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Abstract

The United States National Institute of Standards and Technol ogy

(NI ST) has chosen a new Advanced Encryption Standard (AES), which is
significantly faster and (it is believed) nore secure than the old
Data Encryption Standard (DES) algorithm This docunent is a
specification for the addition of this algorithmto the Kerberos
cryptosystem suite.

1. Introduction

Thi s docunent defines encryption key and checksum types for Kerberos
5 using the AES algorithmrecently chosen by NIST. These new types
support 128-bit bl ock encryption and key sizes of 128 or 256 bits.

Using the "sinplified profile" of [KCRYPTQ, we can define a pair of
encryption and checksum schenmes. AES is used with ciphertext
stealing to avoi d nmessage expansion, and SHA-1 [SHAl] is the
associ at ed checksum function

2. Conventions used in this Docunent
The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMVENDED', "MAY", and "OPTIONAL" in this

docunent are to be interpreted as described in BCP 14, RFC 2119
[ KEYWORDS] .
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3.

Prot ocol Key Representation

The profile in [KCRYPTO treats keys and random octet strings as
conceptual ly different. But since the AES key space is dense, we can
use any bit string of appropriate length as a key. W use the byte
representation for the key described in [AES], where the first bit of
the bit string is the high bit of the first byte of the byte string
(octet string) representation

Key Ceneration from Pass Phrases or Random Dat a

G ven the above format for keys, we can generate keys fromthe
appropriate anmounts of random data (128 or 256 bits) by sinply
copyi ng the input string.

To generate an encryption key froma pass phrase and salt string, we
use the PBKDF2 function from PKCS #5 v2.0 ([PKCS5]), with paraneters
i ndi cated below, to generate an internedi ate key (of the sane |ength
as the desired final key), which is then passed into the DK function
with the 8-octet ASCII string "kerberos" as is done for des3-chc-
hmac- shal-kd in [KCRYPTO . (In [KCRYPTO terns, the PBKDF2 function
produces a "random octet string", hence the application of the
randomt o- key function even though it's effectively a sinple identity
operation.) The resulting key is the user’s long-termkey for use
with the encryption algorithmin question.

t key = randonRkey( PBKDF2( passphrase, salt, iter_count, keylength))
key = DK(tkey, "kerberos")

The pseudorandom function used by PBKDF2 will be a SHA-1 HVAC of the
passphrase and salt, as described in Appendix B.1 to PKCS#5.

The nunber of iterations is specified by the string-to-key paraneters
supplied. The paraneter string is four octets indicating an unsigned
nunber in big-endian order. This is the nunber of iterations to be
perforned. |If the value is 00 00 00 00, the nunber of iterations to
be perfornmed is 4,294,967,296 (2**32). (Thus the mnini num expressible
iteration count is 1.)

For environnments where slower hardware is the norm inplenentations
of protocols such as Kerberos may wish to limt the nunber of
iterations to prevent a spoofed response supplied by an attacker from
consunming lots of client-side CPU time; if such alimt is

i mpl enented, it SHOULD be no | ess than 50,000. Even for environments
with fast hardware, 4 billion iterations is likely to take a fairly
long tine; much |arger bounds mght still be enforced, and it night
be wise for inplenentations to permt interruption of this operation
by the user if the environment allows for it.
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If the string-to-key paraneters are not supplied, the value used is
00 00 10 00 (decinal 4,096, indicating 4,096 iterations).

Note that this is not a requirenent, nor even a reconmendation, for
this value to be used in "optinmistic preauthentication” (e.g.
attenpting tinestanp-based preauthentication using the user’s |ong-
term key wi thout having first communicated with the KDC) in the
absence of additional information, or as a default value for sites to
use for their principals’ long-termkeys in their Kerberos database.
It is sinply the interpretation of the absence of the string-to-key
paraneter field when the KDC has had an opportunity to provide it.

Sanpl e test vectors are given in Appendix B
5. Ciphertext Stealing

Ci pher block chaining is used to encrypt nmessages, with the initial
vector stored in the cipher state. Unlike previous Kerberos
cryptosystens, we use ciphertext stealing to handle the possibly
partial final block of the nessage.

Ci phertext stealing is described on pages 195-196 of [AC], and
section 8 of [RC5]; it has the advantage that no nmessage expansion is
done during encryption of nessages of arbitrary sizes as is typically
done in CBC node with padding. Sone errata for [RC5] are listed in
Appendi x A and are considered part of the ciphertext stealing

techni que as used here.

Ci phertext stealing, as defined in [RC5], assunes that nore than one

bl ock of plain text is available. |If exactly one block is to be
encrypted, that block is sinply encrypted with AES (al so known as ECB
node). Input snaller than one block is padded at the end to one

bl ock; the values of the padding bits are unspecified.

(I npl erent ati ons MAY use all-zero paddi ng, but protocols MJST NOT
rely on the result being determnistic. Inplenentations MAY use
random paddi ng, but protocols MJST NOT rely on the result not being
deterministic. Note that in nost cases, the Kerberos encryption
profile will add a random confounder independent of this padding.)

For consistency, ciphertext stealing is always used for the last two

bl ocks of the data to be encrypted, as in [RC5]. |If the data length

is anultiple of the block size, this is equivalent to plain CBC node
with the Iast two ci phertext bl ocks swapped.

A test vector is given in Appendi x B.
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The initial vector carried out fromone encryption for use in a
subsequent encryption is the next-to-last block of the encryption
output; this is the encrypted formof the last plaintext block. Wen
decrypting, the next-to-last block of the supplied ciphertext is
carried forward as the next initial vector. |If only one ciphertext

bl ock is avail able (decrypting one block, or encrypting one block or

| ess), then that one block is carried out instead.

6. Kerberos AlgorithmProfile Paraneters

This is a summary of the paraneters to be used with the sinplified
al gorithmprofile described in [ KCRYPTQ :

octets), with next-to-

| ast bl ock (last block

if only one) as CBC-style
ivec

o o o m e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e eme e +
| protocol key format 128- or 256-bit string

| |
| string-to-key function PBKDF2+DK wi t h vari abl e

| iteration count (see

| above)

| |
| default string-to-key paraneters 00 00 10 0O

| |
| key-generation seed | ength key size

| |
| randomt o- key function identity function |
| |
| hash function, H SHA- 1 |
| |
| HVAC out put size, h 12 octets (96 bhits)

| |
| message bl ock size, m 1 octet

| |
| encryption/decryption functions, AES in CBC-CTS node

| Eand D (ci pher bl ock size 16

| |
| |
| |
| |

Using this profile with each key size gives us two each of encryption
and checksum al gorithm definitions.
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7.

8.

Assi gned Nunbers
The followi ng encryption type nunmbers are assigned:
o +
encryption types
o m o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e eme e +
type name etype val ue key si ze

o o m m e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e me o +
aes128-cts- hmac-shal- 96 17 128
aes256- ct s- hmac- shal- 96 18 256

o m m e o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e oo +

Fom e m e e e e e e e e e e e e e e e e e e e e e e e e e e e e e em e mam o +

checksum t ypes |

o m m e o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e oo +

type name sunt ype val ue | ength

o o o m e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e eme e +
hmac- shal- 96- aes128 15 96
hmac- shal- 96- aes256 16 96

o +

These checksumtypes will be used with the correspondi ng encryption
types defined above.

Security Considerations

This new al gorithm has not been around | ong enough to receive the
decades of intense analysis that DES has received. It is possible
that some weakness exists that has not been found by the
cryptographers anal yzing these algorithnms before and during the AES
sel ection process.

The use of the HMAC function has drawbacks for certain pass phrase

I engths. For exanple, a pass phrase |longer than the hash function
bl ock size (64 bytes, for SHA-1) is hashed to a snaller size (20

byt es) before applying the main HVAC al gorithm However, entropy is
general ly sparse in pass phrases, especially in long ones, so this
may not be a problemin the rare cases of users with |ong pass

phr ases.

Al so, generating a 256-bit key froma pass phrase of any length nmay
be deceptive, as the effective entropy in pass-phrase-derived key
cannot be nearly that |arge given the properties of the string-to-key
function described here.
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The iteration count in PBKDF2 appears to be useful primarily as a
constant multiplier for the amount of work required for an attacker
using brute-force nethods. Unfortunately, it also nultiplies, by the
same anount, the work needed by a legitimte user with a valid
password. Thus the work factor inposed on an attacker (who may have
many powerful workstations at his disposal) nust be bal anced agai nst
the work factor inposed on the legitimte user (who may have a PDA or
cell phone); the avail able conmputing power on either side increases
as time goes on, as well. A better way to deal with the brute-force
attack is through preauthentication nmechani snms that provide better
protection of the user’s long-termkey. Use of such nmechanisns is
out of the scope of this docunent.

If a site does wish to use this neans of protection against a brute-
force attack, the iteration count should be chosen based on the
facilities available to both attacker and legitimate user, and the
anmount of work the attacker should be required to performto acquire
the key or password.

As an exanpl e:

The author’s tests on a 2GHz Pentium 4 systemindicated that in
one second, nearly 90,000 iterations could be done, producing a
256-bit key. This was using the SHA-1 assenbly inplenentation
from OpenSSL, and a pre-rel ease version of the PBKDF2 code for

M T' s Kerberos package, on a single system No attenpt was nade
to do nultiple hashes in parallel, so we assune an attacker doing
so can probably do at |east 100,000 iterations per second --
rounded up to 2**17, for ease of calculation. For sinplicity, we
al so assune the final AES encryption step costs not hing.

Paul Leach estimates [LEACH] that a password-cracking dictionary
may have on the order of 2**21 entries, with capitalization
punctuation, and other variations contributing perhaps a factor of
2**11, giving a ballpark estimte of 2**32.

Thus, for a known iteration count N and a known salt string, an
attacker with sonme nunber of conmputers conparable to the author’s
woul d need roughly N*2**15 CPU seconds to convert the entire
dictionary plus variations into keys.

An attacker using a dozen such conputers for a nonth woul d have
roughly 2**25 CPU seconds available. So using 2**12 (4, 096)
iterations would nmean an attacker with a dozen such conputers
dedicated to a brute-force attack agai nst a single key (actually,
any password-derived keys sharing the sane salt and iteration
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count) would process all the variations of the dictionary entries
in four nmonths and, on average, would likely find the user’s
password in two nonths.

Thus, if this formof attack is of concern, users should be
required to change their passwords every few nonths, and an
iteration count a few orders of nagnitude hi gher should be chosen
Per haps several orders of nagnitude, as many users will tend to
use the shorter and sinpler passwords (to the extent they can
given a site’'s password quality checks) that the attacker would
likely try first.

Since this estimate is based on currently avail abl e CPU power, the
iteration counts used for this node of defense should be increased
over time, at perhaps 40% 60% each year or so

Note that if the attacker has a | arge anpbunt of storage avail abl e,
internediate results could be cached, saving a lot of work for the
next attack with the sane salt and a greater nunmber of iterations
than had been run at the point where the internediate results were
saved. Thus, it would be wise to generate a new random sal t
string when passwords are changed. The default salt string,
derived fromthe principal nanme, only protects against the use of
one dictionary of keys against nmultiple users.

If the PBKDF2 iteration count can be spoofed by an intruder on the
network, and the linmt on the accepted iteration count is very high
the intruder may be able to introduce a form of denial of service
attack against the client by sending a very high iteration count,
causing the client to spend a great deal of CPU tine conputing an

i ncorrect key.

An intruder spoofing the KDC reply, providing a |low iteration count
and reading the client’s reply fromthe network, may be able to
reduce the work needed in the brute-force attack outlined above.
Thus, inplenentations nmay seek to enforce | ower bounds on the nunber
of iterations that will be used.

Since threat nodels and typical end-user equipnent will vary widely
fromsite to site, allowi ng site-specific configuration of such
bounds is recomended.

Any benefit against other attacks specific to the HVAC or SHA-1

algorithms is probably achieved with a fairly small nunber of
iterations.
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In the "optimistic preauthentication" case nentioned in section 3,
the client may attenpt to produce a key without first conmunicating
with the KDC. If the client has no additional information, it can
only guess as to the iteration count to be used. Even such
heuristics as "iteration count X was used to acquire tickets for the
same principal only N hours ago" can be wong. Gven the
recomendat i on above for increasing the iteration counts used over
time, it is inpossible to recommend any specific default value for
this case; allowing site-local configuration is recommended. (If the
| ower and upper bound checks descri bed above are inplenented, the
default count for optimstic preauthentication should be between

t hose bounds.)

Ci phertext stealing node, as it requires no additional padding in
nost cases, will reveal the exact |length of each nmessage being
encrypted rather than nerely bounding it to a small range of possible
Il engths as in CBC node. Such obfuscation should not be relied upon
at higher levels in any case; if the length nust be obscured from an
out si de observer, this should be done by intentionally varying the

I ength of the nessage to be encrypted.

9. | ANA Consi derations
Ker beros encryption and checksumtype val ues used in section 7 were
previously reserved in [ KCRYPTQ for the nechanisns defined in this
docunent. The registries have been updated to list this docunent as
the reference.

10. Acknow edgenent s
Thanks to John Brezak, Gerardo Diaz Cuellar, Ken Hornstein, Paul

Leach, Marcus Watts, Larry Zhu, and others for feedback on earlier
versi ons of this docunent.
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A. FErrata for RFC 2040 Section 8
(Copied fromthe RFC Editor’s errata web site on July 8, 2004.)

Reported By: Bob Bal dwi n; bal dwi n@l usfive. com
Date: Fri, 26 Mar 2004 06:49:02 -0800

In Section 8, Description of RC5-CTS, of the encryption method,
it says:

1. Exclusive-or Pn-1 with the previous ciphertext
bl ock, Cn-2, to create Xn-1

It should say:
1. Exclusive-or Pn-1 with the previous ciphertext
bl ock, Cn-2, to create Xn-1. For short nmessages where
Cn-2 does not exist, use IV

Reported By: Bob Bal dwi n; bal dwi n@l usfive. com
Date: Mon, 22 Mar 2004 20: 26: 40 -0800

In Section 8, first paragraph, second sentence says:

Thi s node handl es any | ength of plaintext and produces ci phertext
whose | ength nmatches the plaintext |ength.

In Section 8, first paragraph, second sentence should read:
Thi s node handl es any | ength of plaintext |onger than one
bl ock and produces ciphertext whose | ength matches the
pl ai ntext | ength.

In Section 8, step 6 of the decryption nethod says:

6. Decrypt En to create Pn-1

In Section 8, step 6 of the decryption nethod shoul d read:

6. Decrypt En and exclusive-or with Cn-2 to create Pn-1
For short nessages where Cn-2 does not exist, use the IV
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Sanmpl e Test Vectors

AES Encryption for

Ker beros 5

February 2005

Sanpl e val ues for the PBKDF2 HVAC- SHA1 string-to-key function are

i ncl uded bel ow.

Iteration count = 1
Pass phrase = "password"
Salt = "ATHENA. M T. EDUr aebur n"
128-bit PBKDF2 out put:
cd ed b5 28 1b b2 f8 01 56
128-bit AES key:
42 26 3c 6e 89 f4 fc 28 b8
256- bit PBKDF2 out put:
cd ed b5 28 1b b2 f8 01 56
Oa dl1 f7 a0 4b b9 f3 a3 33
256-bit AES key:
fe 69 7b 52 bc 0d 3c el 44
bb 52 28 09 90 a2 fa 27 88

Iteration count = 2
Pass phrase = "password"
Sal t =" ATHENA. M T. EDUr aebur n"
128-bit PBKDF2 out put:
01 db ee 7f 4a 9e 24 3e 98
128-bit AES key:
c6 51 bf 29 e2 30 Oa c2 7f
256-bit PBKDF2 out put:
01 db ee 7f 4a 9e 24 3e 98
a0 53 78 b9 32 44 ec 8f 48
256-bit AES key:
a2 el 6d 16 b3 60 69 cl1 35
02 68 56 18 b9 59 14 b4 67

Iterati on count = 1200
Pass phrase = "password”
Salt = "ATHENA. M T. EDUr aebur n"
128-bit PBKDF2 out put:
5c 08 eb 61 fd f7 1le 4e 4e
128-bit AES key:
4c 01 cd 46 d6 32 dO 1le 6d
256-bi t PBKDF2 out put:
5¢c 08 eb 61 fd f7 1le 4e 4e
a7 e5 2d db c5 e5 14 2f 70
256-bit AES key:
55 a6 ac 74 Oa dl1 7b 48 46
54 8d 93 b0 ab 30 a8 bc 3f

5a
df

ba
ec

32
39

8b
a4

8b
a9

d5
c6

c3
be

c3
8a

94
fl

11
68

11
cO

ba
98

62
69

62
9e

e9
76

cf

23

31

10
62

22
ee

22
e2

03
d7

c7
d6

c7
61

d2

6b
Oa

6b
e2

51
80

St andards Track

b2
09

b2
el

6a
2a

3c
93

3c
ad

e2

al
01

al
e6

el
38

56
79

56
f7

92
f3

da
bd

da
79

5f
58

f5
ed

f5
2b

e8

35
of

35
08

eb
01

93
da

93
9d

89

51
64

51
le

b0
8c

15
15

15
37

5b
61

5d
13

5d
86

61

2b
2a

2b
13

a7
2a
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Iteration count = 5
Pass phrase = "password"
Sal t =0x1234567878563412
128-bit PBKDF2 out put:
dl da a7 86 15 f2 87 e6 al c8 bl 20 d7 06 2a 49
128-bit AES key:
€9 b2 3d 52 27 37 47 dd 5¢c 35 cb 55 be 61 9d 8e
256-bit PBKDF2 out put:
dl da a7 86 15 f2 87 e6 al c8 bl 20 d7 06 2a 49
3f 98 d2 03 e6 be 49 a6 ad f4 fa 57 4b 6e 64 ee
256-bit AES key:
97 a4 e7 86 be 20 d8 l1a 38 2d 5e bc 96 d5 90 9c
ab cd ad ¢c8 7c a4 8f 57 45 04 15 9f 16 c3 6e 31
(This test is based on values given in [ PECVE].)

Iteration count = 1200
Pass phrase = (64 characters)
D00, 0.9.9.9.0.9.9.0.0.9.9.9.0.9.9.0.0.9.9.0.0.9.9.0.0.9.9.0. 099009900990 0.9.9.0.0.9.9.0.0.9.9.0.0.9.9.0009.00¢
Sal t =" pass phrase equal s bl ock size"
128-bit PBKDF2 out put:
13 9¢ 30 c0 96 6b ¢c3 2b a5 5f db f2 12 53 0Oa c9
128-bit AES key:
59 d1 bb 78 9a 82 8b la a5 4e f9 c2 88 3f 69 ed
256-bit PBKDF2 out put:
13 9¢ 30 c0 96 6b ¢c3 2b a5 5f db f2 12 53 0Oa c9
c5 ec 59 f1 a4 52 f5 cc 9a d9 40 fe a0 59 8e dl
256-bit AES key:
89 ad ee 36 08 db 8b c7 1f 1b fb fe 45 94 86 b0
56 18 b7 Oc ba e2 20 92 53 4e 56 c5 53 ba 4b 34

Iteration count = 1200
Pass phrase = (65 characters)
** XOKKIKKHKIKHKIKIKHKIIKIKHKIIKIKHKIIKIKHKIIKKHKIIKKHKIIKIKHKIIKIKHKIIKIKHKIIKIKHKIIKKHKIIKKHKIKKK
Salt = "pass phrase exceeds bl ock size"
128-bit PBKDF2 out put:
9c ca d6 d4 68 77 Oc d5 1b 10 e6 a6 87 21 be 61
128-bit AES key:
cb 80 05 dc 5f 90 17 9a 7f 02 10 4c 00 18 75 1d
256-bit PBKDF2 out put:
9c ca d6 d4 68 77 Oc d5 1b 10 e6 a6 87 21 be 61
la 8b 4d 28 26 01 db 3b 36 be 92 46 91 5e c8 2a
256-bit AES key:
d7 8c 5¢ 9c b8 72 a8 c9 da d4 69 7f Ob b5 b2 d2
14 96 c8 2b eb 2c ae da 21 12 fc ee a0 57 40 1b
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Iteration count = 50

Pass phrase = g-clef (0xf09d849e¢)

Salt = "EXAMPLE. COVpi ani st"

128-bit PBKDF2 out put
6b 9c f2 6d 45 45
128-bit AES key:
fl1 49 cl1 f2 el 54

5a

a7

256-bit PBKDF2 out put:

6b 9c f2 6d 45 45

e7 fe 37 a0 c4 1le
256-bit AES key:

4b 6d 98 39 f8 44

57 18 48 b7 84 a3

Sone test vectors for
vector of all-zero.

AES 128-bit key:

5a
02

06
dé

CBC with

43 a5
34 52

43 a5
c2 81

df 1f
bd c3

b8
d4

b8
ff

09
46

AES Encryption for

bb
3e

bb
30

cc
58

Ker ber os

27
7f

27
69

16
9a

6a
e6

6a
el

6d
3e

40
2a

40
e9

b4
39

3b
56

3b
4f

b8
3f

39

e5

39
52

3c
9e

ci phertext stealing,

0000: 63 68 69 63 6b 65 6e 20 74 65 72

IV
0000: 00 00 00 00
I nput :
0000: 49 20 77 6f
0010: 20
Cut put :
0000: c6 35 35 68
0010: 97
Next |V:
0000: c6 35 35 68
IV
0000: 00 00 00 00
| nput :

0000: 49 20 77 6f

0010: 20 47 65 6e
CQut put :

0000: fc 00 78 3e

0010: 97 68 72 68
Next |V:

0000: fc 00 78 3e

Raeburn

00

75

f2

f2

00

75
65

Oe
deé

Oe

00

6C

bf

bf

00

6C
72

fd
ec

fd

00

64

8c

8c

00

64
61

b2
cc

b2

00

20

b4

b4

00

20
6C

cl
cO

cl

00

6C

ds

ds

00

6C
20

d4
cO

d4

00

69

a5

ab

00

69
47

45
7b

45

00

6b

80

80

00

6b
61

d4
25

d4

St andards Track

69

00

65

36

36

00

65
75

c8
e2

c8

79

00

20

2d

2d

00

20
27

ef
5e

ef

61

00

74

a7

a7

00

74
73

f7
cf

f7

February 2005

using an initial

6b

00

68

ff

ff

00

68
20

ed
e5

ed

69

00

65

7f

7f

00

65

22

22
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IV
0000:
I nput :
0000:
0010:
Qut put :
0000:
0010:
Next |V:
0000:

IV
0000:
| nput :
0000:
0010:
0020:
Qut put :
0000:
0010:
0020:
Next | V:
0000:

IV
0000:
I nput :
0000:
0010:
0020:
CQut put :
0000:
0010:
0020:
Next |V:
0000:

Raeburn

00

49
20

39
97

39

00

49
20
68

97
b3
39

b3

00

49
20
68

97
9d
39

9d

00

20
47

31
68

31

00

20
47
69

68
ff
31

ff

00

20
47
69

68
ad
31

ad

00

77
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