
Network Working Group H. Balakrishnan
Request for Comments: 3449 MIT LCS
BCP: 69 V. N. Padmanabhan
Category: Best Current Practice Microsoft Research
 G. Fairhurst
 M. Sooriyabandara
 University of Aberdeen, U.K.
 December 2002

 TCP Performance Implications
 of Network Path Asymmetry

Status of this Memo

 This document specifies an Internet Best Current Practices for the
 Internet Community, and requests discussion and suggestions for
 improvements. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2002). All Rights Reserved.

Abstract

 This document describes TCP performance problems that arise because
 of asymmetric effects. These problems arise in several access
 networks, including bandwidth-asymmetric networks and packet radio
 subnetworks, for different underlying reasons. However, the end
 result on TCP performance is the same in both cases: performance
 often degrades significantly because of imperfection and variability
 in the ACK feedback from the receiver to the sender.

 The document details several mitigations to these effects, which have
 either been proposed or evaluated in the literature, or are currently
 deployed in networks. These solutions use a combination of local
 link-layer techniques, subnetwork, and end-to-end mechanisms,
 consisting of: (i) techniques to manage the channel used for the
 upstream bottleneck link carrying the ACKs, typically using header
 compression or reducing the frequency of TCP ACKs, (ii) techniques to
 handle this reduced ACK frequency to retain the TCP sender’s
 acknowledgment-triggered self-clocking and (iii) techniques to
 schedule the data and ACK packets in the reverse direction to improve
 performance in the presence of two-way traffic. Each technique is
 described, together with known issues, and recommendations for use.
 A summary of the recommendations is provided at the end of the
 document.

Balakrishnan et. al. Best Current Practice [Page 1]

RFC 3449 PILC - Asymmetric Links December 2002

Table of Contents

 1. Conventions used in this Document3
 2. Motivation ..4
 2.1 Asymmetry due to Differences in Transmit
 and Receive Capacity ...4
 2.2 Asymmetry due to Shared Media in the Reverse Direction5
 2.3 The General Problem ..5
 3. How does Asymmetry Degrade TCP Performance?5
 3.1 Asymmetric Capacity ..5
 3.2 MAC Protocol Interactions7
 3.3 Bidirectional Traffic ..8
 3.4 Loss in Asymmetric Network Paths10
 4. Improving TCP Performance using Host Mitigations10
 4.1 Modified Delayed ACKs11
 4.2 Use of Large MSS ..12
 4.3 ACK Congestion Control13
 4.4 Window Prediction Mechanism14
 4.5 Acknowledgement based on Cwnd Estimation.14
 4.6 TCP Sender Pacing ...14
 4.7 TCP Byte Counting ...15
 4.8 Backpressure ..16
 5. Improving TCP performance using Transparent Modifications17
 5.1 TYPE 0: Header Compression18
 5.1.1 TCP Header Compression18
 5.1.2 Alternate Robust Header Compression Algorithms19
 5.2 TYPE 1: Reverse Link Bandwidth Management19
 5.2.1 ACK Filtering ...20
 5.2.2 ACK Decimation ..21
 5.3 TYPE 2: Handling Infrequent ACKs22
 5.3.1 ACK Reconstruction23
 5.3.2 ACK Compaction and Companding25
 5.3.3 Mitigating TCP packet bursts generated by
 Infrequent ACKs ...26
 5.4 TYPE 3: Upstream Link Scheduling27
 5.4.1 Per-Flow queuing at the Upstream Bottleneck Link27
 5.4.2 ACKs-first Scheduling28
 6. Security Considerations ..29
 7. Summary ..30
 8. Acknowledgments ..32
 9. References ...32
 10. IANA Considerations ...37
 Appendix: Examples of Subnetworks Exhibiting Network Path
 Asymmetry ...38
 Authors’ Addresses ..40
 Full Copyright Statement ..41

Balakrishnan et. al. Best Current Practice [Page 2]

RFC 3449 PILC - Asymmetric Links December 2002

1. Conventions used in this Document

 FORWARD DIRECTION: The dominant direction of data transfer over an
 asymmetric network path. It corresponds to the direction with better
 characteristics in terms of capacity, latency, error rate, etc. Data
 transfer in the forward direction is called "forward transfer".
 Packets travelling in the forward direction follow the forward path
 through the IP network.

 REVERSE DIRECTION: The direction in which acknowledgments of a
 forward TCP transfer flow. Data transfer could also happen in this
 direction (and is termed "reverse transfer"), but it is typically
 less voluminous than that in the forward direction. The reverse
 direction typically exhibits worse characteristics than the forward
 direction. Packets travelling in the reverse direction follow the
 reverse path through the IP network.

 UPSTREAM LINK: The specific bottleneck link that normally has much
 less capability than the corresponding downstream link. Congestion
 is not confined to this link alone, and may also occur at any point
 along the forward and reverse directions (e.g., due to sharing with
 other traffic flows).

 DOWNSTREAM LINK: A link on the forward path, corresponding to the
 upstream link.

 ACK: A cumulative TCP acknowledgment [RFC791]. In this document,
 this term refers to a TCP segment that carries a cumulative
 acknowledgement (ACK), but no data.

 DELAYED ACK FACTOR, d: The number of TCP data segments acknowledged
 by a TCP ACK. The minimum value of d is 1, since at most one ACK
 should be sent for each data packet [RFC1122, RFC2581].

 STRETCH ACK: Stretch ACKs are acknowledgements that cover more than 2
 segments of previously unacknowledged data (d>2) [RFC2581]. Stretch
 ACKs can occur by design (although this is not standard), due to
 implementation bugs [All97b, RFC2525], or due to ACK loss [RFC2760].

 NORMALIZED BANDWIDTH RATIO, k: The ratio of the raw bandwidth
 (capacity) of the forward direction to the return direction, divided
 by the ratio of the packet sizes used in the two directions [LMS97].

 SOFTSTATE: Per-flow state established in a network device that is
 used by the protocol [Cla88]. The state expires after a period of
 time (i.e., is not required to be explicitly deleted when a session

Balakrishnan et. al. Best Current Practice [Page 3]

RFC 3449 PILC - Asymmetric Links December 2002

 expires), and is continuously refreshed while a flow continues (i.e.,
 lost state may be reconstructed without needing to exchange
 additional control messages).

2. Motivation

 Asymmetric characteristics are exhibited by several network
 technologies, including cable data networks, (e.g., DOCSIS cable TV
 networks [DS00, DS01]), direct broadcast satellite (e.g., an IP
 service using Digital Video Broadcast, DVB, [EN97] with an
 interactive return channel), Very Small Aperture satellite Terminals
 (VSAT), Asymmetric Digital Subscriber Line (ADSL) [ITU02, ANS01], and
 several packet radio networks. These networks are increasingly being
 deployed as high-speed Internet access networks, and it is therefore
 highly desirable to achieve good TCP performance. However, the
 asymmetry of the network paths often makes this challenging.
 Examples of some networks that exhibit asymmetry are provided in the
 Appendix.

 Asymmetry may manifest itself as a difference in transmit and receive
 capacity, an imbalance in the packet loss rate, or differences
 between the transmit and receive paths [RFC3077]. For example, when
 capacity is asymmetric, such that there is reduced capacity on
 reverse path used by TCP ACKs, slow or infrequent ACK feedback
 degrades TCP performance in the forward direction. Similarly,
 asymmetry in the underlying Medium Access Control (MAC) and Physical
 (PHY) protocols could make it expensive to transmit TCP ACKs
 (disproportionately to their size), even when capacity is symmetric.

2.1 Asymmetry due to Differences in Transmit and Receive Capacity

 Network paths may be asymmetric because the upstream and downstream
 links operate at different rates and/or are implemented using
 different technologies.

 The asymmetry in capacity may be substantially increased when best
 effort IP flows carrying TCP ACKs share the available upstream
 capacity with other traffic flows, e.g., telephony, especially flows
 that have reserved upstream capacity. This includes service
 guarantees at the IP layer (e.g., the Guaranteed Service [RFC2212])
 or at the subnet layer (e.g., support of Voice over IP [ITU01] using
 the Unsolicited Grant service in DOCSIS [DS01], or CBR virtual
 connections in ATM over ADSL [ITU02, ANS01]).

 When multiple upstream links exist the asymmetry may be reduced by
 dividing upstream traffic between a number of available upstream
 links.

Balakrishnan et. al. Best Current Practice [Page 4]

RFC 3449 PILC - Asymmetric Links December 2002

2.2 Asymmetry due to Shared Media in the Reverse Direction

 In networks employing centralized multiple access control, asymmetry
 may be a fundamental consequence of the hub-and-spokes architecture
 of the network (i.e., a single base node communicating with multiple
 downstream nodes). The central node often incurs less transmission
 overhead and does not incur latency in scheduling its own downstream
 transmissions. In contrast, upstream transmission is subject to
 additional overhead and latency (e.g., due to guard times between
 transmission bursts, and contention intervals). This can produce
 significant network path asymmetry.

 Upstream capacity may be further limited by the requirement that each
 node must first request per-packet bandwidth using a contention MAC
 protocol (e.g., DOCSIS 1.0 MAC restricts each node to sending at most
 a single packet in each upstream time-division interval [DS00]). A
 satellite network employing dynamic Bandwidth on Demand (BoD), also
 consumes MAC resources for each packet sent (e.g., [EN00]). In these
 schemes, the available uplink capacity is a function of the MAC
 algorithm. The MAC and PHY schemes also introduce overhead per
 upstream transmission which could be so significant that transmitting
 short packets (including TCP ACKs) becomes as costly as transmitting
 MTU-sized data packets.

2.3 The General Problem

 Despite the technological differences between capacity-dependent and
 MAC-dependent asymmetries, both kinds of network path suffer reduced
 TCP performance for the same fundamental reason: the imperfection and
 variability of ACK feedback. This document discusses the problem in
 detail and describes several techniques that may reduce or eliminate
 the constraints.

3. How does Asymmetry Degrade TCP Performance?

 This section describes the implications of network path asymmetry on
 TCP performance. The reader is referred to [BPK99, Bal98, Pad98,
 FSS01, Sam99] for more details and experimental results.

3.1 Asymmetric Capacity

 The problems that degrade unidirectional transfer performance when
 the forward and return paths have very different capacities depend on
 the characteristics of the upstream link. Two types of situations
 arise for unidirectional traffic over such network paths: when the
 upstream bottleneck link has sufficient queuing to prevent packet
 (ACK) losses, and when the upstream bottleneck link has a small
 buffer. Each is considered in turn.

Balakrishnan et. al. Best Current Practice [Page 5]

RFC 3449 PILC - Asymmetric Links December 2002

 If the upstream bottleneck link has deep queues, so that this does
 not drop ACKs in the reverse direction, then performance is a strong
 function of the normalized bandwidth ratio, k. For example, for a 10
 Mbps downstream link and a 50 Kbps upstream link, the raw capacity
 ratio is 200. With 1000-byte data packets and 40-byte ACKs, the
 ratio of the packet sizes is 25. This implies that k is 200/25 = 8.
 Thus, if the receiver acknowledges more frequently than one ACK every
 8 (k) data packets, the upstream link will become saturated before
 the downstream link, limiting the throughput in the forward
 direction. Note that, the achieved TCP throughput is determined by
 the minimum of the receiver advertised window or TCP congestion
 window, cwnd [RFC2581].

 If ACKs are not dropped (at the upstream bottleneck link) and k > 1
 or k > 0.5 when delayed ACKs are used [RFC1122], TCP ACK-clocking
 breaks down. Consider two data packets transmitted by the sender in
 quick succession. En route to the receiver, these packets get spaced
 apart according to the capacity of the smallest bottleneck link in
 the forward direction. The principle of ACK clocking is that the
 ACKs generated in response to receiving these data packets reflects
 this temporal spacing all the way back to the sender, enabling it to
 transmit new data packets that maintain the same spacing [Jac88]. ACK
 clocking with delayed ACKs, reflects the spacing between data packets
 that actually trigger ACKs. However, the limited upstream capacity
 and queuing at the upstream bottleneck router alters the inter-ACK
 spacing of the reverse path, and hence that observed at the sender.
 When ACKs arrive at the upstream bottleneck link at a faster rate
 than the link can support, they get queued behind one another. The
 spacing between them when they emerge from the link is dilated with
 respect to their original spacing, and is a function of the upstream
 bottleneck capacity. Thus the TCP sender clocks out new data packets
 at a slower rate than if there had been no queuing of ACKs. The
 performance of the connection is no longer dependent on the
 downstream bottleneck link alone; instead, it is throttled by the
 rate of arriving ACKs. As a side effect, the sender’s rate of cwnd
 growth also slows down.

 A second side effect arises when the upstream bottleneck link on the
 reverse path is saturated. The saturated link causes persistent
 queuing of packets, leading to an increasing path Round Trip Time
 (RTT) [RFC2998] observed by all end hosts using the bottleneck link.
 This can impact the protocol control loops, and may also trigger
 false time out (underestimation of the path RTT by the sending host).

 A different situation arises when the upstream bottleneck link has a
 relatively small amount of buffer space to accommodate ACKs. As the
 transmission window grows, this queue fills, and ACKs are dropped. If
 the receiver were to acknowledge every packet, only one of every k

Balakrishnan et. al. Best Current Practice [Page 6]

RFC 3449 PILC - Asymmetric Links December 2002

 ACKs would get through to the sender, and the remaining (k-1) are
 dropped due to buffer overflow at the upstream link buffer (here k is
 the normalized bandwidth ratio as before). In this case, the reverse
 bottleneck link capacity and slow ACK arrival rate are not directly
 responsible for any degraded performance. However, the infrequency
 of ACKs leads to three reasons for degraded performance:

 1. The sender transmits data in large bursts of packets, limited only
 by the available cwnd. If the sender receives only one ACK in k,
 it transmits data in bursts of k (or more) packets because each
 ACK shifts the sliding window by at least k (acknowledged) data
 packets (TCP data segments). This increases the likelihood of
 data packet loss along the forward path especially when k is
 large, because routers do not handle large bursts of packets well.

 2. Current TCP sender implementations increase their cwnd by counting
 the number of ACKs they receive and not by how much data is
 actually acknowledged by each ACK. The later approach, also known
 as byte counting (section 4.7), is a standard implementation
 option for cwnd increase during the congestion avoidance period
 [RFC2581]. Thus fewer ACKs imply a slower rate of growth of the
 cwnd, which degrades performance over long-delay connections.

 3. The sender TCP’s Fast Retransmission and Fast Recovery algorithms
 [RFC2581] are less effective when ACKs are lost. The sender may
 possibly not receive the threshold number of duplicate ACKs even
 if the receiver transmits more than the DupACK threshold (> 3
 DupACKs) [RFC2581]. Furthermore, the sender may possibly not
 receive enough duplicate ACKs to adequately inflate its cwnd
 during Fast Recovery.

3.2 MAC Protocol Interactions

 The interaction of TCP with MAC protocols may degrade end-to-end
 performance. Variable round-trip delays and ACK queuing are the main
 symptoms of this problem.

 One example is the impact on terrestrial wireless networks [Bal98]. A
 high per-packet overhead may arise from the need for communicating
 link nodes to first synchronise (e.g., via a Ready To Send / Clear to
 Send (RTS/CTS) protocol) before communication and the significant
 turn-around time for the wireless channel. This overhead is
 variable, since the RTS/CTS exchange may need to back-off
 exponentially when the remote node is busy (e.g., engaged in a
 conversation with a different node). This leads to large and
 variable communication latencies in packet-radio networks.

Balakrishnan et. al. Best Current Practice [Page 7]

RFC 3449 PILC - Asymmetric Links December 2002

 An asymmetric workload (more downstream than upstream traffic) may
 cause ACKs to be queued in some wireless nodes (especially in the end
 host modems), exacerbating the variable latency. Queuing may also
 occur in other shared media, e.g., cable modem uplinks, BoD access
 systems often employed on shared satellite channels.

 Variable latency and ACK queuing reduces the smoothness of the TCP
 data flow. In particular, ACK traffic can interfere with the flow of
 data packets, increasing the traffic load of the system.

 TCP measures the path RTT, and from this calculates a smoothed RTT
 estimate (srtt) and a linear deviation, rttvar. These are used to
 estimate a path retransmission timeout (RTO) [RFC2988], set to srtt +
 4*rttvar. For most wired TCP connections, the srtt remains constant
 or has a low linear deviation. The RTO therefore tracks the path
 RTT, and the TCP sender will respond promptly when multiple losses
 occur in a window. In contrast, some wireless networks exhibit a
 high variability in RTT, causing the RTO to significantly increase
 (e.g., on the order of 10 seconds). Paths traversing multiple
 wireless hops are especially vulnerable to this effect, because this
 increases the probability that the intermediate nodes may already be
 engaged in conversation with other nodes. The overhead in most MAC
 schemes is a function of both the number and size of packets.
 However, the MAC contention problem is a significant function of the
 number of packets (e.g., ACKs) transmitted rather than their size.
 In other words, there is a significant cost to transmitting a packet
 regardless of packet size.

 Experiments conducted on the Ricochet packet radio network in 1996
 and 1997 demonstrated the impact of radio turnarounds and the
 corresponding increased RTT variability, resulting in degraded TCP
 performance. It was not uncommon for TCP connections to experience
 timeouts of 9 - 12 seconds, with the result that many connections
 were idle for a significant fraction of their lifetime (e.g.,
 sometimes 35% of the total transfer time). This leads to under-
 utilization of the available capacity. These effects may also occur
 in other wireless subnetworks.

3.3 Bidirectional Traffic

 Bidirectional traffic arises when there are simultaneous TCP
 transfers in the forward and reverse directions over an asymmetric
 network path, e.g., a user who sends an e-mail message in the reverse
 direction while simultaneously receiving a web page in the forward
 direction. To simplify the discussion, only one TCP connection in
 each direction is considered. In many practical cases, several
 simultaneous connections need to share the available capacity,
 increasing the level of congestion.

Balakrishnan et. al. Best Current Practice [Page 8]

RFC 3449 PILC - Asymmetric Links December 2002

 Bidirectional traffic makes the effects discussed in section 3.1 more
 pronounced, because part of the upstream link bandwidth is consumed
 by the reverse transfer. This effectively increases the degree of
 bandwidth asymmetry. Other effects also arise due to the interaction
 between data packets of the reverse transfer and ACKs of the forward
 transfer. Suppose at the time the forward TCP connection is
 initiated, the reverse TCP connection has already saturated the
 bottleneck upstream link with data packets. There is then a high
 probability that many ACKs of the new forward TCP connection will
 encounter a full upstream link buffer and hence get dropped. Even
 after these initial problems, ACKs of the forward connection could
 get queued behind large data packets of the reverse connection. The
 larger data packets may have correspondingly long transmission times
 (e.g., it takes about 280 ms to transmit a 1 Kbyte data packet over a
 28.8 kbps line). This causes the forward transfer to stall for long
 periods of time. It is only at times when the reverse connection
 loses packets (due to a buffer overflow at an intermediate router)
 and slows down, that the forward connection gets the opportunity to
 make rapid progress and build up its cwnd.

 When ACKs are queued behind other traffic for appreciable periods of
 time, the burst nature of TCP traffic and self-synchronizing effects
 can result in an effect known as ACK Compression [ZSC91], which
 reduces the throughput of TCP. It occurs when a series of ACKs, in
 one direction are queued behind a burst of other packets (e.g., data
 packets traveling in the same direction) and become compressed in
 time. This results in an intense burst of data packets in the other
 direction, in response to the burst of compressed ACKs arriving at
 the server. This phenomenon has been investigated in detail for
 bidirectional traffic, and recent analytical work [LMS97] has
 predicted ACK Compression may also result from bi-directional
 transmission with asymmetry, and was observed in practical asymmetric
 satellite subnetworks [FSS01]. In the case of extreme asymmetry
 (k>>1), the inter-ACK spacing can increase due to queuing (section
 3.1), resulting in ACK dilation.

 In summary, sharing of the upstream bottleneck link by multiple flows
 (e.g., IP flows to the same end host, or flows to a number of end
 hosts sharing a common upstream link) increases the level of ACK
 Congestion. The presence of bidirectional traffic exacerbates the
 constraints introduced by bandwidth asymmetry because of the adverse
 interaction between (large) data packets of a reverse direction
 connection and the ACKs of a forward direction connection.

Balakrishnan et. al. Best Current Practice [Page 9]

RFC 3449 PILC - Asymmetric Links December 2002

3.4 Loss in Asymmetric Network Paths

 Loss may occur in either the forward or reverse direction. For data
 transfer in the forward direction this results respectively in loss
 of data packets and ACK packets. Loss of ACKs is less significant
 than loss of data packets, because it generally results in stretch
 ACKs [CR98, FSS01].

 In the case of long delay paths, a slow upstream link [RFC3150] can
 lead to another complication when the end host uses TCP large windows
 [RFC1323] to maximize throughput in the forward direction. Loss of
 data packets on the forward path, due to congestion, or link loss,
 common for some wireless links, will generate a large number of
 back-to-back duplicate ACKs (or TCP SACK packets [RFC2018]), for each
 correctly received data packet following a loss. The TCP sender
 employs Fast Retransmission and Recovery [RFC2581] to recover from
 the loss, but even if this is successful, the ACK to the
 retransmitted data segment may be significantly delayed by other
 duplicate ACKs still queued at the upstream link buffer. This can
 ultimately lead to a timeout [RFC2988] and a premature end to the TCP
 Slow Start [RFC2581]. This results in poor forward path throughput.
 Section 5.3 describes some mitigations to counter this.

4. Improving TCP Performance using Host Mitigations

 There are two key issues that need to be addressed to improve TCP
 performance over asymmetric networks. The first is to manage the
 capacity of the upstream bottleneck link, used by ACKs and possibly
 other traffic. A number of techniques exist which work by reducing
 the number of ACKs that flow in the reverse direction. This has the
 side effect of potentially destroying the desirable self-clocking
 property of the TCP sender where transmission of new data packets is
 triggered by incoming ACKs. Thus, the second issue is to avoid any
 adverse impact of infrequent ACKs.

 Each of these issues can be handled by local link-layer solutions
 and/or by end-to-end techniques. This section discusses end-to-end
 modifications. Some techniques require TCP receiver changes
 (sections 4.1 4.4, 4.5), some require TCP sender changes (sections
 4.6, 4.7), and a pair requires changes to both the TCP sender and
 receiver (sections 4.2, 4.3). One technique requires a sender
 modification at the receiving host (section 4.8). The techniques may
 be used independently, however some sets of techniques are
 complementary, e.g., pacing (section 4.6) and byte counting (section
 4.7) which have been bundled into a single TCP Sender Adaptation
 scheme [BPK99].

Balakrishnan et. al. Best Current Practice [Page 10]

RFC 3449 PILC - Asymmetric Links December 2002

 It is normally envisaged that these changes would occur in the end
 hosts using the asymmetric path, however they could, and have, been
 used in a middle-box or Protocol Enhancing Proxy (PEP) [RFC3135]
 employing split TCP. This document does not discuss the issues
 concerning PEPs. Section 4 describes several techniques, which do
 not require end-to-end changes.

4.1 Modified Delayed ACKs

 There are two standard methods that can be used by TCP receivers to
 generate acknowledgments. The method outlined in [RFC793] generates
 an ACK for each incoming data segment (i.e., d=1). [RFC1122] states
 that hosts should use "delayed acknowledgments". Using this
 algorithm, an ACK is generated for at least every second full-sized
 segment (d=2), or if a second full-sized segment does not arrive
 within a given timeout (which must not exceed 500 ms [RFC1122], and
 is typically less than 200 ms). Relaxing the latter constraint
 (i.e., allowing d>2) may generate Stretch ACKs [RFC2760]. This
 provides a possible mitigation, which reduces the rate at which ACKs
 are returned by the receiver. An implementer should only deviate
 from this requirement after careful consideration of the implications
 [RFC2581].

 Reducing the number of ACKs per received data segment has a number of
 undesirable effects including:

 (i) Increased path RTT
 (ii) Increased time for TCP to open the cwnd
 (iii) Increased TCP sender burst size, since cwnd opens in larger
 steps

 In addition, a TCP receiver is often unable to determine an optimum
 setting for a large d, since it will normally be unaware of the
 details of the properties of the links that form the path in the
 reverse direction.

 RECOMMENDATION: A TCP receiver must use the standard TCP algorithm
 for sending ACKs as specified in [RFC2581]. That is, it may delay
 sending an ACK after it receives a data segment [RFC1122]. When ACKs
 are delayed, the receiver must generate an ACK within 500 ms and the
 ACK should be generated for at least every second full sized segment
 (MSS) of received data [RFC2581]. This will result in an ACK delay
 factor (d) that does not exceed a value of 2. Changing the algorithm
 would require a host modification to the TCP receiver and awareness
 by the receiving host that it is using a connection with an
 asymmetric path. Such a change has many drawbacks in the general
 case and is currently not recommended for use within the Internet.

Balakrishnan et. al. Best Current Practice [Page 11]

RFC 3449 PILC - Asymmetric Links December 2002

4.2 Use of Large MSS

 A TCP sender that uses a large Maximum Segment Size (MSS) reduces the
 number of ACKs generated per transmitted byte of data.

 Although individual subnetworks may support a large MTU, the majority
 of current Internet links employ an MTU of approx 1500 bytes (that of
 Ethernet). By setting the Don’t Fragment (DF) bit in the IP header,
 Path MTU (PMTU) discovery [RFC1191] may be used to determine the
 maximum packet size (and hence MSS) a sender can use on a given
 network path without being subjected to IP fragmentation, and
 provides a way to automatically select a suitable MSS for a specific
 path. This also guarantees that routers will not perform IP
 fragmentation of normal data packets.

 By electing not to use PMTU Discovery, an end host may choose to use
 IP fragmentation by routers along the path in the forward direction
 [RFC793]. This allows an MSS larger than smallest MTU along the
 path. However, this increases the unit of error recovery (TCP
 segment) above the unit of transmission (IP packet). This is not
 recommended, since it can increase the number of retransmitted
 packets following loss of a single IP packet, leading to reduced
 efficiency, and potentially aggravating network congestion [Ken87].
 Choosing an MSS larger than the forward path minimum MTU also permits
 the sender to transmit more initial packets (a burst of IP fragments
 for each TCP segment) when a session starts or following RTO expiry,
 increasing the aggressiveness of the sender compared to standard TCP
 [RFC2581]. This can adversely impact other standard TCP sessions
 that share a network path.

 RECOMMENDATION:

 A larger forward path MTU is desirable for paths with bandwidth
 asymmetry. Network providers may use a large MTU on links in the
 forward direction. TCP end hosts using Path MTU discovery may be
 able to take advantage of a large MTU by automatically selecting an
 appropriate larger MSS, without requiring modification. The use of
 Path MTU discovery [RFC1191] is therefore recommended.

 Increasing the unit of error recovery and congestion control (MSS)
 above the unit of transmission and congestion loss (the IP packet) by
 using a larger end host MSS and IP fragmentation in routers is not
 recommended.

Balakrishnan et. al. Best Current Practice [Page 12]

RFC 3449 PILC - Asymmetric Links December 2002

4.3 ACK Congestion Control

 ACK Congestion Control (ACC) is an experimental technique that
 operates end to end. ACC extends congestion control to ACKs, since
 they may make non-negligible demands on resources (e.g., packet
 buffers, and MAC transmission overhead) at an upstream bottleneck
 link. It has two parts: (a) a network mechanism indicating to the
 receiver that the ACK path is congested, and (b) the receiver’s
 response to such an indication.

 A router feeding an upstream bottleneck link may detect incipient
 congestion, e.g., using an algorithm based on RED (Random Early
 Detection) [FJ93]. This may track the average queue size over a time
 window in the recent past. If the average exceeds a threshold, the
 router may select a packet at random. If the packet IP header has
 the Explicit Congestion Notification Capable Transport (ECT) bit set,
 the router may mark the packet, i.e., sets an Explicit Congestion
 Notification (ECN) [RFC3168] bit(s) in the IP header, otherwise the
 packet is normally dropped. The ECN notification received by the end
 host is reflected back to the sending TCP end host, to trigger
 congestion avoidance [RFC3168]. Note that routers implementing RED
 with ECN, do not eliminate packet loss, and may drop a packet (even
 when the ECT bit is set). It is also possible to use an algorithm
 other than RED to decide when to set the ECN bit.

 ACC extends ECN so that both TCP data packets and ACKs set the ECT
 bit and are thus candidates for being marked with an ECN bit.
 Therefore, upon receiving an ACK with the ECN bit set [RFC3168], a
 TCP receiver reduces the rate at which it sends ACKs. It maintains a
 dynamically varying delayed-ACK factor, d, and sends one ACK for
 every d data packets received. When it receives a packet with the
 ECN bit set, it increases d multiplicatively, thereby
 multiplicatively decreasing the frequency of ACKs. For each
 subsequent RTT (e.g., determined using the TCP RTTM option [RFC1323])
 during which it does not receive an ECN, it linearly decreases the
 factor d, increasing the frequency of ACKs. Thus, the receiver
 mimics the standard congestion control behavior of TCP senders in the
 manner in which it sends ACKs.

 The maximum value of d is determined by the TCP sender window size,
 which could be conveyed to the receiver in a new (experimental) TCP
 option. The receiver should send at least one ACK (preferably more)
 for each window of data from the sender (i.e., d < (cwnd/mss)) to
 prevent the sender from stalling until the receiver’s delayed ACK
 timer triggers an ACK to be sent.

Balakrishnan et. al. Best Current Practice [Page 13]

RFC 3449 PILC - Asymmetric Links December 2002

 RECOMMENDATION: ACK Congestion Control (ACC) is an experimental
 technique that requires TCP sender and receiver modifications. There
 is currently little experience of using such techniques in the
 Internet. Future versions of TCP may evolve to include this or
 similar techniques. These are the subject of ongoing research. ACC
 is not recommended for use within the Internet in its current form.

4.4 Window Prediction Mechanism

 The Window Prediction Mechanism (WPM) is a TCP receiver side
 mechanism [CLP98] that uses a dynamic ACK delay factor (varying d)
 resembling the ACC scheme (section 4.3). The TCP receiver
 reconstructs the congestion control behavior of the TCP sender by
 predicting a cwnd value. This value is used along with the allowed
 window to adjust the receiver’s value of d. WPM accommodates for
 unnecessary retransmissions resulting from losses due to link errors.

 RECOMMENDATION: Window Prediction Mechanism (WPM) is an experimental
 TCP receiver side modification. There is currently little experience
 of using such techniques in the Internet. Future versions of TCP may
 evolve to include this or similar techniques. These are the subjects
 of ongoing research. WPM is not recommended for use within the
 Internet in its current form.

4.5 Acknowledgement based on Cwnd Estimation.

 Acknowledgement based on Cwnd Estimation (ACE) [MJW00] attempts to
 measure the cwnd at the TCP receiver and maintain a varying ACK delay
 factor (d). The cwnd is estimated by counting the number of packets
 received during a path RTT. The technique may improve accuracy of
 prediction of a suitable cwnd.

 RECOMMENDATION: Acknowledgement based on Cwnd Estimation (ACE) is an
 experimental TCP receiver side modification. There is currently
 little experience of using such techniques in the Internet. Future
 versions of TCP may evolve to include this or similar techniques.
 These are the subject of ongoing research. ACE is not recommended
 for use within the Internet in its current form.

4.6 TCP Sender Pacing

 Reducing the frequency of ACKs may alleviate congestion of the
 upstream bottleneck link, but can lead to increased size of TCP
 sender bursts (section 4.1). This may slow the growth of cwnd, and
 is undesirable when used over shared network paths since it may
 significantly increase the maximum number of packets in the
 bottleneck link buffer, potentially resulting in an increase in
 network congestion. This may also lead to ACK Compression [ZSC91].

Balakrishnan et. al. Best Current Practice [Page 14]

RFC 3449 PILC - Asymmetric Links December 2002

 TCP Pacing [AST00], generally referred to as TCP Sender pacing,
 employs an adapted TCP sender to alleviating transmission burstiness.
 A bound is placed on the maximum number of packets the TCP sender can
 transmit back-to-back (at local line rate), even if the window(s)
 allow the transmission of more data. If necessary, more bursts of
 data packets are scheduled for later points in time computed based on
 the transmission rate of the TCP connection. The transmission rate
 may be estimated from the ratio cwnd/srtt. Thus, large bursts of
 data packets get broken up into smaller bursts spread over time.

 A subnetwork may also provide pacing (e.g., Generic Traffic Shaping
 (GTS)), but implies a significant increase in the per-packet
 processing overhead and buffer requirement at the router where
 shaping is performed (section 5.3.3).

 RECOMMENDATIONS: TCP Sender Pacing requires a change to
 implementation of the TCP sender. It may be beneficial in the
 Internet and will significantly reduce the burst size of packets
 transmitted by a host. This successfully mitigates the impact of
 receiving Stretch ACKs. TCP Sender Pacing implies increased
 processing cost per packet, and requires a prediction algorithm to
 suggest a suitable transmission rate. There are hence performance
 trade-offs between end host cost and network performance.
 Specification of efficient algorithms remains an area of ongoing
 research. Use of TCP Sender Pacing is not expected to introduce new
 problems. It is an experimental mitigation for TCP hosts that may
 control the burstiness of transmission (e.g., resulting from Type 1
 techniques, section 5.1.2), however it is not currently widely
 deployed. It is not recommended for use within the Internet in its
 current form.

4.7 TCP Byte Counting

 The TCP sender can avoid slowing growth of cwnd by taking into
 account the volume of data acknowledged by each ACK, rather than
 opening the cwnd based on the number of received ACKs. So, if an ACK
 acknowledges d data packets (or TCP data segments), the cwnd would
 grow as if d separate ACKs had been received. This is called TCP
 Byte Counting [RFC2581, RFC2760]. (One could treat the single ACK as
 being equivalent to d/2, instead of d ACKs, to mimic the effect of
 the TCP delayed ACK algorithm.) This policy works because cwnd
 growth is only tied to the available capacity in the forward
 direction, so the number of ACKs is immaterial.

 This may mitigate the impact of asymmetry when used in combination
 with other techniques (e.g., a combination of TCP Pacing
 (section4.6), and ACC (section 4.3) associated with a duplicate ACK
 threshold at the receiver.)

Balakrishnan et. al. Best Current Practice [Page 15]

RFC 3449 PILC - Asymmetric Links December 2002

 The main issue is that TCP byte counting may generate undesirable
 long bursts of TCP packets at the sender host line rate. An
 implementation must also consider that data packets in the forward
 direction and ACKs in the reverse direction may both travel over
 network paths that perform some amount of packet reordering.
 Reordering of IP packets is currently common, and may arise from
 various causes [BPS00].

 RECOMMENDATION: TCP Byte Counting requires a small TCP sender
 modification. In its simplest form, it can generate large bursts of
 TCP data packets, particularly when Stretch ACKs are received.
 Unlimited byte counting is therefore not allowed [RFC2581] for use
 within the Internet.

 It is therefore strongly recommended [RFC2581, RFC2760] that any byte
 counting scheme should include a method to mitigate the potentially
 large bursts of TCP data packets the algorithm can cause (e.g., TCP
 Sender Pacing (section 4.6), ABC [abc-ID]). If the burst size or
 sending rate of the TCP sender can be controlled then the scheme may
 be beneficial when Stretch ACKs are received. Determining safe
 algorithms remain an area of ongoing research. Further
 experimentation will then be required to assess the success of these
 safeguards, before they can be recommended for use in the Internet.

4.8 Backpressure

 Backpressure is a technique to enhance the performance of
 bidirectional traffic for end hosts directly connected to the
 upstream bottleneck link [KVR98]. A limit is set on how many data
 packets of upstream transfers can be enqueued at the upstream
 bottleneck link. In other words, the bottleneck link queue exerts
 ’backpressure’ on the TCP (sender) layer. This requires a modified
 implementation, compared to that currently deployed in many TCP
 stacks. Backpressure ensures that ACKs of downstream connections do
 not get starved at the upstream bottleneck, thereby improving
 performance of the downstream connections. Similar generic schemes
 that may be implemented in hosts/routers are discussed in section
 5.4.

 Backpressure can be unfair to a reverse direction connection and make
 its throughput highly sensitive to the dynamics of the forward
 connection(s).

 RECOMMENDATION: Backpressure requires an experimental modification to
 the sender protocol stack of a host directly connected to an upstream
 bottleneck link. Use of backpressure is an implementation issue,
 rather than a network protocol issue. Where backpressure is
 implemented, the optimizations described in this section could be

Balakrishnan et. al. Best Current Practice [Page 16]

RFC 3449 PILC - Asymmetric Links December 2002

 desirable and can benefit bidirectional traffic for hosts.
 Specification of safe algorithms for providing backpressure is still
 a subject of ongoing research. The technique is not recommended for
 use within the Internet in its current form.

5. Improving TCP performance using Transparent Modifications

 Various link and network layer techniques have been suggested to
 mitigate the effect of an upstream bottleneck link. These techniques
 may provide benefit without modification to either the TCP sender or
 receiver, or may alternately be used in conjunction with one or more
 of the schemes identified in section 4. In this document, these
 techniques are known as "transparent" [RFC3135], because at the
 transport layer, the TCP sender and receiver are not necessarily
 aware of their existence. This does not imply that they do not
 modify the pattern and timing of packets as observed at the network
 layer. The techniques are classified here into three types based on
 the point at which they are introduced.

 Most techniques require the individual TCP connections passing over
 the bottleneck link(s) to be separately identified and imply that
 some per-flow state is maintained for active TCP connections. A link
 scheduler may also be employed (section 5.4). The techniques (with
 one exception, ACK Decimation (section 5.2.2) require:

 (i) Visibility of an unencrypted IP and TCP packet header (e.g., no
 use of IPSec with payload encryption [RFC2406]).
 (ii) Knowledge of IP/TCP options and ability to inspect packets with
 tunnel encapsulations (e.g., [RFC2784]) or to suspend
 processing of packets with unknown formats.
 (iii) Ability to demultiplex flows (by using address/protocol/port
 number, or an explicit flow-id).

 [RFC3135] describes a class of network device that provides more than
 forwarding of packets, and which is known as a Protocol Enhancing
 Proxy (PEP). A large spectrum of PEP devices exists, ranging from
 simple devices (e.g., ACK filtering) to more sophisticated devices
 (e.g., stateful devices that split a TCP connection into two separate
 parts). The techniques described in section 5 of this document
 belong to the simpler type, and do not inspect or modify any TCP or
 UDP payload data. They also do not modify port numbers or link
 addresses. Many of the risks associated with more complex PEPs do
 not exist for these schemes. Further information about the operation
 and the risks associated with using PEPs are described in [RFC3135].

Balakrishnan et. al. Best Current Practice [Page 17]

RFC 3449 PILC - Asymmetric Links December 2002

5.1 TYPE 0: Header Compression

 A client may reduce the volume of bits used to send a single ACK by
 using compression [RFC3150, RFC3135]. Most modern dial-up modems
 support ITU-T V.42 bulk compression. In contrast to bulk
 compression, header compression is known to be very effective at
 reducing the number of bits sent on the upstream link [RFC1144]. This
 relies on the observation that most TCP packet headers vary only in a
 few bit positions between successive packets in a flow, and that the
 variations can often be predicted.

5.1.1 TCP Header Compression

 TCP header compression [RFC1144] (sometimes known as V-J compression)
 is a Proposed Standard describing use over low capacity links running
 SLIP or PPP [RFC3150]. It greatly reduces the size of ACKs on the
 reverse link when losses are infrequent (a situation that ensures
 that the state of the compressor and decompressor are synchronized).
 However, this alone does not address all of the asymmetry issues:

 (i) In some (e.g., wireless) subnetworks there is a significant
 per-packet MAC overhead that is independent of packet size
 (section 3.2).
 (ii) A reduction in the size of ACKs does not prevent adverse
 interaction with large upstream data packets in the presence
 of bidirectional traffic (section 3.3).
 (iii) TCP header compression cannot be used with packets that have
 IP or TCP options (including IPSec [RFC2402, RFC2406], TCP
 RTTM [RFC1323], TCP SACK [RFC2018], etc.).
 (iv) The performance of header compression described by RFC1144 is
 significantly degraded when compressed packets are lost. An
 improvement, which can still incur significant penalty on
 long network paths is described in [RFC2507]. This suggests
 it should only be used on links (or paths) that experience a
 low level of packet loss [RFC3150].
 (v) The normal implementation of Header Compression inhibits
 compression when IP is used to support tunneling (e.g., L2TP,
 GRE [RFC2794], IP-in-IP). The tunnel encapsulation
 complicates locating the appropriate packet headers. Although
 GRE allows Header Compression on the inner (tunneled) IP
 header [RFC2784], this is not recommended, since loss of a
 packet (e.g., due to router congestion along the tunnel path)
 will result in discard of all packets for one RTT [RFC1144].

 RECOMMENDATION: TCP Header Compression is a transparent modification
 performed at both ends of the upstream bottleneck link. It offers no
 benefit for flows employing IPSec [RFC2402, RFC2406], or when
 additional protocol headers are present (e.g., IP or TCP options,

Balakrishnan et. al. Best Current Practice [Page 18]

RFC 3449 PILC - Asymmetric Links December 2002

 and/or tunnel encapsulation headers). The scheme is widely
 implemented and deployed and used over Internet links. It is
 recommended to improve TCP performance for paths that have a low-to-
 medium bandwidth asymmetry (e.g., k<10).

 In the form described in [RFC1144], TCP performance is degraded when
 used over links (or paths) that may exhibit appreciable rates of
 packet loss [RFC3150]. It may also not provide significant
 improvement for upstream links with bidirectional traffic. It is
 therefore not desirable for paths that have a high bandwidth
 asymmetry (e.g., k>10).

5.1.2 Alternate Robust Header Compression Algorithms

 TCP header compression [RFC1144] and IP header compression [RFC2507]
 do not perform well when subject to packet loss. Further, they do
 not compress packets with TCP option fields (e.g., SACK [RFC2018] and
 Timestamp (RTTM) [RFC1323]). However, recent work on more robust
 schemes suggest that a new generation of compression algorithms may
 be developed which are much more robust. The IETF ROHC working group
 has specified compression techniques for UDP-based traffic [RFC3095]
 and is examining a number of schemes that may provide improve TCP
 header compression. These could be beneficial for asymmetric network
 paths.

 RECOMMENDATION: Robust header compression is a transparent
 modification that may be performed at both ends of an upstream
 bottleneck link. This class of techniques may also be suited to
 Internet paths that suffer low levels of re-ordering. The techniques
 benefit paths with a low-to-medium bandwidth asymmetry (e.g., k>10)
 and may be robust to packet loss.

 Selection of suitable compression algorithms remains an area of
 ongoing research. It is possible that schemes may be derived which
 support IPSec authentication, but not IPSec payload encryption. Such
 schemes do not alone provide significant improvement in asymmetric
 networks with a high asymmetry and/or bidirectional traffic.

5.2 TYPE 1: Reverse Link Bandwidth Management

 Techniques beyond Type 0 header compression are required to address
 the performance problems caused by appreciable asymmetry (k>>1). One
 set of techniques is implemented only at one point on the reverse
 direction path, within the router/host connected to the upstream
 bottleneck link. These use flow class or per-flow queues at the
 upstream link interface to manage the queue of packets waiting for
 transmission on the bottleneck upstream link.

Balakrishnan et. al. Best Current Practice [Page 19]

RFC 3449 PILC - Asymmetric Links December 2002

 This type of technique bounds the upstream link buffer queue size,
 and employs an algorithm to remove (discard) excess ACKs from each
 queue. This relies on the cumulative nature of ACKs (section 4.1).
 Two approaches are described which employ this type of mitigation.

5.2.1 ACK Filtering

 ACK Filtering (AF) [DMT96, BPK99] (also known as ACK Suppression
 [SF98, Sam99, FSS01]) is a TCP-aware link-layer technique that
 reduces the number of ACKs sent on the upstream link. This technique
 has been deployed in specific production networks (e.g., asymmetric
 satellite networks [ASB96]). The challenge is to ensure that the
 sender does not stall waiting for ACKs, which may happen if ACKs are
 indiscriminately removed.

 When an ACK from the receiver is about to be enqueued at a upstream
 bottleneck link interface, the router or the end host link layer (if
 the host is directly connected to the upstream bottleneck link)
 checks the transmit queue(s) for older ACKs belonging to the same TCP
 connection. If ACKs are found, some (or all of them) are removed
 from the queue, reducing the number of ACKs.

 Some ACKs also have other functions in TCP [RFC1144], and should not
 be deleted to ensure normal operation. AF should therefore not
 delete an ACK that has any data or TCP flags set (SYN, RST, URG, and
 FIN). In addition, it should avoid deleting a series of 3 duplicate
 ACKs that indicate the need for Fast Retransmission [RFC2581] or ACKs
 with the Selective ACK option (SACK)[RFC2018] from the queue to avoid
 causing problems to TCP’s data-driven loss recovery mechanisms.
 Appropriate treatment is also needed to preserve correct operation of
 ECN feedback (carried in the TCP header) [RFC3168].

 A range of policies to filter ACKs may be used. These may be either
 deterministic or random (similar to a random-drop gateway, but should
 take into consideration the semantics of the items in the queue).
 Algorithms have also been suggested to ensure a minimum ACK rate to
 guarantee the TCP sender window is updated [Sam99, FSS01], and to
 limit the number of data packets (TCP segments) acknowledged by a
 Stretch ACK. Per-flow state needs to be maintained only for
 connections with at least one packet in the queue (similar to FRED
 [LM97]). This state is soft [Cla88], and if necessary, can easily be
 reconstructed from the contents of the queue.

 The undesirable effect of delayed DupACKs (section 3.4) can be
 reduced by deleting duplicate ACKs above a threshold value [MJW00,
 CLP98] allowing Fast Retransmission, but avoiding early TCP timeouts,
 which may otherwise result from excessive queuing of DupACKs.

Balakrishnan et. al. Best Current Practice [Page 20]

RFC 3449 PILC - Asymmetric Links December 2002

 Future schemes may include more advanced rules allowing removal of
 selected SACKs [RFC2018]. Such a scheme could prevent the upstream
 link queue from becoming filled by back-to-back ACKs with SACK
 blocks. Since a SACK packet is much larger than an ACK, it would
 otherwise add significantly to the path delay in the reverse
 direction. Selection of suitable algorithms remains an ongoing area
 of research.

 RECOMMENDATION: ACK Filtering requires a modification to the upstream
 link interface. The scheme has been deployed in some networks where
 the extra processing overhead (per ACK) may be compensated for by
 avoiding the need to modify TCP. ACK Filtering can generate Stretch
 ACKs resulting in large bursts of TCP data packets. Therefore on its
 own, it is not recommended for use in the general Internet.

 ACK Filtering when used in combination with a scheme to mitigate the
 effect of Stretch ACKs (i.e., control TCP sender burst size) is
 recommended for paths with appreciable asymmetry (k>1) and/or with
 bidirectional traffic. Suitable algorithms to support IPSec
 authentication, SACK, and ECN remain areas of ongoing research.

5.2.2 ACK Decimation

 ACK Decimation is based on standard router mechanisms. By using an
 appropriate configuration of (small) per-flow queues and a chosen
 dropping policy (e.g., Weighted Fair Queuing, WFQ) at the upstream
 bottleneck link, a similar effect to AF (section 5.2.1) may be
 obtained, but with less control of the actual packets which are
 dropped.

 In this scheme, the router/host at the bottleneck upstream link
 maintains per-flow queues and services them fairly (or with
 priorities) by queuing and scheduling of ACKs and data packets in the
 reverse direction. A small queue threshold is maintained to drop
 excessive ACKs from the tail of each queue, in order to reduce ACK
 Congestion. The inability to identify special ACK packets (c.f., AF)
 introduces some major drawbacks to this approach, such as the
 possibility of losing DupACKs, FIN/ACK, RST packets, or packets
 carrying ECN information [RFC3168]. Loss of these packets does not
 significantly impact network congestion, but does adversely impact
 the performance of the TCP session observing the loss.

 A WFQ scheduler may assign a higher priority to interactive traffic
 (providing it has a mechanism to identify such traffic) and provide a
 fair share of the remaining capacity to the bulk traffic. In the
 presence of bidirectional traffic, and with a suitable scheduling
 policy, this may ensure fairer sharing for ACK and data packets. An
 increased forward transmission rate is achieved over asymmetric links

Balakrishnan et. al. Best Current Practice [Page 21]

RFC 3449 PILC - Asymmetric Links December 2002

 by an increased ACK Decimation rate, leading to generation of Stretch
 ACKs. As in AF, TCP sender burst size increases when Stretch ACKs
 are received unless other techniques are used in combination with
 this technique.

 This technique has been deployed in specific networks (e.g., a
 network with high bandwidth asymmetry supporting high-speed data
 services to in-transit mobile hosts [Seg00]). Although not optimal,
 it offered a potential mitigation applicable when the TCP header is
 difficult to identify or not visible to the link layer (e.g., due to
 IPSec encryption).

 RECOMMENDATION: ACK Decimation uses standard router mechanisms at the
 upstream link interface to constrain the rate at which ACKs are fed
 to the upstream link. The technique is beneficial with paths having
 appreciable asymmetry (k>1). It is however suboptimal, in that it
 may lead to inefficient TCP error recovery (and hence in some cases
 degraded TCP performance), and provides only crude control of link
 behavior. It is therefore recommended that where possible, ACK
 Filtering should be used in preference to ACK Decimation.

 When ACK Decimation is used on paths with an appreciable asymmetry
 (k>1) (or with bidirectional traffic) it increases the burst size of
 the TCP sender, use of a scheme to mitigate the effect of Stretch
 ACKs or control burstiness is therefore strongly recommended.

5.3 TYPE 2: Handling Infrequent ACKs

 TYPE 2 mitigations perform TYPE 1 upstream link bandwidth management,
 but also employ a second active element which mitigates the effect of
 the reduced ACK rate and burstiness of ACK transmission. This is
 desirable when end hosts use standard TCP sender implementations
 (e.g., those not implementing the techniques in sections 4.6, 4.7).

 Consider a path where a TYPE 1 scheme forwards a Stretch ACK covering
 d TCP packets (i.e., where the acknowledgement number is d*MSS larger
 than the last ACK received by the TCP sender). When the TCP sender
 receives this ACK, it can send a burst of d (or d+1) TCP data
 packets. The sender is also constrained by the current cwnd.
 Received ACKs also serve to increase cwnd (by at most one MSS).

 A TYPE 2 scheme mitigates the impact of the reduced ACK frequency
 resulting when a TYPE 1 scheme is used. This is achieved by
 interspersing additional ACKs before each received Stretch ACK. The
 additional ACKs, together with the original ACK, provide the TCP
 sender with sufficient ACKs to allow the TCP cwnd to open in the same
 way as if each of the original ACKs sent by the TCP receiver had been
 forwarded by the reverse path. In addition, by attempting to restore

Balakrishnan et. al. Best Current Practice [Page 22]

RFC 3449 PILC - Asymmetric Links December 2002

 the spacing between ACKs, such a scheme can also restore the TCP
 self-clocking behavior, and reduce the TCP sender burst size. Such
 schemes need to ensure conservative behavior (i.e., should not
 introduce more ACKs than were originally sent) and reduce the
 probability of ACK Compression [ZSC91].

 The action is performed at two points on the return path: the
 upstream link interface (where excess ACKs are removed), and a point
 further along the reverse path (after the bottleneck upstream
 link(s)), where replacement ACKs are inserted. This attempts to
 reconstruct the ACK stream sent by the TCP receiver when used in
 combination with AF (section 5.2.1), or ACK Decimation (section
 5.2.2).

 TYPE 2 mitigations may be performed locally at the receive interface
 directly following the upstream bottleneck link, or may alternatively
 be applied at any point further along the reverse path (this is not
 necessarily on the forward path, since asymmetric routing may employ
 different forward and reverse internet paths). Since the techniques
 may generate multiple ACKs upon reception of each individual Stretch
 ACK, it is strongly recommended that the expander implements a scheme
 to prevent exploitation as a "packet amplifier" in a Denial-of-
 Service (DoS) attack (e.g., to verify the originator of the ACK).
 Identification of the sender could be accomplished by appropriately
 configured packet filters and/or by tunnel authentication procedures
 (e.g., [RFC2402, RFC2406]). A limit on the number of reconstructed
 ACKs that may be generated from a single packet may also be
 desirable.

5.3.1 ACK Reconstruction

 ACK Reconstruction (AR) [BPK99] is used in conjunction with AF
 (section 5.2.1). AR deploys a soft-state [Cla88] agent called an ACK
 Reconstructor on the reverse path following the upstream bottleneck
 link. The soft-state can be regenerated if lost, based on received
 ACKs. When a Stretch ACK is received, AR introduces additional ACKs
 by filling gaps in the ACK sequence. Some potential Denial-of-
 Service vulnerabilities may arise (section 6) and need to be
 addressed by appropriate security techniques.

 The Reconstructor determines the number of additional ACKs, by
 estimating the number of filtered ACKs. This uses implicit
 information present in the received ACK stream by observing the ACK
 sequence number of each received ACK. An example implementation
 could set an ACK threshold, ackthresh, to twice the MSS (this assumes
 the chosen MSS is known by the link). The factor of two corresponds

Balakrishnan et. al. Best Current Practice [Page 23]

RFC 3449 PILC - Asymmetric Links December 2002

 to standard TCP delayed-ACK policy (d=2). Thus, if successive ACKs
 arrive separated by delta, the Reconstructor regenerates a maximum of
 ((delta/ackthresh) - 2) ACKs.

 To reduce the TCP sender burst size and allow the cwnd to increase at
 a rate governed by the downstream link, the reconstructed ACKs must
 be sent at a consistent rate (i.e., temporal spacing between
 reconstructed ACKs). One method is for the Reconstructor to measure
 the arrival rate of ACKs using an exponentially weighted moving
 average estimator. This rate depends on the output rate from the
 upstream link and on the presence of other traffic sharing the link.
 The output of the estimator indicates the average temporal spacing
 for the ACKs (and the average rate at which ACKs would reach the TCP
 sender if there were no further losses or delays). This may be used
 by the Reconstructor to set the temporal spacing of reconstructed
 ACKs. The scheme may also be used in combination with TCP sender
 adaptation (e.g., a combination of the techniques in sections 4.6 and
 4.7).

 The trade-off in AR is between obtaining less TCP sender burstiness,
 and a better rate of cwnd increase, with a reduction in RTT
 variation, versus a modest increase in the path RTT. The technique
 cannot perform reconstruction on connections using IPSec (AH
 [RFC2402] or ESP [RFC2406]), since it is unable to generate
 appropriate security information. It also cannot regenerate other
 packet header information (e.g., the exact pattern of bits carried in
 the IP packet ECN field [RFC3168] or the TCP RTTM option [RFC1323]).

 An ACK Reconstructor operates correctly (i.e., generates no spurious
 ACKs and preserves the end-to-end semantics of TCP), providing:

 (i) the TCP receiver uses ACK Delay (d=2) [RFC2581]
 (ii) the Reconstructor receives only in-order ACKs
 (iii) all ACKs are routed via the Reconstructor
 (iv) the Reconstructor correctly determines the TCP MSS used by
 the session
 (v) the packets do not carry additional header information (e.g.,
 TCP RTTM option [RFC1323], IPSec using AH [RFC2402]or ESP
 [RFC2406]).

 RECOMMENDATION: ACK Reconstruction is an experimental transparent
 modification performed on the reverse path following the upstream
 bottleneck link. It is designed to be used in conjunction with a
 TYPE 1 mitigation. It reduces the burst size of TCP transmission in
 the forward direction, which may otherwise increase when TYPE 1
 schemes are used alone. It requires modification of equipment after
 the upstream link (including maintaining per-flow soft state). The
 scheme introduces implicit assumptions about the network path and has

Balakrishnan et. al. Best Current Practice [Page 24]

RFC 3449 PILC - Asymmetric Links December 2002

 potential Denial-of-Service vulnerabilities (i.e., acting as a packet
 amplifier); these need to be better understood and addressed by
 appropriate security techniques.

 Selection of appropriate algorithms to pace the ACK traffic remains
 an open research issue. There is also currently little experience of
 the implications of using such techniques in the Internet, and
 therefore it is recommended that this technique should not be used
 within the Internet in its current form.

5.3.2 ACK Compaction and Companding

 ACK Compaction and ACK Companding [SAM99, FSS01] are techniques that
 operate at a point on the reverse path following the constrained ACK
 bottleneck. Like AR (section 5.3.1), ACK Compaction and ACK
 Companding are both used in conjunction with an AF technique (section
 5.2.1) and regenerate filtered ACKs, restoring the ACK stream.
 However, they differ from AR in that they use a modified AF (known as
 a compactor or compressor), in which explicit information is added to
 all Stretch ACKs generated by the AF. This is used to explicitly
 synchronize the reconstruction operation (referred to here as
 expansion).

 The modified AF combines two modifications: First, when the
 compressor deletes an ACK from the upstream bottleneck link queue, it
 appends explicit information (a prefix) to the remaining ACK (this
 ACK is marked to ensure it is not subsequently deleted). The
 additional information contains details the conditions under which
 ACKs were previously filtered. A variety of information may be
 encoded in the prefix. This includes the number of ACKs deleted by
 the AF and the average number of bytes acknowledged. This may
 subsequently be used by an expander at the remote end of the tunnel.
 Further timing information may also be added to control the pacing of
 the regenerated ACKs [FSS01]. The temporal spacing of the filtered
 ACKs may also be encoded.

 To encode the prefix requires the subsequent expander to recognize a
 modified ACK header. This would normally limit the expander to
 link-local operation (at the receive interface of the upstream
 bottleneck link). If remote expansion is needed further along the
 reverse path, a tunnel may be used to pass the modified ACKs to the
 remote expander. The tunnel introduces extra overhead, however
 networks with asymmetric capacity and symmetric routing frequently
 already employ such tunnels (e.g., in a UDLR network [RFC3077], the
 expander may be co-located with the feed router).

Balakrishnan et. al. Best Current Practice [Page 25]

RFC 3449 PILC - Asymmetric Links December 2002

 ACK expansion uses a stateless algorithm to expand the ACK (i.e.,
 each received packet is processed independently of previously
 received packets). It uses the prefix information together with the
 acknowledgment field in the received ACK, to produce an equivalent
 number of ACKs to those previously deleted by the compactor. These
 ACKs are forwarded to the original destination (i.e., the TCP
 sender), preserving normal TCP ACK clocking. In this way, ACK
 Compaction, unlike AR, is not reliant on specific ACK policies, nor
 must it see all ACKs associated with the reverse path (e.g., it may
 be compatible with schemes such as DAASS [RFC2760]).

 Some potential Denial-of-Service vulnerabilities may arise (section
 6) and need to be addressed by appropriate security techniques. The
 technique cannot perform reconstruction on connections using IPSec,
 since they are unable to regenerate appropriate security information.
 It is possible to explicitly encode IPSec security information from
 suppressed packets, allowing operation with IPSec AH, however this
 remains an open research issue, and implies an additional overhead
 per ACK.

 RECOMMENDATION: ACK Compaction and Companding are experimental
 transparent modifications performed on the reverse path following the
 upstream bottleneck link. They are designed to be used in
 conjunction with a modified TYPE 1 mitigation and reduce the burst
 size of TCP transmission in the forward direction, which may
 otherwise increase when TYPE 1 schemes are used alone.

 The technique is desirable, but requires modification of equipment
 after the upstream bottleneck link (including processing of a
 modified ACK header). Selection of appropriate algorithms to pace
 the ACK traffic also remains an open research issue. Some potential
 Denial-of-Service vulnerabilities may arise with any device that may
 act as a packet amplifier. These need to be addressed by appropriate
 security techniques. There is little experience of using the scheme
 over Internet paths. This scheme is a subject of ongoing research
 and is not recommended for use within the Internet in its current
 form.

5.3.3 Mitigating TCP packet bursts generated by Infrequent ACKs

 The bursts of data packets generated when a Type 1 scheme is used on
 the reverse direction path may be mitigated by introducing a router
 supporting Generic Traffic Shaping (GTS) on the forward path [Seg00].
 GTS is a standard router mechanism implemented in many deployed
 routers. This technique does not eliminate the bursts of data
 generated by the TCP sender, but attempts to smooth out the bursts by
 employing scheduling and queuing techniques, producing traffic which
 resembles that when TCP Pacing is used (section 4.6). These

Balakrishnan et. al. Best Current Practice [Page 26]

RFC 3449 PILC - Asymmetric Links December 2002

 techniques require maintaining per-flow soft-state in the router, and
 increase per-packet processing overhead. Some additional buffer
 capacity is needed to queue packets being shaped.

 To perform GTS, the router needs to select appropriate traffic
 shaping parameters, which require knowledge of the network policy,
 connection behavior and/or downstream bottleneck characteristics. GTS
 may also be used to enforce other network policies and promote
 fairness between competing TCP connections (and also UDP and
 multicast flows). It also reduces the probability of ACK Compression
 [ZSC91].

 The smoothing of packet bursts reduces the impact of the TCP
 transmission bursts on routers and hosts following the point at which
 GTS is performed. It is therefore desirable to perform GTS near to
 the sending host, or at least at a point before the first forward
 path bottleneck router.

 RECOMMENDATIONS: Generic Traffic Shaping (GTS) is a transparent
 technique employed at a router on the forward path. The algorithms
 to implement GTS are available in widely deployed routers and may be
 used on an Internet link, but do imply significant additional per-
 packet processing cost.

 Configuration of a GTS is a policy decision of a network service
 provider. When appropriately configured the technique will reduce
 size of TCP data packet bursts, mitigating the effects of Type 1
 techniques. GTS is recommended for use in the Internet in
 conjunction with type 1 techniques such as ACK Filtering (section
 5.2.1) and ACK Decimation (section 5.2.2).

5.4 TYPE 3: Upstream Link Scheduling

 Many of the above schemes imply using per flow queues (or per
 connection queues in the case of TCP) at the upstream bottleneck
 link. Per-flow queuing (e.g., FQ, CBQ) offers benefit when used on
 any slow link (where the time to transmit a packet forms an
 appreciable part of the path RTT) [RFC3150]. Type 3 schemes offer
 additional benefit when used with one of the above techniques.

5.4.1 Per-Flow queuing at the Upstream Bottleneck Link

 When bidirectional traffic exists in a bandwidth asymmetric network
 competing ACK and packet data flows along the return path may degrade
 the performance of both upstream and downstream flows [KVR98].
 Therefore, it is highly desirable to use a queuing strategy combined
 with a scheduling mechanism at the upstream link. This has also been
 called priority-based multiplexing [RFC3135].

Balakrishnan et. al. Best Current Practice [Page 27]

RFC 3449 PILC - Asymmetric Links December 2002

 On a slow upstream link, appreciable jitter may be introduced by
 sending large data packets ahead of ACKs [RFC3150]. A simple scheme
 may be implemented using per-flow queuing with a fair scheduler
 (e.g., round robin service to all flows, or priority scheduling). A
 modified scheduler [KVR98] could place a limit on the number of ACKs
 a host is allowed to transmit upstream before transmitting a data
 packet (assuming at least one data packet is waiting in the upstream
 link queue). This guarantees at least a certain minimum share of the
 capacity to flows in the reverse direction, while enabling flows in
 the forward direction to improve TCP throughput.

 Bulk (payload) compression, a small MTU, link level transparent
 fragmentation [RFC1991, RFC2686] or link level suspend/resume
 capability (where higher priority frames may pre-empt transmission of
 lower priority frames) may be used to mitigate the impact (jitter) of
 bidirectional traffic on low speed links [RFC3150]. More advanced
 schemes (e.g., WFQ) may also be used to improve the performance of
 transfers with multiple ACK streams such as http [Seg00].

 RECOMMENDATION: Per-flow queuing is a transparent modification
 performed at the upstream bottleneck link. Per-flow (or per-class)
 scheduling does not impact the congestion behavior of the Internet,
 and may be used on any Internet link. The scheme has particular
 benefits for slow links. It is widely implemented and widely
 deployed on links operating at less than 2 Mbps. This is recommended
 as a mitigation on its own or in combination with one of the other
 described techniques.

5.4.2 ACKs-first Scheduling

 ACKs-first Scheduling is an experimental technique to improve
 performance of bidirectional transfers. In this case data packets
 and ACKs compete for resources at the upstream bottleneck link
 [RFC3150]. A single First-In First-Out, FIFO, queue for both data
 packets and ACKs could impact the performance of forward transfers.
 For example, if the upstream bottleneck link is a 28.8 kbps dialup
 line, the transmission of a 1 Kbyte sized data packet would take
 about 280 ms. So even if just two such data packets get queued ahead
 of ACKs (not an uncommon occurrence since data packets are sent out
 in pairs during slow start), they would shut out ACKs for well over
 half a second. If more than two data packets are queued up ahead of
 an ACK, the ACKs would be delayed by even more [RFC3150].

 A possible approach to alleviating this is to schedule data and ACKs
 differently from FIFO. One algorithm, in particular, is ACKs-first
 scheduling, which accords a higher priority to ACKs over data
 packets. The motivation for such scheduling is that it minimizes the
 idle time for the forward connection by minimizing the time that ACKs

Balakrishnan et. al. Best Current Practice [Page 28]

RFC 3449 PILC - Asymmetric Links December 2002

 spend queued behind data packets at the upstream link. At the same
 time, with Type 0 techniques such as header compression [RFC1144],
 the transmission time of ACKs becomes small enough that the impact on
 subsequent data packets is minimal. (Subnetworks in which the per-
 packet overhead of the upstream link is large, e.g., packet radio
 subnetworks, are an exception, section 3.2.) This scheduling scheme
 does not require the upstream bottleneck router/host to explicitly
 identify or maintain state for individual TCP connections.

 ACKs-first scheduling does not help avoid a delay due to a data
 packet in transmission. Link fragmentation or suspend/resume may be
 beneficial in this case.

 RECOMMENDATION: ACKs-first scheduling is an experimental transparent
 modification performed at the upstream bottleneck link. If it is
 used without a mechanism (such as ACK Congestion Control (ACC),
 section 4.3) to regulate the volume of ACKs, it could lead to
 starvation of data packets. This is a performance penalty
 experienced by end hosts using the link and does not modify Internet
 congestion behavior. Experiments indicate that ACKs-first scheduling
 in combination with ACC is promising. However, there is little
 experience of using the technique in the wider Internet. Further
 development of the technique remains an open research issue, and
 therefore the scheme is not currently recommended for use within the
 Internet.

6. Security Considerations

 The recommendations contained in this document do not impact the
 integrity of TCP, introduce new security implications to the TCP
 protocol, or applications using TCP.

 Some security considerations in the context of this document arise
 from the implications of using IPSec by the end hosts or routers
 operating along the return path. Use of IPSec prevents, or
 complicates, some of the mitigations. For example:

 (i) When IPSec ESP [RFC2406] is used to encrypt the IP payload, the
 TCP header can neither be read nor modified by intermediate
 entities. This rules out header compression, ACK Filtering, ACK
 Reconstruction, and the ACK Compaction.

 (ii) The TCP header information may be visible, when some forms of
 network layer security are used. For example, using IPSec AH
 [RFC2402], the TCP header may be read, but not modified, by
 intermediaries. This may in future allow extensions to support
 ACK Filtering, but rules out the generation of new

Balakrishnan et. al. Best Current Practice [Page 29]

RFC 3449 PILC - Asymmetric Links December 2002

 packets by intermediaries (e.g., ACK Reconstruction). The
 enhanced header compression scheme discussed in [RFC2507] would
 also work with IPSec AH.

 There are potential Denial-of-Service (DoS) implications when using
 Type 2 schemes. Unless additional security mechanisms are used, a
 Reconstructor/expander could be exploited as a packet amplifier. A
 third party may inject unauthorized Stretch ACKs into the reverse
 path, triggering the generation of additional ACKs. These ACKs would
 consume capacity on the return path and processing resources at the
 systems along the path, including the destination host. This
 provides a potential platform for a DoS attack. The usual
 precautions must be taken to verify the correct tunnel end point, and
 to ensure that applications cannot falsely inject packets that expand
 to generate unwanted traffic. Imposing a rate limit and bound on the
 delayed ACK factor(d) would also lessen the impact of any undetected
 exploitation.

7. Summary

 This document considers several TCP performance constraints that
 arise from asymmetry in the properties of the forward and reverse
 paths across an IP network. Such performance constraints arise,
 e.g., as a result of both bandwidth (capacity) asymmetry, asymmetric
 shared media in the reverse direction, and interactions with Media
 Access Control (MAC) protocols. Asymmetric capacity may cause TCP
 Acknowledgments (ACKs) to be lost or become inordinately delayed
 (e.g., when a bottleneck link is shared between many flows, or when
 there is bidirectional traffic). This effect may be exacerbated with
 media-access delays (e.g., in certain multi-hop radio subnetworks,
 satellite Bandwidth on Demand access). Asymmetry, and particular
 high asymmetry, raises a set of TCP performance issues.

 A set of techniques providing performance improvement is surveyed.
 These include techniques to alleviate ACK Congestion and techniques
 that enable a TCP sender to cope with infrequent ACKs without
 destroying TCP self-clocking. These techniques include both end-to-
 end, local link-layer, and subnetwork schemes. Many of these
 techniques have been evaluated in detail via analysis, simulation,
 and/or implementation on asymmetric subnetworks forming part of the
 Internet. There is however as yet insufficient operational
 experience for some techniques, and these therefore currently remain
 items of on-going research and experimentation.

Balakrishnan et. al. Best Current Practice [Page 30]

RFC 3449 PILC - Asymmetric Links December 2002

 The following table summarizes the current recommendations.
 Mechanisms are classified as recommended (REC), not recommended (NOT
 REC) or experimental (EXP). Experimental techniques may not be well
 specified. These techniques will require further operational
 experience before they can be recommended for use in the public
 Internet.

 The recommendations for end-to-end host modifications are summarized
 in table 1. This lists each technique, the section in which each
 technique is discussed, and where it is applied (S denotes the host
 sending TCP data packets in the forward direction, R denotes the host
 which receives these data packets).

 +------------------------+-------------+------------+--------+
 | Technique | Use | Section | Where |
 +------------------------+-------------+------------+--------+
 | Modified Delayed ACKs | NOT REC | 4.1 | TCP R |
 | Large MSS & NO FRAG | REC | 4.2 | TCP SR |
 | Large MSS & IP FRAG | NOT REC | 4.2 | TCP SR |
 | ACK Congestion Control | EXP | 4.3 | TCP SR |
 | Window Pred. Mech (WPM)| NOT REC | 4.4 | TCP R |
 | Window Cwnd. Est. (ACE)| NOT REC | 4.5 | TCP R |
 | TCP Sender Pacing | EXP *1 | 4.6 | TCP S |
 | Byte Counting | NOT REC *2 | 4.7 | TCP S |
 | Backpressure | EXP *1 | 4.8 | TCP R |
 +------------------------+-------------+------------+--------+

 Table 1: Recommendations concerning host modifications.

 *1 Implementation of the technique may require changes to the
 internal design of the protocol stack in end hosts.
 *2 Dependent on a scheme for preventing excessive TCP transmission
 burst.

 The recommendations for techniques that do not require the TCP sender
 and receiver to be aware of their existence (i.e., transparent
 techniques) are summarized in table 2. Each technique is listed
 along with the section in which each mechanism is discussed, and
 where the technique is applied (S denotes the sending interface prior
 to the upstream bottleneck link, R denotes receiving interface
 following the upstream bottleneck link).

Balakrishnan et. al. Best Current Practice [Page 31]

RFC 3449 PILC - Asymmetric Links December 2002

 +------------------------+-------------+------------+--------+
 | Mechanism | Use | Section | Type |
 +------------------------+-------------+------------+--------+
 | Header Compr. (V-J) | REC *1 | 5.1.1 | 0 SR |
 | Header Compr. (ROHC) | REC *1 *2 | 5.1.2 | 0 SR |
 +------------------------+-------------+------------+--------+
 | ACK Filtering (AF) | EXP *3 | 5.2.1 | 1 S |
 | ACK Decimation | EXP *3 | 5.2.2 | 1 S |
 +------------------------+-------------+------------+--------+
 | ACK Reconstruction (AR)| NOT REC | 5.3.1 | 2 *4 |
 | ACK Compaction/Compand.| EXP | 5.3.2 | 2 S *4 |
 | Gen. Traff. Shap. (GTS)| REC | 5.3.3 | 2 *5 |
 +------------------------+-------------+------------+--------+
 | Fair Queueing (FQ) | REC | 5.4.1 | 3 S |
 | ACKs-First Scheduling | NOT REC | 5.4.2 | 3 S |
 +------------------------+-------------+------------+--------+

 Table 2: Recommendations concerning transparent modifications.

 *1 At high asymmetry these schemes may degrade TCP performance, but
 are not considered harmful to the Internet.
 *2 Standardisation of new TCP compression protocols is the subject of
 ongoing work within the ROHC WG, refer to other IETF RFCs on the
 use of these techniques.
 *3 Use in the Internet is dependent on a scheme for preventing
 excessive TCP transmission burst.
 *4 Performed at a point along the reverse path after the upstream
 bottleneck link.
 *5 Performed at a point along the forward path.

8. Acknowledgments

 This document has benefited from comments from the members of the
 Performance Implications of Links (PILC) Working Group. In
 particular, the authors would like to thank John Border, Spencer
 Dawkins, Aaron Falk, Dan Grossman, Randy Katz, Jeff Mandin, Rod
 Ragland, Ramon Segura, Joe Touch, and Lloyd Wood for their useful
 comments. They also acknowledge the data provided by Metricom Inc.,
 concerning operation of their packet data network.

9. References

 References of the form RFCnnnn are Internet Request for Comments
 (RFC) documents available online at http://www.rfc-editor.org/.

Balakrishnan et. al. Best Current Practice [Page 32]

RFC 3449 PILC - Asymmetric Links December 2002

9.1 Normative References

 [RFC793] Postel, J., "Transmission Control Protocol", STD 7, RFC
 793, September 1981.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, October 1989.

 [RFC1144] Jacobson, V., "Compressing TCP/IP Headers for Low-Speed
 Serial Links", RFC 1144, February 1990.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU Discovery", RFC 1191,
 November 1990.

 [RFC2581] Allman, M., Paxson, V. and W. Stevens, "TCP Congestion
 Control", RFC 2581, April 1999.

 [RFC2784] Farinacci, D., Li, T., Hanks, S., Meyer, D. and P. Traina,
 "Generic Routing Encapsulation (GRE)", RFC 2784, March
 2000.

 [RFC3135] Border, J., Kojo, M., Griner, J., Montenegro, G. and Z.
 Shelby, "Performance Enhancing Proxies Intended to Mitigate
 Link-Related Degradations", RFC 3135, June 2001.

9.2 Informative References

 [abc-ID] Allman, M., "TCP Congestion Control with Appropriate Byte
 Counting", Work in Progress.

 [All97b] Allman, M., "Fixing Two BSD TCP Bugs", Technical Report
 CR-204151, NASA Lewis Research Center, October 1997.

 [ANS01] ANSI Standard T1.413, "Network to Customer Installation
 Interfaces - Asymmetric Digital Subscriber Lines (ADSL)
 Metallic Interface", November 1998.

 [ASB96] Arora, V., Suphasindhu, N., Baras, J.S. and D. Dillon,
 "Asymmetric Internet Access over Satellite-Terrestrial
 Networks", Proc. AIAA: 16th International Communications
 Satellite Systems Conference and Exhibit, Part 1,
 Washington, D.C., February 25-29, 1996, pp.476-482.

 [AST00] Aggarwal, A., Savage, S., and T. Anderson, "Understanding
 the Performance of TCP Pacing", Proc. IEEE INFOCOM, Tel-
 Aviv, Israel, V.3, March 2000, pp. 1157-1165.

Balakrishnan et. al. Best Current Practice [Page 33]

RFC 3449 PILC - Asymmetric Links December 2002

 [Bal98] Balakrishnan, H., "Challenges to Reliable Data Transport
 over Heterogeneous Wireless Networks", Ph.D. Thesis,
 University of California at Berkeley, USA, August 1998.
 http://nms.lcs.mit.edu/papers/hari-phd/

 [BPK99] Balakrishnan, H., Padmanabhan, V. N., and R. H. Katz, "The
 Effects of Asymmetry on TCP Performance", ACM Mobile
 Networks and Applications (MONET), Vol.4, No.3, 1999, pp.
 219-241. An expanded version of a paper published at Proc.
 ACM/IEEE Mobile Communications Conference (MOBICOM), 1997.

 [BPS00] Bennett, J. C., Partridge, C., and N. Schectman, "Packet
 Reordering is Not Pathological Network Behaviour", IEEE/ACM
 Transactions on Networking, Vol. 7, Issue. 6, 2000,
 pp.789-798.

 [Cla88] Clark, D.D, "The Design Philosophy of the DARPA Internet
 Protocols", ACM Computer Communications Review (CCR), Vol.
 18, Issue 4, 1988, pp.106-114.

 [CLC99] Clausen, H., Linder, H., and B. Collini-Nocker, "Internet
 over Broadcast Satellites", IEEE Communications Magazine,
 Vol. 37, Issue. 6, 1999, pp.146-151.

 [CLP98] Calveras, A., Linares, J., and J. Paradells, "Window
 Prediction Mechanism for Improving TCP in Wireless
 Asymmetric Links". Proc. IEEE Global Communications
 Conference (GLOBECOM), Sydney Australia, November 1998,
 pp.533-538.

 [CR98] Cohen, R., and Ramanathan, S., "Tuning TCP for High
 Performance in Hybrid Fiber Coaxial Broad-Band Access
 Networks", IEEE/ACM Transactions on Networking, Vol.6,
 No.1, 1998, pp.15-29.

 [DS00] Cable Television Laboratories, Inc., Data-Over-Cable
 Service Interface Specifications---Radio Frequency
 Interface Specification SP-RFIv1.1-I04-00407, 2000

 [DS01] Data-Over-Cable Service Interface Specifications, Radio
 Frequency Interface Specification 1.0, SP-RFI-I05-991105,
 Cable Television Laboratories, Inc., November 1999.

 [DMT96] Durst, R., Miller, G., and E. Travis, "TCP Extensions for
 Space Communications", ACM/IEEE Mobile Communications
 Conference (MOBICOM), New York, USA, November 1996, pp.15-
 26.

Balakrishnan et. al. Best Current Practice [Page 34]

RFC 3449 PILC - Asymmetric Links December 2002

 [EN97] "Digital Video Broadcasting (DVB); DVB Specification for
 Data Broadcasting", European Standard (Telecommunications
 series) EN 301 192, 1997.

 [EN00] "Digital Video Broadcasting (DVB); Interaction Channel for
 Satellite Distribution Systems", Draft European Standard
 (Telecommunications series) ETSI, Draft EN 301 790, v.1.2.1

 [FJ93] Floyd, S., and V. Jacobson, "Random Early Detection
 gateways for Congestion Avoidance", IEEE/ACM Transactions
 on Networking, Vol.1, No.4, 1993, pp.397-413.

 [FSS01] Fairhurst, G., Samaraweera, N.K.G, Sooriyabandara, M.,
 Harun, H., Hodson, K., and R. Donardio, "Performance Issues
 in Asymmetric Service Provision using Broadband Satellite",
 IEE Proceedings on Communication, Vol.148, No.2, 2001,
 pp.95-99.

 [ITU01] ITU-T Recommendation E.681, "Traffic Engineering Methods
 For IP Access Networks Based on Hybrid Fiber/Coax System",
 September 2001.

 [ITU02] ITU-T Recommendation G.992.1, "Asymmetrical Digital
 Subscriber Line (ADSL) Transceivers", July 1999.

 [Jac88] Jacobson, V., "Congestion Avoidance and Control", Proc. ACM
 SIGCOMM, Stanford, CA, ACM Computer Communications Review
 (CCR), Vol.18, No.4, 1988, pp.314-329.

 [Ken87] Kent C.A., and J. C. Mogul, "Fragmentation Considered
 Harmful", Proc. ACM SIGCOMM, USA, ACM Computer
 Communications Review (CCR), Vol.17, No.5, 1988, pp.390-
 401.

 [KSG98] Krout, T., Solsman, M., and J. Goldstein, "The Effects of
 Asymmetric Satellite Networks on Protocols", Proc. IEEE
 Military Communications Conference (MILCOM), Bradford, MA,
 USA, Vol.3, 1998, pp.1072-1076.

 [KVR98] Kalampoukas, L., Varma, A., and Ramakrishnan, K.K.,
 "Improving TCP Throughput over Two-Way Asymmetric Links:
 Analysis and Solutions", Proc. ACM SIGMETRICS, Medison,
 USA, 1998, pp.78-89.

 [LM97] Lin, D., and R. Morris, "Dynamics of Random Early
 Detection", Proc. ACM SIGCOMM, Cannes, France, ACM Computer
 Communications Review (CCR), Vol.27, No.4, 1997, pp.78-89.

Balakrishnan et. al. Best Current Practice [Page 35]

RFC 3449 PILC - Asymmetric Links December 2002

 [LMS97] Lakshman, T.V., Madhow, U., and B. Suter, "Window-based
 Error Recovery and Flow Control with a Slow Acknowledgement
 Channel: A Study of TCP/IP Performance", Proc. IEEE
 INFOCOM, Vol.3, Kobe, Japan, 1997, pp.1199-1209.

 [MJW00] Ming-Chit, I.T., Jinsong, D., and W. Wang,"Improving TCP
 Performance Over Asymmetric Networks", ACM SIGCOMM, ACM
 Computer Communications Review (CCR), Vol.30, No.3, 2000.

 [Pad98] Padmanabhan, V.N., "Addressing the Challenges of Web Data
 Transport", Ph.D. Thesis, University of California at
 Berkeley, USA, September 1998 (also Tech Report UCB/CSD-
 98-1016). http://www.cs.berkeley.edu/˜padmanab/phd-
 thesis.html

 [RFC1323] Jacobson, V., Braden, R. and D. Borman, "TCP Extensions for
 High Performance", RFC 1323, May 1992.

 [RFC2018] Mathis, B., Mahdavi, J., Floyd, S. and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018, October 1996.

 [RFC2402] Kent, S. and R. Atkinson, "IP Authentication Header", RFC
 2402, November 1998.

 [RFC2406] Kent, S. and R. Atkinson, "IP Encapsulating Security
 Payload (ESP)", RFC 2406, November 1998.

 [RFC2507] Degermark, M., Nordgren, B. and S. Pink, "IP Header
 Compression", RFC 2507, February 1999.

 [RFC2525] Paxson, V., Allman, M., Dawson, S., Heavens, I. and B.
 Volz, "Known TCP Implementation Problems", RFC 2525, March
 1999.

 [RFC2686] Bormann, C., "The Multi-Class Extension to Multi-Link PPP",
 RFC 2686, September 1999.

 [RFC2760] Allman, M., Dawkins, S., Glover, D., Griner, J., Henderson,
 T., Heidemann, J., Kruse, H., Ostermann, S., Scott, K.,
 Semke, J., Touch, J. and D. Tran, "Ongoing TCP Research
 Related to Satellites", RFC 2760, February 2000.

 [RFC2988] Paxson, V. and M. Allman, "Computing TCP’s Retransmission
 Timer", RFC 2988, November 2000.

 [RFC3077] Duros, E., Dabbous, W., Izumiyama, H., Fujii, N. and Y.
 Zhang, "A link Layer tunneling mechanism for unidirectional
 links", RFC 3077, March 2001.

Balakrishnan et. al. Best Current Practice [Page 36]

RFC 3449 PILC - Asymmetric Links December 2002

 [RFC3095] Bormann, C., Burmeister, C., Degermark, M., Fukushima, H.,
 Hannu, H., Jonsson, E., Hakenberg, R., Koren, T., Le, K.,
 Liu, Z., Martensson, A., Miyazaki, A., Svanbro, K., Wiebke,
 T., Yoshimura, T. and H. Zheng, "RObust Header Compression
 (ROHC): Framework and four profiles: RTP, UDP ESP and
 uncompressed", RFC 3095, July 2001.

 [RFC3150] Dawkins, S., Montenegro, G., Kojo, M. and V. Magret, "End-
 to-end Performance Implications of Slow Links", BCP 48, RFC
 3150, July 2001.

 [RFC3168] Ramakrishnan K., Floyd, S. and D. Black, "A Proposal to add
 Explicit Congestion Notification (ECN) to IP", RFC 3168,
 September 2001.

 [Sam99] Samaraweera, N.K.G, "Return Link Optimization for Internet
 Service Provision Using DVB-S Networks", ACM Computer
 Communications Review (CCR), Vol.29, No.3, 1999, pp.4-19.

 [Seg00] Segura R., "Asymmetric Networking Techniques For Hybrid
 Satellite Communications", NC3A, The Hague, Netherlands,
 NATO Technical Note 810, August 2000, pp.32-37.

 [SF98] Samaraweera, N.K.G., and G. Fairhurst. "High Speed Internet
 Access using Satellite-based DVB Networks", Proc. IEEE
 International Networks Conference (INC98), Plymouth, UK,
 1998, pp.23-28.

 [ZSC91] Zhang, L., Shenker, S., and D. D. Clark, "Observations and
 Dynamics of a Congestion Control Algorithm: The Effects of
 Two-Way Traffic", Proc. ACM SIGCOMM, ACM Computer
 Communications Review (CCR), Vol 21, No 4, 1991, pp.133-
 147.

10. IANA Considerations

 There are no IANA considerations associated with this document.

Balakrishnan et. al. Best Current Practice [Page 37]

RFC 3449 PILC - Asymmetric Links December 2002

Appendix - Examples of Subnetworks Exhibiting Network Path Asymmetry

 This appendix provides a list of some subnetworks which are known to
 experience network path asymmetry. The asymmetry in capacity of
 these network paths can require mitigations to provide acceptable
 overall performance. Examples include the following:

 - IP service over some wide area and local area wireless networks.
 In such networks, the predominant network path asymmetry arises
 from the hub-and-spokes architecture of the network (e.g., a
 single base station that communicates with multiple mobile
 stations), this requires a Ready To Send / Clear To Send (RTS/CTS)
 protocol and a Medium Access Control (MAC) protocol which needs to
 accommodate the significant turn-around time for the radios. A
 high per-packet transmission overhead may lead to significant
 network path asymmetry.

 - IP service over a forward satellite link utilizing Digital Video
 Broadcast (DVB) transmission [EN97] (e.g., 38-45 Mbps), and a
 slower upstream link using terrestrial network technology (e.g.,
 dial-up modem, line of sight microwave, cellular radio) [CLC99].
 Network path asymmetry arises from a difference in the upstream
 and downstream link capacities.

 - Certain military networks [KSG98] providing Internet access to
 in-transit or isolated hosts [Seg00] using a high capacity
 downstream satellite link (e.g., 2-3 Mbps) with a narrowband
 upstream link (e.g., 2.4-9.6 kbps) using either Demand Assigned
 Multiple Access (DAMA) or fixed rate satellite links. The main
 factor contributing to network path asymmetry is the difference in
 the upstream and downstream link capacities. Some differences
 between forward and reverse paths may arise from the way in which
 upstream link capacity is allocated.

 - Most data over cable TV networks (e.g., DOCSIS [ITU01, DS00]),
 where the analogue channels assigned for upstream communication
 (i.e., in the reverse direction) are narrower and may be more
 noisy than those assigned for the downstream link. As a
 consequence, the upstream and downstream links differ in their
 transmission rate. For example, in DOCSIS 1.0 [DS00], the
 downstream transmission rate is either 27 or 52 Mbps. Upstream
 transmission rates may be dynamically selected to be one of a
 series of rates which range between 166 kbps to 9 Mbps. Operators
 may assign multiple upstream channels per downstream channel.
 Physical layer (PHY) overhead (which accompanies upstream
 transmissions, but is not present in the downstream link) can also
 increase the network path asymmetry. The Best Effort service,
 which is typically used to carry TCP, uses a

Balakrishnan et. al. Best Current Practice [Page 38]

RFC 3449 PILC - Asymmetric Links December 2002

 contention/reservation MAC protocol. A cable modem (CM) sending
 an isolated packet (such as a TCP ACK) on the upstream link must
 contend with other CMs to request capacity from the central cable
 modem termination system (CMTS). The CMTS then grants timeslots
 to a CM for the upstream transmission. The CM may "piggyback"
 subsequent requests onto upstream packets, avoiding contention
 cycles; as a result, spacing of TCP ACKs can be dramatically
 altered due to minor variations in load of the cable data network
 and inter-arrival times of TCP DATA packets. Numerous other
 complexities may add to, or mitigate, the asymmetry in rate and
 access latency experienced by packets sent on the upstream link
 relative to downstream packets in DOCSIS. The asymmetry
 experienced by end hosts may also change dynamically (e.g., with
 network load), and when best effort services share capacity with
 services that have symmetric reserved capacity (e.g., IP telephony
 over the Unsolicited Grant service) [ITU01].

 - Asymmetric Digital Subscriber Line (ADSL), by definition, offers a
 downstream link transmission rate that is higher than that of the
 upstream link. The available rates depend upon channel quality
 and system configuration. For example, one widely deployed ADSL
 technology [ITU02, ANS01] operates at rates that are multiples of
 32 kbps (up to 6.144 Mbps) in the downstream link, and up to 640
 kbps for the upstream link. The network path asymmetry
 experienced by end hosts may be further increased when best effort
 services, e.g., Internet access over ADSL, share the available
 upstream capacity with reserved services (e.g., constant bit rate
 voice telephony).

Balakrishnan et. al. Best Current Practice [Page 39]

RFC 3449 PILC - Asymmetric Links December 2002

Authors’ Addresses

 Hari Balakrishnan
 Laboratory for Computer Science
 200 Technology Square
 Massachusetts Institute of Technology
 Cambridge, MA 02139
 USA

 Phone: +1-617-253-8713
 EMail: hari@lcs.mit.edu
 Web: http://nms.lcs.mit.edu/˜hari/

 Venkata N. Padmanabhan
 Microsoft Research
 One Microsoft Way
 Redmond, WA 98052
 USA

 Phone: +1-425-705-2790
 EMail: padmanab@microsoft.com
 Web: http://www.research.microsoft.com/˜padmanab/

 Godred Fairhurst
 Department of Engineering
 Fraser Noble Building
 University of Aberdeen
 Aberdeen AB24 3UE
 UK

 EMail: gorry@erg.abdn.ac.uk
 Web: http://www.erg.abdn.ac.uk/users/gorry

 Mahesh Sooriyabandara
 Department of Engineering
 Fraser Noble Building
 University of Aberdeen
 Aberdeen AB24 3UE
 UK

 EMail: mahesh@erg.abdn.ac.uk
 Web: http://www.erg.abdn.ac.uk/users/mahesh

Balakrishnan et. al. Best Current Practice [Page 40]

RFC 3449 PILC - Asymmetric Links December 2002

Full Copyright Statement

 Copyright (C) The Internet Society (2002). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Balakrishnan et. al. Best Current Practice [Page 41]

