
Network Working Group B. Aboba
Request for Comments: 3748 Microsoft
Obsoletes: 2284 L. Blunk
Category: Standards Track Merit Network, Inc
 J. Vollbrecht
 Vollbrecht Consulting LLC
 J. Carlson
 Sun
 H. Levkowetz, Ed.
 ipUnplugged
 June 2004

 Extensible Authentication Protocol (EAP)

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2004).

Abstract

 This document defines the Extensible Authentication Protocol (EAP),
 an authentication framework which supports multiple authentication
 methods. EAP typically runs directly over data link layers such as
 Point-to-Point Protocol (PPP) or IEEE 802, without requiring IP. EAP
 provides its own support for duplicate elimination and
 retransmission, but is reliant on lower layer ordering guarantees.
 Fragmentation is not supported within EAP itself; however, individual
 EAP methods may support this.

 This document obsoletes RFC 2284. A summary of the changes between
 this document and RFC 2284 is available in Appendix A.

Aboba, et al. Standards Track [Page 1]

RFC 3748 EAP June 2004

Table of Contents

 1. Introduction. 3
 1.1. Specification of Requirements 4
 1.2. Terminology . 4
 1.3. Applicability . 6
 2. Extensible Authentication Protocol (EAP). 7
 2.1. Support for Sequences 9
 2.2. EAP Multiplexing Model. 10
 2.3. Pass-Through Behavior 12
 2.4. Peer-to-Peer Operation. 14
 3. Lower Layer Behavior. 15
 3.1. Lower Layer Requirements. 15
 3.2. EAP Usage Within PPP. 18
 3.2.1. PPP Configuration Option Format. 18
 3.3. EAP Usage Within IEEE 802 19
 3.4. Lower Layer Indications 19
 4. EAP Packet Format . 20
 4.1. Request and Response. 21
 4.2. Success and Failure 23
 4.3. Retransmission Behavior 26
 5. Initial EAP Request/Response Types. 27
 5.1. Identity. 28
 5.2. Notification. 29
 5.3. Nak . 31
 5.3.1. Legacy Nak 31
 5.3.2. Expanded Nak 32
 5.4. MD5-Challenge . 35
 5.5. One-Time Password (OTP) 36
 5.6. Generic Token Card (GTC). 37
 5.7. Expanded Types. 38
 5.8. Experimental. 40
 6. IANA Considerations . 40
 6.1. Packet Codes. 41
 6.2. Method Types. 41
 7. Security Considerations 42
 7.1. Threat Model. 42
 7.2. Security Claims . 43
 7.2.1. Security Claims Terminology for EAP Methods. . . 44
 7.3. Identity Protection 46
 7.4. Man-in-the-Middle Attacks 47
 7.5. Packet Modification Attacks 48
 7.6. Dictionary Attacks. 49
 7.7. Connection to an Untrusted Network. 49
 7.8. Negotiation Attacks 50
 7.9. Implementation Idiosyncrasies 50
 7.10. Key Derivation. 51
 7.11. Weak Ciphersuites 53

Aboba, et al. Standards Track [Page 2]

RFC 3748 EAP June 2004

 7.12. Link Layer. 53
 7.13. Separation of Authenticator and Backend Authentication
 Server. 54
 7.14. Cleartext Passwords 55
 7.15. Channel Binding . 55
 7.16. Protected Result Indications. 56
 8. Acknowledgements. 58
 9. References. 59
 9.1. Normative References. 59
 9.2. Informative References. 60
 Appendix A. Changes from RFC 2284. 64
 Authors’ Addresses . 66
 Full Copyright Statement . 67

1. Introduction

 This document defines the Extensible Authentication Protocol (EAP),
 an authentication framework which supports multiple authentication
 methods. EAP typically runs directly over data link layers such as
 Point-to-Point Protocol (PPP) or IEEE 802, without requiring IP. EAP
 provides its own support for duplicate elimination and
 retransmission, but is reliant on lower layer ordering guarantees.
 Fragmentation is not supported within EAP itself; however, individual
 EAP methods may support this.

 EAP may be used on dedicated links, as well as switched circuits, and
 wired as well as wireless links. To date, EAP has been implemented
 with hosts and routers that connect via switched circuits or dial-up
 lines using PPP [RFC1661]. It has also been implemented with
 switches and access points using IEEE 802 [IEEE-802]. EAP
 encapsulation on IEEE 802 wired media is described in [IEEE-802.1X],
 and encapsulation on IEEE wireless LANs in [IEEE-802.11i].

 One of the advantages of the EAP architecture is its flexibility.
 EAP is used to select a specific authentication mechanism, typically
 after the authenticator requests more information in order to
 determine the specific authentication method to be used. Rather than
 requiring the authenticator to be updated to support each new
 authentication method, EAP permits the use of a backend
 authentication server, which may implement some or all authentication
 methods, with the authenticator acting as a pass-through for some or
 all methods and peers.

 Within this document, authenticator requirements apply regardless of
 whether the authenticator is operating as a pass-through or not.
 Where the requirement is meant to apply to either the authenticator
 or backend authentication server, depending on where the EAP
 authentication is terminated, the term "EAP server" will be used.

Aboba, et al. Standards Track [Page 3]

RFC 3748 EAP June 2004

1.1. Specification of Requirements

 In this document, several words are used to signify the requirements
 of the specification. The key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

1.2. Terminology

 This document frequently uses the following terms:

 authenticator
 The end of the link initiating EAP authentication. The term
 authenticator is used in [IEEE-802.1X], and has the same meaning
 in this document.

 peer
 The end of the link that responds to the authenticator. In
 [IEEE-802.1X], this end is known as the Supplicant.

 Supplicant
 The end of the link that responds to the authenticator in [IEEE-
 802.1X]. In this document, this end of the link is called the
 peer.

 backend authentication server
 A backend authentication server is an entity that provides an
 authentication service to an authenticator. When used, this
 server typically executes EAP methods for the authenticator. This
 terminology is also used in [IEEE-802.1X].

 AAA
 Authentication, Authorization, and Accounting. AAA protocols with
 EAP support include RADIUS [RFC3579] and Diameter [DIAM-EAP]. In
 this document, the terms "AAA server" and "backend authentication
 server" are used interchangeably.

 Displayable Message
 This is interpreted to be a human readable string of characters.
 The message encoding MUST follow the UTF-8 transformation format
 [RFC2279].

Aboba, et al. Standards Track [Page 4]

RFC 3748 EAP June 2004

 EAP server
 The entity that terminates the EAP authentication method with the
 peer. In the case where no backend authentication server is used,
 the EAP server is part of the authenticator. In the case where
 the authenticator operates in pass-through mode, the EAP server is
 located on the backend authentication server.

 Silently Discard
 This means the implementation discards the packet without further
 processing. The implementation SHOULD provide the capability of
 logging the event, including the contents of the silently
 discarded packet, and SHOULD record the event in a statistics
 counter.

 Successful Authentication
 In the context of this document, "successful authentication" is an
 exchange of EAP messages, as a result of which the authenticator
 decides to allow access by the peer, and the peer decides to use
 this access. The authenticator’s decision typically involves both
 authentication and authorization aspects; the peer may
 successfully authenticate to the authenticator, but access may be
 denied by the authenticator due to policy reasons.

 Message Integrity Check (MIC)
 A keyed hash function used for authentication and integrity
 protection of data. This is usually called a Message
 Authentication Code (MAC), but IEEE 802 specifications (and this
 document) use the acronym MIC to avoid confusion with Medium
 Access Control.

 Cryptographic Separation
 Two keys (x and y) are "cryptographically separate" if an
 adversary that knows all messages exchanged in the protocol cannot
 compute x from y or y from x without "breaking" some cryptographic
 assumption. In particular, this definition allows that the
 adversary has the knowledge of all nonces sent in cleartext, as
 well as all predictable counter values used in the protocol.
 Breaking a cryptographic assumption would typically require
 inverting a one-way function or predicting the outcome of a
 cryptographic pseudo-random number generator without knowledge of
 the secret state. In other words, if the keys are
 cryptographically separate, there is no shortcut to compute x from
 y or y from x, but the work an adversary must do to perform this
 computation is equivalent to performing an exhaustive search for
 the secret state value.

Aboba, et al. Standards Track [Page 5]

RFC 3748 EAP June 2004

 Master Session Key (MSK)
 Keying material that is derived between the EAP peer and server
 and exported by the EAP method. The MSK is at least 64 octets in
 length. In existing implementations, a AAA server acting as an
 EAP server transports the MSK to the authenticator.

 Extended Master Session Key (EMSK)
 Additional keying material derived between the EAP client and
 server that is exported by the EAP method. The EMSK is at least
 64 octets in length. The EMSK is not shared with the
 authenticator or any other third party. The EMSK is reserved for
 future uses that are not defined yet.

 Result indications
 A method provides result indications if after the method’s last
 message is sent and received:

 1) The peer is aware of whether it has authenticated the server,
 as well as whether the server has authenticated it.

 2) The server is aware of whether it has authenticated the peer,
 as well as whether the peer has authenticated it.

 In the case where successful authentication is sufficient to
 authorize access, then the peer and authenticator will also know if
 the other party is willing to provide or accept access. This may not
 always be the case. An authenticated peer may be denied access due
 to lack of authorization (e.g., session limit) or other reasons.
 Since the EAP exchange is run between the peer and the server, other
 nodes (such as AAA proxies) may also affect the authorization
 decision. This is discussed in more detail in Section 7.16.

1.3. Applicability

 EAP was designed for use in network access authentication, where IP
 layer connectivity may not be available. Use of EAP for other
 purposes, such as bulk data transport, is NOT RECOMMENDED.

 Since EAP does not require IP connectivity, it provides just enough
 support for the reliable transport of authentication protocols, and
 no more.

 EAP is a lock-step protocol which only supports a single packet in
 flight. As a result, EAP cannot efficiently transport bulk data,
 unlike transport protocols such as TCP [RFC793] or SCTP [RFC2960].

Aboba, et al. Standards Track [Page 6]

RFC 3748 EAP June 2004

 While EAP provides support for retransmission, it assumes ordering
 guarantees provided by the lower layer, so out of order reception is
 not supported.

 Since EAP does not support fragmentation and reassembly, EAP
 authentication methods generating payloads larger than the minimum
 EAP MTU need to provide fragmentation support.

 While authentication methods such as EAP-TLS [RFC2716] provide
 support for fragmentation and reassembly, the EAP methods defined in
 this document do not. As a result, if the EAP packet size exceeds
 the EAP MTU of the link, these methods will encounter difficulties.

 EAP authentication is initiated by the server (authenticator),
 whereas many authentication protocols are initiated by the client
 (peer). As a result, it may be necessary for an authentication
 algorithm to add one or two additional messages (at most one
 roundtrip) in order to run over EAP.

 Where certificate-based authentication is supported, the number of
 additional roundtrips may be much larger due to fragmentation of
 certificate chains. In general, a fragmented EAP packet will require
 as many round-trips to send as there are fragments. For example, a
 certificate chain 14960 octets in size would require ten round-trips
 to send with a 1496 octet EAP MTU.

 Where EAP runs over a lower layer in which significant packet loss is
 experienced, or where the connection between the authenticator and
 authentication server experiences significant packet loss, EAP
 methods requiring many round-trips can experience difficulties. In
 these situations, use of EAP methods with fewer roundtrips is
 advisable.

2. Extensible Authentication Protocol (EAP)

 The EAP authentication exchange proceeds as follows:

 [1] The authenticator sends a Request to authenticate the peer. The
 Request has a Type field to indicate what is being requested.
 Examples of Request Types include Identity, MD5-challenge, etc.
 The MD5-challenge Type corresponds closely to the CHAP
 authentication protocol [RFC1994]. Typically, the authenticator
 will send an initial Identity Request; however, an initial
 Identity Request is not required, and MAY be bypassed. For
 example, the identity may not be required where it is determined
 by the port to which the peer has connected (leased lines,

Aboba, et al. Standards Track [Page 7]

RFC 3748 EAP June 2004

 dedicated switch or dial-up ports), or where the identity is
 obtained in another fashion (via calling station identity or MAC
 address, in the Name field of the MD5-Challenge Response, etc.).

 [2] The peer sends a Response packet in reply to a valid Request. As
 with the Request packet, the Response packet contains a Type
 field, which corresponds to the Type field of the Request.

 [3] The authenticator sends an additional Request packet, and the
 peer replies with a Response. The sequence of Requests and
 Responses continues as long as needed. EAP is a ’lock step’
 protocol, so that other than the initial Request, a new Request
 cannot be sent prior to receiving a valid Response. The
 authenticator is responsible for retransmitting requests as
 described in Section 4.1. After a suitable number of
 retransmissions, the authenticator SHOULD end the EAP
 conversation. The authenticator MUST NOT send a Success or
 Failure packet when retransmitting or when it fails to get a
 response from the peer.

 [4] The conversation continues until the authenticator cannot
 authenticate the peer (unacceptable Responses to one or more
 Requests), in which case the authenticator implementation MUST
 transmit an EAP Failure (Code 4). Alternatively, the
 authentication conversation can continue until the authenticator
 determines that successful authentication has occurred, in which
 case the authenticator MUST transmit an EAP Success (Code 3).

 Advantages:

 o The EAP protocol can support multiple authentication mechanisms
 without having to pre-negotiate a particular one.

 o Network Access Server (NAS) devices (e.g., a switch or access
 point) do not have to understand each authentication method and
 MAY act as a pass-through agent for a backend authentication
 server. Support for pass-through is optional. An authenticator
 MAY authenticate local peers, while at the same time acting as a
 pass-through for non-local peers and authentication methods it
 does not implement locally.

 o Separation of the authenticator from the backend authentication
 server simplifies credentials management and policy decision
 making.

Aboba, et al. Standards Track [Page 8]

RFC 3748 EAP June 2004

 Disadvantages:

 o For use in PPP, EAP requires the addition of a new authentication
 Type to PPP LCP and thus PPP implementations will need to be
 modified to use it. It also strays from the previous PPP
 authentication model of negotiating a specific authentication
 mechanism during LCP. Similarly, switch or access point
 implementations need to support [IEEE-802.1X] in order to use EAP.

 o Where the authenticator is separate from the backend
 authentication server, this complicates the security analysis and,
 if needed, key distribution.

2.1. Support for Sequences

 An EAP conversation MAY utilize a sequence of methods. A common
 example of this is an Identity request followed by a single EAP
 authentication method such as an MD5-Challenge. However, the peer
 and authenticator MUST utilize only one authentication method (Type 4
 or greater) within an EAP conversation, after which the authenticator
 MUST send a Success or Failure packet.

 Once a peer has sent a Response of the same Type as the initial
 Request, an authenticator MUST NOT send a Request of a different Type
 prior to completion of the final round of a given method (with the
 exception of a Notification-Request) and MUST NOT send a Request for
 an additional method of any Type after completion of the initial
 authentication method; a peer receiving such Requests MUST treat them
 as invalid, and silently discard them. As a result, Identity Requery
 is not supported.

 A peer MUST NOT send a Nak (legacy or expanded) in reply to a Request
 after an initial non-Nak Response has been sent. Since spoofed EAP
 Request packets may be sent by an attacker, an authenticator
 receiving an unexpected Nak SHOULD discard it and log the event.

 Multiple authentication methods within an EAP conversation are not
 supported due to their vulnerability to man-in-the-middle attacks
 (see Section 7.4) and incompatibility with existing implementations.

 Where a single EAP authentication method is utilized, but other
 methods are run within it (a "tunneled" method), the prohibition
 against multiple authentication methods does not apply. Such
 "tunneled" methods appear as a single authentication method to EAP.
 Backward compatibility can be provided, since a peer not supporting a
 "tunneled" method can reply to the initial EAP-Request with a Nak

Aboba, et al. Standards Track [Page 9]

RFC 3748 EAP June 2004

 (legacy or expanded). To address security vulnerabilities,
 "tunneled" methods MUST support protection against man-in-the-middle
 attacks.

2.2. EAP Multiplexing Model

 Conceptually, EAP implementations consist of the following
 components:

 [a] Lower layer. The lower layer is responsible for transmitting and
 receiving EAP frames between the peer and authenticator. EAP has
 been run over a variety of lower layers including PPP, wired IEEE
 802 LANs [IEEE-802.1X], IEEE 802.11 wireless LANs [IEEE-802.11],
 UDP (L2TP [RFC2661] and IKEv2 [IKEv2]), and TCP [PIC]. Lower
 layer behavior is discussed in Section 3.

 [b] EAP layer. The EAP layer receives and transmits EAP packets via
 the lower layer, implements duplicate detection and
 retransmission, and delivers and receives EAP messages to and
 from the EAP peer and authenticator layers.

 [c] EAP peer and authenticator layers. Based on the Code field, the
 EAP layer demultiplexes incoming EAP packets to the EAP peer and
 authenticator layers. Typically, an EAP implementation on a
 given host will support either peer or authenticator
 functionality, but it is possible for a host to act as both an
 EAP peer and authenticator. In such an implementation both EAP
 peer and authenticator layers will be present.

 [d] EAP method layers. EAP methods implement the authentication
 algorithms and receive and transmit EAP messages via the EAP peer
 and authenticator layers. Since fragmentation support is not
 provided by EAP itself, this is the responsibility of EAP
 methods, which are discussed in Section 5.

 The EAP multiplexing model is illustrated in Figure 1 below. Note
 that there is no requirement that an implementation conform to this
 model, as long as the on-the-wire behavior is consistent with it.

Aboba, et al. Standards Track [Page 10]

RFC 3748 EAP June 2004

 +-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+
 | | | | | |
 | EAP method| EAP method| | EAP method| EAP method|
 | Type = X | Type = Y | | Type = X | Type = Y |
 | V | | | ^ | |
 +-+-+-+-!-+-+-+-+-+-+-+-+ +-+-+-+-!-+-+-+-+-+-+-+-+
 | ! | | ! |
 | EAP ! Peer layer | | EAP ! Auth. layer |
 | ! | | ! |
 +-+-+-+-!-+-+-+-+-+-+-+-+ +-+-+-+-!-+-+-+-+-+-+-+-+
 | ! | | ! |
 | EAP ! layer | | EAP ! layer |
 | ! | | ! |
 +-+-+-+-!-+-+-+-+-+-+-+-+ +-+-+-+-!-+-+-+-+-+-+-+-+
 | ! | | ! |
 | Lower ! layer | | Lower ! layer |
 | ! | | ! |
 +-+-+-+-!-+-+-+-+-+-+-+-+ +-+-+-+-!-+-+-+-+-+-+-+-+
 ! !
 ! Peer ! Authenticator
 +------------>-------------+

 Figure 1: EAP Multiplexing Model

 Within EAP, the Code field functions much like a protocol number in
 IP. It is assumed that the EAP layer demultiplexes incoming EAP
 packets according to the Code field. Received EAP packets with
 Code=1 (Request), 3 (Success), and 4 (Failure) are delivered by the
 EAP layer to the EAP peer layer, if implemented. EAP packets with
 Code=2 (Response) are delivered to the EAP authenticator layer, if
 implemented.

 Within EAP, the Type field functions much like a port number in UDP
 or TCP. It is assumed that the EAP peer and authenticator layers
 demultiplex incoming EAP packets according to their Type, and deliver
 them only to the EAP method corresponding to that Type. An EAP
 method implementation on a host may register to receive packets from
 the peer or authenticator layers, or both, depending on which role(s)
 it supports.

 Since EAP authentication methods may wish to access the Identity,
 implementations SHOULD make the Identity Request and Response
 accessible to authentication methods (Types 4 or greater), in
 addition to the Identity method. The Identity Type is discussed in
 Section 5.1.

Aboba, et al. Standards Track [Page 11]

RFC 3748 EAP June 2004

 A Notification Response is only used as confirmation that the peer
 received the Notification Request, not that it has processed it, or
 displayed the message to the user. It cannot be assumed that the
 contents of the Notification Request or Response are available to
 another method. The Notification Type is discussed in Section 5.2.

 Nak (Type 3) or Expanded Nak (Type 254) are utilized for the purposes
 of method negotiation. Peers respond to an initial EAP Request for
 an unacceptable Type with a Nak Response (Type 3) or Expanded Nak
 Response (Type 254). It cannot be assumed that the contents of the
 Nak Response(s) are available to another method. The Nak Type(s) are
 discussed in Section 5.3.

 EAP packets with Codes of Success or Failure do not include a Type
 field, and are not delivered to an EAP method. Success and Failure
 are discussed in Section 4.2.

 Given these considerations, the Success, Failure, Nak Response(s),
 and Notification Request/Response messages MUST NOT be used to carry
 data destined for delivery to other EAP methods.

2.3. Pass-Through Behavior

 When operating as a "pass-through authenticator", an authenticator
 performs checks on the Code, Identifier, and Length fields as
 described in Section 4.1. It forwards EAP packets received from the
 peer and destined to its authenticator layer to the backend
 authentication server; packets received from the backend
 authentication server destined to the peer are forwarded to it.

 A host receiving an EAP packet may only do one of three things with
 it: act on it, drop it, or forward it. The forwarding decision is
 typically based only on examination of the Code, Identifier, and
 Length fields. A pass-through authenticator implementation MUST be
 capable of forwarding EAP packets received from the peer with Code=2
 (Response) to the backend authentication server. It also MUST be
 capable of receiving EAP packets from the backend authentication
 server and forwarding EAP packets of Code=1 (Request), Code=3
 (Success), and Code=4 (Failure) to the peer.

 Unless the authenticator implements one or more authentication
 methods locally which support the authenticator role, the EAP method
 layer header fields (Type, Type-Data) are not examined as part of the
 forwarding decision. Where the authenticator supports local
 authentication methods, it MAY examine the Type field to determine
 whether to act on the packet itself or forward it. Compliant pass-
 through authenticator implementations MUST by default forward EAP
 packets of any Type.

Aboba, et al. Standards Track [Page 12]

RFC 3748 EAP June 2004

 EAP packets received with Code=1 (Request), Code=3 (Success), and
 Code=4 (Failure) are demultiplexed by the EAP layer and delivered to
 the peer layer. Therefore, unless a host implements an EAP peer
 layer, these packets will be silently discarded. Similarly, EAP
 packets received with Code=2 (Response) are demultiplexed by the EAP
 layer and delivered to the authenticator layer. Therefore, unless a
 host implements an EAP authenticator layer, these packets will be
 silently discarded. The behavior of a "pass-through peer" is
 undefined within this specification, and is unsupported by AAA
 protocols such as RADIUS [RFC3579] and Diameter [DIAM-EAP].

 The forwarding model is illustrated in Figure 2.

 Peer Pass-through Authenticator Authentication
 Server

 +-+-+-+-+-+-+ +-+-+-+-+-+-+
EAP method		EAP method
V		^
+-+-+-!-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-!-+-+-+		
!		EAP
!		Peer
EAP ! peer		
!		
+-+-+-!-+-+-+ +-+-+-+-!-+-+-+-+-+-!-+-+-+-+ +-+-+-!-+-+-+		
!		!
EAP !layer		EAP !layer
!		!
+-+-+-!-+-+-+ +-+-+-+-!-+-+-+-+-+-!-+-+-+-+ +-+-+-!-+-+-+		
!		!
Lower!layer		Lower!layer
!		!
 +-+-+-!-+-+-+ +-+-+-+-!-+-+-+-+-+-!-+-+-+-+ +-+-+-!-+-+-+
 ! ! ! !
 ! ! ! !
 +-------->--------+ +--------->-------+

 Figure 2: Pass-through Authenticator

 For sessions in which the authenticator acts as a pass-through, it
 MUST determine the outcome of the authentication solely based on the
 Accept/Reject indication sent by the backend authentication server;
 the outcome MUST NOT be determined by the contents of an EAP packet
 sent along with the Accept/Reject indication, or the absence of such
 an encapsulated EAP packet.

Aboba, et al. Standards Track [Page 13]

RFC 3748 EAP June 2004

2.4. Peer-to-Peer Operation

 Since EAP is a peer-to-peer protocol, an independent and simultaneous
 authentication may take place in the reverse direction (depending on
 the capabilities of the lower layer). Both ends of the link may act
 as authenticators and peers at the same time. In this case, it is
 necessary for both ends to implement EAP authenticator and peer
 layers. In addition, the EAP method implementations on both peers
 must support both authenticator and peer functionality.

 Although EAP supports peer-to-peer operation, some EAP
 implementations, methods, AAA protocols, and link layers may not
 support this. Some EAP methods may support asymmetric
 authentication, with one type of credential being required for the
 peer and another type for the authenticator. Hosts supporting peer-
 to-peer operation with such a method would need to be provisioned
 with both types of credentials.

 For example, EAP-TLS [RFC2716] is a client-server protocol in which
 distinct certificate profiles are typically utilized for the client
 and server. This implies that a host supporting peer-to-peer
 authentication with EAP-TLS would need to implement both the EAP peer
 and authenticator layers, support both peer and authenticator roles
 in the EAP-TLS implementation, and provision certificates appropriate
 for each role.

 AAA protocols such as RADIUS/EAP [RFC3579] and Diameter EAP [DIAM-
 EAP] only support "pass-through authenticator" operation. As noted
 in [RFC3579] Section 2.6.2, a RADIUS server responds to an Access-
 Request encapsulating an EAP-Request, Success, or Failure packet with
 an Access-Reject. There is therefore no support for "pass-through
 peer" operation.

 Even where a method is used which supports mutual authentication and
 result indications, several considerations may dictate that two EAP
 authentications (one in each direction) are required. These include:

 [1] Support for bi-directional session key derivation in the lower
 layer. Lower layers such as IEEE 802.11 may only support uni-
 directional derivation and transport of transient session keys.
 For example, the group-key handshake defined in [IEEE-802.11i] is
 uni-directional, since in IEEE 802.11 infrastructure mode, only
 the Access Point (AP) sends multicast/broadcast traffic. In IEEE
 802.11 ad hoc mode, where either peer may send
 multicast/broadcast traffic, two uni-directional group-key

Aboba, et al. Standards Track [Page 14]

RFC 3748 EAP June 2004

 exchanges are required. Due to limitations of the design, this
 also implies the need for unicast key derivations and EAP method
 exchanges to occur in each direction.

 [2] Support for tie-breaking in the lower layer. Lower layers such
 as IEEE 802.11 ad hoc do not support "tie breaking" wherein two
 hosts initiating authentication with each other will only go
 forward with a single authentication. This implies that even if
 802.11 were to support a bi-directional group-key handshake, then
 two authentications, one in each direction, might still occur.

 [3] Peer policy satisfaction. EAP methods may support result
 indications, enabling the peer to indicate to the EAP server
 within the method that it successfully authenticated the EAP
 server, as well as for the server to indicate that it has
 authenticated the peer. However, a pass-through authenticator
 will not be aware that the peer has accepted the credentials
 offered by the EAP server, unless this information is provided to
 the authenticator via the AAA protocol. The authenticator SHOULD
 interpret the receipt of a key attribute within an Accept packet
 as an indication that the peer has successfully authenticated the
 server.

 However, it is possible that the EAP peer’s access policy was not
 satisfied during the initial EAP exchange, even though mutual
 authentication occurred. For example, the EAP authenticator may not
 have demonstrated authorization to act in both peer and authenticator
 roles. As a result, the peer may require an additional
 authentication in the reverse direction, even if the peer provided an
 indication that the EAP server had successfully authenticated to it.

3. Lower Layer Behavior

3.1. Lower Layer Requirements

 EAP makes the following assumptions about lower layers:

 [1] Unreliable transport. In EAP, the authenticator retransmits
 Requests that have not yet received Responses so that EAP does
 not assume that lower layers are reliable. Since EAP defines its
 own retransmission behavior, it is possible (though undesirable)
 for retransmission to occur both in the lower layer and the EAP
 layer when EAP is run over a reliable lower layer.

Aboba, et al. Standards Track [Page 15]

RFC 3748 EAP June 2004

 Note that EAP Success and Failure packets are not retransmitted.
 Without a reliable lower layer, and with a non-negligible error rate,
 these packets can be lost, resulting in timeouts. It is therefore
 desirable for implementations to improve their resilience to loss of
 EAP Success or Failure packets, as described in Section 4.2.

 [2] Lower layer error detection. While EAP does not assume that the
 lower layer is reliable, it does rely on lower layer error
 detection (e.g., CRC, Checksum, MIC, etc.). EAP methods may not
 include a MIC, or if they do, it may not be computed over all the
 fields in the EAP packet, such as the Code, Identifier, Length,
 or Type fields. As a result, without lower layer error
 detection, undetected errors could creep into the EAP layer or
 EAP method layer header fields, resulting in authentication
 failures.

 For example, EAP TLS [RFC2716], which computes its MIC over the
 Type-Data field only, regards MIC validation failures as a fatal
 error. Without lower layer error detection, this method, and
 others like it, will not perform reliably.

 [3] Lower layer security. EAP does not require lower layers to
 provide security services such as per-packet confidentiality,
 authentication, integrity, and replay protection. However, where
 these security services are available, EAP methods supporting Key
 Derivation (see Section 7.2.1) can be used to provide dynamic
 keying material. This makes it possible to bind the EAP
 authentication to subsequent data and protect against data
 modification, spoofing, or replay. See Section 7.1 for details.

 [4] Minimum MTU. EAP is capable of functioning on lower layers that
 provide an EAP MTU size of 1020 octets or greater.

 EAP does not support path MTU discovery, and fragmentation and
 reassembly is not supported by EAP, nor by the methods defined in
 this specification: Identity (1), Notification (2), Nak Response
 (3), MD5-Challenge (4), One Time Password (5), Generic Token Card
 (6), and expanded Nak Response (254) Types.

 Typically, the EAP peer obtains information on the EAP MTU from
 the lower layers and sets the EAP frame size to an appropriate
 value. Where the authenticator operates in pass-through mode,
 the authentication server does not have a direct way of
 determining the EAP MTU, and therefore relies on the
 authenticator to provide it with this information, such as via
 the Framed-MTU attribute, as described in [RFC3579], Section 2.4.

Aboba, et al. Standards Track [Page 16]

RFC 3748 EAP June 2004

 While methods such as EAP-TLS [RFC2716] support fragmentation and
 reassembly, EAP methods originally designed for use within PPP
 where a 1500 octet MTU is guaranteed for control frames (see
 [RFC1661], Section 6.1) may lack fragmentation and reassembly
 features.

 EAP methods can assume a minimum EAP MTU of 1020 octets in the
 absence of other information. EAP methods SHOULD include support
 for fragmentation and reassembly if their payloads can be larger
 than this minimum EAP MTU.

 EAP is a lock-step protocol, which implies a certain inefficiency
 when handling fragmentation and reassembly. Therefore, if the
 lower layer supports fragmentation and reassembly (such as where
 EAP is transported over IP), it may be preferable for
 fragmentation and reassembly to occur in the lower layer rather
 than in EAP. This can be accomplished by providing an
 artificially large EAP MTU to EAP, causing fragmentation and
 reassembly to be handled within the lower layer.

 [5] Possible duplication. Where the lower layer is reliable, it will
 provide the EAP layer with a non-duplicated stream of packets.
 However, while it is desirable that lower layers provide for
 non-duplication, this is not a requirement. The Identifier field
 provides both the peer and authenticator with the ability to
 detect duplicates.

 [6] Ordering guarantees. EAP does not require the Identifier to be
 monotonically increasing, and so is reliant on lower layer
 ordering guarantees for correct operation. EAP was originally
 defined to run on PPP, and [RFC1661] Section 1 has an ordering
 requirement:

 "The Point-to-Point Protocol is designed for simple links
 which transport packets between two peers. These links
 provide full-duplex simultaneous bi-directional operation,
 and are assumed to deliver packets in order."

 Lower layer transports for EAP MUST preserve ordering between a
 source and destination at a given priority level (the ordering
 guarantee provided by [IEEE-802]).

 Reordering, if it occurs, will typically result in an EAP
 authentication failure, causing EAP authentication to be re-run.
 In an environment in which reordering is likely, it is therefore
 expected that EAP authentication failures will be common. It is
 RECOMMENDED that EAP only be run over lower layers that provide
 ordering guarantees; running EAP over raw IP or UDP transport is

Aboba, et al. Standards Track [Page 17]

RFC 3748 EAP June 2004

 NOT RECOMMENDED. Encapsulation of EAP within RADIUS [RFC3579]
 satisfies ordering requirements, since RADIUS is a "lockstep"
 protocol that delivers packets in order.

3.2. EAP Usage Within PPP

 In order to establish communications over a point-to-point link, each
 end of the PPP link first sends LCP packets to configure the data
 link during the Link Establishment phase. After the link has been
 established, PPP provides for an optional Authentication phase before
 proceeding to the Network-Layer Protocol phase.

 By default, authentication is not mandatory. If authentication of
 the link is desired, an implementation MUST specify the
 Authentication Protocol Configuration Option during the Link
 Establishment phase.

 If the identity of the peer has been established in the
 Authentication phase, the server can use that identity in the
 selection of options for the following network layer negotiations.

 When implemented within PPP, EAP does not select a specific
 authentication mechanism at the PPP Link Control Phase, but rather
 postpones this until the Authentication Phase. This allows the
 authenticator to request more information before determining the
 specific authentication mechanism. This also permits the use of a
 "backend" server which actually implements the various mechanisms
 while the PPP authenticator merely passes through the authentication
 exchange. The PPP Link Establishment and Authentication phases, and
 the Authentication Protocol Configuration Option, are defined in The
 Point-to-Point Protocol (PPP) [RFC1661].

3.2.1. PPP Configuration Option Format

 A summary of the PPP Authentication Protocol Configuration Option
 format to negotiate EAP follows. The fields are transmitted from
 left to right.

 Exactly one EAP packet is encapsulated in the Information field of a
 PPP Data Link Layer frame where the protocol field indicates type hex
 C227 (PPP EAP).

Aboba, et al. Standards Track [Page 18]

RFC 3748 EAP June 2004

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | Authentication Protocol |
 +-+

 Type

 3

 Length

 4

 Authentication Protocol

 C227 (Hex) for Extensible Authentication Protocol (EAP)

3.3. EAP Usage Within IEEE 802

 The encapsulation of EAP over IEEE 802 is defined in [IEEE-802.1X].
 The IEEE 802 encapsulation of EAP does not involve PPP, and IEEE
 802.1X does not include support for link or network layer
 negotiations. As a result, within IEEE 802.1X, it is not possible to
 negotiate non-EAP authentication mechanisms, such as PAP or CHAP
 [RFC1994].

3.4. Lower Layer Indications

 The reliability and security of lower layer indications is dependent
 on the lower layer. Since EAP is media independent, the presence or
 absence of lower layer security is not taken into account in the
 processing of EAP messages.

 To improve reliability, if a peer receives a lower layer success
 indication as defined in Section 7.2, it MAY conclude that a Success
 packet has been lost, and behave as if it had actually received a
 Success packet. This includes choosing to ignore the Success in some
 circumstances as described in Section 4.2.

 A discussion of some reliability and security issues with lower layer
 indications in PPP, IEEE 802 wired networks, and IEEE 802.11 wireless
 LANs can be found in the Security Considerations, Section 7.12.

 After EAP authentication is complete, the peer will typically
 transmit and receive data via the authenticator. It is desirable to
 provide assurance that the entities transmitting data are the same
 ones that successfully completed EAP authentication. To accomplish

Aboba, et al. Standards Track [Page 19]

RFC 3748 EAP June 2004

 this, it is necessary for the lower layer to provide per-packet
 integrity, authentication and replay protection, and to bind these
 per-packet services to the keys derived during EAP authentication.
 Otherwise, it is possible for subsequent data traffic to be modified,
 spoofed, or replayed.

 Where keying material for the lower layer ciphersuite is itself
 provided by EAP, ciphersuite negotiation and key activation are
 controlled by the lower layer. In PPP, ciphersuites are negotiated
 within ECP so that it is not possible to use keys derived from EAP
 authentication until the completion of ECP. Therefore, an initial
 EAP exchange cannot be protected by a PPP ciphersuite, although EAP
 re-authentication can be protected.

 In IEEE 802 media, initial key activation also typically occurs after
 completion of EAP authentication. Therefore an initial EAP exchange
 typically cannot be protected by the lower layer ciphersuite,
 although an EAP re-authentication or pre-authentication exchange can
 be protected.

4. EAP Packet Format

 A summary of the EAP packet format is shown below. The fields are
 transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Code | Identifier | Length |
 +-+
 | Data ...
 +-+-+-+-+

 Code

 The Code field is one octet and identifies the Type of EAP packet.
 EAP Codes are assigned as follows:

 1 Request
 2 Response
 3 Success
 4 Failure

 Since EAP only defines Codes 1-4, EAP packets with other codes
 MUST be silently discarded by both authenticators and peers.

Aboba, et al. Standards Track [Page 20]

RFC 3748 EAP June 2004

 Identifier

 The Identifier field is one octet and aids in matching Responses
 with Requests.

 Length

 The Length field is two octets and indicates the length, in
 octets, of the EAP packet including the Code, Identifier, Length,
 and Data fields. Octets outside the range of the Length field
 should be treated as Data Link Layer padding and MUST be ignored
 upon reception. A message with the Length field set to a value
 larger than the number of received octets MUST be silently
 discarded.

 Data

 The Data field is zero or more octets. The format of the Data
 field is determined by the Code field.

4.1. Request and Response

 Description

 The Request packet (Code field set to 1) is sent by the
 authenticator to the peer. Each Request has a Type field which
 serves to indicate what is being requested. Additional Request
 packets MUST be sent until a valid Response packet is received, an
 optional retry counter expires, or a lower layer failure
 indication is received.

 Retransmitted Requests MUST be sent with the same Identifier value
 in order to distinguish them from new Requests. The content of
 the data field is dependent on the Request Type. The peer MUST
 send a Response packet in reply to a valid Request packet.
 Responses MUST only be sent in reply to a valid Request and never
 be retransmitted on a timer.

 If a peer receives a valid duplicate Request for which it has
 already sent a Response, it MUST resend its original Response
 without reprocessing the Request. Requests MUST be processed in
 the order that they are received, and MUST be processed to their
 completion before inspecting the next Request.

 A summary of the Request and Response packet format follows. The
 fields are transmitted from left to right.

Aboba, et al. Standards Track [Page 21]

RFC 3748 EAP June 2004

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Code | Identifier | Length |
 +-+
 | Type | Type-Data ...
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

 Code

 1 for Request
 2 for Response

 Identifier

 The Identifier field is one octet. The Identifier field MUST be
 the same if a Request packet is retransmitted due to a timeout
 while waiting for a Response. Any new (non-retransmission)
 Requests MUST modify the Identifier field.

 The Identifier field of the Response MUST match that of the
 currently outstanding Request. An authenticator receiving a
 Response whose Identifier value does not match that of the
 currently outstanding Request MUST silently discard the Response.

 In order to avoid confusion between new Requests and
 retransmissions, the Identifier value chosen for each new Request
 need only be different from the previous Request, but need not be
 unique within the conversation. One way to achieve this is to
 start the Identifier at an initial value and increment it for each
 new Request. Initializing the first Identifier with a random
 number rather than starting from zero is recommended, since it
 makes sequence attacks somewhat more difficult.

 Since the Identifier space is unique to each session,
 authenticators are not restricted to only 256 simultaneous
 authentication conversations. Similarly, with re-authentication,
 an EAP conversation might continue over a long period of time, and
 is not limited to only 256 roundtrips.

 Implementation Note: The authenticator is responsible for
 retransmitting Request messages. If the Request message is obtained
 from elsewhere (such as from a backend authentication server), then
 the authenticator will need to save a copy of the Request in order to
 accomplish this. The peer is responsible for detecting and handling
 duplicate Request messages before processing them in any way,
 including passing them on to an outside party. The authenticator is
 also responsible for discarding Response messages with a non-matching

Aboba, et al. Standards Track [Page 22]

RFC 3748 EAP June 2004

 Identifier value before acting on them in any way, including passing
 them on to the backend authentication server for verification. Since
 the authenticator can retransmit before receiving a Response from the
 peer, the authenticator can receive multiple Responses, each with a
 matching Identifier. Until a new Request is received by the
 authenticator, the Identifier value is not updated, so that the
 authenticator forwards Responses to the backend authentication
 server, one at a time.

 Length

 The Length field is two octets and indicates the length of the EAP
 packet including the Code, Identifier, Length, Type, and Type-Data
 fields. Octets outside the range of the Length field should be
 treated as Data Link Layer padding and MUST be ignored upon
 reception. A message with the Length field set to a value larger
 than the number of received octets MUST be silently discarded.

 Type

 The Type field is one octet. This field indicates the Type of
 Request or Response. A single Type MUST be specified for each EAP
 Request or Response. An initial specification of Types follows in
 Section 5 of this document.

 The Type field of a Response MUST either match that of the
 Request, or correspond to a legacy or Expanded Nak (see Section
 5.3) indicating that a Request Type is unacceptable to the peer.
 A peer MUST NOT send a Nak (legacy or expanded) in response to a
 Request, after an initial non-Nak Response has been sent. An EAP
 server receiving a Response not meeting these requirements MUST
 silently discard it.

 Type-Data

 The Type-Data field varies with the Type of Request and the
 associated Response.

4.2. Success and Failure

 The Success packet is sent by the authenticator to the peer after
 completion of an EAP authentication method (Type 4 or greater) to
 indicate that the peer has authenticated successfully to the
 authenticator. The authenticator MUST transmit an EAP packet with
 the Code field set to 3 (Success). If the authenticator cannot
 authenticate the peer (unacceptable Responses to one or more
 Requests), then after unsuccessful completion of the EAP method in
 progress, the implementation MUST transmit an EAP packet with the

Aboba, et al. Standards Track [Page 23]

RFC 3748 EAP June 2004

 Code field set to 4 (Failure). An authenticator MAY wish to issue
 multiple Requests before sending a Failure response in order to allow
 for human typing mistakes. Success and Failure packets MUST NOT
 contain additional data.

 Success and Failure packets MUST NOT be sent by an EAP authenticator
 if the specification of the given method does not explicitly permit
 the method to finish at that point. A peer EAP implementation
 receiving a Success or Failure packet where sending one is not
 explicitly permitted MUST silently discard it. By default, an EAP
 peer MUST silently discard a "canned" Success packet (a Success
 packet sent immediately upon connection). This ensures that a rogue
 authenticator will not be able to bypass mutual authentication by
 sending a Success packet prior to conclusion of the EAP method
 conversation.

 Implementation Note: Because the Success and Failure packets are not
 acknowledged, they are not retransmitted by the authenticator, and
 may be potentially lost. A peer MUST allow for this circumstance as
 described in this note. See also Section 3.4 for guidance on the
 processing of lower layer success and failure indications.

 As described in Section 2.1, only a single EAP authentication method
 is allowed within an EAP conversation. EAP methods may implement
 result indications. After the authenticator sends a failure result
 indication to the peer, regardless of the response from the peer, it
 MUST subsequently send a Failure packet. After the authenticator
 sends a success result indication to the peer and receives a success
 result indication from the peer, it MUST subsequently send a Success
 packet.

 On the peer, once the method completes unsuccessfully (that is,
 either the authenticator sends a failure result indication, or the
 peer decides that it does not want to continue the conversation,
 possibly after sending a failure result indication), the peer MUST
 terminate the conversation and indicate failure to the lower layer.
 The peer MUST silently discard Success packets and MAY silently
 discard Failure packets. As a result, loss of a Failure packet need
 not result in a timeout.

 On the peer, after success result indications have been exchanged by
 both sides, a Failure packet MUST be silently discarded. The peer
 MAY, in the event that an EAP Success is not received, conclude that
 the EAP Success packet was lost and that authentication concluded
 successfully.

Aboba, et al. Standards Track [Page 24]

RFC 3748 EAP June 2004

 If the authenticator has not sent a result indication, and the peer
 is willing to continue the conversation, the peer waits for a Success
 or Failure packet once the method completes, and MUST NOT silently
 discard either of them. In the event that neither a Success nor
 Failure packet is received, the peer SHOULD terminate the
 conversation to avoid lengthy timeouts in case the lost packet was an
 EAP Failure.

 If the peer attempts to authenticate to the authenticator and fails
 to do so, the authenticator MUST send a Failure packet and MUST NOT
 grant access by sending a Success packet. However, an authenticator
 MAY omit having the peer authenticate to it in situations where
 limited access is offered (e.g., guest access). In this case, the
 authenticator MUST send a Success packet.

 Where the peer authenticates successfully to the authenticator, but
 the authenticator does not send a result indication, the
 authenticator MAY deny access by sending a Failure packet where the
 peer is not currently authorized for network access.

 A summary of the Success and Failure packet format is shown below.
 The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Code | Identifier | Length |
 +-+

 Code

 3 for Success
 4 for Failure

 Identifier

 The Identifier field is one octet and aids in matching replies to
 Responses. The Identifier field MUST match the Identifier field
 of the Response packet that it is sent in response to.

 Length

 4

Aboba, et al. Standards Track [Page 25]

RFC 3748 EAP June 2004

4.3. Retransmission Behavior

 Because the authentication process will often involve user input,
 some care must be taken when deciding upon retransmission strategies
 and authentication timeouts. By default, where EAP is run over an
 unreliable lower layer, the EAP retransmission timer SHOULD be
 dynamically estimated. A maximum of 3-5 retransmissions is
 suggested.

 When run over a reliable lower layer (e.g., EAP over ISAKMP/TCP, as
 within [PIC]), the authenticator retransmission timer SHOULD be set
 to an infinite value, so that retransmissions do not occur at the EAP
 layer. The peer may still maintain a timeout value so as to avoid
 waiting indefinitely for a Request.

 Where the authentication process requires user input, the measured
 round trip times may be determined by user responsiveness rather than
 network characteristics, so that dynamic RTO estimation may not be
 helpful. Instead, the retransmission timer SHOULD be set so as to
 provide sufficient time for the user to respond, with longer timeouts
 required in certain cases, such as where Token Cards (see Section
 5.6) are involved.

 In order to provide the EAP authenticator with guidance as to the
 appropriate timeout value, a hint can be communicated to the
 authenticator by the backend authentication server (such as via the
 RADIUS Session-Timeout attribute).

 In order to dynamically estimate the EAP retransmission timer, the
 algorithms for the estimation of SRTT, RTTVAR, and RTO described in
 [RFC2988] are RECOMMENDED, including use of Karn’s algorithm, with
 the following potential modifications:

 [a] In order to avoid synchronization behaviors that can occur with
 fixed timers among distributed systems, the retransmission timer
 is calculated with a jitter by using the RTO value and randomly
 adding a value drawn between -RTOmin/2 and RTOmin/2. Alternative
 calculations to create jitter MAY be used. These MUST be
 pseudo-random. For a discussion of pseudo-random number
 generation, see [RFC1750].

 [b] When EAP is transported over a single link (as opposed to over
 the Internet), smaller values of RTOinitial, RTOmin, and RTOmax
 MAY be used. Recommended values are RTOinitial=1 second,
 RTOmin=200ms, and RTOmax=20 seconds.

Aboba, et al. Standards Track [Page 26]

RFC 3748 EAP June 2004

 [c] When EAP is transported over a single link (as opposed to over
 the Internet), estimates MAY be done on a per-authenticator
 basis, rather than a per-session basis. This enables the
 retransmission estimate to make the most use of information on
 link-layer behavior.

 [d] An EAP implementation MAY clear SRTT and RTTVAR after backing off
 the timer multiple times, as it is likely that the current SRTT
 and RTTVAR are bogus in this situation. Once SRTT and RTTVAR are
 cleared, they should be initialized with the next RTT sample
 taken as described in [RFC2988] equation 2.2.

5. Initial EAP Request/Response Types

 This section defines the initial set of EAP Types used in Request/
 Response exchanges. More Types may be defined in future documents.
 The Type field is one octet and identifies the structure of an EAP
 Request or Response packet. The first 3 Types are considered special
 case Types.

 The remaining Types define authentication exchanges. Nak (Type 3) or
 Expanded Nak (Type 254) are valid only for Response packets, they
 MUST NOT be sent in a Request.

 All EAP implementations MUST support Types 1-4, which are defined in
 this document, and SHOULD support Type 254. Implementations MAY
 support other Types defined here or in future RFCs.

 1 Identity
 2 Notification
 3 Nak (Response only)
 4 MD5-Challenge
 5 One Time Password (OTP)
 6 Generic Token Card (GTC)
 254 Expanded Types
 255 Experimental use

 EAP methods MAY support authentication based on shared secrets. If
 the shared secret is a passphrase entered by the user,
 implementations MAY support entering passphrases with non-ASCII
 characters. In this case, the input should be processed using an
 appropriate stringprep [RFC3454] profile, and encoded in octets using
 UTF-8 encoding [RFC2279]. A preliminary version of a possible
 stringprep profile is described in [SASLPREP].

Aboba, et al. Standards Track [Page 27]

RFC 3748 EAP June 2004

5.1. Identity

 Description

 The Identity Type is used to query the identity of the peer.
 Generally, the authenticator will issue this as the initial
 Request. An optional displayable message MAY be included to
 prompt the peer in the case where there is an expectation of
 interaction with a user. A Response of Type 1 (Identity) SHOULD
 be sent in Response to a Request with a Type of 1 (Identity).

 Some EAP implementations piggy-back various options into the
 Identity Request after a NUL-character. By default, an EAP
 implementation SHOULD NOT assume that an Identity Request or
 Response can be larger than 1020 octets.

 It is RECOMMENDED that the Identity Response be used primarily for
 routing purposes and selecting which EAP method to use. EAP
 Methods SHOULD include a method-specific mechanism for obtaining
 the identity, so that they do not have to rely on the Identity
 Response. Identity Requests and Responses are sent in cleartext,
 so an attacker may snoop on the identity, or even modify or spoof
 identity exchanges. To address these threats, it is preferable
 for an EAP method to include an identity exchange that supports
 per-packet authentication, integrity and replay protection, and
 confidentiality. The Identity Response may not be the appropriate
 identity for the method; it may have been truncated or obfuscated
 so as to provide privacy, or it may have been decorated for
 routing purposes. Where the peer is configured to only accept
 authentication methods supporting protected identity exchanges,
 the peer MAY provide an abbreviated Identity Response (such as
 omitting the peer-name portion of the NAI [RFC2486]). For further
 discussion of identity protection, see Section 7.3.

 Implementation Note: The peer MAY obtain the Identity via user input.
 It is suggested that the authenticator retry the Identity Request in
 the case of an invalid Identity or authentication failure to allow
 for potential typos on the part of the user. It is suggested that
 the Identity Request be retried a minimum of 3 times before
 terminating the authentication. The Notification Request MAY be used
 to indicate an invalid authentication attempt prior to transmitting a
 new Identity Request (optionally, the failure MAY be indicated within
 the message of the new Identity Request itself).

Aboba, et al. Standards Track [Page 28]

RFC 3748 EAP June 2004

 Type

 1

 Type-Data

 This field MAY contain a displayable message in the Request,
 containing UTF-8 encoded ISO 10646 characters [RFC2279]. Where
 the Request contains a null, only the portion of the field prior
 to the null is displayed. If the Identity is unknown, the
 Identity Response field should be zero bytes in length. The
 Identity Response field MUST NOT be null terminated. In all
 cases, the length of the Type-Data field is derived from the
 Length field of the Request/Response packet.

 Security Claims (see Section 7.2):

 Auth. mechanism: None
 Ciphersuite negotiation: No
 Mutual authentication: No
 Integrity protection: No
 Replay protection: No
 Confidentiality: No
 Key derivation: No
 Key strength: N/A
 Dictionary attack prot.: N/A
 Fast reconnect: No
 Crypt. binding: N/A
 Session independence: N/A
 Fragmentation: No
 Channel binding: No

5.2. Notification

 Description

 The Notification Type is optionally used to convey a displayable
 message from the authenticator to the peer. An authenticator MAY
 send a Notification Request to the peer at any time when there is
 no outstanding Request, prior to completion of an EAP
 authentication method. The peer MUST respond to a Notification
 Request with a Notification Response unless the EAP authentication
 method specification prohibits the use of Notification messages.
 In any case, a Nak Response MUST NOT be sent in response to a
 Notification Request. Note that the default maximum length of a
 Notification Request is 1020 octets. By default, this leaves at
 most 1015 octets for the human readable message.

Aboba, et al. Standards Track [Page 29]

RFC 3748 EAP June 2004

 An EAP method MAY indicate within its specification that
 Notification messages must not be sent during that method. In
 this case, the peer MUST silently discard Notification Requests
 from the point where an initial Request for that Type is answered
 with a Response of the same Type.

 The peer SHOULD display this message to the user or log it if it
 cannot be displayed. The Notification Type is intended to provide
 an acknowledged notification of some imperative nature, but it is
 not an error indication, and therefore does not change the state
 of the peer. Examples include a password with an expiration time
 that is about to expire, an OTP sequence integer which is nearing
 0, an authentication failure warning, etc. In most circumstances,
 Notification should not be required.

 Type

 2

 Type-Data

 The Type-Data field in the Request contains a displayable message
 greater than zero octets in length, containing UTF-8 encoded ISO
 10646 characters [RFC2279]. The length of the message is
 determined by the Length field of the Request packet. The message
 MUST NOT be null terminated. A Response MUST be sent in reply to
 the Request with a Type field of 2 (Notification). The Type-Data
 field of the Response is zero octets in length. The Response
 should be sent immediately (independent of how the message is
 displayed or logged).

 Security Claims (see Section 7.2):

 Auth. mechanism: None
 Ciphersuite negotiation: No
 Mutual authentication: No
 Integrity protection: No
 Replay protection: No
 Confidentiality: No
 Key derivation: No
 Key strength: N/A
 Dictionary attack prot.: N/A
 Fast reconnect: No
 Crypt. binding: N/A
 Session independence: N/A
 Fragmentation: No
 Channel binding: No

Aboba, et al. Standards Track [Page 30]

RFC 3748 EAP June 2004

5.3. Nak

5.3.1. Legacy Nak

 Description

 The legacy Nak Type is valid only in Response messages. It is
 sent in reply to a Request where the desired authentication Type
 is unacceptable. Authentication Types are numbered 4 and above.
 The Response contains one or more authentication Types desired by
 the Peer. Type zero (0) is used to indicate that the sender has
 no viable alternatives, and therefore the authenticator SHOULD NOT
 send another Request after receiving a Nak Response containing a
 zero value.

 Since the legacy Nak Type is valid only in Responses and has very
 limited functionality, it MUST NOT be used as a general purpose
 error indication, such as for communication of error messages, or
 negotiation of parameters specific to a particular EAP method.

 Code

 2 for Response.

 Identifier

 The Identifier field is one octet and aids in matching Responses
 with Requests. The Identifier field of a legacy Nak Response MUST
 match the Identifier field of the Request packet that it is sent
 in response to.

 Length

 >=6

 Type

 3

 Type-Data

 Where a peer receives a Request for an unacceptable authentication
 Type (4-253,255), or a peer lacking support for Expanded Types
 receives a Request for Type 254, a Nak Response (Type 3) MUST be
 sent. The Type-Data field of the Nak Response (Type 3) MUST
 contain one or more octets indicating the desired authentication
 Type(s), one octet per Type, or the value zero (0) to indicate no
 proposed alternative. A peer supporting Expanded Types that

Aboba, et al. Standards Track [Page 31]

RFC 3748 EAP June 2004

 receives a Request for an unacceptable authentication Type (4-253,
 255) MAY include the value 254 in the Nak Response (Type 3) to
 indicate the desire for an Expanded authentication Type. If the
 authenticator can accommodate this preference, it will respond
 with an Expanded Type Request (Type 254).

 Security Claims (see Section 7.2):

 Auth. mechanism: None
 Ciphersuite negotiation: No
 Mutual authentication: No
 Integrity protection: No
 Replay protection: No
 Confidentiality: No
 Key derivation: No
 Key strength: N/A
 Dictionary attack prot.: N/A
 Fast reconnect: No
 Crypt. binding: N/A
 Session independence: N/A
 Fragmentation: No
 Channel binding: No

5.3.2. Expanded Nak

 Description

 The Expanded Nak Type is valid only in Response messages. It MUST
 be sent only in reply to a Request of Type 254 (Expanded Type)
 where the authentication Type is unacceptable. The Expanded Nak
 Type uses the Expanded Type format itself, and the Response
 contains one or more authentication Types desired by the peer, all
 in Expanded Type format. Type zero (0) is used to indicate that
 the sender has no viable alternatives. The general format of the
 Expanded Type is described in Section 5.7.

 Since the Expanded Nak Type is valid only in Responses and has
 very limited functionality, it MUST NOT be used as a general
 purpose error indication, such as for communication of error
 messages, or negotiation of parameters specific to a particular
 EAP method.

 Code

 2 for Response.

Aboba, et al. Standards Track [Page 32]

RFC 3748 EAP June 2004

 Identifier

 The Identifier field is one octet and aids in matching Responses
 with Requests. The Identifier field of an Expanded Nak Response
 MUST match the Identifier field of the Request packet that it is
 sent in response to.

 Length

 >=20

 Type

 254

 Vendor-Id

 0 (IETF)

 Vendor-Type

 3 (Nak)

 Vendor-Data

 The Expanded Nak Type is only sent when the Request contains an
 Expanded Type (254) as defined in Section 5.7. The Vendor-Data
 field of the Nak Response MUST contain one or more authentication
 Types (4 or greater), all in expanded format, 8 octets per Type,
 or the value zero (0), also in Expanded Type format, to indicate
 no proposed alternative. The desired authentication Types may
 include a mixture of Vendor-Specific and IETF Types. For example,
 an Expanded Nak Response indicating a preference for OTP (Type 5),
 and an MIT (Vendor-Id=20) Expanded Type of 6 would appear as
 follows:

Aboba, et al. Standards Track [Page 33]

RFC 3748 EAP June 2004

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 2 | Identifier | Length=28 |
 +-+
 | Type=254 | 0 (IETF) |
 +-+
 | 3 (Nak) |
 +-+
 | Type=254 | 0 (IETF) |
 +-+
 | 5 (OTP) |
 +-+
 | Type=254 | 20 (MIT) |
 +-+
 | 6 |
 +-+

 An Expanded Nak Response indicating a no desired alternative would
 appear as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 2 | Identifier | Length=20 |
 +-+
 | Type=254 | 0 (IETF) |
 +-+
 | 3 (Nak) |
 +-+
 | Type=254 | 0 (IETF) |
 +-+
 | 0 (No alternative) |
 +-+

 Security Claims (see Section 7.2):

 Auth. mechanism: None
 Ciphersuite negotiation: No
 Mutual authentication: No
 Integrity protection: No
 Replay protection: No
 Confidentiality: No
 Key derivation: No
 Key strength: N/A
 Dictionary attack prot.: N/A
 Fast reconnect: No
 Crypt. binding: N/A

Aboba, et al. Standards Track [Page 34]

RFC 3748 EAP June 2004

 Session independence: N/A
 Fragmentation: No
 Channel binding: No

5.4. MD5-Challenge

 Description

 The MD5-Challenge Type is analogous to the PPP CHAP protocol
 [RFC1994] (with MD5 as the specified algorithm). The Request
 contains a "challenge" message to the peer. A Response MUST be
 sent in reply to the Request. The Response MAY be either of Type
 4 (MD5-Challenge), Nak (Type 3), or Expanded Nak (Type 254). The
 Nak reply indicates the peer’s desired authentication Type(s).
 EAP peer and EAP server implementations MUST support the MD5-
 Challenge mechanism. An authenticator that supports only pass-
 through MUST allow communication with a backend authentication
 server that is capable of supporting MD5-Challenge, although the
 EAP authenticator implementation need not support MD5-Challenge
 itself. However, if the EAP authenticator can be configured to
 authenticate peers locally (e.g., not operate in pass-through),
 then the requirement for support of the MD5-Challenge mechanism
 applies.

 Note that the use of the Identifier field in the MD5-Challenge
 Type is different from that described in [RFC1994]. EAP allows
 for retransmission of MD5-Challenge Request packets, while
 [RFC1994] states that both the Identifier and Challenge fields
 MUST change each time a Challenge (the CHAP equivalent of the
 MD5-Challenge Request packet) is sent.

 Note: [RFC1994] treats the shared secret as an octet string, and
 does not specify how it is entered into the system (or if it is
 handled by the user at all). EAP MD5-Challenge implementations
 MAY support entering passphrases with non-ASCII characters. See
 Section 5 for instructions how the input should be processed and
 encoded into octets.

 Type

 4

 Type-Data

 The contents of the Type-Data field is summarized below. For
 reference on the use of these fields, see the PPP Challenge
 Handshake Authentication Protocol [RFC1994].

Aboba, et al. Standards Track [Page 35]

RFC 3748 EAP June 2004

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Value-Size | Value ...
 +-+
 | Name ...
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Security Claims (see Section 7.2):

 Auth. mechanism: Password or pre-shared key.
 Ciphersuite negotiation: No
 Mutual authentication: No
 Integrity protection: No
 Replay protection: No
 Confidentiality: No
 Key derivation: No
 Key strength: N/A
 Dictionary attack prot.: No
 Fast reconnect: No
 Crypt. binding: N/A
 Session independence: N/A
 Fragmentation: No
 Channel binding: No

5.5. One-Time Password (OTP)

 Description

 The One-Time Password system is defined in "A One-Time Password
 System" [RFC2289] and "OTP Extended Responses" [RFC2243]. The
 Request contains an OTP challenge in the format described in
 [RFC2289]. A Response MUST be sent in reply to the Request. The
 Response MUST be of Type 5 (OTP), Nak (Type 3), or Expanded Nak
 (Type 254). The Nak Response indicates the peer’s desired
 authentication Type(s). The EAP OTP method is intended for use
 with the One-Time Password system only, and MUST NOT be used to
 provide support for cleartext passwords.

 Type

 5

Aboba, et al. Standards Track [Page 36]

RFC 3748 EAP June 2004

 Type-Data

 The Type-Data field contains the OTP "challenge" as a displayable
 message in the Request. In the Response, this field is used for
 the 6 words from the OTP dictionary [RFC2289]. The messages MUST
 NOT be null terminated. The length of the field is derived from
 the Length field of the Request/Reply packet.

 Note: [RFC2289] does not specify how the secret pass-phrase is
 entered by the user, or how the pass-phrase is converted into
 octets. EAP OTP implementations MAY support entering passphrases
 with non-ASCII characters. See Section 5 for instructions on how
 the input should be processed and encoded into octets.

 Security Claims (see Section 7.2):

 Auth. mechanism: One-Time Password
 Ciphersuite negotiation: No
 Mutual authentication: No
 Integrity protection: No
 Replay protection: Yes
 Confidentiality: No
 Key derivation: No
 Key strength: N/A
 Dictionary attack prot.: No
 Fast reconnect: No
 Crypt. binding: N/A
 Session independence: N/A
 Fragmentation: No
 Channel binding: No

5.6. Generic Token Card (GTC)

 Description

 The Generic Token Card Type is defined for use with various Token
 Card implementations which require user input. The Request
 contains a displayable message and the Response contains the Token
 Card information necessary for authentication. Typically, this
 would be information read by a user from the Token card device and
 entered as ASCII text. A Response MUST be sent in reply to the
 Request. The Response MUST be of Type 6 (GTC), Nak (Type 3), or
 Expanded Nak (Type 254). The Nak Response indicates the peer’s
 desired authentication Type(s). The EAP GTC method is intended
 for use with the Token Cards supporting challenge/response

Aboba, et al. Standards Track [Page 37]

RFC 3748 EAP June 2004

 authentication and MUST NOT be used to provide support for
 cleartext passwords in the absence of a protected tunnel with
 server authentication.

 Type

 6

 Type-Data

 The Type-Data field in the Request contains a displayable message
 greater than zero octets in length. The length of the message is
 determined by the Length field of the Request packet. The message
 MUST NOT be null terminated. A Response MUST be sent in reply to
 the Request with a Type field of 6 (Generic Token Card). The
 Response contains data from the Token Card required for
 authentication. The length of the data is determined by the
 Length field of the Response packet.

 EAP GTC implementations MAY support entering a response with non-
 ASCII characters. See Section 5 for instructions how the input
 should be processed and encoded into octets.

 Security Claims (see Section 7.2):

 Auth. mechanism: Hardware token.
 Ciphersuite negotiation: No
 Mutual authentication: No
 Integrity protection: No
 Replay protection: No
 Confidentiality: No
 Key derivation: No
 Key strength: N/A
 Dictionary attack prot.: No
 Fast reconnect: No
 Crypt. binding: N/A
 Session independence: N/A
 Fragmentation: No
 Channel binding: No

5.7. Expanded Types

 Description

 Since many of the existing uses of EAP are vendor-specific, the
 Expanded method Type is available to allow vendors to support
 their own Expanded Types not suitable for general usage.

Aboba, et al. Standards Track [Page 38]

RFC 3748 EAP June 2004

 The Expanded Type is also used to expand the global Method Type
 space beyond the original 255 values. A Vendor-Id of 0 maps the
 original 255 possible Types onto a space of 2^32-1 possible Types.
 (Type 0 is only used in a Nak Response to indicate no acceptable
 alternative).

 An implementation that supports the Expanded attribute MUST treat
 EAP Types that are less than 256 equivalently, whether they appear
 as a single octet or as the 32-bit Vendor-Type within an Expanded
 Type where Vendor-Id is 0. Peers not equipped to interpret the
 Expanded Type MUST send a Nak as described in Section 5.3.1, and
 negotiate a more suitable authentication method.

 A summary of the Expanded Type format is shown below. The fields
 are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Vendor-Id |
 +-+
 | Vendor-Type |
 +-+
 | Vendor data...
 +-+

 Type

 254 for Expanded Type

 Vendor-Id

 The Vendor-Id is 3 octets and represents the SMI Network
 Management Private Enterprise Code of the Vendor in network byte
 order, as allocated by IANA. A Vendor-Id of zero is reserved for
 use by the IETF in providing an expanded global EAP Type space.

 Vendor-Type

 The Vendor-Type field is four octets and represents the vendor-
 specific method Type.

 If the Vendor-Id is zero, the Vendor-Type field is an extension
 and superset of the existing namespace for EAP Types. The first
 256 Types are reserved for compatibility with single-octet EAP
 Types that have already been assigned or may be assigned in the
 future. Thus, EAP Types from 0 through 255 are semantically
 identical, whether they appear as single octet EAP Types or as

Aboba, et al. Standards Track [Page 39]

RFC 3748 EAP June 2004

 Vendor-Types when Vendor-Id is zero. There is one exception to
 this rule: Expanded Nak and Legacy Nak packets share the same
 Type, but must be treated differently because they have a
 different format.

 Vendor-Data

 The Vendor-Data field is defined by the vendor. Where a Vendor-Id
 of zero is present, the Vendor-Data field will be used for
 transporting the contents of EAP methods of Types defined by the
 IETF.

5.8. Experimental

 Description

 The Experimental Type has no fixed format or content. It is
 intended for use when experimenting with new EAP Types. This Type
 is intended for experimental and testing purposes. No guarantee
 is made for interoperability between peers using this Type, as
 outlined in [RFC3692].

 Type

 255

 Type-Data

 Undefined

6. IANA Considerations

 This section provides guidance to the Internet Assigned Numbers
 Authority (IANA) regarding registration of values related to the EAP
 protocol, in accordance with BCP 26, [RFC2434].

 There are two name spaces in EAP that require registration: Packet
 Codes and method Types.

 EAP is not intended as a general-purpose protocol, and allocations
 SHOULD NOT be made for purposes unrelated to authentication.

 The following terms are used here with the meanings defined in BCP
 26: "name space", "assigned value", "registration".

 The following policies are used here with the meanings defined in BCP
 26: "Private Use", "First Come First Served", "Expert Review",
 "Specification Required", "IETF Consensus", "Standards Action".

Aboba, et al. Standards Track [Page 40]

RFC 3748 EAP June 2004

 For registration requests where a Designated Expert should be
 consulted, the responsible IESG area director should appoint the
 Designated Expert. The intention is that any allocation will be
 accompanied by a published RFC. But in order to allow for the
 allocation of values prior to the RFC being approved for publication,
 the Designated Expert can approve allocations once it seems clear
 that an RFC will be published. The Designated expert will post a
 request to the EAP WG mailing list (or a successor designated by the
 Area Director) for comment and review, including an Internet-Draft.
 Before a period of 30 days has passed, the Designated Expert will
 either approve or deny the registration request and publish a notice
 of the decision to the EAP WG mailing list or its successor, as well
 as informing IANA. A denial notice must be justified by an
 explanation, and in the cases where it is possible, concrete
 suggestions on how the request can be modified so as to become
 acceptable should be provided.

6.1. Packet Codes

 Packet Codes have a range from 1 to 255, of which 1-4 have been
 allocated. Because a new Packet Code has considerable impact on
 interoperability, a new Packet Code requires Standards Action, and
 should be allocated starting at 5.

6.2. Method Types

 The original EAP method Type space has a range from 1 to 255, and is
 the scarcest resource in EAP, and thus must be allocated with care.
 Method Types 1-45 have been allocated, with 20 available for re-use.
 Method Types 20 and 46-191 may be allocated on the advice of a
 Designated Expert, with Specification Required.

 Allocation of blocks of method Types (more than one for a given
 purpose) should require IETF Consensus. EAP Type Values 192-253 are
 reserved and allocation requires Standards Action.

 Method Type 254 is allocated for the Expanded Type. Where the
 Vendor-Id field is non-zero, the Expanded Type is used for functions
 specific only to one vendor’s implementation of EAP, where no
 interoperability is deemed useful. When used with a Vendor-Id of
 zero, method Type 254 can also be used to provide for an expanded
 IETF method Type space. Method Type values 256-4294967295 may be
 allocated after Type values 1-191 have been allocated, on the advice
 of a Designated Expert, with Specification Required.

 Method Type 255 is allocated for Experimental use, such as testing of
 new EAP methods before a permanent Type is allocated.

Aboba, et al. Standards Track [Page 41]

RFC 3748 EAP June 2004

7. Security Considerations

 This section defines a generic threat model as well as the EAP method
 security claims mitigating those threats.

 It is expected that the generic threat model and corresponding
 security claims will used to define EAP method requirements for use
 in specific environments. An example of such a requirements analysis
 is provided in [IEEE-802.11i-req]. A security claims section is
 required in EAP method specifications, so that EAP methods can be
 evaluated against the requirements.

7.1. Threat Model

 EAP was developed for use with PPP [RFC1661] and was later adapted
 for use in wired IEEE 802 networks [IEEE-802] in [IEEE-802.1X].
 Subsequently, EAP has been proposed for use on wireless LAN networks
 and over the Internet. In all these situations, it is possible for
 an attacker to gain access to links over which EAP packets are
 transmitted. For example, attacks on telephone infrastructure are
 documented in [DECEPTION].

 An attacker with access to the link may carry out a number of
 attacks, including:

 [1] An attacker may try to discover user identities by snooping
 authentication traffic.

 [2] An attacker may try to modify or spoof EAP packets.

 [3] An attacker may launch denial of service attacks by spoofing
 lower layer indications or Success/Failure packets, by replaying
 EAP packets, or by generating packets with overlapping
 Identifiers.

 [4] An attacker may attempt to recover the pass-phrase by mounting
 an offline dictionary attack.

 [5] An attacker may attempt to convince the peer to connect to an
 untrusted network by mounting a man-in-the-middle attack.

 [6] An attacker may attempt to disrupt the EAP negotiation in order
 cause a weak authentication method to be selected.

 [7] An attacker may attempt to recover keys by taking advantage of
 weak key derivation techniques used within EAP methods.

Aboba, et al. Standards Track [Page 42]

RFC 3748 EAP June 2004

 [8] An attacker may attempt to take advantage of weak ciphersuites
 subsequently used after the EAP conversation is complete.

 [9] An attacker may attempt to perform downgrading attacks on lower
 layer ciphersuite negotiation in order to ensure that a weaker
 ciphersuite is used subsequently to EAP authentication.

 [10] An attacker acting as an authenticator may provide incorrect
 information to the EAP peer and/or server via out-of-band
 mechanisms (such as via a AAA or lower layer protocol). This
 includes impersonating another authenticator, or providing
 inconsistent information to the peer and EAP server.

 Depending on the lower layer, these attacks may be carried out
 without requiring physical proximity. Where EAP is used over
 wireless networks, EAP packets may be forwarded by authenticators
 (e.g., pre-authentication) so that the attacker need not be within
 the coverage area of an authenticator in order to carry out an attack
 on it or its peers. Where EAP is used over the Internet, attacks may
 be carried out at an even greater distance.

7.2. Security Claims

 In order to clearly articulate the security provided by an EAP
 method, EAP method specifications MUST include a Security Claims
 section, including the following declarations:

 [a] Mechanism. This is a statement of the authentication technology:
 certificates, pre-shared keys, passwords, token cards, etc.

 [b] Security claims. This is a statement of the claimed security
 properties of the method, using terms defined in Section 7.2.1:
 mutual authentication, integrity protection, replay protection,
 confidentiality, key derivation, dictionary attack resistance,
 fast reconnect, cryptographic binding. The Security Claims
 section of an EAP method specification SHOULD provide
 justification for the claims that are made. This can be
 accomplished by including a proof in an Appendix, or including a
 reference to a proof.

 [c] Key strength. If the method derives keys, then the effective key
 strength MUST be estimated. This estimate is meant for potential
 users of the method to determine if the keys produced are strong
 enough for the intended application.

Aboba, et al. Standards Track [Page 43]

RFC 3748 EAP June 2004

 The effective key strength SHOULD be stated as a number of bits,
 defined as follows: If the effective key strength is N bits, the
 best currently known methods to recover the key (with non-
 negligible probability) require, on average, an effort comparable
 to 2^(N-1) operations of a typical block cipher. The statement
 SHOULD be accompanied by a short rationale, explaining how this
 number was derived. This explanation SHOULD include the
 parameters required to achieve the stated key strength based on
 current knowledge of the algorithms.

 (Note: Although it is difficult to define what "comparable
 effort" and "typical block cipher" exactly mean, reasonable
 approximations are sufficient here. Refer to e.g. [SILVERMAN]
 for more discussion.)

 The key strength depends on the methods used to derive the keys.
 For instance, if keys are derived from a shared secret (such as a
 password or a long-term secret), and possibly some public
 information such as nonces, the effective key strength is limited
 by the strength of the long-term secret (assuming that the
 derivation procedure is computationally simple). To take another
 example, when using public key algorithms, the strength of the
 symmetric key depends on the strength of the public keys used.

 [d] Description of key hierarchy. EAP methods deriving keys MUST
 either provide a reference to a key hierarchy specification, or
 describe how Master Session Keys (MSKs) and Extended Master
 Session Keys (EMSKs) are to be derived.

 [e] Indication of vulnerabilities. In addition to the security
 claims that are made, the specification MUST indicate which of
 the security claims detailed in Section 7.2.1 are NOT being made.

7.2.1. Security Claims Terminology for EAP Methods

 These terms are used to describe the security properties of EAP
 methods:

 Protected ciphersuite negotiation
 This refers to the ability of an EAP method to negotiate the
 ciphersuite used to protect the EAP conversation, as well as to
 integrity protect the negotiation. It does not refer to the
 ability to negotiate the ciphersuite used to protect data.

Aboba, et al. Standards Track [Page 44]

RFC 3748 EAP June 2004

 Mutual authentication
 This refers to an EAP method in which, within an interlocked
 exchange, the authenticator authenticates the peer and the peer
 authenticates the authenticator. Two independent one-way methods,
 running in opposite directions do not provide mutual
 authentication as defined here.

 Integrity protection
 This refers to providing data origin authentication and protection
 against unauthorized modification of information for EAP packets
 (including EAP Requests and Responses). When making this claim, a
 method specification MUST describe the EAP packets and fields
 within the EAP packet that are protected.

 Replay protection
 This refers to protection against replay of an EAP method or its
 messages, including success and failure result indications.

 Confidentiality
 This refers to encryption of EAP messages, including EAP Requests
 and Responses, and success and failure result indications. A
 method making this claim MUST support identity protection (see
 Section 7.3).

 Key derivation
 This refers to the ability of the EAP method to derive exportable
 keying material, such as the Master Session Key (MSK), and
 Extended Master Session Key (EMSK). The MSK is used only for
 further key derivation, not directly for protection of the EAP
 conversation or subsequent data. Use of the EMSK is reserved.

 Key strength
 If the effective key strength is N bits, the best currently known
 methods to recover the key (with non-negligible probability)
 require, on average, an effort comparable to 2^(N-1) operations of
 a typical block cipher.

 Dictionary attack resistance
 Where password authentication is used, passwords are commonly
 selected from a small set (as compared to a set of N-bit keys),
 which raises a concern about dictionary attacks. A method may be
 said to provide protection against dictionary attacks if, when it
 uses a password as a secret, the method does not allow an offline
 attack that has a work factor based on the number of passwords in
 an attacker’s dictionary.

Aboba, et al. Standards Track [Page 45]

RFC 3748 EAP June 2004

 Fast reconnect
 The ability, in the case where a security association has been
 previously established, to create a new or refreshed security
 association more efficiently or in a smaller number of round-
 trips.

 Cryptographic binding
 The demonstration of the EAP peer to the EAP server that a single
 entity has acted as the EAP peer for all methods executed within a
 tunnel method. Binding MAY also imply that the EAP server
 demonstrates to the peer that a single entity has acted as the EAP
 server for all methods executed within a tunnel method. If
 executed correctly, binding serves to mitigate man-in-the-middle
 vulnerabilities.

 Session independence
 The demonstration that passive attacks (such as capture of the EAP
 conversation) or active attacks (including compromise of the MSK
 or EMSK) does not enable compromise of subsequent or prior MSKs or
 EMSKs.

 Fragmentation
 This refers to whether an EAP method supports fragmentation and
 reassembly. As noted in Section 3.1, EAP methods should support
 fragmentation and reassembly if EAP packets can exceed the minimum
 MTU of 1020 octets.

 Channel binding
 The communication within an EAP method of integrity-protected
 channel properties such as endpoint identifiers which can be
 compared to values communicated via out of band mechanisms (such
 as via a AAA or lower layer protocol).

 Note: This list of security claims is not exhaustive. Additional
 properties, such as additional denial-of-service protection, may be
 relevant as well.

7.3. Identity Protection

 An Identity exchange is optional within the EAP conversation.
 Therefore, it is possible to omit the Identity exchange entirely, or
 to use a method-specific identity exchange once a protected channel
 has been established.

 However, where roaming is supported as described in [RFC2607], it may
 be necessary to locate the appropriate backend authentication server
 before the authentication conversation can proceed. The realm
 portion of the Network Access Identifier (NAI) [RFC2486] is typically

Aboba, et al. Standards Track [Page 46]

RFC 3748 EAP June 2004

 included within the EAP-Response/Identity in order to enable the
 authentication exchange to be routed to the appropriate backend
 authentication server. Therefore, while the peer-name portion of the
 NAI may be omitted in the EAP-Response/Identity where proxies or
 relays are present, the realm portion may be required.

 It is possible for the identity in the identity response to be
 different from the identity authenticated by the EAP method. This
 may be intentional in the case of identity privacy. An EAP method
 SHOULD use the authenticated identity when making access control
 decisions.

7.4. Man-in-the-Middle Attacks

 Where EAP is tunneled within another protocol that omits peer
 authentication, there exists a potential vulnerability to a man-in-
 the-middle attack. For details, see [BINDING] and [MITM].

 As noted in Section 2.1, EAP does not permit untunneled sequences of
 authentication methods. Were a sequence of EAP authentication
 methods to be permitted, the peer might not have proof that a single
 entity has acted as the authenticator for all EAP methods within the
 sequence. For example, an authenticator might terminate one EAP
 method, then forward the next method in the sequence to another party
 without the peer’s knowledge or consent. Similarly, the
 authenticator might not have proof that a single entity has acted as
 the peer for all EAP methods within the sequence.

 Tunneling EAP within another protocol enables an attack by a rogue
 EAP authenticator tunneling EAP to a legitimate server. Where the
 tunneling protocol is used for key establishment but does not require
 peer authentication, an attacker convincing a legitimate peer to
 connect to it will be able to tunnel EAP packets to a legitimate
 server, successfully authenticating and obtaining the key. This
 allows the attacker to successfully establish itself as a man-in-
 the-middle, gaining access to the network, as well as the ability to
 decrypt data traffic between the legitimate peer and server.

 This attack may be mitigated by the following measures:

 [a] Requiring mutual authentication within EAP tunneling mechanisms.

 [b] Requiring cryptographic binding between the EAP tunneling
 protocol and the tunneled EAP methods. Where cryptographic
 binding is supported, a mechanism is also needed to protect
 against downgrade attacks that would bypass it. For further
 details on cryptographic binding, see [BINDING].

Aboba, et al. Standards Track [Page 47]

RFC 3748 EAP June 2004

 [c] Limiting the EAP methods authorized for use without protection,
 based on peer and authenticator policy.

 [d] Avoiding the use of tunnels when a single, strong method is
 available.

7.5. Packet Modification Attacks

 While EAP methods may support per-packet data origin authentication,
 integrity, and replay protection, support is not provided within the
 EAP layer.

 Since the Identifier is only a single octet, it is easy to guess,
 allowing an attacker to successfully inject or replay EAP packets.
 An attacker may also modify EAP headers (Code, Identifier, Length,
 Type) within EAP packets where the header is unprotected. This could
 cause packets to be inappropriately discarded or misinterpreted.

 To protect EAP packets against modification, spoofing, or replay,
 methods supporting protected ciphersuite negotiation, mutual
 authentication, and key derivation, as well as integrity and replay
 protection, are recommended. See Section 7.2.1 for definitions of
 these security claims.

 Method-specific MICs may be used to provide protection. If a per-
 packet MIC is employed within an EAP method, then peers,
 authentication servers, and authenticators not operating in pass-
 through mode MUST validate the MIC. MIC validation failures SHOULD
 be logged. Whether a MIC validation failure is considered a fatal
 error or not is determined by the EAP method specification.

 It is RECOMMENDED that methods providing integrity protection of EAP
 packets include coverage of all the EAP header fields, including the
 Code, Identifier, Length, Type, and Type-Data fields.

 Since EAP messages of Types Identity, Notification, and Nak do not
 include their own MIC, it may be desirable for the EAP method MIC to
 cover information contained within these messages, as well as the
 header of each EAP message.

 To provide protection, EAP also may be encapsulated within a
 protected channel created by protocols such as ISAKMP [RFC2408], as
 is done in [IKEv2] or within TLS [RFC2246]. However, as noted in
 Section 7.4, EAP tunneling may result in a man-in-the-middle
 vulnerability.

Aboba, et al. Standards Track [Page 48]

RFC 3748 EAP June 2004

 Existing EAP methods define message integrity checks (MICs) that
 cover more than one EAP packet. For example, EAP-TLS [RFC2716]
 defines a MIC over a TLS record that could be split into multiple
 fragments; within the FINISHED message, the MIC is computed over
 previous messages. Where the MIC covers more than one EAP packet, a
 MIC validation failure is typically considered a fatal error.

 Within EAP-TLS [RFC2716], a MIC validation failure is treated as a
 fatal error, since that is what is specified in TLS [RFC2246].
 However, it is also possible to develop EAP methods that support
 per-packet MICs, and respond to verification failures by silently
 discarding the offending packet.

 In this document, descriptions of EAP message handling assume that
 per-packet MIC validation, where it occurs, is effectively performed
 as though it occurs before sending any responses or changing the
 state of the host which received the packet.

7.6. Dictionary Attacks

 Password authentication algorithms such as EAP-MD5, MS-CHAPv1
 [RFC2433], and Kerberos V [RFC1510] are known to be vulnerable to
 dictionary attacks. MS-CHAPv1 vulnerabilities are documented in
 [PPTPv1]; MS-CHAPv2 vulnerabilities are documented in [PPTPv2];
 Kerberos vulnerabilities are described in [KRBATTACK], [KRBLIM], and
 [KERB4WEAK].

 In order to protect against dictionary attacks, authentication
 methods resistant to dictionary attacks (as defined in Section 7.2.1)
 are recommended.

 If an authentication algorithm is used that is known to be vulnerable
 to dictionary attacks, then the conversation may be tunneled within a
 protected channel in order to provide additional protection.
 However, as noted in Section 7.4, EAP tunneling may result in a man-
 in-the-middle vulnerability, and therefore dictionary attack
 resistant methods are preferred.

7.7. Connection to an Untrusted Network

 With EAP methods supporting one-way authentication, such as EAP-MD5,
 the peer does not authenticate the authenticator, making the peer
 vulnerable to attack by a rogue authenticator. Methods supporting
 mutual authentication (as defined in Section 7.2.1) address this
 vulnerability.

 In EAP there is no requirement that authentication be full duplex or
 that the same protocol be used in both directions. It is perfectly

Aboba, et al. Standards Track [Page 49]

RFC 3748 EAP June 2004

 acceptable for different protocols to be used in each direction.
 This will, of course, depend on the specific protocols negotiated.
 However, in general, completing a single unitary mutual
 authentication is preferable to two one-way authentications, one in
 each direction. This is because separate authentications that are
 not bound cryptographically so as to demonstrate they are part of the
 same session are subject to man-in-the-middle attacks, as discussed
 in Section 7.4.

7.8. Negotiation Attacks

 In a negotiation attack, the attacker attempts to convince the peer
 and authenticator to negotiate a less secure EAP method. EAP does
 not provide protection for Nak Response packets, although it is
 possible for a method to include coverage of Nak Responses within a
 method-specific MIC.

 Within or associated with each authenticator, it is not anticipated
 that a particular named peer will support a choice of methods. This
 would make the peer vulnerable to attacks that negotiate the least
 secure method from among a set. Instead, for each named peer, there
 SHOULD be an indication of exactly one method used to authenticate
 that peer name. If a peer needs to make use of different
 authentication methods under different circumstances, then distinct
 identities SHOULD be employed, each of which identifies exactly one
 authentication method.

7.9. Implementation Idiosyncrasies

 The interaction of EAP with lower layers such as PPP and IEEE 802 are
 highly implementation dependent.

 For example, upon failure of authentication, some PPP implementations
 do not terminate the link, instead limiting traffic in Network-Layer
 Protocols to a filtered subset, which in turn allows the peer the
 opportunity to update secrets or send mail to the network
 administrator indicating a problem. Similarly, while an
 authentication failure will result in denied access to the controlled
 port in [IEEE-802.1X], limited traffic may be permitted on the
 uncontrolled port.

 In EAP there is no provision for retries of failed authentication.
 However, in PPP the LCP state machine can renegotiate the
 authentication protocol at any time, thus allowing a new attempt.
 Similarly, in IEEE 802.1X the Supplicant or Authenticator can re-
 authenticate at any time. It is recommended that any counters used
 for authentication failure not be reset until after successful
 authentication, or subsequent termination of the failed link.

Aboba, et al. Standards Track [Page 50]

RFC 3748 EAP June 2004

7.10. Key Derivation

 It is possible for the peer and EAP server to mutually authenticate
 and derive keys. In order to provide keying material for use in a
 subsequently negotiated ciphersuite, an EAP method supporting key
 derivation MUST export a Master Session Key (MSK) of at least 64
 octets, and an Extended Master Session Key (EMSK) of at least 64
 octets. EAP Methods deriving keys MUST provide for mutual
 authentication between the EAP peer and the EAP Server.

 The MSK and EMSK MUST NOT be used directly to protect data; however,
 they are of sufficient size to enable derivation of a AAA-Key
 subsequently used to derive Transient Session Keys (TSKs) for use
 with the selected ciphersuite. Each ciphersuite is responsible for
 specifying how to derive the TSKs from the AAA-Key.

 The AAA-Key is derived from the keying material exported by the EAP
 method (MSK and EMSK). This derivation occurs on the AAA server. In
 many existing protocols that use EAP, the AAA-Key and MSK are
 equivalent, but more complicated mechanisms are possible (see
 [KEYFRAME] for details).

 EAP methods SHOULD ensure the freshness of the MSK and EMSK, even in
 cases where one party may not have a high quality random number
 generator. A RECOMMENDED method is for each party to provide a nonce
 of at least 128 bits, used in the derivation of the MSK and EMSK.

 EAP methods export the MSK and EMSK, but not Transient Session Keys
 so as to allow EAP methods to be ciphersuite and media independent.
 Keying material exported by EAP methods MUST be independent of the
 ciphersuite negotiated to protect data.

 Depending on the lower layer, EAP methods may run before or after
 ciphersuite negotiation, so that the selected ciphersuite may not be
 known to the EAP method. By providing keying material usable with
 any ciphersuite, EAP methods can used with a wide range of
 ciphersuites and media.

 In order to preserve algorithm independence, EAP methods deriving
 keys SHOULD support (and document) the protected negotiation of the
 ciphersuite used to protect the EAP conversation between the peer and
 server. This is distinct from the ciphersuite negotiated between the
 peer and authenticator, used to protect data.

 The strength of Transient Session Keys (TSKs) used to protect data is
 ultimately dependent on the strength of keys generated by the EAP
 method. If an EAP method cannot produce keying material of
 sufficient strength, then the TSKs may be subject to a brute force

Aboba, et al. Standards Track [Page 51]

RFC 3748 EAP June 2004

 attack. In order to enable deployments requiring strong keys, EAP
 methods supporting key derivation SHOULD be capable of generating an
 MSK and EMSK, each with an effective key strength of at least 128
 bits.

 Methods supporting key derivation MUST demonstrate cryptographic
 separation between the MSK and EMSK branches of the EAP key
 hierarchy. Without violating a fundamental cryptographic assumption
 (such as the non-invertibility of a one-way function), an attacker
 recovering the MSK or EMSK MUST NOT be able to recover the other
 quantity with a level of effort less than brute force.

 Non-overlapping substrings of the MSK MUST be cryptographically
 separate from each other, as defined in Section 7.2.1. That is,
 knowledge of one substring MUST NOT help in recovering some other
 substring without breaking some hard cryptographic assumption. This
 is required because some existing ciphersuites form TSKs by simply
 splitting the AAA-Key to pieces of appropriate length. Likewise,
 non-overlapping substrings of the EMSK MUST be cryptographically
 separate from each other, and from substrings of the MSK.

 The EMSK is reserved for future use and MUST remain on the EAP peer
 and EAP server where it is derived; it MUST NOT be transported to, or
 shared with, additional parties, or used to derive any other keys.
 (This restriction will be relaxed in a future document that specifies
 how the EMSK can be used.)

 Since EAP does not provide for explicit key lifetime negotiation, EAP
 peers, authenticators, and authentication servers MUST be prepared
 for situations in which one of the parties discards the key state,
 which remains valid on another party.

 This specification does not provide detailed guidance on how EAP
 methods derive the MSK and EMSK, how the AAA-Key is derived from the
 MSK and/or EMSK, or how the TSKs are derived from the AAA-Key.

 The development and validation of key derivation algorithms is
 difficult, and as a result, EAP methods SHOULD re-use well
 established and analyzed mechanisms for key derivation (such as those
 specified in IKE [RFC2409] or TLS [RFC2246]), rather than inventing
 new ones. EAP methods SHOULD also utilize well established and
 analyzed mechanisms for MSK and EMSK derivation. Further details on
 EAP Key Derivation are provided within [KEYFRAME].

Aboba, et al. Standards Track [Page 52]

RFC 3748 EAP June 2004

7.11. Weak Ciphersuites

 If after the initial EAP authentication, data packets are sent
 without per-packet authentication, integrity, and replay protection,
 an attacker with access to the media can inject packets, "flip bits"
 within existing packets, replay packets, or even hijack the session
 completely. Without per-packet confidentiality, it is possible to
 snoop data packets.

 To protect against data modification, spoofing, or snooping, it is
 recommended that EAP methods supporting mutual authentication and key
 derivation (as defined by Section 7.2.1) be used, along with lower
 layers providing per-packet confidentiality, authentication,
 integrity, and replay protection.

 Additionally, if the lower layer performs ciphersuite negotiation, it
 should be understood that EAP does not provide by itself integrity
 protection of that negotiation. Therefore, in order to avoid
 downgrading attacks which would lead to weaker ciphersuites being
 used, clients implementing lower layer ciphersuite negotiation SHOULD
 protect against negotiation downgrading.

 This can be done by enabling users to configure which ciphersuites
 are acceptable as a matter of security policy, or the ciphersuite
 negotiation MAY be authenticated using keying material derived from
 the EAP authentication and a MIC algorithm agreed upon in advance by
 lower-layer peers.

7.12. Link Layer

 There are reliability and security issues with link layer indications
 in PPP, IEEE 802 LANs, and IEEE 802.11 wireless LANs:

 [a] PPP. In PPP, link layer indications such as LCP-Terminate (a
 link failure indication) and NCP (a link success indication) are
 not authenticated or integrity protected. They can therefore be
 spoofed by an attacker with access to the link.

 [b] IEEE 802. IEEE 802.1X EAPOL-Start and EAPOL-Logoff frames are
 not authenticated or integrity protected. They can therefore be
 spoofed by an attacker with access to the link.

 [c] IEEE 802.11. In IEEE 802.11, link layer indications include
 Disassociate and Deauthenticate frames (link failure
 indications), and the first message of the 4-way handshake (link
 success indication). These messages are not authenticated or
 integrity protected, and although they are not forwardable, they
 are spoofable by an attacker within range.

Aboba, et al. Standards Track [Page 53]

RFC 3748 EAP June 2004

 In IEEE 802.11, IEEE 802.1X data frames may be sent as Class 3
 unicast data frames, and are therefore forwardable. This implies
 that while EAPOL-Start and EAPOL-Logoff messages may be authenticated
 and integrity protected, they can be spoofed by an authenticated
 attacker far from the target when "pre-authentication" is enabled.

 In IEEE 802.11, a "link down" indication is an unreliable indication
 of link failure, since wireless signal strength can come and go and
 may be influenced by radio frequency interference generated by an
 attacker. To avoid unnecessary resets, it is advisable to damp these
 indications, rather than passing them directly to the EAP. Since EAP
 supports retransmission, it is robust against transient connectivity
 losses.

7.13. Separation of Authenticator and Backend Authentication Server

 It is possible for the EAP peer and EAP server to mutually
 authenticate and derive a AAA-Key for a ciphersuite used to protect
 subsequent data traffic. This does not present an issue on the peer,
 since the peer and EAP client reside on the same machine; all that is
 required is for the client to derive the AAA-Key from the MSK and
 EMSK exported by the EAP method, and to subsequently pass a Transient
 Session Key (TSK) to the ciphersuite module.

 However, in the case where the authenticator and authentication
 server reside on different machines, there are several implications
 for security.

 [a] Authentication will occur between the peer and the authentication
 server, not between the peer and the authenticator. This means
 that it is not possible for the peer to validate the identity of
 the authenticator that it is speaking to, using EAP alone.

 [b] As discussed in [RFC3579], the authenticator is dependent on the
 AAA protocol in order to know the outcome of an authentication
 conversation, and does not look at the encapsulated EAP packet
 (if one is present) to determine the outcome. In practice, this
 implies that the AAA protocol spoken between the authenticator
 and authentication server MUST support per-packet authentication,
 integrity, and replay protection.

 [c] After completion of the EAP conversation, where lower layer
 security services such as per-packet confidentiality,
 authentication, integrity, and replay protection will be enabled,
 a secure association protocol SHOULD be run between the peer and
 authenticator in order to provide mutual authentication between

Aboba, et al. Standards Track [Page 54]

RFC 3748 EAP June 2004

 the peer and authenticator, guarantee liveness of transient
 session keys, provide protected ciphersuite and capabilities
 negotiation for subsequent data, and synchronize key usage.

 [d] A AAA-Key derived from the MSK and/or EMSK negotiated between the
 peer and authentication server MAY be transmitted to the
 authenticator. Therefore, a mechanism needs to be provided to
 transmit the AAA-Key from the authentication server to the
 authenticator that needs it. The specification of the AAA-key
 derivation, transport, and wrapping mechanisms is outside the
 scope of this document. Further details on AAA-Key Derivation
 are provided within [KEYFRAME].

7.14. Cleartext Passwords

 This specification does not define a mechanism for cleartext password
 authentication. The omission is intentional. Use of cleartext
 passwords would allow the password to be captured by an attacker with
 access to a link over which EAP packets are transmitted.

 Since protocols encapsulating EAP, such as RADIUS [RFC3579], may not
 provide confidentiality, EAP packets may be subsequently encapsulated
 for transport over the Internet where they may be captured by an
 attacker.

 As a result, cleartext passwords cannot be securely used within EAP,
 except where encapsulated within a protected tunnel with server
 authentication. Some of the same risks apply to EAP methods without
 dictionary attack resistance, as defined in Section 7.2.1. For
 details, see Section 7.6.

7.15. Channel Binding

 It is possible for a compromised or poorly implemented EAP
 authenticator to communicate incorrect information to the EAP peer
 and/or server. This may enable an authenticator to impersonate
 another authenticator or communicate incorrect information via out-
 of-band mechanisms (such as via a AAA or lower layer protocol).

 Where EAP is used in pass-through mode, the EAP peer typically does
 not verify the identity of the pass-through authenticator, it only
 verifies that the pass-through authenticator is trusted by the EAP
 server. This creates a potential security vulnerability.

 Section 4.3.7 of [RFC3579] describes how an EAP pass-through
 authenticator acting as a AAA client can be detected if it attempts
 to impersonate another authenticator (such by sending incorrect NAS-
 Identifier [RFC2865], NAS-IP-Address [RFC2865] or NAS-IPv6-Address

Aboba, et al. Standards Track [Page 55]

RFC 3748 EAP June 2004

 [RFC3162] attributes via the AAA protocol). However, it is possible
 for a pass-through authenticator acting as a AAA client to provide
 correct information to the AAA server while communicating misleading
 information to the EAP peer via a lower layer protocol.

 For example, it is possible for a compromised authenticator to
 utilize another authenticator’s Called-Station-Id or NAS-Identifier
 in communicating with the EAP peer via a lower layer protocol, or for
 a pass-through authenticator acting as a AAA client to provide an
 incorrect peer Calling-Station-Id [RFC2865][RFC3580] to the AAA
 server via the AAA protocol.

 In order to address this vulnerability, EAP methods may support a
 protected exchange of channel properties such as endpoint
 identifiers, including (but not limited to): Called-Station-Id
 [RFC2865][RFC3580], Calling-Station-Id [RFC2865][RFC3580], NAS-
 Identifier [RFC2865], NAS-IP-Address [RFC2865], and NAS-IPv6-Address
 [RFC3162].

 Using such a protected exchange, it is possible to match the channel
 properties provided by the authenticator via out-of-band mechanisms
 against those exchanged within the EAP method. Where discrepancies
 are found, these SHOULD be logged; additional actions MAY also be
 taken, such as denying access.

7.16. Protected Result Indications

 Within EAP, Success and Failure packets are neither acknowledged nor
 integrity protected. Result indications improve resilience to loss
 of Success and Failure packets when EAP is run over lower layers
 which do not support retransmission or synchronization of the
 authentication state. In media such as IEEE 802.11, which provides
 for retransmission, as well as synchronization of authentication
 state via the 4-way handshake defined in [IEEE-802.11i], additional
 resilience is typically of marginal benefit.

 Depending on the method and circumstances, result indications can be
 spoofable by an attacker. A method is said to provide protected
 result indications if it supports result indications, as well as the
 "integrity protection" and "replay protection" claims. A method
 supporting protected result indications MUST indicate which result
 indications are protected, and which are not.

 Protected result indications are not required to protect against
 rogue authenticators. Within a mutually authenticating method,
 requiring that the server authenticate to the peer before the peer
 will accept a Success packet prevents an attacker from acting as a
 rogue authenticator.

Aboba, et al. Standards Track [Page 56]

RFC 3748 EAP June 2004

 However, it is possible for an attacker to forge a Success packet
 after the server has authenticated to the peer, but before the peer
 has authenticated to the server. If the peer were to accept the
 forged Success packet and attempt to access the network when it had
 not yet successfully authenticated to the server, a denial of service
 attack could be mounted against the peer. After such an attack, if
 the lower layer supports failure indications, the authenticator can
 synchronize state with the peer by providing a lower layer failure
 indication. See Section 7.12 for details.

 If a server were to authenticate the peer and send a Success packet
 prior to determining whether the peer has authenticated the
 authenticator, an idle timeout can occur if the authenticator is not
 authenticated by the peer. Where supported by the lower layer, an
 authenticator sensing the absence of the peer can free resources.

 In a method supporting result indications, a peer that has
 authenticated the server does not consider the authentication
 successful until it receives an indication that the server
 successfully authenticated it. Similarly, a server that has
 successfully authenticated the peer does not consider the
 authentication successful until it receives an indication that the
 peer has authenticated the server.

 In order to avoid synchronization problems, prior to sending a
 success result indication, it is desirable for the sender to verify
 that sufficient authorization exists for granting access, though, as
 discussed below, this is not always possible.

 While result indications may enable synchronization of the
 authentication result between the peer and server, this does not
 guarantee that the peer and authenticator will be synchronized in
 terms of their authorization or that timeouts will not occur. For
 example, the EAP server may not be aware of an authorization decision
 made by a AAA proxy; the AAA server may check authorization only
 after authentication has completed successfully, to discover that
 authorization cannot be granted, or the AAA server may grant access
 but the authenticator may be unable to provide it due to a temporary
 lack of resources. In these situations, synchronization may only be
 achieved via lower layer result indications.

 Success indications may be explicit or implicit. For example, where
 a method supports error messages, an implicit success indication may
 be defined as the reception of a specific message without a preceding
 error message. Failures are typically indicated explicitly. As
 described in Section 4.2, a peer silently discards a Failure packet
 received at a point where the method does not explicitly permit this

Aboba, et al. Standards Track [Page 57]

RFC 3748 EAP June 2004

 to be sent. For example, a method providing its own error messages
 might require the peer to receive an error message prior to accepting
 a Failure packet.

 Per-packet authentication, integrity, and replay protection of result
 indications protects against spoofing. Since protected result
 indications require use of a key for per-packet authentication and
 integrity protection, methods supporting protected result indications
 MUST also support the "key derivation", "mutual authentication",
 "integrity protection", and "replay protection" claims.

 Protected result indications address some denial-of-service
 vulnerabilities due to spoofing of Success and Failure packets,
 though not all. EAP methods can typically provide protected result
 indications only in some circumstances. For example, errors can
 occur prior to key derivation, and so it may not be possible to
 protect all failure indications. It is also possible that result
 indications may not be supported in both directions or that
 synchronization may not be achieved in all modes of operation.

 For example, within EAP-TLS [RFC2716], in the client authentication
 handshake, the server authenticates the peer, but does not receive a
 protected indication of whether the peer has authenticated it. In
 contrast, the peer authenticates the server and is aware of whether
 the server has authenticated it. In the session resumption
 handshake, the peer authenticates the server, but does not receive a
 protected indication of whether the server has authenticated it. In
 this mode, the server authenticates the peer and is aware of whether
 the peer has authenticated it.

8. Acknowledgements

 This protocol derives much of its inspiration from Dave Carrel’s AHA
 document, as well as the PPP CHAP protocol [RFC1994]. Valuable
 feedback was provided by Yoshihiro Ohba of Toshiba America Research,
 Jari Arkko of Ericsson, Sachin Seth of Microsoft, Glen Zorn of Cisco
 Systems, Jesse Walker of Intel, Bill Arbaugh, Nick Petroni and Bryan
 Payne of the University of Maryland, Steve Bellovin of AT&T Research,
 Paul Funk of Funk Software, Pasi Eronen of Nokia, Joseph Salowey of
 Cisco, Paul Congdon of HP, and members of the EAP working group.

 The use of Security Claims sections for EAP methods, as required by
 Section 7.2 and specified for each EAP method described in this
 document, was inspired by Glen Zorn through [EAP-EVAL].

Aboba, et al. Standards Track [Page 58]

RFC 3748 EAP June 2004

9. References

9.1. Normative References

 [RFC1661] Simpson, W., "The Point-to-Point Protocol (PPP)",
 STD 51, RFC 1661, July 1994.

 [RFC1994] Simpson, W., "PPP Challenge Handshake
 Authentication Protocol (CHAP)", RFC 1994, August
 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to
 Indicate Requirement Levels", BCP 14, RFC 2119,
 March 1997.

 [RFC2243] Metz, C., "OTP Extended Responses", RFC 2243,
 November 1997.

 [RFC2279] Yergeau, F., "UTF-8, a transformation format of
 ISO 10646", RFC 2279, January 1998.

 [RFC2289] Haller, N., Metz, C., Nesser, P. and M. Straw, "A
 One-Time Password System", RFC 2289, February
 1998.

 [RFC2434] Narten, T. and H. Alvestrand, "Guidelines for
 Writing an IANA Considerations Section in RFCs",
 BCP 26, RFC 2434, October 1998.

 [RFC2988] Paxson, V. and M. Allman, "Computing TCP’s
 Retransmission Timer", RFC 2988, November 2000.

 [IEEE-802] Institute of Electrical and Electronics Engineers,
 "Local and Metropolitan Area Networks: Overview
 and Architecture", IEEE Standard 802, 1990.

 [IEEE-802.1X] Institute of Electrical and Electronics Engineers,
 "Local and Metropolitan Area Networks: Port-Based
 Network Access Control", IEEE Standard 802.1X,
 September 2001.

Aboba, et al. Standards Track [Page 59]

RFC 3748 EAP June 2004

9.2. Informative References

 [RFC793] Postel, J., "Transmission Control Protocol", STD
 7, RFC 793, September 1981.

 [RFC1510] Kohl, J. and B. Neuman, "The Kerberos Network
 Authentication Service (V5)", RFC 1510, September
 1993.

 [RFC1750] Eastlake, D., Crocker, S. and J. Schiller,
 "Randomness Recommendations for Security", RFC
 1750, December 1994.

 [RFC2246] Dierks, T., Allen, C., Treese, W., Karlton, P.,
 Freier, A. and P. Kocher, "The TLS Protocol
 Version 1.0", RFC 2246, January 1999.

 [RFC2284] Blunk, L. and J. Vollbrecht, "PPP Extensible
 Authentication Protocol (EAP)", RFC 2284, March
 1998.

 [RFC2486] Aboba, B. and M. Beadles, "The Network Access
 Identifier", RFC 2486, January 1999.

 [RFC2408] Maughan, D., Schneider, M. and M. Schertler,
 "Internet Security Association and Key Management
 Protocol (ISAKMP)", RFC 2408, November 1998.

 [RFC2409] Harkins, D. and D. Carrel, "The Internet Key
 Exchange (IKE)", RFC 2409, November 1998.

 [RFC2433] Zorn, G. and S. Cobb, "Microsoft PPP CHAP
 Extensions", RFC 2433, October 1998.

 [RFC2607] Aboba, B. and J. Vollbrecht, "Proxy Chaining and
 Policy Implementation in Roaming", RFC 2607, June
 1999.

 [RFC2661] Townsley, W., Valencia, A., Rubens, A., Pall, G.,
 Zorn, G. and B. Palter, "Layer Two Tunneling
 Protocol "L2TP"", RFC 2661, August 1999.

 [RFC2716] Aboba, B. and D. Simon, "PPP EAP TLS
 Authentication Protocol", RFC 2716, October 1999.

 [RFC2865] Rigney, C., Willens, S., Rubens, A. and W.
 Simpson, "Remote Authentication Dial In User
 Service (RADIUS)", RFC 2865, June 2000.

Aboba, et al. Standards Track [Page 60]

RFC 3748 EAP June 2004

 [RFC2960] Stewart, R., Xie, Q., Morneault, K., Sharp, C.,
 Schwarzbauer, H., Taylor, T., Rytina, I., Kalla,
 M., Zhang, L. and V. Paxson, "Stream Control
 Transmission Protocol", RFC 2960, October 2000.

 [RFC3162] Aboba, B., Zorn, G. and D. Mitton, "RADIUS and
 IPv6", RFC 3162, August 2001.

 [RFC3454] Hoffman, P. and M. Blanchet, "Preparation of
 Internationalized Strings ("stringprep")", RFC
 3454, December 2002.

 [RFC3579] Aboba, B. and P. Calhoun, "RADIUS (Remote
 Authentication Dial In User Service) Support For
 Extensible Authentication Protocol (EAP)", RFC
 3579, September 2003.

 [RFC3580] Congdon, P., Aboba, B., Smith, A., Zorn, G. and J.
 Roese, "IEEE 802.1X Remote Authentication Dial In
 User Service (RADIUS) Usage Guidelines", RFC 3580,
 September 2003.

 [RFC3692] Narten, T., "Assigning Experimental and Testing
 Numbers Considered Useful", BCP 82, RFC 3692,
 January 2004.

 [DECEPTION] Slatalla, M. and J. Quittner, "Masters of
 Deception", Harper-Collins, New York, 1995.

 [KRBATTACK] Wu, T., "A Real-World Analysis of Kerberos
 Password Security", Proceedings of the 1999 ISOC
 Network and Distributed System Security Symposium,
 http://www.isoc.org/isoc/conferences/ndss/99/
 proceedings/papers/wu.pdf.

 [KRBLIM] Bellovin, S. and M. Merrit, "Limitations of the
 Kerberos authentication system", Proceedings of
 the 1991 Winter USENIX Conference, pp. 253-267,
 1991.

 [KERB4WEAK] Dole, B., Lodin, S. and E. Spafford, "Misplaced
 trust: Kerberos 4 session keys", Proceedings of
 the Internet Society Network and Distributed
 System Security Symposium, pp. 60-70, March 1997.

Aboba, et al. Standards Track [Page 61]

RFC 3748 EAP June 2004

 [PIC] Aboba, B., Krawczyk, H. and Y. Sheffer, "PIC, A
 Pre-IKE Credential Provisioning Protocol", Work in
 Progress, October 2002.

 [IKEv2] Kaufman, C., "Internet Key Exchange (IKEv2)
 Protocol", Work in Progress, January 2004.

 [PPTPv1] Schneier, B. and Mudge, "Cryptanalysis of
 Microsoft’s Point-to- Point Tunneling Protocol",
 Proceedings of the 5th ACM Conference on
 Communications and Computer Security, ACM Press,
 November 1998.

 [IEEE-802.11] Institute of Electrical and Electronics Engineers,
 "Wireless LAN Medium Access Control (MAC) and
 Physical Layer (PHY) Specifications", IEEE
 Standard 802.11, 1999.

 [SILVERMAN] Silverman, Robert D., "A Cost-Based Security
 Analysis of Symmetric and Asymmetric Key Lengths",
 RSA Laboratories Bulletin 13, April 2000 (Revised
 November 2001),
 http://www.rsasecurity.com/rsalabs/bulletins/
 bulletin13.html.

 [KEYFRAME] Aboba, B., "EAP Key Management Framework", Work in
 Progress, October 2003.

 [SASLPREP] Zeilenga, K., "SASLprep: Stringprep profile for
 user names and passwords", Work in Progress, March
 2004.

 [IEEE-802.11i] Institute of Electrical and Electronics Engineers,
 "Unapproved Draft Supplement to Standard for
 Telecommunications and Information Exchange
 Between Systems - LAN/MAN Specific Requirements -
 Part 11: Wireless LAN Medium Access Control (MAC)
 and Physical Layer (PHY) Specifications:
 Specification for Enhanced Security", IEEE Draft
 802.11i (work in progress), 2003.

 [DIAM-EAP] Eronen, P., Hiller, T. and G. Zorn, "Diameter
 Extensible Authentication Protocol (EAP)
 Application", Work in Progress, February 2004.

 [EAP-EVAL] Zorn, G., "Specifying Security Claims for EAP
 Authentication Types", Work in Progress, October
 2002.

Aboba, et al. Standards Track [Page 62]

RFC 3748 EAP June 2004

 [BINDING] Puthenkulam, J., "The Compound Authentication
 Binding Problem", Work in Progress, October 2003.

 [MITM] Asokan, N., Niemi, V. and K. Nyberg, "Man-in-the-
 Middle in Tunneled Authentication Protocols", IACR
 ePrint Archive Report 2002/163, October 2002,
 <http://eprint.iacr.org/2002/163>.

 [IEEE-802.11i-req] Stanley, D., "EAP Method Requirements for Wireless
 LANs", Work in Progress, February 2004.

 [PPTPv2] Schneier, B. and Mudge, "Cryptanalysis of
 Microsoft’s PPTP Authentication Extensions (MS-
 CHAPv2)", CQRE 99, Springer-Verlag, 1999, pp.
 192-203.

Aboba, et al. Standards Track [Page 63]

RFC 3748 EAP June 2004

Appendix A. Changes from RFC 2284

 This section lists the major changes between [RFC2284] and this
 document. Minor changes, including style, grammar, spelling, and
 editorial changes are not mentioned here.

 o The Terminology section (Section 1.2) has been expanded, defining
 more concepts and giving more exact definitions.

 o The concepts of Mutual Authentication, Key Derivation, and Result
 Indications are introduced and discussed throughout the document
 where appropriate.

 o In Section 2, it is explicitly specified that more than one
 exchange of Request and Response packets may occur as part of the
 EAP authentication exchange. How this may be used and how it may
 not be used is specified in detail in Section 2.1.

 o Also in Section 2, some requirements have been made explicit for
 the authenticator when acting in pass-through mode.

 o An EAP multiplexing model (Section 2.2) has been added to
 illustrate a typical implementation of EAP. There is no
 requirement that an implementation conform to this model, as long
 as the on-the-wire behavior is consistent with it.

 o As EAP is now in use with a variety of lower layers, not just PPP
 for which it was first designed, Section 3 on lower layer behavior
 has been added.

 o In the description of the EAP Request and Response interaction
 (Section 4.1), both the behavior on receiving duplicate requests,
 and when packets should be silently discarded has been more
 exactly specified. The implementation notes in this section have
 been substantially expanded.

 o In Section 4.2, it has been clarified that Success and Failure
 packets must not contain additional data, and the implementation
 note has been expanded. A subsection giving requirements on
 processing of success and failure packets has been added.

 o Section 5 on EAP Request/Response Types lists two new Type values:
 the Expanded Type (Section 5.7), which is used to expand the Type
 value number space, and the Experimental Type. In the Expanded
 Type number space, the new Expanded Nak (Section 5.3.2) Type has
 been added. Clarifications have been made in the description of
 most of the existing Types. Security claims summaries have been
 added for authentication methods.

Aboba, et al. Standards Track [Page 64]

RFC 3748 EAP June 2004

 o In Sections 5, 5.1, and 5.2, a requirement has been added such
 that fields with displayable messages should contain UTF-8 encoded
 ISO 10646 characters.

 o It is now required in Section 5.1 that if the Type-Data field of
 an Identity Request contains a NUL-character, only the part before
 the null is displayed. RFC 2284 prohibits the null termination of
 the Type-Data field of Identity messages. This rule has been
 relaxed for Identity Request messages and the Identity Request
 Type-Data field may now be null terminated.

 o In Section 5.5, support for OTP Extended Responses [RFC2243] has
 been added to EAP OTP.

 o An IANA Considerations section (Section 6) has been added, giving
 registration policies for the numbering spaces defined for EAP.

 o The Security Considerations (Section 7) have been greatly
 expanded, giving a much more comprehensive coverage of possible
 threats and other security considerations.

 o In Section 7.5, text has been added on method-specific behavior,
 providing guidance on how EAP method-specific integrity checks
 should be processed. Where possible, it is desirable for a
 method-specific MIC to be computed over the entire EAP packet,
 including the EAP layer header (Code, Identifier, Length) and EAP
 method layer header (Type, Type-Data).

 o In Section 7.14 the security risks involved in use of cleartext
 passwords with EAP are described.

 o In Section 7.15 text has been added relating to detection of rogue
 NAS behavior.

Aboba, et al. Standards Track [Page 65]

RFC 3748 EAP June 2004

Authors’ Addresses

 Bernard Aboba
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052
 USA

 Phone: +1 425 706 6605
 Fax: +1 425 936 6605
 EMail: bernarda@microsoft.com

 Larry J. Blunk
 Merit Network, Inc
 4251 Plymouth Rd., Suite 2000
 Ann Arbor, MI 48105-2785
 USA

 Phone: +1 734-647-9563
 Fax: +1 734-647-3185
 EMail: ljb@merit.edu

 John R. Vollbrecht
 Vollbrecht Consulting LLC
 9682 Alice Hill Drive
 Dexter, MI 48130
 USA

 EMail: jrv@umich.edu

 James Carlson
 Sun Microsystems, Inc
 1 Network Drive
 Burlington, MA 01803-2757
 USA

 Phone: +1 781 442 2084
 Fax: +1 781 442 1677
 EMail: james.d.carlson@sun.com

 Henrik Levkowetz
 ipUnplugged AB
 Arenavagen 33
 Stockholm S-121 28
 SWEDEN

 Phone: +46 708 32 16 08
 EMail: henrik@levkowetz.com

Aboba, et al. Standards Track [Page 66]

RFC 3748 EAP June 2004

Full Copyright Statement

 Copyright (C) The Internet Society (2004). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Aboba, et al. Standards Track [Page 67]

