Net wor k Wor ki ng Group S. Bl ake-W |1 son
Request for Comments: 4492 Saf eNet
Cat egory: | nformational N. Bol yard
Sun M crosystens

V. Qupta

Sun Labs

C. Hawk

Corriente

B. Meller

Ruhr - Uni Bochum

May 2006

Elliptic Curve Cryptography (ECC) C pher Suites
for Transport Layer Security (TLS)

Status of This Meno

This neno provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
meno i s unlimted.

Copyright Notice
Copyright (C) The Internet Society (2006).

Abstract

Thi s docunent describes new key exchange al gorithns based on Elliptic
Curve Cryptography (ECC) for the Transport Layer Security (TLS)
protocol. |In particular, it specifies the use of Elliptic Curve
Diffie-Hell man (ECDH) key agreenent in a TLS handshake and the use of
Elliptic Curve Digital Signature Al gorithm (ECDSA) as a new

aut henti cati on mechani sm

Bl ake-W I son, et al. I nf or mat i onal [Page 1]

RFC 4492 ECC Ci pher Suites for TLS May 2006

Tabl e of Contents

1. IntroduCti On 3
2. Key Exchange Algorithms 4
2.1, ECDH ECDSA . . 6
2.2, ECDHE _ECDSA . . ot e 6
2.3, ECDH RSA . 7
2.4, ECDHE RSA . . . 7
2.5, ECDH AanOn 7

3. dient Authentication 8
3.1, ECDSA SiON ot 8
3.2, ECDSA fixed_ECDH e 9
3.3. RSA fixed ECDH e e e e 9

4. TLS Extensions for ECC e 9
5. Data Structures and Conputations 10
5.1. dient Hello EXtensions 10
5.1.1. Supported Elliptic Curves Extension 12

5.1.2. Supported Point Formats Extension 13

5.2. Server Hello Extension 14
5.3. Server Certificate i 15
5.4. Server Key Exchange 17
5.5. Certificate Request i 21
5.6. Qient Certificate e 22
5.7. dient Key EXchange 23
5.8. Certificate Verify 25
5.9. Elliptic Qurve Certificates 26
5.10. ECDH, ECDSA, and RSA Conmputations 26

6. Cipher SUites 27
7. Security Considerati ONS 28
8. TANA Considerati ONSt e 29
9. AcknowW edgemBNt S 29
1 Ref er ences 30
10.1. Normative References 30
10. 2. Informative References i, 31
Appendi x A. Equivalent Curves (Informative) 32

Bl ake- W son, et al. I nf or mat i onal [Page 2]

RFC 4492 ECC Ci pher Suites for TLS May 2006

1

I ntroduction

Elliptic Curve Cryptography (ECC) is emerging as an attractive
public-key cryptosystem in particular for nobile (i.e., wreless)
environnments. Conpared to currently preval ent cryptosystens such as
RSA, ECC offers equival ent security with snaller key sizes. This is
illustrated in the follow ng table, based on [18], which gives

appr oxi mat e conparabl e key sizes for symmetric- and asymetri c- key
cryptosystens based on the best-known al gorithns for attacking them

Symetric | ECC | DH DSA/ RSA
____________ T
80 | 163 | 1024
112 | 233 | 2048
128 | 283 | 3072
192 | 409 | 7680
256 | 571 | 15360

Tabl e 1: Conparable Key Sizes (in bits)

Smal | er key sizes result in savings for power, nenory, bandw dth, and
conmput ati onal cost that make ECC especially attractive for
constrai ned environnents.

Thi s docunent describes additions to TLS to support ECC, applicable
both to TLS Version 1.0 [2] and to TLS Version 1.1 [3]. In
particular, it defines

o the use of the Elliptic Curve Diffie-Hellman (ECDH) key agreenent
schene with long-term or epheneral keys to establish the TLS
prenmaster secret, and

o the use of fixed-ECDH certificates and ECDSA for authentication of
TLS peers.

The renai nder of this docunent is organized as follows. Section 2
provi des an overvi ew of ECC-based key exchange algorithns for TLS
Section 3 describes the use of ECC certificates for client

aut hentication. TLS extensions that allow a client to negotiate the
use of specific curves and point formats are presented in Section 4.
Section 5 specifies various data structures needed for an ECC based
handshake, their encoding in TLS nessages, and the processing of
those nessages. Section 6 defines new ECC- based ci pher suites and
identifies a small subset of these as recomended for al

i npl enentations of this specification. Section 7 discusses security
consi derations. Section 8 describes | ANA considerations for the name
spaces created by this docunent. Section 9 gives acknow edgenents.

Bl ake- W son, et al. I nf or mat i onal [Page 3]

RFC 4492 ECC Ci pher Suites for TLS May 2006

This is followed by the lists of normative and informati ve references
cited in this docunent, the authors’ contact information, and
statements on intellectual property rights and copyrights.

I mpl enentation of this specification requires famliarity with TLS
[2][3], TLS extensions [4], and ECC [5][6][7][11][17].

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in RFC 2119 [1].

2. Key Exchange Al gorithns

Thi s docunent introduces five new ECC based key exchange al gorithns
for TLS. Al of themuse ECDH to conpute the TLS prenaster secret,
and they differ only in the lifetime of ECDH keys (long-term or
epheneral) and the nechanism (if any) used to authenticate them The
derivation of the TLS naster secret fromthe prenaster secret and the
subsequent generation of bulk encryption/ MAC keys and initialization
vectors is independent of the key exchange al gorithm and not i npacted
by the introduction of ECC

The tabl e bel ow summari zes the new key exchange al gorithns, which
mmc DH DSS, DHE DSS, DH RSA, DHE RSA, and DH anon (see [2] and
[3]), respectively.

Key

Exchange

Al gorithm Descri ption

ECDH_ECDSA Fi xed ECDH wit h ECDSA-signed certificates
ECDHE_ECDSA Epheneral ECDH wi th ECDSA si gnatures.
ECDH_RSA Fi xed ECDH wi th RSA-signed certificates
ECDHE_RSA Epheneral ECDH with RSA signatures
ECDH_anon Anonyrmous ECDH, no signatures.

Tabl e 2: ECC Key Exchange Al gorithns

The ECDHE_ECDSA and ECDHE_RSA key exchange mechani sms provide forward
secrecy. Wth ECDHE RSA, a server can reuse its existing RSA
certificate and easily conply with a constrained client’s elliptic
curve preferences (see Section 4). However, the conputational cost

Bl ake- W son, et al. I nf or mat i onal [Page 4]

RFC 4492 ECC Ci pher Suites for TLS May 2006

incurred by a server is higher for ECDHE RSA than for the traditiona
RSA key exchange, which does not provide forward secrecy.

The ECDH_RSA nmechanismrequires a server to acquire an ECC
certificate, but the certificate issuer can still use an existing RSA
key for signing. This elinmnates the need to update the keys of
trusted certification authorities accepted by TLS clients. The
ECDH_ECDSA mechani smrequi res ECC keys for the server as well as the
certification authority and is best suited for constrained devices
unabl e to support RSA

The anonynous key exchange al gorithm does not provide authentication
of the server or the client. Like other anonynous TLS key exchanges,
it is subject to man-in-the-niddle attacks. |nplenmentations of this
al gori thm SHOULD provi de aut hentication by other means.

Note that there is no structural difference between ECDH and ECDSA
keys. A certificate issuer may use X 509 v3 keyUsage and

ext endedKeyUsage extensions to restrict the use of an ECC public key
to certain conputations [15]. This docunent refers to an ECC key as
ECDH capable if its use in ECDH is permitted. ECDSA-capable is
defined simlarly.

CientHello -------- >
ServerHello
Certificate?*
Ser ver KeyExchange*
CertificateRequest*+

<-m----- Server Hel | oDone
Certificate*+
d i ent KeyExchange
CertificateVerify*+
[ChangeGi pher Spec]
Finished -------- >

[ChangeCi pher Spec]

Lommmmma Fi ni shed

Application Data <------- > Application Data

* message is not sent under some conditions
+ message is not sent unless client authentication
is desired

Figure 1: Message flowin a full TLS handshake

Bl ake- W son, et al. I nf or mat i onal [Page 5]

RFC 4492 ECC Ci pher Suites for TLS May 2006

Figure 1 shows all messages involved in the TLS key establi shnent
protocol (aka full handshake). The addition of ECC has direct inpact
only on the ClientHello, the ServerHello, the server’s Certificate
message, the ServerKeyExchange, the dient KeyExchange, the
CertificateRequest, the client’s Certificate nmessage, and the
CertificateVerify. Next, we describe each ECC key exchange al gorithm
in greater detail in terns of the content and processing of these
messages. For ease of exposition, we defer discussion of client

aut henti cati on and associ ated nessages (identified with a + in

Figure 1) until Section 3 and of the optional ECC specific extensions
(whi ch inpact the Hell o messages) until Section 4.

2.1. [ECDH_ECDSA

In ECDH ECDSA, the server’s certificate MJIST contain an ECDH- capabl e
public key and be signed with ECDSA

A Server KeyExchange MJUST NOT be sent (the server’s certificate
contains all the necessary keying information required by the client
to arrive at the premaster secret).

The client generates an ECDH key pair on the same curve as the
server’s long-term public key and sends its public key in the

d i ent KeyExchange nessage (except when using client authentication
al gorithm ECDSA fixed ECDH or RSA fixed ECDH, in which case the
nodi fications from Section 3.2 or Section 3.3 apply).

Both client and server perform an ECDH operati on and use the
resultant shared secret as the premaster secret. Al ECDH
calculations are perfornmed as specified in Section 5.10.

2.2. [ECDHE_ECDSA

I n ECDHE ECDSA, the server’s certificate MJST contai n an ECDSA-
capabl e public key and be signed with ECDSA.

The server sends its epheneral ECDH public key and a specification of
the correspondi ng curve in the ServerKeyExchange nessage. These
paraneters MJST be signed with ECDSA using the private key
corresponding to the public key in the server’s Certificate.

The client generates an ECDH key pair on the same curve as the
server’s epheneral ECDH key and sends its public key in the
d i ent KeyExchange nessage.

Both client and server performan ECDH operation (Section 5.10) and
use the resultant shared secret as the premaster secret.

Bl ake- W son, et al. I nf or mat i onal [Page 6]

RFC 4492 ECC Ci pher Suites for TLS May 2006

2.3. ECDH_RSA

Thi s key exchange algorithmis the sane as ECDH ECDSA except that the
server’s certificate MIST be signed with RSA rather than ECDSA.

2.4. ECDHE_RSA

Thi s key exchange algorithmis the sane as ECDHE ECDSA except that
the server’s certificate MJST contain an RSA public key authorized
for signing, and that the signature in the ServerKeyExchange nessage
must be conputed with the correspondi ng RSA private key. The server
certificate MUST be signed with RSA

2.5. ECDH anon

In ECDH anon, the server’s Certificate, the CertificateRequest, the
client’s Certificate, and the CertificateVerify nessages MJUST NOT be
sent.

The server MJST send an epheneral ECDH public key and a specification
of the corresponding curve in the ServerKeyExchange nmessage. These
paraneters MJST NOT be signed

The client generates an ECDH key pair on the sanme curve as the
server’s epheneral ECDH key and sends its public key in the
d i ent KeyExchange nessage.

Both client and server perform an ECDH operati on and use the
resultant shared secret as the premaster secret. Al ECDH
calculations are perfornmed as specified in Section 5.10.

Note that while the ECDH ECDSA, ECDHE ECDSA, ECDH RSA, and ECDHE RSA
key exchange algorithnms require the server’s certificate to be signed
with a particular signature schenme, this specification (follow ng the
simlar cases of DH DSS, DHE DSS, DH RSA, and DHE RSA in [2] and [3])
does not inpose restrictions on signature schenes used el sewhere in
the certificate chain. (Oten such restrictions will be useful, and
it is expected that this will be taken into account in certification
authorities’ signing practices. However, such restrictions are not
strictly required in general: Even if it is beyond the capabilities
of aclient to conpletely validate a given chain, the client may be
able to validate the server’s certificate by relying on a trusted
certification authority whose certificate appears as one of the
internedi ate certificates in the chain.)

Bl ake- W son, et al. I nf or mat i onal [Page 7]

RFC 4492 ECC Ci pher Suites for TLS May 2006

3.

3.

Cient Authentication

Thi s docunent defines three new client authentication nechanisns,
each named after the type of client certificate involved: ECDSA sign
ECDSA fixed ECDH, and RSA fixed_ECDH The ECDSA sign mechanismis
usable with any of the non-anonynous ECC key exchange al gorithns
described in Section 2 as well as other non-anonynous (non-ECC) key
exchange al gorithns defined in TLS [2][3]. The ECDSA fixed ECDH and
RSA fixed_ECDH mechani snms are usable with ECDH ECDSA and ECDH_RSA.
Their use with ECDHE ECDSA and ECDHE RSA is prohibited because the
use of a long-term ECDH client key would jeopardize the forward
secrecy property of these algorithns.

The server can request ECC-based client authentication by including
one or nore of these certificate types in its CertificateRequest
message. The server must not include any certificate types that are
prohi bited for the negotiated key exchange algorithm The client
nmust check if it possesses a certificate appropriate for any of the
met hods suggested by the server and is willing to use it for

aut henti cati on.

If these conditions are not net, the client should send a client

Certificate nessage containing no certificates. 1In this case, the
d i ent KeyExchange shoul d be sent as described in Section 2, and the
CertificateVerify should not be sent. |If the server requires client

authentication, it my respond with a fatal handshake failure alert.

If the client has an appropriate certificate and is willing to use it
for authentication, it nust send that certificate in the client’s
Certificate nessage (as per Section 5.6) and prove possession of the
private key corresponding to the certified key. The process of
determ ning an appropriate certificate and provi ng possession is
different for each authentication nmechani smand descri bed bel ow.

NOTE: It is permissible for a server to request (and the client to
send) a client certificate of a different type than the server
certificate.

1. ECDSA sign

To use this authentication nechanism the client MJST possess a
certificate containing an ECDSA-capabl e public key and signed wth
ECDSA.

The client proves possession of the private key corresponding to the
certified key by including a signature in the CertificateVerify
message as described in Section 5.8.

Bl ake- W son, et al. I nf or mat i onal [Page 8]

RFC 4492 ECC Ci pher Suites for TLS May 2006

3.2. ECDSA fixed_ ECDH

To use this authentication nechanism the client MJST possess a
certificate containing an ECDH capabl e public key, and that
certificate MIUST be signed with ECDSA. Furthernore, the client’s
ECDH key MJST be on the sane elliptic curve as the server’s long-term
(certified) ECDH key. This might Iinit use of this nmechanismto

cl osed environnents. |In situations where the client has an ECC key
on a different curve, it would have to authenticate using either
ECDSA sign or a non-ECC nechanism (e.g., RSA). Using fixed ECDH for
both servers and clients is conputationally nore efficient than
mechani sns provi ding forward secrecy.

When using this authentication mechanism the client MIST send an
enpty dientKeyExchange as described in Section 5.7 and MUST NOT send
the CertificateVerify nmessage. The O ientKeyExchange is enpty since
the client’s ECDH public key required by the server to conpute the
premaster secret is available inside the client’s certificate. The
client’s ability to arrive at the sanme prenaster secret as the server
(denonstrated by a successful exchange of Finished nessages) proves
possession of the private key corresponding to the certified public
key, and the CertificateVerify nessage i s unnecessary.

3.3. RSA fixed ECDH

This authentication nmechanismis identical to ECDSA fixed ECDH except
that the client’s certificate MJUST be signed with RSA

Note that while the ECDSA sign, ECDSA fixed_ ECDH, and RSA fixed_ ECDH
client authentication nechanisns require the client’s certificate to
be signed with a particular signature schenme, this specification does
not inpose restrictions on signature schenes used el sewhere in the
certificate chain. (Oten such restrictions will be useful, and it
is expected that this will be taken into account in certification
authorities’ signing practices. However, such restrictions are not
strictly required in general: Even if it is beyond the capabilities
of a server to conpletely validate a given chain, the server may be
able to validate the clients certificate by relying on a trust anchor
that appears as one of the internediate certificates in the chain.)

4. TLS Extensions for ECC

Two new TLS extensions are defined in this specification: (i) the
Supported Elliptic Curves Extension, and (ii) the Supported Point
Formats Extension. These allow negotiating the use of specific
curves and point formats (e.g., conpressed vs. unconpressed,
respectively) during a handshake starting a new session. These
extensions are especially relevant for constrained clients that may

Bl ake- W son, et al. I nf or mat i onal [Page 9]

RFC 4492 ECC Ci pher Suites for TLS May 2006

only support a linited nunber of curves or point formats. They
foll ow the general approach outlined in [4]; nessage details are
specified in Section 5. The client enunmerates the curves it supports
and the point formats it can parse by including the appropriate
extensions inits ClientHell o nessage. The server simlarly
enunerates the point formats it can parse by including an extension
inits ServerHello nessage.

A TLS client that proposes ECC cipher suites inits CientHello
message SHOULD i ncl ude these extensions. Servers inplenmenting ECC

ci pher suites MJUST support these extensions, and when a client uses

t hese extensions, servers MJST NOT negotiate the use of an ECC ci pher
suite unless they can conplete the handshake whil e respecting the
choi ce of curves and conpression techniques specified by the client.
This elimnates the possibility that a negotiated ECC handshake wil |
be subsequently aborted due to a client’s inability to deal with the
server’s EC key.

The client MJUST NOT include these extensions in the ientHello
message if it does not propose any ECC cipher suites. A client that
proposes ECC ci pher suites may choose not to include these
extensions. |In this case, the server is free to choose any one of
the elliptic curves or point formats listed in Section 5. That
section al so describes the structure and processing of these
extensions in greater detail.

In the case of session resunption, the server sinply ignores the
Supported Elliptic Curves Extension and the Supported Point Formats
Ext ensi on appearing in the current CientHell o nessage. These
extensions only play a role during handshakes negotiating a new
sessi on.

5. Data Structures and Conputations

This section specifies the data structures and conputati ons used by
ECC-based key nechani sns specified in Sections 2, 3, and 4. The
presentation | anguage used here is the sane as that used in TLS
[2][3]. Since this specification extends TLS, these descriptions
shoul d be nerged with those in the TLS specification and any others
that extend TLS. This nmeans that enumtypes may not specify al
possi bl e values, and structures with multiple formats chosen with a
select() clause may not indicate all possible cases.

5.1. dient Hello Extensions
This section specifies two TLS extensions that can be included with

the CientHell o nessage as described in [4], the Supported Elliptic
Curves Extension and the Supported Point Formats Extension

Bl ake- W son, et al. I nf or mat i onal [Page 10]

RFC 4492 ECC Ci pher Suites for TLS May 2006

When t hese extensions are sent:

The extensions SHOULD be sent along with any ClientHello message that
proposes ECC ci pher suites.

Meani ng of these extensions:

These extensions allow a client to enunerate the elliptic curves it
supports and/or the point formats it can parse.

Structure of these extensions:

The general structure of TLS extensions is described in [4], and this
specification adds two new types to ExtensionType.

enum { elliptic_curves(10), ec_point_formats(11l) } ExtensionType;

elliptic_curves (Supported Elliptic Curves Extension): I ndi cates
the set of elliptic curves supported by the client. For this
ext ensi on, the opaque extension data field contains
EllipticCurvelList. See Section 5.1.1 for details.

ec_point_formats (Supported Point Formats Extension): I ndi cates the
set of point formats that the client can parse. For this
ext ensi on, the opaque extension data field contains
ECPoi nt Format Li st. See Section 5.1.2 for details.

Actions of the sender:

A client that proposes ECC cipher suites inits ClientHello nessage
appends these extensions (along with any others), enunerating the
curves it supports and the point formats it can parse. dients
SHOULD send both the Supported Elliptic Curves Extension and the
Supported Point Formats Extension. |f the Supported Point Formats
Extension is indeed sent, it MJST contain the value O (unconpressed)
as one of the itens in the list of point formats.

Actions of the receiver:

A server that receives a ClientHello containing one or both of these
ext ensi ons MJST use the client’s enunerated capabilities to guide its
sel ection of an appropriate cipher suite. One of the proposed ECC

ci pher suites nust be negotiated only if the server can successfully
conpl ete the handshake while using the curves and point fornats
supported by the client (cf. Sections 5.3 and 5.4).

Bl ake- W son, et al. I nf or mat i onal [Page 11]

RFC 4492 ECC Ci pher Suites for TLS May 2006

5.

1

NOTE: A server participating in an ECDHE- ECDSA key exchange nay use
different curves for (i) the ECDSA key in its certificate, and (ii)

t he ephenmeral ECDH key in the Server KeyExchange nmessage. The server
must consi der the extensions in both cases.

If a server does not understand the Supported Elliptic Curves

Ext ensi on, does not understand the Supported Point Formats Extension
or is unable to conplete the ECC handshake while restricting itself
to the enunerated curves and point formats, it MJST NOT negotiate the
use of an ECC ci pher suite. Depending on what other cipher suites
are proposed by the client and supported by the server, this may
result in a fatal handshake failure alert due to the |lack of comon
ci pher suites.

1. Supported Elliptic Curves Extension

enum {
sect 163kl (1), sect163rl (2), sectl163r2 (3),
sect193r1 (4), sect193r2 (5), sect233kl (6),
sect233r1 (7), sect239kl (8), sect283kl (9),
sect283r1 (10), sect409k1l (11), sect409r1 (12),
sect571k1 (13), sect571r1 (14), secpl60kl (15),
secpl60r1 (16), secpl6Or2 (17), secpl92kl (18),
secpl92rl (19), secp224kl (20), secp224rl (21),
secp256kl (22), secp256rl (23), secp384rl (24),
secpb21rl (25),
reserved (OxFEQO..OxFEFF),
arbitrary_explicit_prine_curves(0xFF01),
arbitrary_explicit_char2_curves(0xFF02),
(OXFFFF)

} NamedCur ve;

sect 163k1, etc: I ndi cates support of the correspondi ng naned curve
or class of explicitly defined curves. The naned curves defined
here are those specified in SEC 2 [13]. Note that many of these
curves are also recommended in ANSI X9.62 [7] and FIPS 186-2 [11].
Val ues OxFEOO t hrough OXFEFF are reserved for private use. Values
OxFFO01 and OxFFO2 indicate that the client supports arbitrary
prime and characteristic-2 curves, respectively (the curve
paraneters nust be encoded explicitly in ECParaneters).

The NanedCurve nanme space is maintained by | ANA. See Section 8 for
i nformati on on how new val ue assi gnnents are added.

struct {
NamedCurve elliptic_curve_ list<l..2"16-1>
} EllipticCurvelist;

Bl ake- W son, et al. I nf or mat i onal [Page 12]

RFC 4492 ECC Ci pher Suites for TLS May 2006

5.1

Itens in elliptic curve |ist are ordered according to the client’s
preferences (favorite choice first).

As an exanple, a client that only supports secpl92r1 (aka N ST P-192;
val ue 19 = 0x0013) and secp224r1 (aka NI ST P-224; value 21 = 0x0015)
and prefers to use secpl92r1 would include a TLS extension consisting
of the following octets. Note that the first two octets indicate the
ext ension type (Supported Elliptic Curves Extension):

00 OA 00 06 00 04 00 13 00 15

A client that supports arbitrary explicit characteristic-2 curves
(val ue OxFF02) woul d include an extension consisting of the foll ow ng
octets:

00 OA 00 04 00 02 FF 02
2. Supported Point Formats Extension

enum { unconpressed (0), ansi X962 conpressed prine (1),
ansi X962_conpressed_char2 (2), reserved (248..255)
} ECPoi nt For mat ;

struct {
ECPoi nt Format ec_point _format _|ist<1..2"8-1>
} ECPoi nt For mat Li st ;

Three point formats are included in the definition of ECPoi nt For mat
above. The unconpressed point format is the default format in that

i mpl enent ati ons of this docunent MUST support it for all of their
supported curves. Conpressed point formats reduce bandw dth by
including only the x-coordinate and a single bit of the y-coordinate
of the point. Inplenmentations of this document MAY support the

ansi X962_conpressed_prime and ansi X962_conpressed_char2 fornmats,
where the forner applies only to prime curves and the latter applies
only to characteristic-2 curves. (These formats are specified in
[7]1.) Values 248 through 255 are reserved for private use.

The ECPoi nt Format name space is maintained by | ANA. See Section 8
for informati on on how new val ue assi gnnents are added.

Itens in ec_point fornmat list are ordered according to the client’s
preferences (favorite choice first).

Bl ake- W son, et al. I nf or mat i onal [Page 13]

RFC 4492 ECC Ci pher Suites for TLS May 2006

A client that can parse only the unconpressed point format (val ue 0)
i ncl udes an extension consisting of the follow ng octets; note that
the first two octets indicate the extension type (Supported Point
For mat s Ext ension):

00 OB 00 02 01 OO

A client that in the case of prine fields prefers the conpressed
format (ansi X962_conpressed_prinme, value 1) over the unconpressed
format (value 0), but in the case of characteristic-2 fields prefers
t he unconpressed format (value 0) over the conpressed fornmat

(ansi X962 _conpressed_char2, value 2), may indicate these preferences
by i ncluding an extension consisting of the foll owing octets:

00 OB 00 04 03 01 00 02
5.2. Server Hell o Extension

This section specifies a TLS extension that can be included with the
ServerHel |l o nessage as described in [4], the Supported Point Fornats
Ext ensi on.

Wien this extension is sent:

The Supported Point Formats Extension is included in a ServerHello
message in response to a UientHell o nessage contai ning the Supported
Poi nt Formats Extension when negotiating an ECC ci pher suite.

Meani ng of this extension:

This extension allows a server to enunerate the point formats it can
parse (for the curve that will appear in its ServerKeyExchange
nmessage when using the ECDHE ECDSA, ECDHE _RSA, or ECDH anon key
exchange algorithm or for the curve that is used in the server’s
public key that will appear in its Certificate nmessage when using the
ECDH _ECDSA or ECDH RSA key exchange al gorithm.

Structure of this extension:

The server’s Supported Point Formats Extension has the sanme structure
as the client’s Supported Point Formats Extension (see

Section 5.1.2). Itens in elliptic _curve |ist here are ordered
according to the server’'s preference (favorite choice first). Note
that the server may include itens that were not found in the client’s
list (e.g., the server nmay prefer to receive points in conpressed
format even when a client cannot parse this format: the sane client
may neverthel ess be capabl e of outputting points in conpressed
format).

Bl ake- W son, et al. I nf or mat i onal [Page 14]

RFC 4492 ECC Ci pher Suites for TLS May 2006

Actions of the sender

A server that selects an ECC ci pher suite in response to a
CientHell o nessage including a Supported Point Formats Extension
appends this extension (along with others) to its ServerHello
nmessage, enunerating the point formats it can parse. The Supported
Poi nt Formats Extension, when used, MJST contain the value 0
(unconpressed) as one of the itens in the Iist of point formats.

Actions of the receiver:

A client that receives a ServerHell o nessage containing a Supported
Poi nt Fornmats Extension MJST respect the server’s choice of point
formats during the handshake (cf. Sections 5.6 and 5.7). |If no
Supported Point Formats Extension is received with the ServerHell o,
this is equivalent to an extension allow ng only the unconpressed
poi nt format.

5.3. Server Certificate
When this nessage is sent:

This message is sent in all non-anonynous ECC- based key exchange
al gorithns.

Meani ng of this nessage:

This message is used to authentically convey the server’s static
public key to the client. The follow ng table shows the server
certificate type appropriate for each key exchange algorithm ECC
public keys MJST be encoded in certificates as described in
Section 5.9.

NOTE: The server’'s Certificate nessage is capable of carrying a chain

of certificates. The restrictions nentioned in Table 3 apply only to
the server’s certificate (first in the chain).

Bl ake- W son, et al. I nf or mat i onal [Page 15]

RFC 4492 ECC Ci pher Suites for TLS May 2006

Key Exchange Al gorithm Server Certificate Type

ECDH_ECDSA Certificate MUST contain an
ECDH capabl e public key. It
MUST be signed with ECDSA

ECDHE_ECDSA Certificate MJUST contain an
ECDSA- capabl e public key. It
MUST be signed with ECDSA

ECDH_RSA Certificate MJUST contain an
ECDH capabl e public key. It
MUST be signed with RSA.

ECDHE RSA Certificate MUST contain an
RSA public key authorized for
use in digital signatures. It

MUST be signed with RSA.
Table 3: Server Certificate Types
Structure of this nmessage
Identical to the TLS Certificate format.
Actions of the sender:

The server constructs an appropriate certificate chain and conveys it
to the client in the Certificate nessage. |If the client has used a
Supported Elliptic Curves Extension, the public key in the server’'s
certificate MIUST respect the client’s choice of elliptic curves; in
particul ar, the public key MJST enpl oy a named curve (not the same
curve as an explicit curve) unless the client has indicated support
for explicit curves of the appropriate type. |If the client has used
a Supported Point Fornmats Extension, both the server’s public key
point and (in the case of an explicit curve) the curve’'s base point
MUST respect the client’s choice of point formats. (A server that
cannot satisfy these requirenments MJST NOT choose an ECC ci pher suite
inits ServerHell o nessage.)

Bl ake- W son, et al. I nf or mat i onal [Page 16]

RFC 4492 ECC Ci pher Suites for TLS May 2006

Actions of the receiver

The client validates the certificate chain, extracts the server’s

public key, and checks that the key type is appropriate for the

negoti ated key exchange algorithm (A possible reason for a fata

handshake failure is that the client’s capabilities for handling

elliptic curves and point formats are exceeded; cf. Section 5.1.)
5.4. Server Key Exchange

When this nessage is sent:

This message i s sent when using the ECDHE ECDSA, ECDHE RSA, and
ECDH_anon key exchange al gorithms.

Meani ng of this nmessage:

This message is used to convey the server’s epheneral ECDH public key
(and the corresponding elliptic curve donmain paraneters) to the
client.

Structure of this message

enum { explicit _prime (1), explicit_char2 (2),
naned_curve (3), reserved(248..255) } ECCurveType

explicit_prime: Indicates the elliptic curve domain paraneters are
conveyed verbosely, and the underlying finite field is a prine
field.

explicit_char2: Indicates the elliptic curve donmain paraneters are

conveyed verbosely, and the underlying finite field is a
characteristic-2 field.

naned_curve: I ndicates that a named curve is used. This option
SHOULD be used when applicable.

Val ues 248 through 255 are reserved for private use.

The ECCurveType nanme space is maintained by | ANA. See Section 8 for
i nformati on on how new val ue assi gnnents are added.

struct {
opaque a <1..2"8-1>;
opaque b <1..278-1>;
} ECCurve;

Bl ake- W son, et al. I nf or mat i onal [Page 17]

RFC 4492 ECC Ci pher Suites for TLS May 2006

a, b: These paraneters specify the coefficients of the elliptic
curve. Each value contains the byte string representation of a
field elenent followi ng the conversion routine in Section 4.3.3 of
ANSI X9.62 [7].

struct {
opaque point <1..278-1>;
} ECPoI nt;
poi nt : This is the byte string representation of an elliptic curve

point follow ng the conversion routine in Section 4.3.6 of ANS
X9.62 [7]. This byte string nmay represent an elliptic curve point
i n unconpressed or conpressed format; it MJST conformto what the
client has requested through a Supported Point Formats Extension
if this extension was used.

enum { ec_basis_trinom al, ec_basis_pentanom al } ECBasi sType;

ec_basis_trinomal: I ndi cates representation of a characteristic-2
field using a trinom al basis.

ec_basi s_pent anomi al : I ndi cates representation of a
characteristic-2 field using a pentanoni al basis.

struct {
ECCur veType curve_type
sel ect (curve_type) {
case explicit_prinme:

opaque prime_p <1..2"8-1>;

ECCurve curve

ECPoiI nt base;

opaque order <1..278-1>;

opaque cofactor <1..2"8-1>;
case explicit_char2

ui nt 16 m

ECBasi sType basi s;
sel ect (basis) {
case ec_trinonial
opaque k <1..278-1>;
case ec_pentanom al
opaque k1 <1..278-1>;
opaque k2 <1..2"8-1>;
opaque k3 <1..278-1>;

1

ECCur ve curve

ECPoi nt base;

opaque order <1..278-1>;
opaque cofactor <1..2"8-1>;

Bl ake- W son, et al. I nf or mat i onal [Page 18]

RFC 4492 ECC Ci pher Suites for TLS May 2006

case naned_curve
NanmedCur ve nanmedcurve

s

} ECPar anet ers;

curve_type: This identifies the type of the elliptic curve donain
par anmeters

prinme_p: This is the odd prinme defining the field Fp

curve: Specifies the coefficients a and b of the elliptic curve E
base: Specifies the base point Gon the elliptic curve.
order: Specifies the order n of the base point.

cof act or: Specifies the cofactor h = #E(Fq)/n, where #E(Fq)
represents the nunber of points on the elliptic curve E defined
over the field Fq (either Fp or F2m).

m This is the degree of the characteristic-2 field F2"m

k: The exponent k for the trinom al basis representation x"m + x"k
+1.

k1, k2, k3: The exponents for the pentanom al representation x"m +
x"k3 + x"k2 + x"kl + 1 (such that k3 > k2 > kl1).

nanedcur ve: Specifies a recommended set of elliptic curve domain
paraneters. All those values of NanedCurve are allowed that refer
to a specific curve. Values of NanedCurve that indicate support
for a class of explicitly defined curves are not allowed here
(they are only pernissible in the ClientHello extension); this
applies to arbitrary_explicit_prime_curves(0xFF01l) and
arbitrary_explicit_char2_curves(0xFF02).

struct {
ECPar anet er s curve_par ans;
ECPoi nt publi c;

} Server ECDHPar ans;

curve_parans: Specifies the elliptic curve donmi n paraneters
associ ated with the ECDH public key.

publi c: The epheneral ECDH public key.

Bl ake- W son, et al. I nf or mat i onal [Page 19]

RFC 4492 ECC Ci pher Suites for TLS May 2006

The Server KeyExchange nessage is extended as foll ows.
enum{ ec_diffie_hellman } KeyExchangeAl gorithm

ec_diffie_hell man: I ndi cat es the Server KeyExchange nessage cont ai ns
an ECDH public key.

sel ect (KeyExchangeAl gorithm {
case ec_diffie_hell man:
Ser ver ECDHPar ans par ans;
Si gnature si gned_par ans;
} Server KeyExchange;

par ans: Specifies the ECDH public key and associ ated donai n
paraneters

si gned_par ans: A hash of the params, with the signature appropriate
to that hash applied. The private key corresponding to the
certified public key in the server’s Certificate nessage is used
for signing.

enum { ecdsa } SignatureAl gorithm

sel ect (SignatureAl gorithm {
case ecdsa:
digitally-signed struct {
opaque sha_hash[sha_si ze];
b

} Signature;

Ser ver KeyExchange. si gned_par ans. sha_hash
SHA(C i ent Hel | 0. random + Server Hel | 0. random +
Ser ver KeyExchange. par ans) ;

NOTE: SignatureAlgorithmis "rsa" for the ECDHE RSA key exchange

al gorithm and "anonynous" for ECDH anon. These cases are defined in
TLS [2][3]. SignatureAlgorithmis "ecdsa" for ECDHE ECDSA. ECDSA
signatures are generated and verified as described in Section 5.10,
and SHA in the above tenplate for sha_hash accordingly may denote a
hash al gorithm other than SHA-1. As per ANSI X9.62, an ECDSA
signature consists of a pair of integers, r and s. The digitally-
signed el enment is encoded as an opaque vector <0..2"16-1>, the
contents of which are the DER encoding [9] corresponding to the
following ASN.1 notation [8].

Bl ake- W son, et al. I nf or mat i onal [Page 20]

RFC 4492 ECC Ci pher Suites for TLS May 2006

Ecdsa- Si g- Val ue ::= SEQUENCE ({
r | NTEGER,
s | NTEGER

}

Actions of the sender

The server selects elliptic curve domai n paraneters and an epheneral
ECDH public key corresponding to these paraneters according to the

ECKAS- DH1 scheme from | EEE 1363 [6]. It conveys this information to
the client in the ServerKeyExchange nessage using the format defined
above.

Actions of the receiver:
The client verifies the signature (when present) and retrieves the
server’s elliptic curve donmain paraneters and ephenmeral ECDH public
key fromthe ServerKeyExchange nessage. (A possible reason for a
fatal handshake failure is that the client’s capabilities for
handling elliptic curves and point formats are exceeded;
cf. Section 5.1.)

5.5. Certificate Request
When this nessage is sent:
This message is sent when requesting client authentication
Meani ng of this message:

The server uses this nessage to suggest acceptable client
aut henti cati on net hods.

Structure of this message
The TLS Certificat eRequest nessage is extended as foll ows.
enum {
ecdsa_sign(64), rsa_fixed_ecdh(65),
ecdsa_fi xed_ecdh(66), (255)
} AdientCertificateType;

ecdsa_sign, etc. Indicates that the server would like to use the
correspondi ng client authentication nethod specified in Section 3.

Bl ake- W son, et al. I nf or mat i onal [Page 21]

RFC 4492 ECC Ci pher Suites for TLS May 2006

Actions of the sender

The server decides which client authentication nethods it would |ike
to use, and conveys this information to the client using the format
defi ned above.

Actions of the receiver

The client determ nes whether it has a suitable certificate for use
with any of the requested nethods and whether to proceed with client
aut henti cati on.

5.6. dient Certificate
When this nessage is sent:

This message is sent in response to a CertificateRequest when a
client has a suitable certificate and has decided to proceed with
client authentication. (Note that if the server has used a Supported
Poi nt Formats Extension, a certificate can only be considered
suitable for use with the ECDSA sign, RSA fixed_ECDH, and

ECDSA fixed ECDH aut hentication nmethods if the public key point
specified in it respects the server’s choice of point formats. If no
Supported Point Formats Extension has been used, a certificate can
only be considered suitable for use with these authentication nethods
if the point is represented in unconpressed point format.)

Meani ng of this nmessage:

This nmessage is used to authentically convey the client’s static
public key to the server. The followi ng table sunmarizes what client
certificate types are appropriate for the ECC based client

aut henti cati on nmechani snms described in Section 3. ECC public keys
must be encoded in certificates as described in Section 5.9.

NOTE: The client’s Certificate nessage is capable of carrying a chain

of certificates. The restrictions nentioned in Table 4 apply only to
the client’s certificate (first in the chain).

Bl ake- W son, et al. I nf or mat i onal [Page 22]

RFC 4492 ECC Ci pher Suites for TLS May 2006

Cient
Aut hent i cati on Met hod Cient Certificate Type

ECDSA_si gn Certificate MJUST contain an
ECDSA- capabl e public key and
be signed w th ECDSA.

ECDSA fi xed_ECDH Certificate MJUST contain an
ECDH- capabl e public key on the
same elliptic curve as the server’s
| ong-term ECDH key. This certificate
MUST be signed with ECDSA

RSA fi xed_ECDH Certificate MJUST contain an
ECDH- capabl e public key on the
same elliptic curve as the server’s
| ong-term ECDH key. This certificate
MUST be signed with RSA.
Table 4: Client Certificate Types
Structure of this nmessage
Identical to the TLS client Certificate format.

Actions of the sender:

The client constructs an appropriate certificate chain, and conveys
it to the server in the Certificate nessage

Actions of the receiver:
The TLS server validates the certificate chain, extracts the client’s
public key, and checks that the key type is appropriate for the
client authentication nethod.
5.7. dient Key Exchange
When this nmessage is sent:
This nmessage is sent in all key exchange algorithns. |If client
aut hentication with ECDSA fi xed ECDH or RSA fixed ECDH is used, this

message is enpty. Qherwise, it contains the client’s epheneral ECDH
public key.

Bl ake- W son, et al. I nf or mat i onal [Page 23]

RFC 4492 ECC Ci pher Suites for TLS May 2006

Meani ng of the nessage:

This message is used to convey epheneral data relating to the key
exchange belonging to the client (such as its ephenmeral ECDH public

key).

Structure of this nessage

The TLS dient KeyExchange nessage i s extended as foll ows.
enum{ inplicit, explicit } PublicVal ueEncodi ng;

implicit, explicit: For ECC ci pher suites, this indicates whether
the client’s ECDH public key is in the client’s certificate
("implicit") or is provided, as an epheneral ECDH public key, in
the dient KeyExchange nessage ("explicit"). (This is "explicit"
in ECC ci pher suites except when the client uses the
ECDSA fixed ECDH or RSA fixed ECDH client authentication
mechani sm)

struct {
sel ect (PublicVal ueEncodi ng) {
case inplicit: struct { };
case explicit: ECPoint ecdh_Yc;
} ecdh_public;
} CientECDiffieHell manPublic

ecdh_Yc: Contains the client’s epheneral ECDH public key as a byte
string ECPoint.point, which may represent an elliptic curve point
i n unconpressed or conpressed format. Here, the format MJST
conformto what the server has requested through a Supported Point
Formats Extension if this extension was used, and MJST be
unconpressed if this extension was not used.

struct {
sel ect (KeyExchangeAl gorithm {
case ec _diffie hellman: dientECD ffieHell manPublic
} exchange_keys;
} dient KeyExchange;

Actions of the sender:
The client selects an epheneral ECDH public key corresponding to the
paraneters it received fromthe server according to the ECKAS-DHL

scheme from | EEE 1363 [6]. It conveys this information to the client
in the dientKeyExchange nessage using the format defined above.

Bl ake- W son, et al. I nf or mat i onal [Page 24]

RFC 4492 ECC Ci pher Suites for TLS May 2006

Actions of the receiver

The server retrieves the client’s ephenmeral ECDH public key fromthe
d i ent KeyExchange nmessage and checks that it is on the same elliptic
curve as the server’s ECDH key.

5.8. Certificate Verify
When this nmessage is sent:

This message is sent when the client sends a client certificate
containing a public key usable for digital signatures, e.g., when the
client is authenticated using the ECDSA sign nmechani sm

Meani ng of the nessage:

Thi s message contains a signature that proves possession of the
private key corresponding to the public key in the client’s
Certificate nessage

Structure of this nessage

The TLS CertificateVerify message and the underlying Signature type
are defined in [2] and [3], and the latter is extended here in
Section 5.4. For the ecdsa case, the signature field in the
CertificateVerify nessage contains an ECDSA signature conputed over
handshake nessages exchanged so far, exactly simlar to
CertificateVerify with other signing algorithms in [2] and [3]:

CertificateVerify.signature.sha _hash
SHA(handshake_nessages) ;

ECDSA signatures are conputed as described in Section 5.10, and SHA
in the above tenplate for sha_hash accordingly may denote a hash

al gorithmother than SHA-1. As per ANSI X9.62, an ECDSA signature

consists of a pair of integers, r and s. The digitally-signed

el ement is encoded as an opaque vector <0..2716-1>, the contents of
whi ch are the DER encoding [9] corresponding to the followi ng ASN. 1
notation [8].

Ecdsa- Si g- Val ue :: = SEQUENCE ({
r | NTEGER,
S | NTEGER

}

Bl ake- W son, et al. I nf or mat i onal [Page 25]

RFC 4492 ECC Ci pher Suites for TLS May 2006

Actions of the sender

The client conputes its signature over all handshake nessages sent or
received starting at client hello and up to but not including this
message. It uses the private key corresponding to its certified
public key to conpute the signature, which is conveyed in the fornat
defi ned above.

Actions of the receiver:

The server extracts the client’s signature fromthe CertificateVerify
message, and verifies the signature using the public key it received
inthe client’s Certificate nessage

5.9. Hliptic Curve Certificates

X. 509 certificates containing ECC public keys or signed usi ng ECDSA
MUST conply with [14] or another RFC that replaces or extends it.
Cients SHOULD use the elliptic curve donain paraneters recomended
in ANSI X9.62 [7], FIPS 186-2 [11], and SEC 2 [13].

5.10. ECDH, ECDSA, and RSA Conput ati ons

Al'l ECDH cal cul ati ons (including paraneter and key generation as well
as the shared secret calculation) are perfornmed according to [6]
usi ng the ECKAS-DH1 schene with the identity map as key derivation
function (KDF), so that the premaster secret is the x-coordinate of
the ECDH shared secret elliptic curve point represented as an octet
string. Note that this octet string (Z in | EEE 1363 term nol ogy) as
out put by FE2CSP, the Field Elenent to Cctet String Conversion
Prinmtive, has constant length for any given field; |eading zeros
found in this octet string MJUST NOT be truncated.

(Note that this use of the identity KDF is a technicality. The
complete picture is that ECDH is enployed with a non-trivial KDF
because TLS does not directly use the prenaster secret for anything
other than for conputing the naster secret. As of TLS 1.0 [2] and
1.1 [3], this means that the MD5- and SHA-1-based TLS PRF serves as a
KDF; it is conceivable that future TLS versions or new TLS extensions
introduced in the future may vary this conputation.)

Al'l ECDSA conputations MJST be perforned according to ANSI X9.62 [7]
or its successors. Data to be signed/verified is hashed, and the
result run directly through the ECDSA algorithmw th no additiona
hashing. The default hash function is SHA-1 [10], and sha_size (see
Sections 5.4 and 5.8) is 20. However, an alternative hash function
such as one of the new SHA hash functions specified in FIPS 180-2
[10], may be used instead if the certificate containing the EC public

Bl ake- W son, et al. I nf or mat i onal [Page 26]

RFC 4492 ECC Ci pher Suites for TLS May 2006

key explicitly requires use of another hash function. (The mechani sm
for specifying the required hash function has not been standardized,
but this provision anticipates such standardi zati on and obvi ates the
need to update this docunment in response. Future PKI X RFCs may
choose, for example, to specify the hash function to be used with a
public key in the paraneters field of subjectPublicKeylnfo.)

Al'l RSA signatures nust be generated and verified according to PKCS#1
[12] block type 1.

6. Cipher Suites

The tabl e bel ow defines new ECC ci pher suites that use the key
exchange al gorithns specified in Section 2.

Ci pherSuite TLS ECDH ECDSA W TH _NULL_SHA = { 0xC0, O0x01 }
C pherSuite TLS ECDH ECDSA W TH RC4_128 SHA = { 0xC0, 0x02 }
C pherSuite TLS ECDH ECDSA W TH 3DES EDE CBC SHA = { 0xC0, 0x03 }
Ci pherSuite TLS ECDH ECDSA W TH AES 128 CBC SHA = { 0xC0, 0x04 }
Ci pherSuite TLS_ECDH ECDSA W TH_AES 256_CBC_SHA = { OxC0, 0xO05 }
Ci pherSuite TLS ECDHE ECDSA W TH_NULL_SHA = { 0xC0, 0x06 }
C pherSuite TLS ECDHE ECDSA W TH_RC4_128_ SHA = { 0xC0, 0x07 }
C pherSuite TLS _ECDHE _ECDSA W TH 3DES_EDE_CBC _SHA = { 0xC0, 0x08 }
Ci pher Suite TLS ECDHE ECDSA W TH AES 128 CBC SHA = { 0xC0, 0x09 }
Ci pherSuite TLS ECDHE ECDSA W TH_AES 256_CBC_SHA = { 0xC0, OxO0A }
Ci pherSuite TLS ECDH RSA W TH _NULL_SHA = { 0xC0, OxOB }
C pherSuite TLS ECDH RSA W TH RC4_128 SHA = { 0xC0, Ox0C}
C pherSuite TLS_ECDH RSA W TH 3DES_EDE_CBC_SHA = { 0xC0, OxO0D }
Ci pherSuite TLS ECDH RSA W TH AES 128 CBC SHA = { 0xC0, OxOE }
Ci pherSuite TLS ECDH RSA W TH AES 256 CBC SHA = { 0xC0, OxOF }
Ci pherSuite TLS ECDHE RSA W TH_NULL_SHA = { 0xC0, 0x10 }
C pherSuite TLS ECDHE RSA W TH RC4_128_ SHA = { 0xC0, Ox11 }
C pherSuite TLS_ECDHE RSA W TH_3DES _EDE_CBC_SHA = { O0xC0, 0x12 }
Ci pherSuite TLS ECDHE RSA W TH AES 128 CBC _SHA = { O0xC0, 0x13 }
Ci pherSuite TLS ECDHE RSA W TH _AES 256 CBC _SHA = { 0xC0, 0x14 }
Ci pherSuite TLS ECDH anon_W TH_NULL_SHA = { 0xC0, 0x15 }
C pherSuite TLS ECDH anon_W TH RC4_128_ SHA = { 0xC0, 0x16 }
C pher Suite TLS_ECDH anon_W TH_3DES _EDE_CBC_SHA = { O0xC0, O0x17 }
Ci pher Suite TLS ECDH anon W TH_AES 128 CBC _SHA = { 0OxC0, 0x18 }
Ci pher Suite TLS ECDH anon_ W TH_AES 256 CBC _SHA = { 0xC0, 0x19 }

Tabl e 5: TLS ECC ci pher suites

Bl ake- W son, et al. I nf or mat i onal [Page 27]

RFC 4492 ECC Ci pher Suites for TLS May 2006

The key exchange nethod, cipher, and hash algorithmfor each of these
ci pher suites are easily deternined by exam ning the name. G phers
(other than AES ciphers) and hash algorithnms are defined in [2] and
[3]. AES ciphers are defined in [19].

Server inplenentati ons SHOULD support all of the follow ng cipher
suites, and client inplenmentations SHOULD support at |east one of
them TLS _ECDH ECDSA W TH 3DES_EDE_CBC_SHA,

TLS ECDH ECDSA W TH_AES 128 CBC_SHA,

TLS ECDHE _RSA W TH_3DES _EDE_CBC SHA, and
TLS_ECDHE_RSA W TH_AES 128 CBC_SHA

7. Security Considerations
Security issues are discussed throughout this neno.

For TLS handshakes using ECC ci pher suites, the security
considerations in appendices D.2 and D.3 of [2] and [3] apply
accordi ngly.

Security discussions specific to ECC can be found in [6] and [7].
One inmportant issue that inplenenters and users nust consider is
elliptic curve selection. Cuidance on selecting an appropriate
elliptic curve size is given in Table 1

Beyond elliptic curve size, the main issue is elliptic curve
structure. As a general principle, it is nore conservative to use
elliptic curves with as little algebraic structure as possible.

Thus, random curves are nore conservative than special curves such as
Koblitz curves, and curves over F p with p random are nore
conservative than curves over F p with p of a special form (and
curves over F p with p random m ght be considered nore conservative
than curves over F_2"mas there is no choice between nultiple fields
of simlar size for characteristic 2). Note, however, that al gebraic
structure can also lead to inplenentation efficiencies, and

i npl ementers and users nay, therefore, need to bal ance conservati sm
against a need for efficiency. Concrete attacks are known agai nst
only very few special classes of curves, such as supersingul ar
curves, and these classes are excluded fromthe ECC standards that
this docunent references [6], [7].

Anot her issue is the potential for catastrophic failures when a
single elliptic curve is widely used. |In this case, an attack on the
elliptic curve might result in the conpromnmi se of a |arge nunber of
keys. Again, this concern may need to be bal anced agai nst efficiency
and interoperability inprovenents associated with wi del y-used curves.
Substantial additional information on elliptic curve choice can be
found in [5], [6], [7], and [11].

Bl ake- W son, et al. I nf or mat i onal [Page 28]

RFC 4492 ECC Ci pher Suites for TLS May 2006

| mpl enenters and users nust al so consider whether they need forward
secrecy. Forward secrecy refers to the property that session keys
are not conpronmised if the static, certified keys belonging to the
server and client are conprom sed. The ECDHE ECDSA and ECDHE_RSA key
exchange al gorithns provide forward secrecy protection in the event
of server key conpronise, while ECDH ECDSA and ECDH RSA do not.
Simlarly, if the client is providing a static, certified key,

ECDSA sign client authentication provides forward secrecy protection
in the event of client key conpronise, while ECDSA fixed_ECDH and
RSA fixed_ECDH do not. Thus, to obtain conplete forward secrecy
protecti on, ECDHE ECDSA or ECDHE RSA nust be used for key exchange,
with ECDSA sign used for client authentication if necessary. Here
again the security benefits of forward secrecy nmay need to be

bal anced agai nst the inproved efficiency offered by other options.

8. | ANA Consi der ati ons

Thi s docunent describes three new nane spaces for use with the TLS
pr ot ocol

o NanmedCurve (Section 5.1)

o ECPoi nt Format (Section 5.1)

o ECCurveType (Section 5.4)

For each nanme space, this docunent defines the initial value
assignnents and defines a range of 256 val ues (NamedCurve) or eight
val ues (ECPoi nt Format and ECCurveType) reserved for Private Use. Any
addi ti onal assignnents require | ETF Consensus action [16].

9. Acknow edgenents

The authors wish to thank Bill Anderson and Ti m Di erks.

Bl ake- W son, et al. I nf or mat i onal [Page 29]

RFC 4492

10.

10.

ECC Ci pher Suites for TLS May 2006

Ref er ences

1.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]
[11]

[12]

[13]

Nor mati ve Ref erences

Bradner, S., "Key Wrds for Use in RFCs to Indicate Requirenent
Level s", RFC 2119, March 1997.

Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
RFC 2246, January 1999.

Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS)
Protocol Version 1.1", RFC 4346, April 2006.

Bl ake-W | son, S., Nystrom M, Hopwood, D., M kkelsen, J., and
T. Wight, "Transport Layer Security (TLS) Extensions", RFC
4366, April 2006.

SECG "Elliptic Curve Cryptography", SEC 1, 2000,
<http://ww. secg. or g/ >.

| EEE, "Standard Specifications for Public Key Cryptography",
| EEE 1363, 2000.

ANSI, "Public Key Cryptography For The Financial Services
I ndustry: The Elliptic Curve Digital Signature Al gorithm
(ECDSA)", ANSI X9.62, 1998.

I nternational Tel ecomunication Union, "Information technol ogy
- Abstract Syntax Notation One (ASN. 1): Specification of basic
notation", | TU T Recomrendati on X 680, 2002.

I nternational Tel ecomunication Union, "Information technol ogy
- ASN. 1 encoding rules: Specification of Basic Encoding Rul es
(BER), Canonical Encoding Rules (CER) and Di stingui shed
Encoding Rules (DER)", ITU T Recommendati on X. 690, 2002.

NI ST, "Secure Hash Standard", FIPS 180-2, 2002.

NI ST, "Digital Signature Standard", FIPS 186-2, 2000.

RSA Laboratories, "PKCS#1l: RSA Encryption Standard version
1.5", PKCS 1, Novenber 1993.

SECG "Recomended Elliptic Curve Domai n Paraneters", SEC 2,
2000, <http://ww. secqg. org/ >.

Bl ake- W son, et al. I nf or mat i onal [Page 30]

RFC 4492 ECC Ci pher Suites for TLS May 2006

[14] Polk, T., Housley, R, and L. Bassham "Al gorithns and
Identifiers for the Internet X 509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile",
RFC 3279, April 2002.

[15] Housley, R, Polk, T., Ford, W, and D. Solo, "Internet X 509
Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile", RFC 3280, April 2002.

[16] Narten, T. and H Alvestrand, "Quidelines for Witing an | ANA
Consi derations Section in RFCs", RFC 2434, OCctober 1998.

10.2. Informative References
[17] Harper, G, Memnezes, A, and S. Vanstone, "Public-Key
Cryptosystenms with Very Small Key Lengths", Advances in
Cryptol ogy -- EURCCRYPT ' 92, LNCS 658, 1993.
[18] Lenstra, A and E. Verheul, "Selecting Cryptographic Key
Si zes", Journal of Cryptology 14 (2001) 255-293,
<http://ww. crypt osavvy. cont >.

[19] Chown, P., "Advanced Encryption Standard (AES) Ci phersuites for
Transport Layer Security (TLS)", RFC 3268, June 2002.

Bl ake- W son, et al. I nf or mat i onal [Page 31]

RFC 4492

Appendi x A

ECC Ci pher Suites for TLS

Equi val ent Curves (Informative)

Al'l of the NI ST curves [11] and severa

equi valent to curves listed in Section 5.1.1.
mul tiple names in one row represent aliases for the sane

t abl e,
curve.

Tabl e 6: Equi val ent curves defined by SECG

Bl ake- W | son,

of the ANSI

Curve names chosen by
di fferent standards organizations

sect 163k1
sect 163r1
sect 163r 2
sect 193r1
sect 193r 2
sect 233k1
sect 233r1
sect 239k1
sect 283k1
sect 283r1l
sect 409k1
sect409r1
sect 571k1
sect571r1
secpl60kl
secpl60ril
secpl60r 2
secplozkil
secpl9zri
secp224kl
secp224r1l
secp256k1
secp256r1l
secp384r1l
secp521r1l

et al.

prinmel92vl

prinme256vi

I nf or mat i ona

NI ST K-233
NI ST B- 233

NI ST K-283
NI ST B-283
NI ST K-409
NI ST B-409
NI ST K-571
NI ST B-571

ANSI |

May 2006

curves [7] are
In the foll ow ng

and N ST

[Page 32]

RFC 4492 ECC Ci pher Suites for TLS May 2006

Aut hors’ Addr esses

Si non Bl ake- W | son

Saf eNet Technol ogi es BV
Anst el veenseweg 88-90
1075 XJ, Amsterdam

NL

Phone: +31 653 899 836
EMai | : sbl akewi | son@af enet-i nc. com

Nel son Bol yard
Sun M crosystens |nc.
4170 Network Circle

M5 SCA17-201

Santa Cara, CA 95054

us

Phone: +1 408 930 1443
EMai | : nel son@ol yard. com
Vi pul Gupta

Sun M crosystens Laboratories
16 Network Circle

M5 UMPK16- 160

Menl o Park, CA 94025

us

Phone: +1 650 786 7551
EMai | : vi pul . gupta@un. com

Chris Hawk

Corriente Networks LLC
1563 Sol ano Ave., #484
Ber kel ey, CA 94707

Us

Phone: +1 510 527 0601
EMBi |l : chris@orriente. net

Bl ake- W son, et al. I nf or mat i onal [Page 33]

RFC 4492 ECC Ci pher Suites for TLS May 2006

Bodo Mbel | er

Ruhr - Uni Bochum

Hor st - Goertz-Institut, Lehrstuhl fuer Konmuni kationssicherheit
I C 4/ 139

44780 Bochum

DE

Phone: +49 234 32 26795
EMai | : bodo@penssl . org

Bl ake- W son, et al. I nf or mat i onal [Page 34]

RFC 4492 ECC Ci pher Suites for TLS May 2006

Ful I Copyright Statenent
Copyright (C) The Internet Society (2006).

This docunment is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights

Thi s docunent and the information contained herein are provided on an
"AS | S" basis and THE CONTRI BUTOR, THE ORGAN ZATI ON HE/ SHE REPRESENTS
OR |'S SPONSCORED BY (I F ANY), THE | NTERNET SCCI ETY AND THE | NTERNET
ENG NEERI NG TASK FORCE DI SCLAI M ALL WARRANTI ES, EXPRESS CR | MPLI ED,

I NCLUDI NG BUT NOT LIM TED TO ANY WARRANTY THAT THE USE OF THE

I NFORMATI ON HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED
WARRANTI ES OF MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Intell ectual Property

The | ETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that nmight be clained to
pertain to the inplenentation or use of the technol ogy described in
this docunent or the extent to which any |icense under such rights

m ght or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. [Information
on the procedures with respect to rights in RFC docunents can be
found in BCP 78 and BCP 79.

Copi es of I PR disclosures nmade to the | ETF Secretariat and any
assurances of licenses to be nade available, or the result of an
attenpt nade to obtain a general |icense or permission for the use of
such proprietary rights by inplenenters or users of this
specification can be obtained fromthe | ETF on-line |IPR repository at
http://ww.ietf.org/ipr.

The 1ETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to inpl enent
this standard. Please address the information to the |ETF at
ietf-ipr@etf.org.

Acknowl edgenent

Funding for the RFC Editor function is provided by the | ETF
Admini strative Support Activity (IASA)

Bl ake- W son, et al. I nf or mat i onal [Page 35]

