Copyright (C) The Internet Society (2001). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Rose Informational [Page 27]

