
Network Working Group L. Zhu
Request for Comments: 4178 P. Leach
Obsoletes: 2478 K. Jaganathan
Category: Standards Track Microsoft Corporation
 W. Ingersoll
 Sun Microsystems
 October 2005

 The Simple and Protected
 Generic Security Service Application Program Interface (GSS-API)
 Negotiation Mechanism

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 This document specifies a negotiation mechanism for the Generic
 Security Service Application Program Interface (GSS-API), which is
 described in RFC 2743. GSS-API peers can use this negotiation
 mechanism to choose from a common set of security mechanisms. If
 per-message integrity services are available on the established
 mechanism context, then the negotiation is protected against an
 attacker that forces the selection of a mechanism not desired by the
 peers.

 This mechanism replaces RFC 2478 in order to fix defects in that
 specification and to describe how to inter-operate with
 implementations of that specification that are commonly deployed on
 the Internet.

Zhu, et al. Standards Track [Page 1]

RFC 4178 The GSS-API Negotiation Mechanism October 2005

Table of Contents

 1. Introduction ..2
 2. Conventions Used in This Document3
 3. Negotiation Protocol ..3
 3.1. Negotiation Description4
 3.2. Negotiation Procedure5
 4. Token Definitions ...7
 4.1. Mechanism Types ..7
 4.2. Negotiation Tokens ...7
 4.2.1. negTokenInit ..8
 4.2.2. negTokenResp ..9
 5. Processing of mechListMIC10
 6. Extensibility ..13
 7. Security Considerations ..13
 8. Acknowledgments ..14
 9. References ...14
 9.1. Normative References14
 9.2. Informative References15
 Appendix A. SPNEGO ASN.1 Module16
 Appendix B. GSS-API Negotiation Support API17
 B.1. GSS_Set_neg_mechs Call17
 B.2. GSS_Get_neg_mechs Call18
 Appendix C. Changes since RFC 247818
 Appendix D. mechListMIC Computation Example20

1. Introduction

 The GSS-API [RFC2743] provides a generic interface that can be
 layered atop different security mechanisms such that, if
 communicating peers acquire GSS-API credentials for the same security
 mechanism, then a security context may be established between them
 (subject to policy). However, GSS-API does not prescribe the method
 by which GSS-API peers can establish whether they have a common
 security mechanism.

 The Simple and Protected GSS-API Negotiation (SPNEGO) mechanism
 defined here is a pseudo security mechanism that enables GSS-API
 peers to determine in-band whether their credentials support a common
 set of one or more GSS-API security mechanisms; if so, it invokes the
 normal security context establishment for a selected common security
 mechanism. This is most useful for applications that depend on GSS-
 API implementations and share multiple mechanisms between the peers.

 The SPNEGO mechanism negotiation is based on the following model: the
 initiator proposes a list of security mechanism(s), in decreasing
 preference order (favorite choice first), the acceptor (also known as
 the target) either accepts the initiator’s preferred security

Zhu, et al. Standards Track [Page 2]

RFC 4178 The GSS-API Negotiation Mechanism October 2005

 mechanism (the first in the list) or chooses one of the available
 mechanisms from the offered list; if neither is acceptable, the
 acceptor rejects the proposed value(s). The target then informs the
 initiator of its choice.

 Once a common security mechanism is chosen, mechanism-specific
 options MAY be negotiated as part of the selected mechanism’s context
 establishment. These negotiations (if any) are internal to the
 mechanism and opaque to the SPNEGO protocol. As such, they are
 outside the scope of this document.

 If per-message integrity services [RFC2743] are available on the
 established mechanism security context, then the negotiation is
 protected to ensure that the mechanism list has not been modified.
 In cases where an attacker could have materially influenced the
 negotiation, peers exchange message integrity code (MIC) tokens to
 confirm that the mechanism list has not been modified. If no action
 of an attacker could have materially modified the outcome of the
 negotiation, the exchange of MIC tokens is optional (see Section 5).
 Allowing MIC tokens to be optional in this case provides
 interoperability with existing implementations while still protecting
 the negotiation. This interoperability comes at the cost of
 increased complexity.

 SPNEGO relies on the concepts developed in the GSS-API specification
 [RFC2743]. The negotiation data is encapsulated in context-level
 tokens. Therefore, callers of the GSS-API do not need to be aware of
 the existence of the negotiation tokens, but only of the new pseudo-
 security mechanism. A failure in the negotiation phase causes a
 major status code to be returned: GSS_S_BAD_MECH.

2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Negotiation Protocol

 When the established mechanism context provides integrity protection,
 the mechanism negotiation can be protected. When acquiring
 negotiated security mechanism tokens, per-message integrity services
 are always requested by the SPNEGO mechanism.

 When the established mechanism context supports per-message integrity
 services, SPNEGO guarantees that the selected mechanism is mutually
 preferred.

Zhu, et al. Standards Track [Page 3]

RFC 4178 The GSS-API Negotiation Mechanism October 2005

 This section describes the negotiation process of this protocol.

3.1. Negotiation Description

 The first negotiation token sent by the initiator contains an ordered
 list of mechanisms in decreasing preference order (favorite mechanism
 first), and optionally the initial mechanism token for the preferred
 mechanism of the initiator (i.e., the first in the list). (Note that
 the list MUST NOT contain this SPNEGO mechanism itself or any
 mechanism for which the client does not have appropriate
 credentials.)

 The target then processes the token from the initiator. This will
 result in one of four possible states (as defined in Section 4.2.2)
 being returned in the reply message: accept-completed, accept-
 incomplete, reject, or request-mic. A reject state will terminate
 the negotiation; an accept-completed state indicates that the
 initiator-selected mechanism was acceptable to the target, and that
 the security mechanism token embedded in the first negotiation
 message was sufficient to complete the authentication; an accept-
 incomplete state indicates that further message exchange is needed
 but the MIC token exchange (as described in Section 5) is OPTIONAL; a
 request-mic state (this state can only be present in the first reply
 message from the target) indicates that the MIC token exchange is
 REQUIRED if per-message integrity services are available.

 Unless the preference order is specified by the application, the
 policy by which the target chooses a mechanism is an implementation-
 specific, local matter. In the absence of an application-specified
 preference order or other policy, the target SHALL choose the first
 mechanism in the initiator proposed list for which it has valid
 credentials.

 In case of a successful negotiation, the security mechanism in the
 first reply message represents the value suitable for the target that
 was chosen from the list offered by the initiator.

 In case of an unsuccessful negotiation, the reject state is returned,
 and the generation of a context-level negotiation token is OPTIONAL.

 Once a mechanism has been selected, context establishment tokens
 specific to the selected mechanism are carried within the negotiation
 tokens.

 Lastly, MIC tokens may be exchanged to ensure the authenticity of the
 mechanism list received by the target.

Zhu, et al. Standards Track [Page 4]

RFC 4178 The GSS-API Negotiation Mechanism October 2005

 To avoid conflicts with the use of MIC tokens by SPNEGO, partially-
 established contexts MUST NOT be used for per-message calls. To
 guarantee this, the prot_ready_state [RFC2743] MUST be set to false
 on return from GSS_Init_sec_context() and GSS_Accept_sec_context(),
 even if the underlying mechanism returned true.

 Note that in order to avoid an extra round trip, the first context
 establishment token of the initiator’s preferred mechanism SHOULD be
 embedded in the initial negotiation message (as defined in Section
 4.2). (This mechanism token is referred to as the optimistic
 mechanism token in this document.) In addition, using the optimistic
 mechanism token allows the initiator to recover from non-fatal errors
 encountered when trying to produce the first mechanism token before a
 mechanism can be selected. In cases where the initiator’s preferred
 mechanism is not likely to be selected by the acceptor because of the
 significant cost of its generation, implementations MAY omit the
 optimistic mechanism token.

3.2. Negotiation Procedure

 The basic form of the procedure assumes that per-message integrity
 services are available on the established mechanism context, and it
 is summarized as follows:

 a) The GSS-API initiator invokes GSS_Init_sec_context() as normal,
 but requests that SPNEGO be used. SPNEGO can either be explicitly
 requested or accepted as the default mechanism.

 b) The initiator GSS-API implementation generates a negotiation token
 containing a list of one or more security mechanisms that are
 available based on the credentials used for this context
 establishment, and optionally on the initial mechanism token for
 the first mechanism in the list.

 c) The GSS-API initiator application sends the token to the target
 application. The GSS-API target application passes the token by
 invoking GSS_Accept_sec_context(). The acceptor will do one of
 the following:

 I) If none of the proposed mechanisms are acceptable, the
 negotiation SHALL be terminated. GSS_Accept_sec_context
 indicates GSS_S_BAD_MECH. The acceptor MAY output a
 negotiation token containing a reject state.

 II) If either the initiator’s preferred mechanism is not accepted
 by the target or this mechanism is accepted but is not the
 acceptor’s most preferred mechanism (i.e., the MIC token
 exchange as described in Section 5 is required),

Zhu, et al. Standards Track [Page 5]

RFC 4178 The GSS-API Negotiation Mechanism October 2005

 GSS_Accept_sec_context() indicates GSS_S_CONTINUE_NEEDED.
 The acceptor MUST output a negotiation token containing a
 request-mic state.

 III) Otherwise, if at least one additional negotiation token from
 the initiator is needed to establish this context,
 GSS_Accept_sec_context() indicates GSS_S_CONTINUE_NEEDED and
 outputs a negotiation token containing an accept-incomplete
 state.

 IV) Otherwise, no additional negotiation token from the initiator
 is needed to establish this context, GSS_Accept_sec_context()
 indicates GSS_S_COMPLETE and outputs a negotiation token
 containing an accept_complete state.

 If the initiator’s preferred mechanism is accepted, and an
 optimistic mechanism token was included, this mechanism token MUST
 be passed to the selected mechanism by invoking
 GSS_Accept_sec_context(). If a response mechanism token is
 returned, it MUST be included in the response negotiation token.
 Otherwise, the target will not generate a response mechanism token
 in the first reply.

 d) The GSS-API target application returns the negotiation token to
 the initiator application. The GSS-API initiator application
 passes the token by invoking GSS_Init_sec_context(). The security
 context initialization is then continued according to the standard
 GSS-API conventions for the selected mechanism, where the tokens
 of the selected mechanism are encapsulated in negotiation messages
 (see Section 4) until GSS_S_COMPLETE is returned for both the
 initiator and the target by the selected security mechanism.

 e) MIC tokens are then either skipped or exchanged according to
 Section 5.

 Note that the *_req_flag input parameters for context establishment
 are relative to the selected mechanism, as are the *_state output
 parameters. That is, these parameters are not applicable to the
 negotiation process per se.

 On receipt of a negotiation token on the target side, a GSS-API
 implementation that does not support negotiation would indicate the
 GSS_S_BAD_MECH status as though a particular basic security mechanism
 had been requested and was not supported.

 When a GSS-API credential is acquired for the SPNEGO mechanism, the
 implementation SHOULD produce a credential element for the SPNEGO
 mechanism that internally contains GSS-API credential elements for

Zhu, et al. Standards Track [Page 6]

RFC 4178 The GSS-API Negotiation Mechanism October 2005

 all mechanisms for which the principal has credentials available,
 except for any mechanisms that are not to be negotiated, per
 implementation-, site-, or application-specific policy. See Appendix
 B for interfaces for expressing application policy.

4. Token Definitions

 The type definitions in this section assume an ASN.1 module
 definition of the following form:

 SPNEGOASNOneSpec {
 iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanism(5) snego (2) modules(4) spec2(2)
 } DEFINITIONS EXPLICIT TAGS ::= BEGIN

 -- rest of definitions here

 END

 This specifies that the tagging context for the module will be
 explicit and non-automatic.

 The encoding of the SPNEGO protocol messages shall obey the
 Distinguished Encoding Rules (DER) of ASN.1, as described in [X690].

4.1. Mechanism Types

 In this negotiation model, each OID represents one GSS-API mechanism
 or one variant (see Section 6) of it, according to [RFC2743].

 MechType ::= OBJECT IDENTIFIER
 -- OID represents each security mechanism as suggested by
 -- [RFC2743]

 MechTypeList ::= SEQUENCE OF MechType

4.2. Negotiation Tokens

 The syntax of the initial negotiation tokens follows the
 initialContextToken syntax defined in Section 3.1 of [RFC2743]. The
 SPNEGO pseudo mechanism is identified by the Object Identifier
 iso.org.dod.internet.security.mechanism.snego (1.3.6.1.5.5.2).
 Subsequent tokens MUST NOT be encapsulated in this GSS-API generic
 token framing.

 This section specifies the syntax of the inner token for the initial
 message and the syntax of subsequent context establishment tokens.

Zhu, et al. Standards Track [Page 7]

RFC 4178 The GSS-API Negotiation Mechanism October 2005

 NegotiationToken ::= CHOICE {
 negTokenInit [0] NegTokenInit,
 negTokenResp [1] NegTokenResp
 }

4.2.1. negTokenInit

 NegTokenInit ::= SEQUENCE {
 mechTypes [0] MechTypeList,
 reqFlags [1] ContextFlags OPTIONAL,
 -- inherited from RFC 2478 for backward compatibility,
 -- RECOMMENDED to be left out
 mechToken [2] OCTET STRING OPTIONAL,
 mechListMIC [3] OCTET STRING OPTIONAL,
 ...
 }
 ContextFlags ::= BIT STRING {
 delegFlag (0),
 mutualFlag (1),
 replayFlag (2),
 sequenceFlag (3),
 anonFlag (4),
 confFlag (5),
 integFlag (6)
 } (SIZE (32))

 This is the syntax for the inner token of the initial negotiation
 message.

 mechTypes

 This field contains one or more security mechanisms available for
 the initiator, in decreasing preference order (favorite choice
 first).

 reqFlags

 This field, if present, contains the service options that are
 requested to establish the context (the req_flags parameter of
 GSS_Init_sec_context()). This field is inherited from RFC 2478
 and is not integrity protected. For implementations of this
 specification, the initiator SHOULD omit this reqFlags field and
 the acceptor MUST ignore this reqFlags field.

 The size constraint on the ContextFlags ASN.1 type only applies to
 the abstract type. The ASN.1 DER requires that all trailing zero
 bits be truncated from the encoding of a bit string type whose
 abstract definition includes named bits. Implementations should

Zhu, et al. Standards Track [Page 8]

RFC 4178 The GSS-API Negotiation Mechanism October 2005

 not expect to receive exactly 32 bits in an encoding of
 ContextFlags.

 mechToken

 This field, if present, contains the optimistic mechanism token.

 mechlistMIC

 This field, if present, contains an MIC token for the mechanism
 list in the initial negotiation message. This MIC token is
 computed according to Section 5.

4.2.2. negTokenResp

 NegTokenResp ::= SEQUENCE {
 negState [0] ENUMERATED {
 accept-completed (0),
 accept-incomplete (1),
 reject (2),
 request-mic (3)
 } OPTIONAL,
 -- REQUIRED in the first reply from the target
 supportedMech [1] MechType OPTIONAL,
 -- present only in the first reply from the target
 responseToken [2] OCTET STRING OPTIONAL,
 mechListMIC [3] OCTET STRING OPTIONAL,
 ...
 }

 This is the syntax for all subsequent negotiation messages.

 negState

 This field, if present, contains the state of the negotiation.
 This can be:

 accept-completed

 No further negotiation message from the peer is expected, and
 the security context is established for the sender.

 accept-incomplete

 At least one additional negotiation message from the peer is
 needed to establish the security context.

Zhu, et al. Standards Track [Page 9]

RFC 4178 The GSS-API Negotiation Mechanism October 2005

 reject

 The sender terminates the negotiation.

 request-mic

 The sender indicates that the exchange of MIC tokens, as
 described in Section 5, will be REQUIRED if per-message
 integrity services are available on the mechanism context to be
 established. This value SHALL only be present in the first
 reply from the target.

 This field is REQUIRED in the first reply from the target, and is
 OPTIONAL thereafter. When negState is absent, the actual state
 should be inferred from the state of the negotiated mechanism
 context.

 supportedMech

 This field SHALL only be present in the first reply from the
 target. It MUST be one of the mechanism(s) offered by the
 initiator.

 ResponseToken

 This field, if present, contains tokens specific to the mechanism
 selected.

 mechlistMIC

 This field, if present, contains an MIC token for the mechanism
 list in the initial negotiation message. This MIC token is
 computed according to Section 5.

5. Processing of mechListMIC

 If the mechanism selected by the negotiation does not support
 integrity protection, then no mechlistMIC token is used.

 Otherwise, if the accepted mechanism is the most preferred mechanism
 of both the initiator and the acceptor, then the MIC token exchange,
 as described later in this section, is OPTIONAL. A mechanism is the
 acceptor’s most preferred mechanism if there is no other mechanism
 that the acceptor would have preferred over the accepted mechanism
 had it been present in the mechanism list.

 In all other cases, MIC tokens MUST be exchanged after the mechanism
 context is fully established.

Zhu, et al. Standards Track [Page 10]

RFC 4178 The GSS-API Negotiation Mechanism October 2005

 a) The mechlistMIC token (or simply the MIC token) is computed over
 the mechanism list in the initial negotiation message by invoking
 GSS_GetMIC() as follows: the input context_handle is the
 established mechanism context, the input qop_req is 0, and the
 input message is the DER encoding of the value of type
 MechTypeList, which is contained in the "mechTypes" field of the
 NegTokenInit. The input message is NOT the DER encoding of the
 type "[0] MechTypeList".

 b) If the selected mechanism exchanges an even number of mechanism
 tokens (i.e., the acceptor sends the last mechanism token), the
 acceptor does the following when generating the negotiation
 message containing the last mechanism token: if the MIC token
 exchange is optional, GSS_Accept_sec_context() either indicates
 GSS_S_COMPLETE and does not include a mechlistMIC token, or
 indicates GSS_S_CONTINUE_NEEDED and includes a mechlistMIC token
 and an accept-incomplete state; if the MIC token exchange is
 required, GSS_Accept_sec_context() indicates GSS_S_CONTINUE_NEEDED
 and includes a mechlistMIC token. Acceptors that wish to be
 compatible with legacy Windows SPNEGO implementations, as
 described in Appendix C, should not generate a mechlistMIC token
 when the MIC token exchange is not required. The initiator then
 processes the last mechanism token, and does one of the following:

 I) If a mechlistMIC token was included and is correctly
 verified, GSS_Init_sec_context() indicates GSS_S_COMPLETE.
 The output negotiation message contains a mechlistMIC token
 and an accept_complete state. The acceptor MUST then verify
 this mechlistMIC token.

 II) If a mechlistMIC token was included but is incorrect, the
 negotiation SHALL be terminated. GSS_Init_sec_context()
 indicates GSS_S_DEFECTIVE_TOKEN.

 III) If no mechlistMIC token was included and the MIC token
 exchange is not required, GSS_Init_sec_context() indicates
 GSS_S_COMPLETE with no output token.

 IV) If no mechlistMIC token was included but the MIC token
 exchange is required, the negotiation SHALL be terminated.
 GSS_Accept_sec_context() indicates GSS_S_DEFECTIVE_TOKEN.

 c) In the case that the chosen mechanism exchanges an odd number of
 mechanism tokens (i.e., the initiator sends the last mechanism
 token), the initiator does the following when generating the
 negotiation message containing the last mechanism token: if the
 negState was request-mic in the first reply from the target, a
 mechlistMIC token MUST be included; otherwise, the mechlistMIC

Zhu, et al. Standards Track [Page 11]

RFC 4178 The GSS-API Negotiation Mechanism October 2005

 token is OPTIONAL. (Note that the MIC token exchange is required
 if a mechanism other than the initiator’s first choice is chosen.)
 In the case that the optimistic mechanism token is the only
 mechanism token for the initiator’s preferred mechanism, the
 mechlistMIC token is OPTIONAL. Whether the mechlistMIC token is
 included, GSS_Init_sec_context() indicates GSS_S_CONTINUE_NEEDED.
 Initiators that wish to be compatible with legacy Windows SPNEGO
 implementations, as described in Appendix C, should not generate a
 mechlistMIC token when the MIC token exchange is not required.
 The acceptor then processes the last mechanism token and does one
 of the following:

 I) If a mechlistMIC token was included and is correctly
 verified, GSS_Accept_sec_context() indicates GSS_S_COMPLETE.
 The output negotiation message contains a mechlistMIC token
 and an accept_complete state. The initiator MUST then verify
 this mechlistMIC token.

 II) If a mechlistMIC token was included but is incorrect, the
 negotiation SHALL be terminated. GSS_Accept_sec_context()
 indicates GSS_S_DEFECTIVE_TOKEN.

 III) If no mechlistMIC token was included and the mechlistMIC
 token exchange is not required, GSS_Accept_sec_context()
 indicates GSS_S_COMPLETE. The output negotiation message
 contains an accept_complete state.

 IV) In the case that the optimistic mechanism token is also the
 last mechanism token (when the initiator’s preferred
 mechanism is accepted by the target) and the target sends a
 request-mic state but the initiator did not send a
 mechlistMIC token, the target then MUST include a mechlistMIC
 token in that first reply. GSS_Accept_sec_context()
 indicates GSS_S_CONTINUE_NEEDED. The initiator MUST verify
 the received mechlistMIC token and generate a mechlistMIC
 token to send back to the target. The target SHALL, in turn,
 verify the returned mechlistMIC token and complete the
 negotiation.

 V) If no mechlistMIC token was included and the acceptor sent a
 request-mic state in the first reply message (the exchange of
 MIC tokens is required), the negotiation SHALL be terminated.
 GSS_Accept_sec_context() indicates GSS_S_DEFECTIVE_TOKEN.

Zhu, et al. Standards Track [Page 12]

RFC 4178 The GSS-API Negotiation Mechanism October 2005

6. Extensibility

 Two mechanisms are provided for extensibility. First, the ASN.1
 structures in this specification MAY be expanded by IETF standards
 action. Implementations receiving unknown fields MUST ignore these
 fields.

 Secondly, OIDs corresponding to a desired mechanism attribute (i.e.,
 mechanism variants) may be included in the set of preferred
 mechanisms by an initiator. The acceptor can choose to honor this
 request by preferring mechanisms that have the included attributes.
 Future work within the Kitten working group is expected to
 standardize common attributes that SPNEGO mechanisms may wish to
 support. At this time, it is sufficient to say that initiators MAY
 include OIDs that do not correspond to mechanisms. Such OIDs MAY
 influence the acceptor’s choice of mechanism. As discussed in
 Section 5, if there are mechanisms that, if present in the
 initiator’s list of mechanisms, might be preferred by the acceptor
 instead of the initiator’s preferred mechanism, the acceptor MUST
 demand the MIC token exchange. As the consequence, acceptors MUST
 demand the MIC token exchange if they support negotiation of
 attributes not available in the initiator’s preferred mechanism,
 regardless of whether the initiator actually requested these
 attributes.

7. Security Considerations

 In order to produce the MIC token for the mechanism list, the
 mechanism must provide integrity protection. When the selected
 mechanism does not support integrity protection, the negotiation is
 vulnerable: an active attacker can force it to use a security
 mechanism that is not mutually preferred but is acceptable to the
 target.

 This protocol provides the following guarantees when per-message
 integrity services are available on the established mechanism
 context, and the mechanism list was altered by an adversary such that
 a mechanism that is not mutually preferred could be selected:

 a) If the last mechanism token is sent by the initiator, both peers
 shall fail;

 b) If the last mechanism token is sent by the acceptor, the acceptor
 shall not complete and the initiator, at worst, shall complete
 with its preferred mechanism being selected.

 The negotiation may not be terminated if an alteration was made but
 had no material impact.

Zhu, et al. Standards Track [Page 13]

RFC 4178 The GSS-API Negotiation Mechanism October 2005

 The protection of the negotiation depends on the strength of the
 integrity protection. In particular, the strength of SPNEGO is no
 stronger than the integrity protection of the weakest mechanism
 acceptable to GSS-API peers.

 Note that where there exist multiple mechanisms with similar context
 tokens, but different semantics, such that some or all of the
 mechanisms’ context tokens can be easily altered so that one
 mechanism’s context tokens may pass for another of the similar
 mechanism’s context tokens, then there may exist a downgrade or
 similar attacks. For example, if a given family of mechanisms uses
 the same context token syntax for two or more variants and depends on
 the OID in the initial token’s pseudo-ASN.1/DER wrapper, but does not
 provide integrity protection for that OID, then there may exist an
 attack against those mechanisms. SPNEGO does not generally defeat
 such attacks.

 In all cases, the communicating peers are exposed to the denial of
 service threat.

8. Acknowledgments

 The authors wish to thank Sam Hartman, Nicolas Williams, Ken Raeburn,
 Martin Rex, Jeff Altman, Tom Yu, Cristian Ilac, Simon Spero, and Bill
 Sommerfeld for their comments and suggestions during the development
 of this document.

 Luke Howard provided a prototype of this protocol in Heimdal and
 resolved several issues in the initial version of this document.

 Eric Baize and Denis Pinkas wrote the original SPNEGO specification
 [RFC2478] of which some of the text has been retained in this
 document.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2743] Linn, J., "Generic Security Service Application Program
 Interface Version 2, Update 1", RFC 2743, January 2000.

 [X690] ASN.1 encoding rules: Specification of Basic Encoding Rules
 (BER), Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER), ITU-T Recommendation X.690 (1997) |
 ISO/IEC International Standard 8825-1:1998.

Zhu, et al. Standards Track [Page 14]

RFC 4178 The GSS-API Negotiation Mechanism October 2005

9.2. Informative References

 [RFC2478] Baize, E. and D. Pinkas, "The Simple and Protected GSS-API
 Negotiation Mechanism", RFC 2478, December 1998.

Zhu, et al. Standards Track [Page 15]

RFC 4178 The GSS-API Negotiation Mechanism October 2005

Appendix A. SPNEGO ASN.1 Module

 SPNEGOASNOneSpec {
 iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanism(5) snego (2) modules(4) spec2(2)
 } DEFINITIONS EXPLICIT TAGS ::= BEGIN

 MechType ::= OBJECT IDENTIFIER
 -- OID represents each security mechanism as suggested by
 -- [RFC2743]

 MechTypeList ::= SEQUENCE OF MechType

 NegotiationToken ::= CHOICE {
 negTokenInit [0] NegTokenInit,
 negTokenResp [1] NegTokenResp
 }

 NegTokenInit ::= SEQUENCE {
 mechTypes [0] MechTypeList,
 reqFlags [1] ContextFlags OPTIONAL,
 -- inherited from RFC 2478 for backward compatibility,
 -- RECOMMENDED to be left out
 mechToken [2] OCTET STRING OPTIONAL,
 mechListMIC [3] OCTET STRING OPTIONAL,
 ...
 }
 NegTokenResp ::= SEQUENCE {
 negState [0] ENUMERATED {
 accept-completed (0),
 accept-incomplete (1),
 reject (2),
 request-mic (3)
 } OPTIONAL,
 -- REQUIRED in the first reply from the target
 supportedMech [1] MechType OPTIONAL,
 -- present only in the first reply from the target
 responseToken [2] OCTET STRING OPTIONAL,
 mechListMIC [3] OCTET STRING OPTIONAL,
 ...
 }

 ContextFlags ::= BIT STRING {
 delegFlag (0),
 mutualFlag (1),
 replayFlag (2),
 sequenceFlag (3),
 anonFlag (4),

Zhu, et al. Standards Track [Page 16]

RFC 4178 The GSS-API Negotiation Mechanism October 2005

 confFlag (5),
 integFlag (6)
 } (SIZE (32))

 END

Appendix B. GSS-API Negotiation Support API

 In order to provide to a GSS-API caller (the initiator or the target
 or both) with the ability to choose among the set of supported
 mechanisms, a reduced set of mechanisms for negotiation and two
 additional APIs are defined:

 o GSS_Get_neg_mechs() indicates the set of security mechanisms
 available on the local system to the caller for negotiation, for
 which appropriate credentials are available.

 o GSS_Set_neg_mechs() specifies the set of security mechanisms to be
 used on the local system by the caller for negotiation, for the
 given credentials.

B.1. GSS_Set_neg_mechs Call

 Inputs:

 o cred_handle CREDENTIAL HANDLE, -- NULL specifies default
 -- credentials
 o mech_set SET OF OBJECT IDENTIFIER

 Outputs:

 o major_status INTEGER,
 o minor_status INTEGER

 Return major_status codes:

 o GSS_S_COMPLETE indicates that the set of security mechanisms
 available for negotiation has been set to mech_set.
 o GSS_S_FAILURE indicates that the requested operation could not be
 performed for reasons unspecified at the GSS-API level.

 This allows callers to specify the set of security mechanisms that
 may be negotiated with the credential identified by cred_handle.
 This call is intended to support specialized callers who need to
 restrict the set of negotiable security mechanisms from the set of
 all security mechanisms available to the caller (based on available

Zhu, et al. Standards Track [Page 17]

RFC 4178 The GSS-API Negotiation Mechanism October 2005

 credentials). Note that if more than one mechanism is specified in
 mech_set, the order in which those mechanisms are specified implies a
 relative preference.

B.2. GSS_Get_neg_mechs Call

 Input:

 o cred_handle CREDENTIAL HANDLE -- NULL specifies default --
 credentials

 Outputs:

 o major_status INTEGER,
 o minor_status INTEGER,
 o mech_set SET OF OBJECT IDENTIFIER

 Return major_status codes:

 o GSS_S_COMPLETE indicates that the set of security mechanisms
 available for negotiation has been returned in mech_set.

 o GSS_S_FAILURE indicates that the requested operation could not be
 performed for reasons unspecified at the GSS-API level.

 This allows callers to determine the set of security mechanisms
 available for negotiation with the credential identified by
 cred_handle. This call is intended to support specialized callers
 who need to reduce the set of negotiable security mechanisms from the
 set of supported security mechanisms available to the caller (based
 on available credentials).

 Note: The GSS_Indicate_mechs() function indicates the full set of
 mechanism types available on the local system. Since this call has
 no input parameter, the returned set is not necessarily available for
 all credentials.

Appendix C. Changes since RFC 2478

 SPNEGO implementations in Microsoft Windows 2000/Windows XP/Windows
 Server 2003 have the following behavior: no mechlistMIC is produced
 and mechlistMIC is not processed if one is provided; if the initiator
 sends the last mechanism token, the acceptor will send back a
 negotiation token with an accept_complete state and no mechlistMIC
 token. In addition, an incorrect OID (1.2.840.48018.1.2.2) can be
 used to identify the GSS-API Kerberos Version 5 mechanism.

Zhu, et al. Standards Track [Page 18]

RFC 4178 The GSS-API Negotiation Mechanism October 2005

 The following changes have been made to be compatible with these
 legacy implementations.

 * NegTokenTarg is changed to negTokenResp and is the message format
 for all subsequent negotiation tokens.

 * NegTokenInit is the message for the initial negotiation message,
 and only that message.

 * mechTypes in negTokenInit is not optional.

 * If the selected mechanism is also the most preferred mechanism for
 both peers, it is safe to omit the MIC tokens.

 If at least one of the two peers implements the updated pseudo
 mechanism in this document, the negotiation is protected.

 The following changes are to address problems in RFC 2478.

 * reqFlags is not protected, therefore it should not impact the
 negotiation.

 * DER encoding is required.

 * GSS_GetMIC() input is clarified.

 * Per-message integrity services are requested for the negotiated
 mechanism.

 * Two MIC tokens are exchanged, one in each direction.

 An implementation that conforms to this specification will not
 inter-operate with a strict RFC 2748 implementation. Even if the new
 implementation always sends a mechlistMIC token, it will still fail
 to inter-operate. If it is a server, it will fail because it
 requests a mechlistMIC token using an option that older
 implementations do not support. Clients will tend to fail as well.

 As an alternative to the approach chosen in this specification, we
 could have documented a correct behavior that is fully backward
 compatible with RFC 2478 and included an appendix on how to inter-
 operate with existing incorrect implementations of RFC 2478.

 As a practical matter, the SPNEGO implementers within the IETF have
 valued interoperability with the Microsoft implementations. We were
 unable to choose to maintain reasonable security guarantees, to
 maintain interoperability with the Microsoft implementations, and to
 maintain interoperability with correct implementations of RFC 2478.

Zhu, et al. Standards Track [Page 19]

RFC 4178 The GSS-API Negotiation Mechanism October 2005

 The working group was not aware of any RFC 2478 implementations
 deployed on the Internet. Even if there are such implementations, it
 is unlikely that they will inter-operate because of a critical flaw
 in the description of the encoding of the mechanism list in RFC 2478.

 With the approach taken in this specification, security is ensured
 between new implementations all the time while maintaining
 interoperability with the implementations deployed within the IETF
 community. The working group believes that this justifies breaking
 compatibility with a correct implementation of RFC 2478.

Appendix D. mechListMIC Computation Example

 The following is an example to illustrate how the mechListMIC field
 would be computed.

 The initial part of the DER encoding of NegTokenInit is constructed
 as follows (the "nn" are length encodings, possibly longer than one
 octet):

 30 -- identifier octet for constructed SEQUENCE (NegTokenInit)
 nn -- length

 -- contents octets of the SEQUENCE begin with
 -- DER encoding of "[0] MechTypeList":
 A0 -- identifier octet for constructed [0]
 nn -- length

 -- contents of the constructed [0] are DER encoding
 -- of MechTypeList (which is a SEQUENCE):
 30 -- identifier octet for constructed SEQUENCE
 nn -- length

 -- contents octets of the SEQUENCE begin with
 -- DER encoding of OBJECT IDENTIFIER:
 06 -- identifier octet for primitive OBJECT IDENTIFIER
 09 -- length
 2A 86 48 86 F7 12 01 02 02 -- Kerberos V5
 -- {1 2 840 113554 1 2 2}

 If a mechlistMIC needs to be generated (according to the rules in
 Section 5), it is computed by using the DER encoding of the type
 MechTypeList data from the initiator’s NegTokenInit token as input to
 the GSS_GetMIC() function. In this case, the MIC would be computed
 over the following octets:

 DER encoding of MechTypeList:
 30 nn 06 09 2A 86 48 86 F7 12 01 02 02 ...

Zhu, et al. Standards Track [Page 20]

RFC 4178 The GSS-API Negotiation Mechanism October 2005

 Note that the identifier octet and length octet(s) for constructed
 [0] (A0 nn) are not included in the MIC computation.

Authors’ Addresses

 Larry Zhu
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052
 US

 EMail: lzhu@microsoft.com

 Paul Leach
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052
 US

 EMail: paulle@microsoft.com

 Karthik Jaganathan
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052
 US

 EMail: karthikj@microsoft.com

 Wyllys Ingersoll
 Sun Microsystems
 1775 Wiehle Avenue, 2nd Floor
 Reston, VA 20190
 US

 EMail: wyllys.ingersoll@sun.com

Zhu, et al. Standards Track [Page 21]

RFC 4178 The GSS-API Negotiation Mechanism October 2005

Full Copyright Statement

 Copyright (C) The Internet Society (2005).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Zhu, et al. Standards Track [Page 22]

